[v

ERLANG

Proceedings of the Fifth International

Erlang/OTP

User Conference

September 30, 1999, Alvs;jo, Stockholm

ERLANG

Erlang User Conference 1999 - Programme

Prof Bengt Jonsson, Uppsala University, chairman
08.00 Registration

09.00 Welcome Address
Bjarne Dacker, Ericsson Utvecklings AB

09.15 Telia CallGuide
Hans Nahringbauer, Telia Promotor AB

10.00 Use of Erlang/OTP in the Brainpool M/3 Communication System

Fredrik Strom, Brainpool AB
10.30 Coffee and Demos

11.00 Status Report on the ETOS Erlang to Scheme Compiler
Patrick Piché, Université de Montréal

11.30 Mail Robustifier Product based on Erlang/OTP
Hakan Millroth, Bluetail AB

12.00 Hatchet
Per Bergqvist, Ericsson Radio AB

12.30 Lunch

14.00 A Modular WAP Reference Stack Protocol Implementation
Johan Blom, Ericsson Wireless Internet AB

14.30 An Experimental SIP Implementation in Erlang
Hans Nilsson, Ericsson Utvecklings AB

15.00 Coming Releases of Erlang/OTP
Magnus Karlson, Ericsson Utvecklings AB

15.15 Coffee and Demos

16.00 Towards an Event Modelling Language
Maurice Castro, SERC

16.30 Proposals for and Experiments with an Erlang Bit Syntax
Claes Wikstrom, Bluetail AB

17.00 Bus Transfer to Waxholm 111
18.00 Conference Dinner

Demo Brainpool M/3 Communication System
Fredrik Strom, Brainpool AB
Demo HACT - High Availability Computer Telephony
Stefan Bjomelund, Ericsson Utvecklings AB
Poster Erlang Verification System
Thomas Arts, Ericsson Utvecklings AB

Poster HiPE - High Performance Erlang
Mikael Pettersson, Uppsala University

Fifth International Erlang/OTP

User Conference

ERLANG Stockholm - September 30, 1999

Location:
Date:
Fee:

Registration:

Registr form:
Conference adm:

Conference scope:

Alvsjb Conference Center, Ericsson, Gotalandsvigen 230,
Stockholm, Sweden.

September 30, 1999. Registration opens 08.00,
programme starts at 09.00.

950 SEK (including Swedish V.A.T). This includes
printed material, lunch, coffee and conference dinner.

Credit card: (VISA or MasterCard). Please mail or fax a signed
copy of the registration form. The receipt will be
returned at the registration.

Invoice: Please fax a copy of the registration form or send a
mail to euc99@erlang.ericsson.se stating the address
where to send the invoice.

http://www erlang.org/invitation_euc99.html

euc99@erlang.ericsson.se

This is the first Erlang/OTP User Conference since Erlang/OTP was
made available "open source" and the first part of the conference will
be spent on describing exciting new applications. The second part
deals with new technical developments primarily in the area of
protocol implementations.

Conference Programme

~a~ Registration aa

Telia CallGuide
Hans Nahringbauer, Telia Promotor

Telia Promotor shares their experiences from the development and maintenance of a successful
commercial Computer Telephony Integrated (CTI) system based on Erlang/OTP. Their

experiences are accumulated from more than one year of different customer installations.

The core of Telia CallGuide is a CTI-server developed in Erlang/OTP, operating on a
Windows NT Server. Telia CallGuide is the next generation CTI-system, which integrates
telephony, email, fax and IP telephony, with far more functionality than the first generation of

CTlI-systems based on PBX technology.

The use of Erlang/OTP in the Brainpool M/3
communication system
Fredrik Strom, Brainpool AB

Brainpool AB decided during 1998 to make a new version of the Brainpool MMS product due
to new customer demands and ideas about how to exploit Erlang/OTP on the NT platform. The
MMS is a software server that is used to send text messages to GSM/SMS and pagers from
client software in a computer network. The communication server uses one or several modems
or X.25 circuits and is preconfigured to communicate with service providers in the Nordic
countries. New demands for the new version include scaleability, robustness, the ability to run
on multiple computers, dynamic load balancing, two-way communication and country

independence.

Brainpool chose to use Erlang/OTP for the development of the new generation of the product -
the Brainpool M/3. We based this choice on what this platform promised, and on earlier
experience using the Erlang language. The M/3 sends SMS messages through an Ericsson
GM12 GSM module, which makes the M/3 easy to deploy in different countries. This also
allows mobile phones to send messages to the server and connected computer applications, thus

permitting two-way communication.

This presentation discusses why Erlang/OTP was chosen and our experience with this platform.
We also plan to make a demonstration of the Brainpool M/3 communication system.

Status report on the ETOS Erlang to Scheme compiler r”'l
Patrick Piché, Université de Montréal

The ETOS compiler for Standard Erlang has been under development for the past two years at
Universite de Montreal. The current state of the compiler (including benchmarks) and future
plans will be discussed. We will focus on the compilation approach which allows it to generate
high-performance executable code, in particular: pattern matching compilation, tail recursion in

C, real-time GC and native code generation.

aa. Coffee aa.

Mail robustifier product based on Erlang/OTP
Hékan Millroth, Bluetail AB BLUETAIL

Bluetail Mail Robustifier is a software product that makes handling of e-mail more efficient for
Internet Service Providers. The product was released on July 1, 1999 and is in now in operation
at large Internet Service Providers in Sweden. In this presentation we focus on the role of

Erlang in the development of this product: how it affected time-to-market, software quality, etc.

Hatchet
Per Bergqvist, Ericsson Radio AB

Hatchet or MicroMTX (the first AXE 110 application) is the
smallest AXE 10 application and it is based on only two boards.
One runs the AXE CP-software (written in Plex) using an
emulator (SIMAX) and the other consists of SwitchBoard plus
daughter boards, a complete switch with processor, which
emulates the AXE 10 hardware. SwitchBoard is scalable and
controlled through Distributed Erlang.

The talk will focus on experiences from using Erlang to create this system and to tie all the
different subcomponents together

aa. Lunch and Demos aa

s

A modular WAP reference stack protocol
implementation ERICSSON ==
Johan Blom, Ericsson Wireless Internet AB

Al

This presentation focuses on a reference implementation of a subset of the de facto standard,
Wireless Application Protocol (WAP), for wireless information and telephony services on

digital mobile phones and other wireless terminals.

In this project a client and server stack, including a session (Wireless Session Protocol, WSP),
and transport (Wireless Transport Protocol, WTP), have been implemented in Erlang. In
addition, the basic management functions for starting and stopping the stacks etc. have also
been implemented. The protocol stacks have been designed in a very modular way and as a

result they have been used in the development of a number of different projects.

An experimental SIP implementation in Erlang
Hans Nilsson, Ericsson Utvecklings AB

SIP - Session Initiation Protocol - is a new IETF Protocol for
initiating, modyfing and terminating multimedia conferences.
One simple example is so called Computer Telephony. The
protocol is text based (like HTTP) and is carried by either
UDP/IP or TCP/IP.

This talk presents why Erlang/OTP was chosen as the basis for the experiments, how the
software was organized and some of the results.

Coming releases of Erlang/OTP
Magnus Karlson, Ericsson Utvecklings AB

Presentation of the Erlang/OTP R6 release which will be available on October 27 and includes
for example a new compiler for BEAM, ASN.1 extended standard support, Corba transactions
and security in Corba using SSL. In addition there are many improvements for example in
release handling.

This release will become available as *open source’ shortly after.

aa Coffee aa

Towards an event modelling language
Maurice Castro, Michael Dwyer and Geoff Wong,
SERC RMIT

Object-oriented programming owes part of its popularity to Booch’s
notation, Rumbaugh’s OMT, and UML. These notations allow object
oriented designs to be expressed graphically and furthermore have enabled
the development of case tools for object oriented languages.

The lack of a suitable high level graphical notation has been identified as one of the factors
discouraging the uptake of functional programming and in particular the language Erlang.

This paper represents a first step in designing a graphical modeling language for functional
programming that encourages sound programming practices. The initial target language is

Erlang but it is hoped that the notation can be extended to other functional languages.

Proposals for and experiments with an Erlang bit syntax -
Claes Wikstrom, Bluetail AB [
E

Efficient programming of communication protocols like CCITT SS7 requires
above all:

RLANG

- Some method to handle concurrency,

- Some method to describe state-machines,

- Timers,

- Some way to efficently and beautifully encode and decode PDUs
- An effient way to manage buffers and avoid unnecessary copying.

At present Erlang is excellent with regard to the first three aspects and can lead highly
declarative programs running fast. The so called "bit syntax" is an extension for dealing with

the latter two aspects.

The talk will describe the bit syntax and the buffer mechanism and report from an experimental
implementation and from experiences in using them for the implementation of actual protocols.

Plans are that the bit syntax (possibly in som revised form) will be included in a future release.

(This work was carried out at the Computer Science Laboratory.)

a~ Bus from Alvsjo to Dinner Event a~

Conference chairman: Prof. Bengt Jonsson
"~ Dept of Computer Systems

Uppsala University.

Demonstrations: Brainpool M/3 communication system, WAP
and HACT (High Availability Telephony).

Conference Dinner: On a boat trip with
m/s Waxholm III.

Organization Bjarne Dicker, Computer Science Laboratory

Committee: Ericsson Utvecklings AB

Lilian Ahlberg, Open Systems Consulting
Ericsson Utvecklings AB

Anna Fedoriw, Open Systems Product Management
Ericsson Utvecklings AB

Torbjorn Keisu, Software Architecture Laboratory
Ericsson Utvecklings AB

How to get there: By air

1. From Arlanda airport you take the bus (Flygbussarna) to
Stockholm. This costs about SEK 60 and takes about 35
minutes. The bus stop (Cityterminalen) is almost on top of
Stockholms Central Railway Station. Going by taxi is not
much more convenient or faster, but much more expensive
(about SEK 350). If you do go by taxi, be sure to agree on
the price before starting the trip! It is quite likely that you
otherwise will have to pay towards SEK 1000!

2. You then walk down to the railway station and take the local
train, see below. Alternatively you could take a taxi but that

would cost you almost SEK 200.

Via local train (pendeltag)

1. Take the "pendeltag” from Stockholms Central Station (the
train station) south to Alvsjo. This takes about 7 minutes and
costs about SEK 20. (If you intend to stay a few days, it is
worthwhile to buy a strip, "rabattkuponger”, instead.)

2. When you exit the station: turn right (not left to the
Stockholm International Fair).

3. Walk down the stairs, turn right and cross Johan Skyttes vig
and walk towards "Handelsbanken" and some other shops.
The big road you have to cross to get to Handelsbanken is
Gotalandsviagen. However, don’t cross the road: Go to the
left and follow Gotalandsvigen about 200 meters. You will
bump into the main gate of the Ericsson buildings in Alvsjé.

This is where you enter.

By car

1. Drive the E4 road south from the city and take off towards
Alvsjo about 5 kilometers from Stockholm center.
2. At the first roundabout/circulation place on Alvsjovigen turn

left. Park you car and enter the main gate.

g AL s
W, Gotalandsvigen 230

Armborstvagen 14

Fax +46 8 719 89 40

EUC99

Ericsson Utvecklings AB
P.O. Box 1214

SE-164 28 Kista
SWEDEN

T

ERLANG

Erlang User Conference 1999 - Participants

Chairman and speakers

Prof Bengt Jonsson

Uppsala University

Sweden

bengt@minsk.docs.uu.se

Ericsson Radio

Per Bergqvist Systems AB Sweden |[per.bergqvist@era.ericsson.se
Johan Blom S;lsctisn(irsl E;dlo Sweden [johan.blom@ewi.ericsson.se
Maurice Castro SERC Australia|maurice @serc.rmit.edu.au
Magnus Karlson UAB/Open Systems [Sweden [mk@erlang.ericsson.se
Hakan Millroth Bluetail AB Sweden [hakanm @bluetail.com

Hans Nahringbauer [Telia Promotor AB [Sweden [hans.h.nahringbauer @telia.se
Hans Nilsson UAB/CSLab Sweden [[hans @erix.ericsson.se
Patrick Piché &rgg& rés;lt £le Canada |[[piche@iro.umontreal.ca

Fredrik Strom

Brainpool AB

Sweden

fredrik.strom @brainpool.se

Claes Wikstrom Bluetail AB Sweden (klacke @bluetail.com
Participants
Jukka Alapoikela Ericsson Inc. USA |bukka.a1apoikela@ericsson.com
Jorgen Andersson Ericsson Radio Sweden |[jorgen.andersson@switchboard.ericsson.se
Systems

o foies Brainpool AB Sweden |[kristoffer.andersson @brainpool.se
Andersson
Marcus Arendt Marcus Arendt AB Sweden [marcus@arendt.se
Joe Armstrong Bluetail AB Sweden | Joe@bluetail.com
Thomas Arts UAB/CSLab Sweden ([thomas@erix.ericsson.se

. Ericsson Systems . i
Mike Begley Expertise Ireland |michael.begley @etx.ericsson.se
Per Bengtsson Telia Promotor AB |Sweden |per.x.bengtsson@telia.se
Johan Bevemyr Bluetail AB Sweden |[jb@bluetail.com
Martin Bjorklund |Bluetail AB Sweden [[mbj@bluetail.com

Stefan Bjornelund [UAB/Open Systems |Sweden [stefanb@erlang.ericsson.se

Lars Bjornfot UAB/SARC Sweden |bjornfot@erix.ericsson.se

Hans Bolinder UAB/Open Systems [[Sweden [[hasse @erix.ericsson.se

Kent Boortz UAB/Open Systems [[Sweden |[kent@erlang.ericsson.se

Goran Bége g;lsiisrg? i;dlo Sweden (|goran.bage @era-t.ericsson.se

Richard Carlsson Uppsala University |Sweden |[richardc@csd.uu.se

Tuula Carlsson UAB/Open Systems [Sweden [tuula@erix.ericsson.se

Francesco Cesarini |UAB/Open Systems [Sweden [cesarini@erlang.ericsson.se

Gennady Chugunov |SICS Sweden [gena@sics.se

Marcus Claus- Brainpool AB Sweden [marcus.claus @brainpool.se

Mats Crongvist Ericsson Telecom AB [Sweden [mats.crongvist@etx.ericsson.se

Mary Daly-Scanlon E;l;;;(;lsleSystems Ireland [[Mary.DalyScanlon@eei.ericsson.se

Bjarne Dacker UAB/CSLab Sweden (bjarne@erix.ericsson.se

Tommy Fagerberg |[Enea Data AB Sweden [tommy.fagerberg@enea.se

Anna Fedoriw UAB/Open Systems [Sweden [lanna@erlang.ericsson.se

Henrik Forsgren UAB/Open Systems |Sweden henrik@erlal;lg.ericsson.se

Lars-Ake Fredlund [SICS Sweden [fred @sics.se

Magnus Froberg Bluetail AB Sweden |[magnus@bluetail.com

Joakim Grebend Bluetail AB Sweden Ejocke @bluetail.com

Rickard Green UAB/CSLab Sweden [d95-rgr@d.kth.se

Dan Gudmundsson [UAB/Open Systems [[Sweden dgud(-@erix.ericsson.se

Dilian Gurov SICS Sweden di-lian @sics.se

Bjorn Gustavsson [UAB/Open Systems [Sweden [bjorn@erix.ericsson.se

é?]rss{irslé(on E}gfviz(;rﬁfu51ness Sweden |lars-erik.gustavsson@ebc.ericsson.se

Radosman Gutierrez |Ericsson Telecom AB [Sweden [etxgura@kk.etx.ericsson.se

g;?g;s ERIEE LM Ericsson A/S Denmark(thomas.v.hansen @1lmd.ericsson.se

Per Hedeland UAB/CSLab Sweden |per@erix.ericsson.se

Joakim Hirsch UAB/Open Systems [Sweden Joke@erlang.ericsson.se

Ben_gt Holmstrém |Ericsson Telecom AB [[Sweden [bengt.holmstrom@etx.ericsson.se

Gunilla Hugosson |[UAB/Open Systems [Sweden gunilla@erlan_g.ericsson.se

Anders Jacobsson Elricsson Business Sweden |anders.jacobsson@ebc.ericsson.se
etworks

Erik Johansson Uppsala University |[Sweden [happi@csd.uu.se

Ylva Johansson Sjoland & Thyselius [[Sweden [ylva.johansson@st.se

Torbjorn K Johnson Sweden (torbjorn.k.johnson @swipnet.se

—
Henrik Jonasson

Ericsson Business
Networks

Sweden

henrik.jonasson @ebc.ericsson.se

Per-Johan Josefsson

Frontec Tekniksystem
AB

Sweden

per-johan.josefsson @sth.frontec.se

Expertise

Micael Karlberg UAB/Open Systems [[Sweden |bmk@erix.ericsson.se

Bertil Karlsson UAB/CSLab Sweden [[d95-bka@d.kth.se

Magnus Karlsson UAB/Open Systems |[Sweden [lagga@erlang.ericsson.se

Mikael Karlsson Creado Systems Sweden [mikael.karlsson@creado.com

Roland Karlsson UAB/CSLab Sweden |[roland@erix.ericsson.se

Torbjorn Keisu UAB/SARC Sweden |keisu@erix.ericsson.se

Kjell Kristiansen Kvatro Telecom AS |[Norway [kjell.kristiansen @kvatro.no

Markus Kvisth UAB/Open Systems |Sweden [markus@erlang.ericsson.se

Thomas Lange Ericsson Radio AB [|Sweden |[thomas.lange @switchboard.ericsson.se

Magnus Lennartsson |Ericsson Telecom AB |[Sweden magnus.len=nartsson@ericsson.com
|[Andreas Lindgren |Sjoland & Thyselius |Sweden andreas.lindgren @st.se

Thomas Lindggn Bluetail AB Sweden (thomasl@bluetail.com

Stefan Lorenz Ericsson Telecom AB [[Sweden |etxstlz@kk.etx.ericsson.se

Peter Lund ISE;I;ZS;: igdlo Sweden [Peter.Lund@era.ericsson.se

Peter Lundell Ericsson Telecom AB Sweden_“peter.lundell@ericsson.com

Kenneth Lundin UAB/Open Systems [Sweden [kenneth@erix.ericsson.se

Matthias Léng UAB/CSLab Sweden |mml@erix.ericsson.se

Stefan Martinsson |Ericsson Telecom AB |[Sweden |stefan.martinsson@etx.ericsson.se

Hakan Mattsson UAB/CSLab Sweden ([hakan@erix.ericsson.se

Chandry Mullaparthi E:;ZiigeSystems Ireland |eeicmui@eei.ericsson.se

Patrik Niklasson glgf;icixllfusmess Sweden |[patrik.niklasson @ebc.ericsson.se

Bengt Nilsson UAB/Open Systems [Sweden [nibe@erix.ericsson.se

Raimo Niskanen UAB/CSLab Sweden [raimo@erix.ericsson.se

Sven-Olof Nystrom |Uppsala University |Sweden [svenolof @csd.uu.se

Janine O’Keeffe Ericsson Telecom AB |Sweden Ejanine.okeefe@etx.ericsson.se

Arne Ohlsson Egltc\iso(;?(f:gness Sweden |arne.ohlsson@ebc.ericsson.se

Simon Olofsson Ericsson Telecom AB [Sweden |simon.olofsson@etx.ericsson.se

Mikael Pettersson |Uppsala University [Sweden [mikpe@csd.uu.se

Dan Sahlin UAB/CSLab Sweden [dan@erix.ericsson.se

Ola Samuelsson Cyberode IT AB Sweden |[lola@cyberode.se

Denise Stack EHCSSRICySICIS Ireland |feeidsk @eei.ericsson.se

' lllfh“' ;E 1 -_.

Ericsson Business

Per Sternas Networks Sweden |[per.sternas@ebc.ericsson.se
Hishmat Sultani Telia Promotor AB ||Sweden |[Hishmat.S.Sultani @telia.se
Henrik Swerin UAB/Open Systems |Sweden [henriks @erlang.ericsson.se
Sebastian Strollo UAB/Open Systems [Sweden |lseb@erix.ericsson.se

Erik Strombéack Ericsson Radio AB [Sweden [erik.stromback @switchboard.ericsson.se
Goran Stupalo UAB/Open Systems Sweden stupalo@erlan‘g.ericsson.se

Ulf Svarte Bagge Ericsson Radio AB |[Sweden ulf.svarte_bagge@switchboard.ericsson.se
Lars Thorsén UAB/CSLab Sweden |[lars @erix.ericsson.se

Magnus Thodng Ericsson Telecom Sweden [letxmagt@etxb.ericsson.se
Johan Tjider Ericsson Telecom Sweden [etxjotj@etxb.ericsson.se

Robert Tjarnstrém ||Ericsson Telecom AB |[Sweden |[etxtjr@al.etx.ericsson.se
Markus Torpvret Connecta Teknik AB [[Sweden [[markus.torpvret@connecta.se
golslsggfr UAB/SARC Sweden |crippa@erix.ericsson.se

Ake Uddén Ericsson Telecom AB [|[Sweden [etxaal @kk.etx.ericsson.se
Robert Virding Bluetail AB Sweden |rv@bluetail.com

Jane Walerud Bluetail AB Sweden | u.iine @bluetail.com

Carl Wilhelm Welin [UAB/CSLab Sweden |[calle@erix.ericsson.se

Per Harald Westby |Kvatro Telecom AS |Norway |per.h.westby @kvatro.no
Sverker Wiberg UAB/CSLab Sweden [sverkerw @erix.ericsson.se

Ulf Wiger Ericsson Telecom AB |Sweden [ulf.wiger@etx.ericsson.se
Jerker Wilander Ericsson Radio AB [Sweden 'Eierker.wilander@era.ericsson.se
Mike Williams UAB/Open Systems [Sweden |mike @erix.ericsson.se

Patrik Winroth Bluetail AB Sweden |patrik @bluetail.com

Lulseged Zerfu Ericsson Telecom AB [[Sweden [etxluze @kk.etx.ericsson.se
Lennart Ohman Sjoland & Thyselius [Sweden [lennart.ohman@st.se

UAB = Ericsson Utvecklings AB
CSLab = Computer Science Laboratory
SARC = Software Architecture Laboratory

Telia CallGuide®
_ PBX independent
CTI platform for contact centers

Telia Promotor

Customer care
and service
increase competitiveness

Top-quality customer care and customer service
keep you ahead of the competition. And a con-

tact center is the best way to manage customer
care and service. How? By uniting computer-

integrated telephony with other IT solutions.

Telia Promotor offers Telia CallGuide — a techni-
cal platform for contact centers. With this plat-
form, your company can meet the most stringent
requirements for accessibility and service,
regardiess of whether your customers contact
you by phone, fax, or e-mail. The pIatfor;m yis a‘Is'—o

prepared for Internet telephony.

Telia CallGuide provides all necessary tools for

effectively communicating with and following up

on customers.

Independent of phone branch exchange

Telia CallGuide is a service solution with audio
response (IVR) that can be connected to a phone
branch exchange (PBX) with TAPI support. You can
also mix different PBXs in the same customer-service.
You need no private PBX. Telia CallGuide can be
connected directly to AXE or to an analog telephone.
Customer-service reps are not tied to a permanent

office; they can work from their homes.

Simple installation without an PBX link
Most CTI solutions require an PBX link for communica-
tion with the telephone PBX.

PBX links are expensive and generally quite complex
to install.

With Telia CallGuide, you need not purchase costly
PBX links nor update the exchanges. Installation is

much easier and more secure.

Open interfaces and standard software
Telia CallGuide is based on open interfaces, which sim-
plifies integration into customer databases, HR systems,
and action-request (message) systems.

Telia CallGuide uses standard software, such as
MS SQL Server, MS Windows NT, and CrystalReports.

The applications use a Windows-based interface without

scripting language.

Intelligent call control

Because calls are virtually queued using IVR, ACDs
are not required. You can queue an unlimited number of
calls and competence groups at your customer-service
sites.

You can also provide each customer with a personal
customer-service rep to whom the customer is always

forwarded automatically.

¥ i

I h. T | . e b
Functlons or managlng*qu- ues

and controlling calls .~

\

[
|

i \
iz

IVR - automatic services e Escalation/overflow of calls between queues.

e [VR with customer-specific menus and functions. e Different queue priorities.

e Automatic services with connections to arbitrary

support systems. Screen-based telephony - Telia CallGuide
e Customers receive continuous updates concerning- "~ Telelist .- - -- -

their place in the queue and estimated time of wait. e Telia CallGuide TeleList provides telephony functions
e Voice mailboxes. in a Windows-based environment.
e Fax. e Customer-service reps can monitor queue lengths and

. . ine ho i -service re
e Analog or digital connection of IVR to the exchange. determine how many active customer-service reps

fall within a certain competence area.

Competence-based call control e Customer-service personnel can:

o Calls are forwarded to: — create a personal telephone book.

— the customer-service rep with the right competence. — refer themselves via a referral function.

— an available customer-service rep who recently e Customer-service reps can put the customer on
helped the customer. hold — to confer with a colleague. They can send
— a personal customer-service rep. questions to a competence area or group, which

— external numbers when, for example, load is high

or queues are long.

o During operations, customer-service reps can be

assigned to an area of competence and to a group. TeleList screen-based telephone.

means that they need not know the names of their
colleagues; this is particularly advantageous when
customer-service is distributed among several loca-

tions and serves many competence areas.

e Calls can be transferred to a customer-service
rep, 1o a competence area, or to a group.

o Three-party conferences.

o QOscillation between calls.

e Pause-connection and post-service follow-up.

¢ Confidentiality.

Screen pop

¢ Information on the incoming call is retrieved from
the support system and presented on the screen

(screen pop) as the call arrives.

o The screen pop is shared during conference calls
and accompanies calls that are transferred to a

new customer-service rep.

Outgoing telephony - preview dialing
e With CallMeBack:
— IVR — the customer can, via audio response, ask to
be called back at a more convenient time.
— Web — the customer can, via a Web page, ask to be
called back immediately or at a more convenient time.
e (Calling lists are:
— used for CallMeBack and during campaigns.
— sorted by priority, requested action, date, and so on.

. CallGuide Infoermant
%.—'cantralvéntelim'a Pl .]

e _l_.._..... e 2 ._..._.i.l...
19990609 09:47:59 | Saknas 020241024 Ordinarie 100

‘Inioggad pA 1 tianst

{Anshten t CallGuide2 : 211 T Summakortakier 1

Example of a campaign list.

e Campaigns — customer-service staff are reminded to

survey their customers regarding action requests and
company campaigns.
e Competence-based control also applies to outgoing

telephony.

E-mail
e Competence-based control of incoming e-mail via

Telia CallGuide Mail.

e Campaigns in the form of e-mail, which reminds

customer-service reps to follow up customer requests.

Real-time information,

statistics and other functions

Administrative program

Statistics

Telia CallGuide Admin permits customer-
service managers to administer queues,
competencies, groups, and extensions via

a simple Windows-based interface.

Customer-service reps can be removed from
and added to CallGuide Admin. Managers
can easily create and change the profiles of

customer-service staff.

Personal customer-service reps or groups

can be defined for certain customers.
Business hours can be set in IVR.

Messages can be sent to every customer-

service rep.

Call-related. Number of incoming calls, num-

ber of dropped calls, and number of calls per
requested action. Statistics are generated per half-hour,
day, and week.

Staff-related. Call duration, number of calls, total
time per requested action, available status in percent,

and percent of calls per customer-service rep.

Outgoing telephony-related. Staff-related statistics

and call-related statistics for campaigns.

Seagate’s CrystalReport, one of the world’s most
commonly used reporting tools, is included in the
platform, along with several standard, customer-

service reports.

e Telia CallGuide Stat generates statistics and enables

managers to manipulate the information in standard

business software, such as Excel and Word.

Real-time information on the contact center

e Current information is displayed in real time. Telia
CallGuide Pulse reports on the number of queued
calls, answered calls, abandoned calls, average queue
time, number of reps logged into the system, repre-

sentative status, and so on.

o The real-time information is presented numerically

and graphically and may be displayed on screen.

CallGuide Pulse, real-time supervision.

Other functions

Customer-service reps are not required to work from
a permanent site. The system registers the extension
from which a representative is currently working (hot
desking).

Unlimited number of customer-service staff members

or work sites.

Distributed work sites; for example, home-based
work sites can connect to the system via LAN, ISDN,
or modem.

The number of IVR lines can be expanded
dynamically.

Operating system

CallGuide Server runs under MS Windows NT 4.0
and uses MS SQL-Server as a database. See
http://www.microsoft.com

All client software is installed on Windows 95/98 or
Windows NT 4.0.

System overveiw

Dependability

Telia Promotor is the market-leading supplier of
computer-integrated telephony in the Nordic region.
In 1998, Telia Promotor delivered advanced CTI

solutions for more than 2,500 customer-service reps.

Dependable server technology with double RAID
disks and Ericsson’s Erlang/OTP technology.
Ericsson uses Erlang code in its new-generation,
public-network, ATM exchanges. Erlang offers many
unique advantages, for example, the software code
can be updated while in full operation.

Tested audio response with nearly 1,000 installations
in Sweden.

System supervision with Telia CallGuide Alarm.
Alarms are generated whenever any part of the
system fails. Telia CallGuide can be based on IBM’s
Netfinity software.

Telia CallGuide® is a registered trademark of Telia AB. MS SQL Server
and MS Windows NT are trademarks of Microsoft. Netfinity is a trade-
mark of IBM. CrystalReports is a trademark of Seagate.

Acronyms and what they stand for

ACD: Automatic call distributor OTP: Open telecom platform

ATM: Asynchronous transfer PBX: Phone branch exchange
mode RAID: Redundant array of

CTl: Computer telephony independent disks
integration TAPI: Telephony AP!

DDE: Dynamic data exchange

IVR: Audio response

LAN: Lacal area network

Tella Promotor
www prgmotor.felia se

Goleborg Haninge

Lilla Bommen 1 Box 168

SE 411 04 Goreborg SE 136 23 Haninge
4463177124 00 +46 8 707 35 00

Malmo
SE 205 21 Malmo

+46 40 90 100

Sotna

Bax 2069

SE 171 02 Soina
+46 8 764 35 00

2.telia

Uppsata

Box 1218

SE 751 42 Uppsala
+46 18 18 94 00

braipool

Fredrik Strom m.sc.

Vice President
Senior Consultant

Brainpool at a glance g

 |IT Consulting company
» 23 consultants
» Business Areas:
— - Information Systems
— - Internet
— - Workflow
— - Mobility

What is a MMS? g

Brainpool MMS

« 16 bit DOS

Poor scalability
 Modem

Country dependent
One-way communication

New Requirements

« Quicker transmission

« Two-way communication
Country independent
Scalable

Robust

Brainpool M/3 g

« Erlang System/OTP
» Ericsson GM12

« ANSIC

« Windows service

Brainpool M/3 g

Erlang &

« Rapid development

Fewer bugs - more stable system
Some functions missing

Differs from “normal” development
|G is powerful

Mnesia is powerful

L]

L]

Conclusion [

« We at Brainpool have found that the
Erlang System/OTP is a reliable and
usable platform.

« We look forward to working with Erlang
in the future, as well as increasing our
cooperation with Ericsson.

« We intend to train a larger group of
consultants in Erlang to meet this goal.

More information @

» Please contact
— Fredrik Strom
—08 -446 60 42

— fredrik.strom @brainpool.se

— www.brainpool.se

brairpool

Foretagspresentation

Forfattare

Fredrik Strom
Vice VD

Brainpool AB

braimpool

consulting

1999-09-27
Sida 2

BRAINPOOL AB - Féretagspresentation

Affarside

Brainpools vision dr att hjilpa foretag och organisationer utveckla och forbittra sin
verksamhet genom att anvinda informationsteknologi pa ritt sitt. Foretaget grundades 1991
och #gs av tre personer, samtliga arbetande konsulter i foretagsledande befattning.

Var affirsidé 4r att i nira samarbete med kunden analysera, utforma och implementera
avancerade informationssystem och kommunikationstillimpningar i syfte att hjdlpa kunden att
arbeta och kommunicera effektivare, automatisera arbetsflodes- och beslutsprocesser samt
presentera och distribuera information till interna och externa intressenter. Detta skall ske
genom att utnyttja sivil kundens befintliga tekniska plattform och organisation som att
utvirdera och rekommendera anvindning av nya produkter, verktyg och metoder inom IT.

Samtliga Brainpools medarbetare arbetar med sévil analys, design och modellering som
med teknisk radgivning, programmering, optimering och forvaltning av affarskritiska
informations- och kommunikationssystem. Véara konsulter arbetar som utvecklare,
systemarkitekter och projektledare och samtliga har nigon av foljande akademiska examina
inom datateknik/datavetenskap: civilingenjor, fil. kand. och fil. mag.

For att bibehélla en teknisk bredd och kontinuerligt tillféra Brainpool kunnande inom nya,
relevanta omriaden samt att kommunicera ut var profil mot en stérre marknad &r vi partners
med ledande tillverkare och aktérer pd IT-marknaden. Brainpool AB #r Oracle Certified
Solution Partner, Microsoft Certified Solution Provider, certifierad JetForm Partner samt Lotus
Business Partner.

Brainpool nyutvecklar, vidareutvecklar och integrerar bdde traditionella och webbaserade
affarskritiska informationssystem for foretag i olika branscher som till exempel distribution
och handel, offentlig sektor, intresseorganisationer och myndigheter, medicin,
telekommunikation, hotell och restaurang, forlag och media, industri och inte minst bank och
finans. Bland véra kunder och samarbetspartners finns allt frdn mindre till mycket stora
organisationer. Bland Brainpools kunder inom omrédet for konsulting finns SBAB, SKTF,
Liber, Scandic, Orebro Lins Landsting, ABB, Telia, Handelshogskolan, Bilprovningen, Linné
Group och Ericsson. Bland foretag som anvidnder vara kommunikationsprodukter marks
speciellt Market Makers Technology, SEB, Securitas, Telia MegaCom och ABB.

Personella resurser och kompetensomraden

Samtliga Brainpools medarbetare arbetar med savil analys, design och modellering som
teknisk radgivning, programmering, optimering och forvaltning av affarskritiska informations-
och kommunikationssystem,

Vira konsulter arbetar som utvecklare, systemarkitekter och projektledare och samtliga
har nigon av foljande akademiska examina inom datateknik/datavetenskap: civilingenjor, fil.
kand. och fil. mag.

Som en naturlig del i vara konsulters, projektledares och kundansvarigas arbete ingar att
hela tiden f6lja den tekniska utvecklingen, deltaga i och halla internutbildningar och seminarier
samt att g& pa formella kurser. Vidare sker certifiering av vira medarbetarna inom ramen for

olika certifieringsprogram hos de leverantérer vi samarbetar med; Microsoft, Oracle,
IBM/Lotus m fl.

Brainpool AB e Centralvagen 6, S-171 68 Solna-Stockholm, Sweden e Org nr: 556432-3748
Tel +46-(0)8-446 60 40 » Fax +46-(0)8-514 910 32 « Email info@brainpool.se « Internet http://www.brainpool.se

bl'Cl I T’POOI 1999-09-27

consulling

Sida 3

Teknik och partners

IBM

JetForm

Lotus

Microsoft

Oracle

Nya tekniker

Betriffande verktyg och tekniska plattformar s arbetar vi med ledande produkter inom
data/IT och har samarbete inom ramen for olika typer av partnerskap med bland annat f6ljande
aktorer pa marknaden.

IBM satsning pa I6sningar for eBusiness sammanfaller med Brainpools fokus p4 omradena
for Internet och elektronisk handel och kunnande inom relationsdatabasteknik och
komponentorienterad systemutveckling. Partnerskapet dr viktigt for oss eftersom flera av
Brainpools kunder arbetar med blandade miljéer dar IBM-plattformar utgdr basen for olika
typer av produktionssystem (ERP) och dessa behdver integreras effektivt med nya system for
eBusiness. Vi arbetar speciellt med teknologier som DB2 och WebSphere/Java.

Brainpool samarbetar med JetForm i Sverige och fungerar som kompetenskonsulter pa
omraden som systemintegration och utveckling av blankettbaserade workflow l6sningar och
system for blankettdrivna centraliserade utskrifter i stérre system.

Sedan 1994 arbetar vi med Lotus Notes/Domino, och dr numera Lotus Business Partner
med fokus pa losningar som baseras pa teknologier som Lotus Notes och Domino.

Detta ir ett naturligt steg for oss eftersom ménga foretag och organisationer inom var
marknad arbetar med sévill relationsdatabasteknik som system for workflow och
dokumenthantering och vi menar att det finns goda skil att kombinera de olika teknikerna pd
ett bra sitt, inte minst i olika workflow-19sningar och i web-tjénster.

Brainpool idr Microsoft Certified Solution Provider (MCSP). Ett flertal av Brainpools
medarbetare &r certifierade pa olika tekniker hos Microsoft.

Bland teknologier frin Microsoft arbetar vi speciellt med de olika utvecklingsverktygen,
komponentarkitekturen DCOM och BackOffice-plattformen, t ex med SQL Server, MS
Transaction Server och Internet Information Server.

Brainpool har av Oracle Svenska AB valts ut som en strategisk partner och 4r sedan 1998
en Oracle Certified Solution Partner. Vi har jobbat med Oracle teknologi sedan 1994 och varit
Oracle Business Alliance Member och Oracle Value Service Provider sedan 1996.

Vi har i manga olika projekt utvecklat affarskritiska informationssystem och webtjénster
baserat pd Oracles databaser och Oracle Application Server. Exempel &dr beslutstdd- och
produktionssystem i Intraniitmiljo, shoppingtjanster pa Internet, datalager och driftrutiner kring
dessa.

Inom ramen for utveckling av var tekniska strategi arbetar vi ocks& med andra plattformar
som vi bedémer ir intressanta; Java pd IBM minis/mainframes, DB2, Enterprise Java Beans
och CORBA samt utveckling av distribuerade kommunikationssystem och feltoleranta
applikationer baserade pé spriket och plattformen Erlang frén Ericsson.

Speciellt intressanta ir dessa tekniker for segmenten elektronisk handel, distribution,
media, bank/finans och telekommunikation.

Inom omradet for workflow och blanketthantering arbetar vi ocksd med teknologi fran
JetForm, speciellt med koppling till mailsystem, databaser och webben.

Brainpool AB e Centralvagen 6, S-171 68 Solna-Stockholm, Sweden ¢ Org nr: 556432-3748
Tel +46-(0)8-446 60 40 « Fax +46-(0)8-514 910 32 « Email info@brainpool.se e Internet http://www.brainpool.se

brairpool

consulting

1999-09-27
Sida 4

Sammanfattning av den kompetens som Brainpool tillhandahaller

Systemutveckling; projektledning, verksamhetsanalys, processmodellering,
datamodellering, logisk systemdesign, prototypning/RAD, implementering,
testmetodik, forvaltning/vidareutveckling, utbildning

Modellering; datamodellering, ER/ERX, UML, flédesmodeller, processmodeller,
tillstdndsdiagram, objektorienterad analys och design

Databaser; fysisk databasdesign, 6vervakning, prestandaanalys, optimering. Speciellt
plattformarna Oracle, Sybase, MS SQL Server, DB2, Lotus Notes; distribuerade
databaser, replikering, grinssnitt mot externa system och integration av heterogena
databaser, datalager, N-skikts client/server

Programmering; Visual Basic, C/C++, Delphi, Object Pascal, Java, DCOM/ActiveX,
CORBA, Oracle PL/SQL, SQL, MS Transact-SQL, Sybase Transact-SQL, Centura,
Oracle Developer, MS ASP, MS Office, MS Access, Paradox, Lotus Notes, Erlang

Internet/Web; HTML, Javascript, HTTP, Java, MS IIS, Oracle Web Application
Server, IBM WebSphere., Apache, Microsoft Transaction Server, Lotus
Notes/Domino, system for elektronisk handel, sékerhet; certifikat, kryptering

Operativsystem; Windows alla versioner, 0OS/2, DOS, Netware, UNIX, Linux;
system-API:er, driftrutiner

Kommunikation; Seriell kommunikation, TCP/IP, integration av mailsystem med
databaser, driftrutiner och applikationsprogramvaror, meddelandeprotokoll for mobila
mottagare (SMS, personstkning).

Egen produktfamilj Brainpool MMS och Brainpool M/3 for integration av
mobiltelefoner, personstkare och datorsystem som sublicensieras och 4r i drift hos
foretag som t ex Securitas, ABB, Alfaskop, Telia och kunder till dessa.

Brainpool AB e Centralvagen 6, S-171 68 Solna-Stockholm, Sweden Org nr: 556432-3748
Tel +46-(0)8-446 60 40 o Fax +46-(0)8-514 910 32 « Email info@brainpool.se ¢ Intemet http://www.brainpool.se

bI"GII'POOI 1999-09-27

consulling
Sida §

Kvalitetssékring

Organisation och policy

Styrelsen har slagit fast att Brainpool i alla avseende kontinuerligt skall forbéttra och
effektivisera arbetsmetoder for kvalitetssikring; fran dokumentation och ledning av
administrativt arbete och siljprocesser till projektledning och tekniskt utvecklings- och
forvaltningsarbete.

Vagledande i detta arbete ir tankegangarna i CMM — Computer Maturity Model och dess
fokus pa repeterbarhet, mitbarhet, ledning och optimering av processer inom nyckelomréden,
key process areas. Detta kombineras med ett i grunden iterativt synsatt ddr optimering av
arbetsmetoder introduceras och utvirderas stegvis i syfte att dstadkomma ett smidigt och icke-
byrokratiskt arbetssitt.

Kvalitetsansvarig dr VD, Marcus Claus.

Arbetsfordelning

Samtliga medarbetare arbetar efter en metodhandbok framtagen inom Brainpool AB. Den
inkluderar rekommendationer av tillvigagingssitt, val av olika hjalpmedel och ger ménga
praktiska exempel pa rutiner for planering, ledning och uppfoljning samt for tekniska tester och
kvalitetskontroll.

Inom ramen for véra uppdrag &r det respektive projektansvarigs ansvar att utbilda och
skapa forstaelse for kvalitetsorienterat arbete, samt att gentemot foretagsledningen ansvara for
att limpliga metoder och konventioner laggs fast for uppdraget och foljs.

Flera stodsystem ir egenutvecklade och innehaller bland annat foljande: Distribuerade
dokumentdatabaser for lagring, kategorisering och atkomst av affirsdokument, avtal med
mera, avancerad projektdatabas med stodsystem for tidsstyrning och uppfdljning, verktyg for
systemdokumentation samt ett distribuerat system for hantering av defekter, Onskemal,
atgirder och arbetsunderlag (Configuration Management). Information pa filnivd hanteras med
standardverktyg for versionskontroll.

Samtliga medarbetare har tillgang till de interna stodsystemen via sdkra kanaler &ver
Internet.

Kontinuerlig forbdttring

Varje projekt avslutas med en uppfdljning dir projektgruppen och ndgon medlem i
foretagets ledning medverkar. Syftet &r att sikerstilla dterkoppling och kommunikation, sé att
vunna erfarenheter kommer foretagets dvriga projektledare och konsulter till godo.

Vid utvirdering ses till sddant som faktiskt tidsatgang i forhdllande till planerad tid,
precision i analys och dokumentations-/specifikationsarbetet, titheten av defekter sévil pa
funktions- som pa systemnivé, dokumentationskvalitet samt forvaltnings- och testrutiner.

Utbildning av nya medarbetare och annan personal sker i form av interna seminarier och
foredrag.

Certifiering av medarbetare inom ramen for vara partnerskap med inflytelserika data/IT-
foretag, 4r vidare ett sitt att regelbundet kontrollera och garantera den hdga kompetensnivén
hos vira medarbetares inom viktiga tekniska omraden.

Dokumentation av rutiner

Metodhandboken, mallar och exempel uppdateras kontinuerligt. All dokumentation och
annan information relaterad till enskilda uppdrag lagras och nas enligt en standardmodell som
alla Brainpools medarbetare har att flja.

Brainpool AB « Centralviagen 6, S-171 68 Solna-Stockholm, Sweden e Org nr: 556432-3748
Tel +46-(0)8-446 60 40 ¢ Fax +46-(0)8-514 910 32 « Email info@brainpool.se Internet http://www.brainpool.se

1999-09-27
Sida 6

brairpoo

consulting

Miljé

Styrelsen har slagit fast att Brainpool skall vara ett miljomedvetet foretag. I detta ligger att
beakta miljotekniska faktorer och alltid strdva efter det ur miljohdnseende bista valet av
leverantorer av dator- och kontorsutrustning samt forbrukningsmaterial.

Exempel dr valet av modern datorutrustning med energispar-funktioner, hog grad av
atervinnbara material samt undvikande av klorblekta material, t ex papper i kontorsmaterial.

Miljoansvarig ir Administrativ Chef, tillika inkdpsansvarig, Pontus Marcelius.

2000-Strategi

Styrelsen har kommit till slutsatsen att samtliga Brainpools egna system for
administration, ekonomi, 16n, affirsstod, telefoni och data samt var websajt, alla dr 2000-sikra.

De system vi som konstruerar for kund &r sikra avseende savil design o konstruktion i alla
avseenden.

I den hindelse vara losningar samverkar med system fran tredje part eller bygger pa
program- och/elier maskinvara fran annan leverantor bistar vi kunden med utredning, tester
och anpassning i de fall dessa delar av systemen visar sig ej klara 6vergangen till & 2000.

Brainpoo! AB e Centralvagen 6, S-171 68 Solna-Stockholm, Sweden e Org nr: 556432-3748
Tel +46-(0)8-446 60 40 ¢ Fax +46-(0)8-514 910 32 « Email info@brainpool.se e internet hitp://www.brainpool.se

Status report on the ETOS
Erlang to Scheme compiler

http://www.iro.umontreal.ca/~etos
http://www.iro.umontreal.ca/~gambit

http://www.iro.umontreal.ca/~feeley

Marc Feeley, Patrick Piché, Sylvain Beaulieu,
Martin Larose, Mario Latendresse

Université de Montréal

ETOS goals

Conform to Standard Erlang (final draft 0.6, june 1998)
Generate fast code

Reuse Gambit-C Scheme compiler technology
— Mature compiler
¢ dynamic module loading
e FFI (Foreign Function Interface)
¢ Unicode support
— Generates fast portable ANSI-C code (Unix, Windows, Mac)
— Specially modified for ETOS

Summary

* Performance comparison
e Gambit-C optimisations
e Pattern matcher

* Future work

ETOS 2.3 compared to 1.4 and others

¢ ETOS 2.3 + Gambit-C 3.1f + gcc 2.8.1
* JAM/BEAM 47.4.1, Hipe 0.27

Run time relative to ETOS
UltraSparc 143MHz Pentium 400
Hipe BEAM Jam BEAM

fib 1.65 3.27 7.24 3.27
huff 1.35 4.19 12.48 6.28
length 1.55 4.31 15.66 3.61
smith 2.20 3.56 7.55 7.38
tak 1.56 6.29 8.94 7.89
barnes 16.01 20.62 18.18 19.62
nrev - .89 1.47 5.13 2.15
qsort 1.11 5.21 11.10 7.07
ring : .57 .76 1.15 .70
stable .91 .61 1.15 .54

* Ingeneral, v2.3 faster than v1.4 (better inlining & better intermodule calls by Gambit-C)

Slower in a few cases (support for dynamic module loading causes more intermodule calls)

* Processes are now better (still not great due to remaining intermodule calls to kernel)

What is Standard Erlang?

e A "Cleaner" Erlang:

— Character type and support for Unicode

— New constructs: all_true, some_true and try

— Order of evaluation = left to right

— Recognizer BIFs begin with "is_" prefix

— Function type

Using the ETOS compiler

X1 emacs(@baikal IRO_UMontreal .CA - [D] X]
Buffers Files Tools Edit Search Complete In/Out Signals Help [

bash$ etos -W -DETOS test.erl

"/u/feeley/etos/etos-2.3/test.erl"@4.5-4.10: Warning: unused variable Width
"Ju/feeley/etos/etos~2,.3/test BN @4 . 114 17 Warning - tinused variable Heightll
bash$ estart test

[(hello,100]

bash$

26 17:47 0.02 (Shell :vrun)-~L3--R11

-module(test).
-export([start/0]).

£{X,Width,Height) -> XxX.

start() -> io:write([hello,f(10,20,30)])), io:nl().

test.erl 26 17:47 0.02 (Text)—L4—-All

Compilation of an Erlang module (part 1)

Erlang source "m.erl":

Scheme code generated by ETOS front-end:

-module(m) .

-export (L£/11).

£(X) -> other:h(g(X)).
g(Y) -> Y+l.

Exported function table r_

Module installation I'_

(let ()

(include "/u/fesley/stos/etom-2.3/rt-gambit.scm”)
(letrec ((module_info/l (lambda (v0) ...))
(medule_info/0 (lambda () ...))
{£/1 (lambda (vl) (otherih/l1l (g/1 v1))))
(g/1 (lambda (v2) (erl-+/2 v2 1))))
{erl-install-module
Iml
(vector (vector "f" 1 £/1)
{vactor "module_info® 0 module_info/0)
(vector "module_info" 1 module_info/1))
{lambda ()
(metl m:£/1 £/1)
{set! m:module_info/0 modulae_info/0)
(set! m:module_info/l1 module_info/1)
(1f (erl-fn-unbound? "other® "h" 1)
(set! other:h/1l (erl-undefined-fn "other™ "h"))))

{lambda ()

i . I__./ {set! m:£/1 (erl-undefined-fn "m" "£7))
MOdU|e demSta"atlon (met! m:module_info/0 (wrl-undefined-£fa "m" "module_info"))

(set! m:module_info/l (erl-undefined-fn "m" "module_info®))))))

Compilation

of an Erlang module (part 2)

Gambit-C expands this program to:

(let ((module_info/l (lambda (v0)
(module_info/0 (lambda ()
(£/1 (lambda (v1)
(other:h/1

(##fixnum.+ vl

{(exrl-install-module
Im'l
(vector (vector "f£" 1 £/1)
(vactor "module_info™
(vactor "module_info"
(lambda ()
(matl m:£/1 £/1)

(1f (##unbound? other:h/1)
(set] other:h/1l

(lambda ()
eee)))

-ee))
(1f (and (##fixnum? vl)
(##£ixmum.

(exl-generic-+/2 vli 1))))))

(set! m:module_info/0 module_info/0)
(set] m:module_info/l1 module_info/1) * gcc compiles this to the

(lambda x (erl-undefined-fn-handler x ’‘other ‘h))})))

v) s erl-+/2 inlined

< vl (##fixnum.+ vl 1))) ¢ g/2 inlined and removed
1)

* This is compiled to C code

0 module_info/0)

1 module_info/1)) (not shown!)

shared library "m.o1"

Simplified example

Intermodule jumps in C

Jumping from point "A" to "B" is a problem because A and B are
— Each control point is represented by a structure containing a pointer to the
C function hosting that control point
— A dispatcher function passes control from one host C function to the next

possibly in different C functions (given that modules are compiled

Both Erlang and Scheme require constant space tail-calls
separately)

Gambit-C uses a trampoline technique

A runtime library -------==-—-=--===---- */
ctl _pt *ret; /* return address */

ctl_pt *erlang_add; /* initialized to &tbl_erlang([1l] */

ctl pt *m_£; /* initialized to &tbl_m([0] */

ctl_pt *other_h; /* initialized to &tbl_other([l] */

main () { ... dispatcher (m_£f); } /* call m:£/1 */
void dispatcher (ctl_pt *pc) { while (1) pc = pc->host (pc); }

PR e L L Dbl module "m® ~----c-m--------—c-—-oo- */
ctl_pt tbl_m[] = { {host_m}, {host_m} };

ctl_pt *host_m (ctl_pt *pc)
{ jump:
switch (pc - tbl_m) {
case 0: ... ret = &tbl_m[l]; pc = erlang add; goto jump;
case 1: ... pc = other_h; goto jump;
}

return pc;

[R—memmm e m e module “erlang®™ ---------—------==-- */
ctl_pt tbl_erlang[] = { (host_erlang}, {host_erlang} };

ctl_pt *host_erlang (ctl_pt *pc)
{ jump:
switch (pc - tbl_erlang) (
case 0: ...
case 1: ... pc = ret; goto jump;
}

return pc;

Example’s details

Remote computed jumps are slow (1 fn return, 1 fn call, 2
switch, 1 goto)

Local computed jumps are faster (1 switch, 1 goto)
Local direct jumps are fastest (1 goto)

Virtual machine registers are cached in local variables for
fast access (read on entry, write on exit), which makes
remote jumps even slower

Specialized code for gcc

module "m"

ctl_pt tbl_m[] =
{ {(host_m,0}, (host_m,0} }; /* label field initialized later */

ctl_pt *host_m (ctl_pt *pc)
{ static void *lbls[] = { &&label0, &&labell };
if (pc == NULL) return lbls; /* to initialize label field */
goto *pc->label;
label0: ... ret = &tbl_m[l]; pc = erlang_add;
if (pc->host I= host_m) return pec;
goto *pc->label;
labell: ...
}

gcc’s "computed goto" can replace the switch statements

Remote computed jump is 2 times faster

Local computed jump is 3 times faster

gcc’s computed goto only works within one function (Mercury beware!)

Pattern matching based on
exhaustive case (ecase)

e A new pattern matching construct

ecase E of

case E of
P, when G, -> B,;

P, when G, -> B;;
P, when G, -> B;;
P, when G, -> B,

_ => exit(case_clause)

/;nd
Case is now exhaustive r_/

end

Function definition

¢ Function definition with ecase

fun(a,,..,A) =->

ecase {A,,..,A} of

fun (P,,,..,P,;) when G, -> B,; {P,;s..,P,} when G, -> B;;
(P,,..,P) when G, -> B, E> {P_,,..,P,_} when G, -> B,;
end {_s.-s_} -> exit(lambda_clause)
end

end
Exhaustive case allows to
skip artificial structure tests

Implementation of receive

e call/cc mechanism allows simple transformation of receive into ecase

receive

P, when G, -> B,;

P, when G, -> B
after T -> B,

n

#timeout# -> B,;

~Loop -

end .

_ => receive_next ()

P, when G, -> receive_accept(),B;

P, when G, -> receive_accept(),B;

| Tries next message

Type test expressions

e Type test tree based on Gambit-C data representation

end
: / Captures current continuation

ecase receive_first:.-?'r) of

- | Removes message from queue

obj?
h 4 A A h 4
!:n:. . .xOOl box. . .301—Pheader|s . .x10 pex. . .x11}—#{ header
£ix? sub? e spc? con? ::

|8=10001| [S=11110| |8=01000| |S=00000 |

pox. . .x10| |1..10110

big? flo?

Voo

fix= big= flo=

ato?

ato=

vec?

chr? nil?

|

chr=

Test operators

e Operators working on tests

— Boolean

« all, and, one, or, not, true, false

— Predictive

e kt(T) {T known to be true}

o kif(T) {T known to be false}

Test prediction

Relationships in data type hierachy helps predict tests
Example

PREDICT(TEST) =>
if (kt (<one child>)) TRUE

ecase X of
[($a|$b] -> 1;

else
if (1kt(<parent>))
if (kf (<parent>)) FALSE else TEST (H|_] when is_char(m) -> 2;
else -3
if (kt (<one brother>)) FALSE snd
else 0
(if (con? ~x)

if (kf (<one brother>)) TRUE else TEST

(let ((h (erl-hd ~x))
(if (chr= h i\a)
(1f (chr= (erl-tl -x) #\b)
1
2)

. .—---"""————--‘
chr? predicted to be true (if (chr? h) 2 3)))
(the child test chr= is known to be true) 3)

Sestoft algorithm

* Perform tests left to right, top down
* Accumulate positive and negative information

* Predict tests using this information

Baudinet-MacQueen algorithm

e Heuristic approach to choose test order

* Suggests three heuristics:
— relevance
» First perform tests that discriminate first clause
— branching factor
* First perform tests that discriminate most clauses
* Note: Modified for use with dynamic types
— arity factor

* First perform tests that span less new tests

ETOS pattern matcher

 Currently, Sestoft algorithm implemented and tested
« Implementation suited for easy upgrade to MacQueen

e Work currently in progress:
— Development of better heuristics (example follows)

— Use of hash tables for selection in vast atomic clauses

Pattern matching example

Erlang expression Sestoft and Baudinet-MacQueen test tree
ecase {(A,,A,} of (nil? A,)
1
{[1l,a} -> 1; Ty 1 vF
{_,b} -> 2; (ato= A, a) (ato= A, b)
{_,_)} -> bad T E T¢—|—¢F
end. (ato= A, b) | 2 | ‘ bad [
Tf—_%F
| 2] | bad |
Optimal test tree
(ato= A, a) * Sestoft: Left to right, top down
Ty | vF
(nil? a,) (ato= A; b) * BM: Unable to choose

Tq—L—F T F

R [paa | [2 | | baa * New heuristic: 2nd clause relevance

Future: real-time GC

* Experimented with various GC algorithms
~ Stop & Copy
« Gambit-C 's standard GC _’I headex] fiela1 | ... |
s 2 semispaces
* ‘direct" access to objects
Mark & Compact
» using non-movable handles > :t:': | neader | fie1a1 | ... I
Mark & Compact Real-Time
* handles allow fast relocation
Brooks' Real-Time

» movable handle —-){ l header | fieldl | 1
* 2 semispaces L A

— Brooks' Real-Time + Generational
* In design

Real-time GC overhead (Gambit-C 2.7)

Alloc MB/s | Time secs M&C M&C R-T | Brooks R-T
boyer 3.14 16.46] .91 .87 1.67
compiler .91 49.99 1.19] 1.49 1.41
puzzle .92 21.88 1.20 1.31 1.25
browse 3.95 33.36 1.28 1.70 1.48
conform 2.88 25.52 1.29 1.81 1.72
traverse 5.61 10.93 1.37 1.68 1.62
peval 5.86 35.40 1.52 1.81 1.68
" 12.58 5.05 1.53 1.56 1.02
maze 16.18 11.58 1.65 2.43 2.34
simplex 15.34 10.91 1.70 2.18 1.76
earley 8.42 36.13 1.87 2.22 1.52
dderiv 22,76 39.39 2.04 3.00 1.e3
destruc 19.35 15.29 2.11 2.67 1.77
cpstak 46.94| 13.95(2.41 2.44 ~ 1.53
fibtp 47.05 11.60 2.43 2,95 1.29
deriv 27.43 32.69 2.50 .11 _1.82
mbrot 60.20 13.03 “2.87 3.64] 1.33
divrec © 54.92| 16.66 3.15 3.e8 1.49
sumfp 71.12 85.82| 3.21 4.28 1.38
diviter 123.03 7.44 6.51 8.12 1.69

* M&C =2.14 * S&C (on average)
* M&C R-T = 1.24 * M&C (on average)
* Brooks R-T = 1.58 * S&C (on average)

Real-time GC pauses

*M&C R-T on a 133Mhz DEC Alpha 21064/ Digital UNIX v4.0 (= 100MHz Pentium)

Avg(ms) Max(ms) % GC
compiler 3.69 11 4
puzzie | 2.12| 8 s
conform | 2.8 s s
peval 2.671 5| s
boyer 2.83| 6 9
browse 2.86 5| 10
traverse | 3.57| 12| as
simplex 3.01 6 20
destruc 2.85 6| T21
earley 3.47 10 22
dderlv 2.88 6 24
. | -
derlv ‘2.88] s = 29
maze C3.12| 7 Tas| T as
cpstak 2.39| B T
divrec T a2.es| I 45
diviter 2.89 e 4
tbtp | 3.31] & sa
mbrot | 335 7 55
sumfp) 3.45| 7| 57

*Avg=2.1t03.7ms/Max=5t0o 15 ms

Future: native code generation

Pro: would allow faster intermodule calls
con: low portability and need to redo C compiler’s optimizations

Approach
- use intermediate "RTL" code (RISC style register machine)
— expand RTL instructions to native code
— use a generic instruction scheduler

Easy to port to a new machine (= 2 weeks) and reasonable
performance

Gambit-RTL performance

* Prototype implementation of Gambit-RTL compared to

Gambit-C 3.0 (below 1 is good for Gambit-RTL)

Alpha MIPS PPC USPARC Pll M68K
tak .56 .69 .91 .70 .33 .26
fib .75 .71 .85 .46 .53 .22
mazefun 1.07 .66 1.53 .36 .37 .35
assq 1.10 .73 .85 .60 .29 .98
nrev .81 .65 3.18 .81 .35 .41
sort 1.67 .80 3.27 .65 .44 .70
takl 1.53 .83 1.22 .92 .48 .49

BLUETRHIU

Mail Robustifier
Whitepaper

H. Millroth

hakanm@bluetail.com

Overview

The Bluetail Mail Robustifier improves reliability, scalability and managability of

standards-based third-party mail servers. That is, it makes your favorite mail server
system more robust and manageable.

The mail robustifier is a software-only product. It works together with almost all
conceivable mail architectures: separate machines for the different mail protocols, all

mail protocols on each machine, etc.

Here are some examples of what it does:

e Makes it easy to add, remove or upgrade machines or individual mail servers

without service outages.
e Masks server failures by automatically redirecting mail sessions to other servers.

e Dynamically load balances between mail servers in a better way than round-robin

DNS.

o Smoothly handles overload situations by throttling connection attempts from
new mail clients and by prioritizing clients with existing connections over new

clients.

e Makes it easy to implement differentiated service classes (for example “gold class™
users, who are given special privileges), by determining target server based on

information in external databases.

e Supports spam filtering and admission control based on information in external

databases.

2 BLUETAIL Mail Robustifier

Architectural overview

As can be seen from Figure 1, the basic architectural principle is to put a new layer

between the mail clients and the mail servers. This layer manages the mail traffic to

and from the servers.

@
o o o °® O
o ° ° o
o © L @
Mail clients
Gateways
. T
L] [}
. "
SRR : a...-: h..-.:. -------- .‘.
: L4 . . r
. : . ' :
ré‘i
g
NS
":?iﬁer::gement Mail servers

Figure 1: Typical mail architecture using the Mail Robustifier.

The robustifier connects the machines in clusters. If one machine in a cluster fails,
then the other machines in the cluster cooperate to provide the functionality of the
machine that has failed. Individual machines in a cluster may be taken out of service
in a controlled manner without interrupting system operations. Additional machines

can be added to a cluster without interrupting operations.

Some of the concepts discussed in this overview are described in greater detail in the
Configuring the System and Operating the System chapters.

Gateways and mail servers

Incoming mail traffic is routed through gateways which perform traffic conrtrol and
dispatch the traffic to the appropriate mail servers.

BLUETAIL Mail Robustifier 3

The system supports three types of gateways and mail servers: POP3, IMAP4, and
SMTP. For each protocol type we can have one or more gateways and mail servers in

the system.

DN is set up to point to the gateways, not the mail servers. If there are several

gateways for a protocol, use DNS round-robin to distribute requests.

The mail servers are not part of the Mail Robustifier product. Any mail server that
conforms to the protocol standards works with the product. It is also possible to mix
different servers for the same protocol in the system. For example, you can have one
Sendmail machine and one gmail machine and load-balance berween them. You can
also migrate from, say, Sendmail to gmail (or vice versa) without service interruption,

one machine at the time.

The management client and the management server

The robustifier is managed from a management client that runs on a standard PC or
workstation. There are two management clients: one with a graphical user interface

and the other with a command-line interface.

The management client communicates with the management server that handles
system configuration and operational requests. If the server machine crashes, a new
management server is started on another machine. The old server’s IP address is
re-mapped to the new machine and the management service is resumed, so this
failover is transparent to the management client. That is, the client will have contact

with the system as long as there is at least one machine up and running.

Multiple management clients can be connected simultaneously to the system.

Frontend and backend machines

The gateways and the management server run on frontend machines. The mail servers

run on backend machines.

Nodes

The mail robustifier software runs on nodes. A node is a virtual machine that executes
within a single operating system process. Each node can be configured to perform
single or multiple tasks.

Each frontend and backend machine has one node (frontend nodes and backend nodes).

The backend nodes measure the load on the backend machines and report this

4 BLUETAIL Mail Robustifier

information to the gateways. Thus there are two kinds of entities running on backend

machines: backend nodes and mail servers.

All nodes in the system are connected and check each other’s status through a low-level
heart beat mechanism. This means that the system will quickly notice if any node
stops working. In that case the machine is considered dead — see the section Machine

Failures on page 6 for a description of which actions are taken in the event of failure.

Figure 2 shows two frontend machines, each running an SMTP and IMAP gateway,
and three backend machines. The SMTP servers run on all three backend machines,
while there is an IMAP server on only one backend machine. There is also one

load-reporting node on each backend machine.

kaja mas
192.168.128.53 192.168.128.54
L B"
=} @
f i
Al]
=
2]
O) !
| SMTP SMTP || SMTP
i g O
i | mar
1--@ - - -
al@svala aZivskata aI@om
svala skata lom
@ nodes — Mail requests
and replies
Q mail - — — - Status and heart-
servers beat messages

Figure 2: Configuration with two frontend machines and three backend machines.

In another scenario, a single node might run all three gateways as well as the
management server. In a third scenario, gateways and the management server run on
a backend node — this is useful mainly for failover and testing purposes (it follows
from this that a machine can be both a frontend and a backend machine, although

this is not normally the case).

Clusters

A cluster is a collection of nodes and mail servers that work together. A frontend cluster

is a cluster running gateways and/or the management server. A backend cluster is a

BLUETAIL Mail Robustifier 5

cluster running mail servers and backend nodes.

The purpose of frontend clusters is to define failover sets: gateways fail over to other
nodes in their cluster. Frontend clusters can be heterogenous: a particular cluster may

run gateways of different types as well as the management server.

Backend clusters, in contrast, are used for purposes of load balancing and differentiated
service classes. Backend clusters are homogeneous: a particular cluster can only run a

single type of mail server.

Figure 3 shows a system with one frontend cluster and two backend clusters.

Cluster for gateways and
managsment server

ann

Y
o] (o] o]
(o]
[] ® []
Cluster for SMTP Ciuster for POP

Figure 3: System with one frontend cluster and rwo backend clusters.

Monitors

Each machine running a gateway or mail server also runs a monitor. The monitor
regularly “pings” the gateway or server using an appropriate protocol-specific request.
This is used both to collect response times and to determine gateway/server failure.

Thus, the heart-beat mechanism check the status of #odes and monitors check the

status of gateways and mail servers.

Load thresholds

Each node has a default load threshold that indicates the load at which the machine

should be considered overloaded.

An alarm is generated if the average load of the nodes in a backend cluster reaches their

[

6 BLUETAIL Mail Robustifier

average load threshold. In addition, the overload control algorithm (see the Overload

control section on page 9) is activated.

A single backend machine participating in several clusters has one load threshold per

cluster.

For example, consider the two backend machines in Figure 4 which implement two
clusters. Both the standard POP3 cluster and the gold customer POP3 cluster consist
of nodes A and B. To prioritize gold customers, we set a higher load threshold in the
gold cluster than in the standard cluster. This way gold customer get a larger share of

the machine resources.

() Gold customer POP3 cluster
(O standard POP3 cluster

Figure 4: Configuration with two backend clusters

Machine failures

The mail robustifier can detect a machine crash in two ways:

o Node failures can be discovered by the heart-beat mechanism.

e A gateway or mail server may fail to answer its local monitor.

If a frontend machine is considered dead, the gateways and/or management server
running on it fail over to other frontend nodes. The IP addresses of the gate-
ways/management server are re-mapped to the new machines. When the failed
machine comes back up, the gateways normally migrate back to it. Gateways can be
configured to be sticky, that is they stay on the failover node when the crashed machine

returns. The management server, for example, is sticky.

BLUETAIL Mail Robustifier 7

If a backend machine is considered dead, new requests from the gateways are redirected

to another backend machine, until the first backend machine recovers.

Interfaces

Each gateway uses a default interface for network communication. If this interface
is broken, or if the gateway fails over to another node, it uses one of the available

interfaces on the node (these interfaces are called failover interfaces).

Data tables

Cluster selection and admission control / spam filtering can be based on information

stored in external databases.

The information is preprocessed and then loaded into the system and stored on the
local disks of every frontend machine. This allows for orders of magnitude faster

searches than using an external database server on a separate machine.

POP3 and IMAP4 gateways each use a single table type for both admission control
and cluster selection. SMTP gateways use four types of tables for spam filtering.

Features

Online system maintenance

Mail servers can be blocked — meaning that new requests to the server are directed
to another server — and later deblocked. Using this feature, maintenance on backend

machines can be done without disturbing normal operations. The procedure is:

e Block the mail server. Now the server no longer accepts new requests; these are

directed to another server instead.

e Wait until most existing mail session on the server terminate (as determined, for

example, by looking at the statistics monitors in the GUI).

e Stop the mail server. (Client sessions that still use the server will now be

disconnected. If the clients reconnect, they will be connected to another server.)

o Do whatever maintenance that needs to be done: install a new mail server, upgrade

to a new OS version, replace a broken interface card, replace the machine, etc.

e Start the mail server.

8 BLUETAIL Mail Robustifier

e Deblock the mail server. The server now accepts requests again.

To avoid the capacity loss of taking one machine out of service, a temporary backend

machine can be added to the system before starting this procedure.

Software release handling

The mail robustifier is upgradable while in operation. To achieve this functionality it
includes a sophisticated software release handling system for its own software.

Once installed, the mail robustifier takes care of managing different releases of its
software: unpacking and installing new releases as well as rolling back to old releases.
This is done by the system itself, since all frontend and backend machines must run
the same release of the software to ensure correct behavior.

If a new release is installed while a machine is down, the release will be automatically
installed when the machine returns. If the installation of a new release fails, the system
automatically rolls back to the earlier release on all machines.

New releases of the mail robustifier software can normally be installed while the system
is running, without disturbing normal operations. (However, major new releases may
require that some or all nodes are stopped before the software is installed.)

Load balancing

The mail robustifier supports load balancing of backend machines on a per cluster basis.
That is, the gateways dispatch requests to mail servers so that all backend machines
within that cluster have the same load (more precisely, their load-to-threshold ratios
are the same), so machines with different capacity handle different loads.

The load of machines belonging to different clusters is not balanced. (However, if the
clusters overlap the load will automatically be balanced between these clusters. For
example, the three machines in Figure 3 on page 5 will be load balanced, since the

clusters have one machine in common.)

The load of a machine is measured by CPU load as reported by the Unix uptime
command.

If more than one gateway is used, then each gateway is given a separate IP address and
DNS round-robin is used to share the load between the gateways. A problem with
DNS round-robin — stale IP addresses in DNS caches and clients — is avoided, since
the IP address of a gateway is re-mapped if the gateway fails over to another machine.

BLUETAIL Mail Robustifier 9

Mail clients Gateways Mail servers
]
®
e O
L
® -
@ @ > > /
® =
® @

Figure 5: Overload control.

Overload control

In order to retain a high service level under heavy load, the robustifier can reject
new client requests when the load exceeds the given threshold. Initially, only a small
number of requests are rejected. If the overload situation continues, the rejection rate
is increased until the overload situation is resolved. POP3 and IMAP4 clients that
have been rejected can be queued in the gateway: when they are first in line, they are

admitted even if the overload situation is not yet resolved (see Figure 5).

POP3 and IMAP4 clients that have been given access to a mail server are given a
prioritized time slor during which they are are assigned a “virtual session” during
which their next command is prioritized over commands from new clients in overload
situations.

prioritized in overload situations when they send new commands to the server. This is
to ensure that a mail session made up of a sequence of individual commands is either

accepred in its entirety or rejected before it even begins.

Rejected POP3 and IMAPA clients are notified by a “connection rejected” notification,
which is usually reported to the user in a popup dialog. Rejected SMTP clients or
mail transfer agents get a “temporary error” return code indicating that they should

try again later.

Admission control and spam filtering

New client requests can be rejected based on external table data. For example, we can
specify that users matching a table entry should be blocked from our IMAP service.

10 BLUETAIL Mail Robustifier

i W

Admission control

always sometimes never
Overioad control

session queued

Backend servers

Figure 6: Overload control.

Spam filtering by the mail robustifier is done by SMTP admission control following
the recommendations of RFC 2505. The mail robustifier supports the following
table-based filtering methods:

® Peer-name blocking. The connecting host can be accepted or rejected based on its

domain name or its [P address.

o HELO blocking. Mails from particular senders, as identified by the HELO

command, can be accepted or rejected.

o MAIL FROM blocking. Mails from particular senders, as identified by the MAIL

FROM command, can be accepted or rejected.

® RCPT blocking. Mails to particular recipients can be accepted or rejected.

The possible outcomes of overload control and admission control, and the relationships
between them, are described in Figure 6.
Table-based cluster selection

POP3 and IMAP4 user requests can be dispatched to different servers based on

external table data as shown in Figure 7.

BLUETAIL Mail Robustifier 11

Mail clients Gateways Maii servers

..o . //
s S

.:.o. : "__"l<

Figure 7: Table-based cluster selection.

For example, we can specify that POP3 users in Table42 should be dispatched to
the POP3 cluster Cluster42. An application of this feature is to dispatch premium
customers to one backend cluster and regular customers to another.

Handling mail server failures

If a mail server crashes, the frontend gateway will automatically send new requests to
other servers. If and when the server recovers, the gateway will automatically send it
new requests.

Ongoing SMTP transactions are transparently moved to a new server if the current

server crashes (the transaction state is stored in the gateway). That means thar the

message can be accepted although the current SMTP server crashes.

Handling gateway crashes

If a gateway crashes, it migrates to another frontend machine. As part of the migration,
its IP address is re-mapped to the new machine. This means that the IP addresses
handed out by DNS (and possibly cached by mail clients) will still work after a crash.

Existing connections are terminated if a gateway crashes; however, the clients can

immediately reconnect and be served by the migrated gateway.

12

BLUETAIL Mail Robustifier

Example Configurations

This chapter describes four examples of mail system architectures that use the

BLUETAIL Mail Robustifier.

Configuration files for the examples can be found in the examples directory of the

program distribution.

A basic redundant system

The first example is a minimal architecture that exploits most benefits of the robustifier.
It consists of one frontend machine running a combined POP3/IMAP4/SMTP
gateway, and two backend machines running POP3, IMAP4 and SMTP servers (sce
Figure 8).

There is one frontend cluster consisting of all three machines, with the frontend
machine as the primary node for the gateway. This means that the gateway will run
on the frontend machine unless that machine is down; in that case the gateway will
failover to one of the backend machines. Thus, in case the frontend machine crashes
or is taken out of service, one of the backend machine will work as host for both the

gateway and its mail servers.

The management server normally runs on the frontend machine. It will failover to a

backend machine if the frontend is out of service, just as the gateway does.

There are three backend clusters, each consisting of both backend machines. This
means that the two machines share the load for all three types of traffic (POP3, IMAP4
and SMTP). If one of the backend machines is out of service, the other machine
handles all traffic. Possible overload due to reduced server capacity is handled by the

overload control mechanism in the gateway.

14 BLUETAIL Mail Robustifier

(& \MAP backend cluster - -- Frontend cluster

(O sMTP backend cluster () POP backend cluster

Figure 8: A basic redundant system (basic.conf).

This basic architecture can be varied in a number of ways, for example:

e More frontend machines can be added to increase gateway capacity.
e More backend machines can be added to increase mail server capacity.

e If there are several frontend machines, they can all run the same type of traffic, or
cach can be dedicated to one type of traffic (for example, one POP3 gateway and
one SMTP gateway).

e Similarly, the backend machines can be partitioned in different ways: all machines

can run all protocols or each machine may run only one or two of the protocols.

e For each type of traffic (POP3, for example), the backend machines can be
partitioned to handle several service classes. For example, “free email” customers
can be directed to a specific server while business customers can use all available
servers and, in addition, have priority on the machine used for “‘free email.” This
can be done withour static configuration of client software; all clients use the

same host name.

In the following examples we illustrate some of these options.

BLUETAIL Mail Robustifier 15

A large coarse-grained system

There are two basic ways to build a large-scale mail server system:

e A coarse-grained architecture with a few big server machines. Each machine runs

several types of traffic.

e A fine-grained architecture with many small server machines. The servers are

partitioned so that each machine only runs one type of traffic.

O SMTP Frontend cluster

() POP Frontend cluster

8 () POP Backend cluster

SMTP Backend cluster

Figure 9: A coarse-grained system (coarse. conf)

Figure 9 shows a system of the former type. This system supports only POP3 and
SMTP. It consists of two frontend machines and three big backend machines.

One frontend machine runs a POP3 gateway and the other runs an SMTP gateway.
There are two frontend clusters, one for POP3 and one for SMTP. Each cluster
consists of both machines — the POP3 gateway is also a standby for the SMTP

gateway and vice versa.
Each of the three backend machines runs both POP3 and SMTP servers. The load
thresholds for POP3 and SMTP can be differentiated, to prioritize one of the protocols

over the other on each machine.

16 BLUETAIL Mail Robustifier

A large fine-grained system

Figure 10 shows how a large-scale mail system can be realized with a fine-grained

architecture. The frontend cluster is the same as in the previous example.

f » '
(O SMTP Frontend cluster
[] []
C) POP Frontend cluster
2
N |~
~~——"]
v
' N
(o] (o] (o] O (o} (o} @]
[J [[] [[[L
SMTP Backend cluster POP Backend cluster

Figure 10: A fine-grained system (fine.conf).

The backend tier consists of four dedicated SMTP machines and three dedicated
POP3 machines. The SMTP traffic is load-balanced within the SMTP cluster and the
POP3 traffic within the POP3 cluster.

A fine-grained architecture like this has some advantages: there are small failure zones,

and the system can grow incrementally by adding more small machines.

A system with differentiated service classes

The system shown in Figure 11 implements three different service classes for IMAP4
access, using three backend machines. Each service class is realized as a separate
backend cluster:

e The “free email” cluster consists of one server.

o The “normal” cluster consists of the “free email” server and one additional server.

BLUETAIL Mail Robustifier 17

IMAP frontend cluster

[] []
r
@ =E =)
e
O (o] (o]
o o)
(o]
° ® L
e
\ J

\ Pt J (O IMAP Gold cluster

(O IMAP Standerd cluster
IMAP free cluster

Figure 11: A system with differentiated service classes (cos.conf).

e The “business customer” cluster consists of all three servers.

This clustering scheme ensures thac higher service classes have higher total capacity,
and more reliability through redundancy. In addition, higher service classes can be
further prioritized by having higher load thresholds than lower service classes on the

shared machines (see the Overview chapter, page 6).

-Site Navigation- Go

INFOR téﬁ;e:? M
Home
News

¥ Publications

Connexion
P Contact
Kontakten

Ericsson Review

Quick search

Advanced search
Contact us

Index

Legal

272, = More Ericsson Topics Go

Info Center - Publications - Contact

Select a section:

New ideas behind technology cnm@%ine

[First published in Contact, 22 April 1999]

The fact that it was possible to develop a new
exchange has had a lot to do with the way the work
was conducted. It has been marked by new ways of
thinking, questioning old routines and requirements,
as well as the reuse of earlier research and
knowledge.

The development of Simax, SwitchBoard and AXE110
has consisted of small-scale, entrepreneurial endeavors,
bringing together individuals with various skills. The
local Ericsson workforce has been supplemented with
experts from subsidiaries as well as external resources.
The fact that Per Bergqvist was able to borrow Simon
Cornish from the company in Australia was decisive for
the success of the project. Thanks to his key expertise ,
it was possible to assemble the building blocks for the
AXEI110 and

show off the first demo in only a few weeks.

"The work we did at Ellemtel at the beginning of the
1990s on the AXE research project was essential to the
compact AXE110 exchange," says Staffan Skogby.
Staffan subsequently met Karin Werhagen in 1996 who
became excited about the idea and dared to invest in the
technology. Out of that, the Simax simulation platform
was created. The new method of implementing existing
AXE10 software using the Simax emulator, makes it
possible to take advantage of the millions of hours that
were invested in the research and development of AXE
over the years.

The process of implementing existing AXE10 software
using a new processor and new group switch software
has been patented.

SwitchBoard is the other key component in AXE110.
SwitchBoard makes use of the latest technology in the
way of programmable logic and digital signal
processors, incorporating construction designs from
military applications.

SwitchBoard, which is already used in the mobility
server, replaces all essential AXE telephony hardware
in the AXE110, including group switch, interface,
digital multi-junctor, tone and recorded message
generation/tone detection and so forth.

Read more at: http://mega.al.etx.ericson.se/
Written by Lars Cederquist

lars.cederquist @lme.ericsson.se
22 April 1999

Published 20 September 1999

Contacts Finder Home

Products

Organization

Ericsson Worldwide
Business

Environment & Health
Finance

Human Resource Issues
ISAT

Marketing

Market Place
Production & Supply
Research & Development

Relsted topica

+ Increased sales with the new
AXE architecture

Strong growth in Romania

© Internet soon free for Italians

» Olympian investments in
telecom, AXE products

o AXE to be year-2000 compliant

Fighting for their plant

Top

Home

News
» Publications

Connexion
Contact
Kontakten

Ericsson Review

-Site Navigation- Go

Quick search

Advanced search
Contact us

Index

More Ericsson Topics Go

Smallest AXE in the world

[First published in Contact, 22 April 1999]

Working in Stockholm, two small groups of
innovative developers have designed a portable,
miniature version of the AXE10 exchange. This
could be the first step for the millions of people who
lack good telephone networks or who have never
made a telephone call.

The demand for small, reasonably priced exchanges

is enormous, particularly in Russia and former Eastern
Bloc countries.

It all began just over a year ago, during the autumn of
1997, on two different fronts:

At what was then known as Public Networks, a group
who were working on the Simax simulation platform
thought it was time to turn their attention away from
testing equipment to real exchanges. At the same time,
Per Bergqvist, who had been researching mobile
applications for several years, wanted to try something
new.

"I wanted to do something that would really be valuable
for Ericsson and came up with the idea of building a
small exchange for both fixed and mobile telephony. I
knew that other attempts

had been made before and that it was considered to be
impossible, somewhat akin to the fact that bumblebees
really shouldn’t be able to fly."

Very great demand

According to Svante Axling, who has worked on
developing business in Russia, operators there were
practically screaming for a small exchange which could
be put into operation locally at a reasonable cost.
Staffan Skogby, Johan Olsson and others formed an
innovation cell based on a local exchange at Public
Networks, while Per Bergqvist, Christer Palmgren and
Simon Cornish started a "skunk works" focusing on the
NMT exchange. These two groups maintained ongoing,
but informal, cooperation with each other.

After examining Ericsson’s technology inventory, the
Simax emulator - at that time a testing tool with very
good performance - was chosen as the main component,
along with SwitchBoard, which had earlier been
successfully used in a mobility

server.

The two systems were housed together, forming what
could be perceived as "real” AXE hardware.
SwitchBoard was also the most cost-effective
alternative according to an external comparison.

"We combined various components into a whole and
improved the real time properties so that we could test
real traffic," says Per. "Things moved quickly. In March
1998, we already had a working prototype for NMT."

Info Center - Publications - Contact

contag

Select a section:

line

Products

Organization

Ericsson Worldwide
Business

Environment & Health
Finance

Human Resource Issues
ISAT

Marketing

Market Place
Production & Supply
Research & Development

Relsted tapes

Increased sales with the new
AXE architecture

Strong growth in Romania

¢ Internet soon free for ltalians

& Olympian investments in
telecom, AXE products

¢ AXE to be year-2000 compliant

Fighting for their plant

The present system fits into a small box and is really a
variation of the cabinet used to house the Business
Phone small business exchange. The exchange, which
has the working name AXE110,

weighs approximately 20 kilos and can easily be carried
onboard airplanes. It really only consists of two
components and is very simple to put into operation.
Although it is a copy of the real AXE10 exchange, it is
not as robust and fault tolerant with dual processors and
so forth.

"But that is of no significance for the environments it is
designed for," says Holger

Ronquist, Ericsson’s market manager for Central and
Eastern Europe. "Within our geographic area there are
approximately 450 million inhabitants and only every
fifth person has a telephone. In addition, about 60
percent of the existing lines are old and are in need of
replacing.”

In other words, the needs are urgent, particularly for
local exchanges since almost

all traffic consists of local calls. Moreover, half of this
gigantic area is sparsely populated.

Low startup costs

The advantage of this compact exchange is that it offers
an operator in, say a village of 1 000 inhabitants, the
chance of starting up traffic at a low initial cost.

The alternative - starting up directly with a large
exchange - is, in reality, an impossibility for most
companies. The start-up costs for a country such as
Kazakhstan, with 16 million inhabitants, would amount
to a couple of billion U.S. dollars. The interest alone on
such a loan would amount to almost USD 500 million
per year.

“Since there is so little hardware in our mini-exchange,
we're able to tear down that initial hurdle and rent out
equipment, providing us with ongoing income for the
software,” explains Holger Ronquist."In just a few
years, based on a calculated cost of USD 10 per month
per subscriber, we can receive as much money as a
large exchange would cost."

In Holger Ronquist’s opinion, Ericsson has always been
good at building up a large customer base, but less
successful at making money from those customers.
"This is the way in which we should charge our
customers in the future."

Svante Axling emphasizes that the new exchange
should be viewed as a start-up package for the market.
Once an operator has generated some revenue and
experienced market growth, they can upgrade their
system to an AXE10 exchange.

"The fact that our little exchange uses all the same
software and has the same functions as the AXE10,
means that our old AXE customers will recognize the
system and be able to use the equipment immediately,”
explains Svante.

"That is an advantage over our competitors, who are
also trying to develop compact exchanges, but are six
months or a year behind us. They lack a similar
customer base. And nobody has yet succeeded in
developing a good mini-exchange for both fixed and

mobile telephony.”
Written by Lars Cederquist

lars.cederquist @lme.ericsson.se
22 April 1999

Published 20 September 1999

Legal Contacts Finder Home

Top

WAP REFERENCE STACK AND GATEWAY

1. INTRODUCTION

This project is about a WAP reference stack, where selected parts of the WAP standard are completely
implemented to conform to WAP 1.1. Both client (typically part of a mobile phone) and server
(typically part of a WAP gateway) versions of the stack are implemented with the UDP/IP bearer.

The WAP stacks are complemented with a management module that adds additional ability to start
multiple stacks, send message events, logging and check status on ongoing traffic. Additionally each
stack component might be tested by separate optional test modules with the possibillity to destroy and
corrupt messages.

An IDL/CORBA interface have been implemented on the server side.

The development environment used is Erlang/OTP.

2. BUILDING A WAP STACK

The flexible architecture of a WAP stack implies several possible configurations. Thus an
implementation of a WAP reference stack aims for a modular approach and a strategy on which order
the stack should be built and tested. This implementation proposal aim to support such a strategy by
keeping each possible WAP layer in separate Erlang modules, where each component on a layer might
be easily exchangeable with another component on the same layer. In addition, test modules needs to be
easily removable. This can be achieved by storing the API to a layer in specific glue modules such that
surrounding layers have a common interface. The only functionality of such a glue module is to map
requests from one component to another and thus all needed is to replace such a module whenever a
stack component is replaced or a test module added or removed.

Thus we have the system components as in Figure 1. Note that we regard the security layer (WTLS) and
the control message protocol (WCMP) are not yet implemented. The management facility is limited to a
number of configurable parameters.

: wsp | WSP
WSPtest | Connection Conpection
: oriented) €ss

Management
WCMP

£
E

Figure 1 Overview of system components.

Each component has a set of configurable parameters and an associated test module with the ability to
corrupt and destroy messages, trigger timers etc

The WAP stack consists of a number of static and dynamic processes. Typically a component consist
of a single static process responsible for management of dynamic processes in the component. The
latter, dynamic, processes are shadowed in the figures below. Concurrent requests, particularly
important in the WAP gateway, are handled by creating new processes for each request.

Apart from these processes there is also a need for additional support in case of a system failure. More
precisely; a supervisor process o restart static processes and a safe database that stores vital
information.

3. WIRELESS SESSION PROTOCOL (WSP)

3.1. REFERENCE LAYER
The session layer protocol offers services most suited for browsing applications, similar to HTTP/1.1,
but with additional functionality for long-lived sessions, capability negotiation etc.

Both client and server versions of the WSP layer are similar in structure and descriptions will therefore
apply to both. The necessary functionality can be structured in blocks, corresponding to processes, as
depicted in Figure 2 and Figure 3. The session layer may have several concurrent sessions each making
several concurrent requests.

3.1.1. WSP Connection-oriented service
The WSP version that requires a connection to be set up before user data is transferred between two
parties and confirms all requests. The facilities included involve the handling of sessions that can be
suspended and resumed.

For each process, except wsp_manager, outlined in Figure 2 there is a corresponding state table defined
in the WAP WSP standard. The wsp_manager process only responsibility is to keep track of existing
WwSsp_session processes or start new ones, if necessary, and forward messages. Thus all communication
with surrounding layers will go through wsp_manager. A session might live for a long time, but the
session process might time out much earlier. Thus the wsp_manager might also need to restart a
wsp_session process for an already active session.

Each concurrent session has a dedicated wsp_session process that is responsible for setting up, suspend
and resume the session. All session specific data such as negotiated capabilities, session id etc. is stored
in a separate database. Each new method invocation is handled by a separate wsp_method process and
each new push by a separate wsp_push process. The related wsp_session process creates both.

WAE

WSPmeth

WSPman i—f

WTP
Figure 2 Erlang processes in the WSP layer with Connection mode.

3.1.2. WSP Connection-less service

WTLS/WTP/WDP
Figure 3 Erlang processes in the Connection-less WSP layer.

In the second version of the WSP layer all facilities are non-confirmed, thus communication may be
unreliable.

The processes in Figure 2 contains the protocols for handling confirms etc for requests etc. In the
connectionless version these protocols are not needed and therefore all functionality might be
encapsulated in a single wsp_manager process, as illustrated in Figure 3.

The connection-less version operates directly above the WDP transaction layer protocol and thus
utilises a different API to the underlying bearer as compared with the Connection mode version.

4. WIRELESS TRANSACTION PROTOCOL (WTP)

4.1. REFERENCE LAYER
The WTP layer improves reliability to a datagram service and efficiency to a connection oriented
service.

There are three classes of WTP transactions, each needed on both client and server side, in a complete
implementation of a WTP layer.

WTLS/WDP
Figure 4 Erlang processes in the WTP layer with Class 0-2 transactions.

The initiator and responder state machines defined in the WAP-WTP standard are implemented in the
wip_init and witp_resp process respectively. Whenever a class 1 or 2 transaction is detected such a
process is started and all forthcoming messages associated to the transaction are forwarded from
wtp_manager. The wip_manager process is then responsible for detecting which transaction class is
used for a message. During a class 1 or 2 transaction it also needs to decide if the message from the
bearer should be forwarded to the initiator or responder. In the case of a class 0 transaction the
wtp_manager process takes care of all functionality

A summary of the current status for the transaction classes.

e Class 0 transaction - Provides unreliable invoke messages with no result messages. Current status:
Not implemented.

e Class | transaction - Provides reliable invoke messages with no result messages. Current status:
Not implemented.

e Class 2 transaction - Provides reliable invoke messages with result messages. Current status: Some
functionality missing. Mainly timers and multiple PDU:s in a single message.

5. WIRELESS DATAGRAM PROTOCOL (WDP)
As the UDP/IP doesnt require any additional adaptation layer the implementation of UDP/IP in WDP
is a straightforward issue.

6. GATEWAY/PROXY APPLICATION
The application above the WAP server stack is the bridge between WSP and HTTP.

In addition the following features are implemented
e Encoding of WML and WTA content
Character set conversion, including Big5, Shift JIS, KSC5601 (Korean) and Unicode

Push interface (not completely compliant with suggested standard)

7. CONCLUSION AND CHARACTER OF PROPOSED SOLUTION

The following list of issues gives an indication of pros and cons of the solution.

e The design is chosen to give a very close relationship between the state tables as defined in the
standard from WAP forum and the implementation.

e The design takes a lot use of processes as it simplifies the design. Message passing between Erlang
lightweight processes is regarded as very cheap, still message passing might be a bottleneck.

e WSP sessions might live for a long time (several weeks), thus to save memory WSPses processes
might timeout, if the session is idle, after a certain much shorter time. Whenever the session is used
again the WSPses process then needs to be restarted and forced into the state it was when it timed
out. This implies that the current state as well as other data specific for the session needs to be
stored in a specific database. Unexpected failures (as a system crash) might then also be handled
without the need of a reestablishment of the session, method and push invocations, however, will
be lost.

Comparison between Internet and WAP Technologles
The WAP Archltecture Wireless Application Protocol
HTML Wireless Application [Other Sarvices and |
JavaScript Environment (WAE) |~ Applications |
i,
49 ' ((m %J [E — Session Layar (WSP)
v P
Client WAP Gateway] Web Server Transaction Layer (WTP) I
N ————ura]
WML z
— | WML Encoder | :;. j TLS -SSL I I Security Layer (WTLS) l
m> ‘WMLScript = i'
— Compiler § 2 [Transport Layer (WDP) I
! v Prolocol Adaplers H TJ%PP,I'I:
2 L Bearern:
124

~] =
S vLCfP| R WP
S il

WAP specifies... WHY WAP ?
) o . Il Wireless networks and phones = &
I Wireless Application Environment an e neade Bnd p. N
® WML Microbrowser ave speciiic needs .an requiremen
©® WMLScript Virtusl Machine @ not addressed by existing Internet technologies.
@ WMLScript Standard Library 1 Only be met by participation from entire
® Wireless Telephony Application Interface industry.
® WAP Content Types
. W, b n a transport
1 Wireless Protocols ¥ WAP enables any dat nsp
® TCPAP, UDPAP, GUTS (IS-135/6), SMS, or USSD.

@ Wireless Session Protocol (WSP)

@ Wireless Transport Layer Security (WTLS) I The WAP architecture

@ Wireless Transaction Protocol (WTP) @ several modular entities
: V.J:u!ess Dnugnni‘l"l:.r::::‘ol (Y’DP) . @ together form a fully compliant internet entity "
€ 1979 Wirwans aqgmaton Promed Fonam, Lot “(:?Pl @ all WML content is poragasd.yie HITE 1. requests. W\F‘:}Pl
N s N_”

WHY WAP ? Why is HTTP/HTML not enough?

Big pipe - small pipe syndrome
Intemet

B WAP utilizes standard Internet markup language
technology (XML)
B Optimizing the content and airlink protocols
1 The WML Ul components map well onto existing
mobile phone user interfaces
® no re-education of the end-users
@ leveraging market penetration of moblle devices
1 WAP utilizes plain Web HTTP 1.1 servers

devel ' methodoloal
L4 ging

@ CGl, ASP, NSAPI, JAVA, Serviets, efc.

£ 1999 Waremm acphcetion Prrotren Forum, Lt

Wireless network

Contant encodin

WEP) S e WEP)

WHY WAP ?

I Good relationships with standards
@ Several Liaisons with ETS!
® ETSI/ WAP compliance proflle for GSM and UMTS.
@ CTIA official Lisison Officer to the WAP Forum

© WAP is actively working with the W3C and IETF
® HTML-NG (HTML Next Generation)}
@ HTTP-NG (HTML Nexi Generation)

p———" G

Architecture Group Current Work

i End-to-end security

1 Billing

I Asynchronous Applications
I Bearer selection

I Gateway switching

B PUSH Architecture

I Persistence Definition

WAP Application Environment

WML and WMLScript

Wireless Telephony Architecture
Content Formats

Push

User Agent Profile \ﬁ(ﬂp

. h %7y
Il Meeting formatcma“rlg_ﬂim S “»(E"P
WAE Goals

I Network-neutral application environment;

I For narrowband wireless devices;

1 With an InternetWWW programming model;
1 And a high degree of interoperability.

el
TPV Yo Ay P B, L5 M\
el

WAE Requirements

B Leverage WSP and WTP

I Leverage Internet standard technology
I Device Independent

I Network Independent

Il International Support

Lt
T 1979 Warsimms Appiecet o Protocal Fonum, Lt U‘L

Requirements (cont.)

B Vendor-controlled MMI

I Initial focus on phones
@ Slow bearers
® Small memory
@ Limited CPU
@ Small screen
@ Limited input model

mmmrme WP

e

WAE First Generation

I Architecture
@ Application modet
@® Browser, Gateway, Content Server

1 WML

@ Display language
I WMLScript

@ Scripting language
I WTA

® Telephony services AP| and architecture

Content Formats

=
© Data hd 1999 virvm. L] MELPI
i

WML Second Generation

§ Extensions and enhancements
@ Currently under development

I User Agent Profiling

@ Content customized for device
i Push Model

@ Network-initiated content delivery

B Performance Enhancements
@ Caching, etc.

VP e apinton ot e, L

WAE Abstract Network
Architecture

WSP/HTTP Request {URL}

Network Example #1:
WAP Gateway

i % il

Network WAF Gateway]
: etwor I
Client Gateway Application ! :’M" [WHL Encoder | i ;:-
: T s::l.;- WMLScript M 2z
& = coi
e = [Protocal Adaplers I H
WSP/HTTP Reply {Content}
& 1999 Wit Agpiat on Prorocos Forum, Lid r; £ 1999 Wrsinm Appixmron Prom feram, Lt
WP
Network Example #2: WL

WAP Application Server

i i

Client WAP Application Server
WML WML Encoder LB
Ll -z
- m wMLSirp |\ Logic J| 22
Senpt
i Compiler EI z
z
WTAI I Protocol Adapiers I - o 3
I Ek

e W

I Tag-based browsing language:
®s 9 (text, images)
@ Data Input (lext, selection lists, etc.)
@ Hyperlinks & navigation support

i W3C XML-based language

Inherits technology from HDML and HTML

e WEP

e

WML (cont.)

i Card metaphor
@ User interactions are split into cards
@ Navigati

) cards

i Explicit inter-card navigation modet
@ Hyperlinks
@ Ul Event handling
@ History

1 State management and variables
@ Reduce network treffic

@ Resuits in better caching

© 1999 Wirvmst Amiation Protoas Forum, Ltd

WCIP|

WML Example

| o

CWML> N

[«CRAD>
<D0 TIPE="ACCEFT" >

<00 URl="#aCard” />

oo Card
Walooms |

|¢/CARD>

<CARD HAME="aCard=">
<D0 TYPE="ACCEPT">

<00 URL=®/submit?ief (M) ket (8}=/>) >Deck
</DO>

Enter name’; <INPUT KEYe"H®/>
Shooss gpeed)
<SELRCT KREYe®=857>
<OPTION VALUR=*(0<>Fast</OPTTIONY
<OPTION VALUB="1%>Hlow</OPYION>
<SELECT>
</CARD>
</ WHL>

Navlgation{

Varlahles{

Input
Elements

Example: Input Activity

First Name: Last Name:
e I -
Back - -
Next Done

Accept =——p
Prev g

WCP)

1 1999 arem Acgsaon Praocl forum, Lt

All decks must contain...

I Document prologue
® XML & document type declaration

I <WML> element

@ Must contain one or more cards

<?xml veraion="1,0"?>
<1DOCTYPE WML PUBLIC =-//WAPFORUM//DTD WML 1.0//EN"
"http://www.wapforum.org/DTD/wml.xml">

<WML »

< /WML>

17 orwmne dimacenon Pres Fara, 1

-

A Deck of Cards

<>
ACARD*
«DO TYPE«*ACCEFT® LABELs Naxt‘s
<400 UNLe*foardd®/»
</DO>
Acma Inc.
Directory
</CARD>

CCARD M= oardd
<DO TYPE=*ACCEPT®>
<GO URL="?send=$type°/>
</D0>
Services
<SELECT KEYs°type'>
<OPTION VALOE="am*>Email</OPTION>
<OPTION VALUE="ph*>Phone</OPTION>
<OPTION VALUE=*£x*>Fax</OPTION>
</SPLECT>
</CARD»>
<natL>

T}

i

197 Warstm acbcaven Protocs P, L

[Defining the
Navigation Path

<CARD>
<D0 TYPR="ACCEPT" LABRL="NHaxt®>
<00 UAL=*@caxrdl®/»
</D0>
First name:
<INPUT KEY=*fname®/>
«</CARD>

<CARD NAMEB="card2®>
<DO TYPR="ACCEPT" LABEL="Done®>
400 URL=*?geteparson® METHOD=*POST®
i L Jlaste$lname=/>

</DO>

Last name:

<INPUT KEY="lname®/>
</CARD>

e WP

L

The DO Element

Binds a task to a user action

® Action type: ACCEPT. OPTIONS. HELP
PREV, DELETE, RESET
@ Lsbel: Text string or image (optional)
® Task: GO
PREV, REFRESH, NOOP
@ Destination: URL
@ Post daia: I METHOD=POST

<D0 TYPEs"ACCEPT® LABELe"Next">
<G0 URLe"http://www.mysite.com/myapp.uml®/>

</DO>
“(‘ ¥
T

VP e gt o oy Fer 135

Anchored Links

B Bind a task to the ACCEPT action,
when cursor points to a link
© TITLEa sets the label string (default = “Link")
@ Links are not allowed in select list options

<CARD>
Please visit our

<GO URL="homs.wml®/>home page
for decails.
</CARD>

o 1 s Mgt Prased Fora, L

Task Binding Rules

8 User actions are scoped at three levels
* Deck
* Card
» Anchored links & select list options (ACCEPT)

@ When iasks are bound 1o an aclion at different levels,
the action wih scope iakes p

§ Default task bindings

r Action Task
ACCEPT, PREV PREV
Others NOOP

€ 1999 Warwmm Agpagmon Prorasl Forum, Lt

The TEMPLATE Element

1 Delines actions & events for all cards in a deck

<WML>

<TEMPLATE>

<DO TYPE="OPTIONS" LABEL="Main">
<60 URLe®main_menu.wml®/>

</Do>

</TRMPLATR>

<CARD NAME="msgl=>
<DO TYPE="ACCEPT" LABEL="Next®>

<GO URL=*#mag2®/>

</DO>
First story

</CARD>

<CARD NAME="mag2">
Second story

</CARD> b g
</WML> w-‘\
=
P
S 4

|

i
£

if

Second slory

© 1999 Wirsiass Agpirte Protoc Pora, Ltd

Handling User Input

1 Select lists
@ Choose trom a list of options
Input fields
@ Enter a string of text or numbers
i KEY variables
@ Set by SELECT and INPUT elements

® How user input is passed to other cards and the spplication
server

€ 1999 Wiremas Appcaton Prosmcsl Farum, Lt

Py

The SELECT Element

i Display a list of options

@ Esch option may set the KEY varlable
and/or bind a task to the ACCEPT key

® TITLE= dynamically sets the label string

<CARD>
<DO TYPE="ACCEPT" LABEL="View"> Forecast
<GO URL="getcity.cgi?locationsScity®/> 1 Bettin
</DO> 2 Rome
Forecast 2>New Clty
<SELECT KEYs“city®> —
<OPTION VALUE="ber~>Berlin</OPTION> Find

<OPTION VALUR=®rom">Rcme</OPTION>

<OPTION TITLE="Find® OBCLICK=°find.ogi®>New City</OPTION>
</SKLECT>
</CARD>

€ 1990 virgius Appcsten Protool Forum, LE)

Other SELECT Attributes

I MULTIPLE="TRUE"
@ Allows user to pick multiple items
® UP.Browser reserves soft key for item-picker

® Koy value is 8 semicolon-separated list

I DEFAULT=key_value

@ Default KEY value, If one is not chosen

@ Sets cursor to the default choice entry,
If a corresponding OPTION / VALUE exists

N G

A Long Select List

<CARD>
<DO TYPE="ACCEPT*">
<GO URL="get_addr.cgi?id=§recid®/>
</DO>
Aar [1..9)
<SELECT KEY=*recid* MULTIPLE=*TRUE® DEFAULT="1;3;5">
<OPTION VALUE=“1*>Neil</OPTION>
<OPTION VALUE=*2*>Kurt</OPTION>
<OPTION VALUE=*3°>Jim</OPTION>
<OPTION VALUE="4°>Natasha</OPTION>
<OPTION VALUE=*S®>Liz</OPTION>
<OPTION VALUE="6">Aneesh</OPTION>
<OPTION VALUE="7->Jennifer</OPTION>
<OPTION VALUE="8">Jesse</OPTION>
<OPTION VALUE="9°>Dawnell</OPTION>
<OPTION OMCLICK="$§card2=>More...</OPTION>
</SELECT>
</CARD>

..,r'
¥ TP v et P Fenes, L4 “\é::J
o

The INPUT Element

I Prompts user to enter a string of text
@ Use FORMAT= to constrain input

I UP.Browser reserves soft key for

text entry mode, if necessary Soc, Securtty;

<CARD> 207-33-

<00 TYPE«ACCEPT*>
<GO URL="?get=person®
METHOD="POST" POSTDATA="userid=$Sssn"/>
</DO>

€ 1999 Varemm AppRcston Promenl Fanm, Ltd

Soc Security:
<INPUT KEYw"gsn® PORMATa"NNN\-HNH\-NENE®/> 247-33- 1620
</CARD>
oxX

Other INPUT Attributes

§ DEFAULT=key_value
@ Default KEY variable (displayed to user)
I FORMAT =format_spacifier
® H omitted, free-t entry is all
§ EMPTYOK="TRUE®
@ Browser wlll accept null input, even with format
& TYPE="PASSWORD"
@ Special entry mode handied by the browser
¥ MAXLENGTH=number
oM ber of all d

i,
st e e WP
. S

FORMAT Control Characters

@N Numeric character
@A Alphabetic charscter

o Xx or alphabetie ch
oMm Any charecler

B Leading backslash specifies forced characters
@ Forved characters included in KEY veriable value

I Leading * specifies O or more characters
® Password: FORMAT=“mmmm°m”

I Leading number specifies 0..N characters
® Dpcode: FORMAT =" NNNNNVAN"

~
e e e WoP

Displaying Images

1 Insert app images or local icons within dispiay text
© 1-bit BMP format

8 Images are ignored by non-bitmapped devices
® Check HTTP_ACCEPT for “Image/bmp”

<CARD>
DO TYPE«"ACCEFT'»
<GO URL="#c2°/>
</DO>
Continue <INO LOCALSRCw"righthand"
Are=Corvard. . ."/>

</CARD>
ACAND HANE=*e3*»

<INO MACe"../lmmges/logo.bap®
ALTe*Tarired Flanat®/»

Welcome ! ol o
P o hogn Iatss P, LA w:;jipl

</CARD>

Special WML Characters

B Use character entities in display text

"

& &

' ‘

< <

> >

 Blank space

­ Soft hyphen (discretionary line break)

1 Replace the “&" character in URL strings
URL="query.cgi?firste$fnamsianpslasteflnama®

1 Use “$$" to display a single “$” character

o
¢ 1999 Wews Acpcat on Protm Farum, L1 “(;J_PI
e

Doing more with WML

i Setting card styles to create forms
B Using variables to cache user data

§ Using card intrinsic events to trigger
transparent tasks

B Using timers
Securing WML decks

B Bookmarking decks

4 1999 Wiretems Acpication Protocol Fanm, L&

W(CIP|

- ¥

WNMLScript

1 Scripting language:
® Procedural logic, loops, conditionals, etc.
@ Optimized for smail

y, small-cpu devices
I Derived from JavaScript™
B Integrated with WML

@ Powerlul extension mechanism
@ Reduces overall network traffic

- ol I

WMLScript (cont.)

I Bytecode-based virtual machine
@ Stack-oriented design
@ ROM-able

@ Designed for simple, low-imp

implementation

I Compiler in network
® Bettor network bandwidth use
@ Better use of terminal memory/cpu.

£ 199 Warstam Asgicption Presscs Porum, Lt

WCIP|

WMLScript Standard Libraries

I Lang - VM constants, general-purpose math
functionality, etc.

B String - string processing functions
URL - URL processing
I Browser - WML browser interface

B Dialog - simple user interface

1 Float - floating point functions

~
& 199 Wirmiomn Agmacation Protocd Fosum, Lt m;l
ety

WMLScript Example Uses

B Reduce network round-trips and enhance
functionality.

I Field validation
@ Check for tormatting, input ranges, etc.

i Device extensions
oA device or speclfic API

i Conditional logic
@ Download Intelligence into the device

117 Vo b Primcasd b, A

-

WMLScript Example

WMLScript is very similar 10 JavaScript™

currencyConvartor (Currenoy,
Functlon{l et ok > l

Varlablesﬂ funceion %mff sunfhines) {

WTA

I Tools for building telephony applications
I Designed primarily for:

@ Network Operators / Carriers

@ Equipment Vendors

B Network security and reliability a major
consideration

if (sunShines) (
Programming T i
Constructs , myDey = *Mot ao good®)
1]
reaturn myDay)
¥
e WP
WTA (cont.)

§ WTA Browser

OE i added to d WML/WMLScript browser
® Exposes additional APl (WTAI)

i WTAI includes:
@ Call control

@ Network text messaging
@ Phone book interface
® Indicator control

@® Event processing

* VPP s A e Py e, (3

i
=~
S |

WTA Example

Placing an outgoing call with WTAI:

<WML>
<CARD>

<DO TYPE=“ACCEPT”>
WTAICall{| <o vmt

<

/>

>

Enter phone number:
put Elam'"'{ <INPUT TYPEeTEXE m—-rn-}
</CARD>

< /WML>

B IV Ve A s Primmes b, L

WP

e e WC/P|

WTA (cont.)

Network model for client/server interaction
® Event signeling

©® Client requests to server

I Security model: segregation
@ Separate WTA browser
@ Separate WTA port

B WTAI available in WML & WMLScript

€ 1999 Wiewient Acpacetion Protras Forum, Lt

WC/P|

WTA Example

Placing an outgoing call with WTAI:

function checldhmber (M) (

42 (Lang.isInt (N
S e
el

Dialog.alert (“Bad phone mmber?®);

e WP

-

Content Formats

I Common interchange formats
1 Promoting interoperability

i Formats:
@ Business cards: IMC vCard standard
@ Calendar: IMC vCalendar standard
@ Images: WBMP (Wireless BitMaP)
® Compiled WML, WMLScript

~
£ 19799 Wrms Aseacaron Prozoal Forum, Lt \‘_J I

New WAP Content Formats

I Newly defined formats:
@ WML text snd tokenized format
® WMLScript text and bytecode format
® WBMP image format

B Binary format for size reduction

® By d 18 for

1 values and operators
® Compressed headers

©® Data compression (e.g. images)

B General-purpose transport compression can still
be applied

€ 199 Wrems Acoacation Protocol Forum, L

WP

Content Format Example

Example Use of an Image:

<WHL>
<CARD>
Hello World!

<ING BRCe*/world.
-rg Db

Image Element{

< /CARD>
< /WHML>

€ 1999 warsiema AopACH on Pramonl Farum, L

WP

Push

Network-push of content
© Alerts or service indications
® Pre-caching of data

I Goals:
oE ibliity and simplicity

@ End-to-end golution
@ Security
@ User friendly

¥ 1999 Yirgmes Agguication Protoad Forum, L.

User Agent Profiles (UAProf)

UAProf is under development

I Goal: content personalization, based upon:
@ Device characteristics, user preferences
@ Other profile information

8 Working with W3C on CC/PP

® RDF-based content format
@ Describes “capnbility and proflle” info

i Efficient transport over wireless links, caching,

etc. ¥ 1999 Wrstmms dgmtan Fremcat Faum, Lud (] l
3=

WAE Technical Collaboration

1 w3C
@ White paper published
@ Technical collaboration
® cc/pp
@ HTML-NG
® HTTP-NG
@ Elc.

1 ETSI/MExE

1 Others coming soon

1 1P Vir— et Pt bne, 8 L
i

|

Summary: WAE Status

I First generation released
@ implementations are in progress

@ Specifications include:
© WAE, WML, WMLSeript
© WBMP, WTA, WTAJ, etc.

B Second generation in development

@ Focusing on:
® Push, intsroperabllity, UAProf
@ Yealephony, Internalionalization, stc.

=
=
£ 1999 Wirsiesm AmpACHGn Protocs) Farum, Lid 30
)

WAP Protocol Layers

WOMA

Bearar

A

Physlcal Layer Air Link

Tachnology ~ ‘;P
TrvrTT ™ S I
o

WSP Overview

I Provides shared state between client and server
used to optimize content transfer

I Provides semantics and mechanisms based on
HTTP 1.1

I Enhancements for WAE, wireless networks and
“low-end” devices

@ Compact encoding
@ Push

©® Efticient negotinllo:\m_wmmm “(-‘E_,EPI

Wireless Transport Protocols

Wireless Session Protocol
Wireless Transaction Protocol

Wireless Datagram Protocol

WAP Transport Services

WSP is the Session Layer Protocol
§ WTP is the Transaction-Oriented protocol
! WDP is the Datagram protocol

—— .G

HTTP 1.1 Basis

B Extensible request/reply methods
B Extensible request/reply headers
I Content typing

I Composite objects

1 Asynchronous requests

-
i e oot wﬁpl
o

Enhancements Beyond HTTP

il Binary header encoding

I Session headers

Confirmed and non-confirmed data push
Capability negotiation

I Suspend and resume

I Fully asynchronous requests

I Connectionless service 1
R WP

N

Why Not HTTP?
! Encoding not compact enough
B No push facility

i Inefficient capability negotiation

et WC[P|

Header Encoding

1 Defined compact binary encoding of headers,
content type identifiers and other well-known
textual or structured values

@ Red the data actually sent over the network

=1}
S WEP|
&

Capabilities

1 Capabilities are defined for:
@ Message Size, client and server

® Protocol Options: Confirmed Push Facllity, Push Facillty,
Session Suspend Facility, Ack ledg h]

® Maximum Outstanding Requests
@ Extended Methods
® Header Code Pages

sy WEDP]

Suspend/Resume and Push

Server knows when client can accept a push
Multi-bearer davices

Dynamic addressing

Allows the release of underlying bearer resources

8 Push can take advantage of session headers
3 Server knows when client can accept a push

2
ap
£ 1999 Wirptm Agpicston Prosocd Form, Ltd Al
.

Connection And Connectionless
Modes

I Connection-mode
@ Long-ived communication
@ Benofits of the session state
@ Reliability

B Connectionless
@ Stateless applications
@ No session creation overhead

@ No reliability overhoad -
xSzl WCIP|
o

Wireless Transaction Protocol

I Purpose:

@ Provide efficient req /reply based port h
itable for devi with limited resources over networks
with low to medium bandwidth,

i Advantages:

@ Operator Perspective - Load more subscribers on the same
notwork due to reduced bandwidth ulilization,

@ Individual User - Performance is improved and cost is

reduced. &
i WEIP

N

WTP Services and Protocols
I WTP continued

@ uses the service prim|tives
@ T-TRinvoke.req .cnf. .ind .res

WTP Services and Protocols

1§ WTP (Transaction)
@ provides reliable data transfer based on requestireply
paradigm

#® no explicit connection setup or iear down

@ dats carvied In firsi packet of protocol exchange

® seakn {0 reduce 3-way handshake on initial request

@ supports
» retransmisslon of lost packets
 selective-retransmission
« segmentation / re-assembly
» port number addressing (UDP ports numbers)
e flow control

® messags oriented (not siream)

® supp an Abort for
g e G

WDP Services and Protocols

8 WDP (Datagram)

@ provi [] jess, bl] service
® T-TRResuit,req .cnl .ind .res
@ T-Abort.req ind L lWDP is replaced by UDP when used over an IP network
ayer.
®an e ofa WTP p g © WDP aver IP s UDPAP
E. e:]n (PDUs) Secver © uses the Service Primitive
[-TRinesxorgq) | Invoke i © T-UnHData.req .ind
fT-TAinvokegal L -~ --~~ A e T Thlree e
Baault y—
i T TRAssuh req
[CTARem 111" Ak -TAReauncoly o 10
K Gy e s Wi
Service, Protocol, and Bearer
Bearers Example

I Bearers currently supported by WAP

» GSM SMS, USSD, C-S Data, GPRS
= |S-136 R-Data, C-S Data, Packet

» CDMA SMS, C-S Data

» PDC C-S Data, Packet

* PHS C-S Data

* CDPD

* IDEN SMS, C-S Data, Packet

¢ FLEX and ReFLEX

¢ DataTAC
TP v A s P b, | “(:':Z'Pi

* TETRA

WAP Over GSM Circuit-Switched

WAE WAE
G S
— wsp____ | WsP
wep WF | ISPMAS
wTe
uop

S ' TG}

Service, Protocol, and Bearer
Example

WAP Over GSM Short Message Service
[wa

P
— |
| Mobile | I: Proxy/Server |
i J
WAE WAE-"Apps orl
‘other sarvers
WP W5P
WP [“smsc Wi |
—ed
wop WDP
sMS k3 BMS WOP Tunned WOP Tunnel
Protoeol — Protocol
Subnatwork Subrwor

.
under development =
— s WP

WAP Security

WTLS Services & Characteristics

wap

WSG Work Area

I Provide mechanisms for secure transfer of
content, to allow for applications needing
privacy, identification, verified message integrity
and non-repudiation

i Transport level security is WTLS, based on SSL
and TLS from the Internet community

1 Working on various mechanisms for improved
end-to-end security and application-level

security ;
S WP
A

WTLS Services and
Characteristics

I Specifies a framework for secure connéctions,
using protocol elements from common Internet
security protocols like SSL and TLS.

B Provides security facilities for encryption, strong
authentication, integrity, and key management

1 Compliance with regulations on the use of
cryptographic algorithms and key lengths in
different countries

i Provides end-to-end security between protocol
end points “CT; I

§ VPP Wy e Pt P, U

#

WTLS Services and
Characteristics

® Provides connection security for two communicating
applications
@ privacy (encryption)
@ data integrity (MACs)
@ authentlication {(public-hey and symmeiric)

@ Lightweight and efficient protocol with respect to

dwidth, y and pr Ing power
L] ploys special adapted mechani {or wirel usage
® Long lived secure sesslons
° q p d
® Provides simple data for over bearers

R ——— WEIP

Goals and Requirements for WTLS

1 Interoperable protocols

i Scalability to allow large scale application
deployment

1 First class security level
1 Support for public-key certificates
B Support for WAP transport protocols

R WP

s iy’

WTLS Internal Architecture

[Transaction Protocol (WTP) }

Handshake
WwTLS Prolocol

Alert
Protacol

Application
Protoeol

Change Clpher
Spec Protocol

Record protocol

Detagram Prolocol (WDP/UDP)

‘ Bearer networks ‘

.-
~T
1979 Wiretesa Ao on Protocal Fonm, L w~ !Pl

Classes of Operation

-

B WTP Classes of Service T
I Class 0 Unconfirmed Invoke message with no
Result message
© a datagram that can be sent within the context of an
e (Session) ’

9)

il Class 1 Confirmed Invoke message with no
Result message

@ used for data push, where no response from the destination
{e expected

i Class 2 Confirmed Invoke message with one
confirmed Result message 3
® o single request produces a single reply mp'

L

WDP Continued

® Supports port b dd

@ WDP was Initially specified for the following networks
@ 15-136 (GUTS, R-Data, CSD, Pachei Dats)
@ GSM (SMS, USSD, GPRS, CSD)
® CDOPD
@ iDEN
® Fiox and ReFLEX

@ WPG has since promoted specs for the following networks
® PHS
® POC
® CDMA

® Example: WDP is UDP when used over an IP network llycw
-

o KT e b o s P, (8

Services and Protocols

Provide reliable data transfer based on request/reply -
paradigm

No explicit connection setup or tear down

Data carried in first packet of protocol exchange
Seeks to reduce 3-way handshake on initial request
Supports port number addressing

Message oriented (not stream)

Supports an Abort function for outstanding requests
Supports concatenation of PDUs

User acknowledgement or Stack acknowledgement
option

@ acks may be forced from the WTP user (upper layer) o
® defaull is S1ACK BCK. |ym s aposcstion sraces ponum, 11 ml

Wireless Datagram Protocol

RO PN

Purpose:

@ Provide consistent interface to a fundamental transport
service all wireloas bearer ks.

® Provides a iont i datag service.
® WDP is adapted to each particular wireless network to

provide the g]

port.

@ The basic datagram service is fundamental to all wireless
and makes it possible to utilize WAP everywhere.

s WGP

A SIP-ISDN Gateway

Hans Nilsson
CSLab
Ericsson Utvecklings AB

hans@erix.ericsson.se

1999-09-30 EUC'99

What is 4422

B Session Initiation Protocol, RFC 2345

B Initiating, Changing and Terminating
Multimedia conferences (1P Telephony)

I Lightweight
B Textbased “Looks like HTTP”
i UDP (TCP)

1899-09-30 EUC'99

Future of SIP?

I Easy to implement => many small companies

I Mail servers, HTTP Servers, SIP servers

I hans@cslab.ericsson.se
I sip:hans@cslab.ericsson.se

i Web integration; Services on web pages
I Click-to-dial

1999-09-30 EUC'99 3

SIP, Simple Example

INVITE >
< 200 OK

ACK >
< Audio, video, ... >

BYE >
< 200 OK

1999-09-30 EUC'99

SIP Redirect Server Example

INVITE
200 OK

REGISTE
INVITE
302 Redirect

200 OK

1999-09-30

SIP, Other Example

GISTER
5

REGISTER

1999-09-30

What is a Gateway?

1998-09-30

EUC'99

SIP/ISDN Gateway

1999-09-30

[y

Signalling
Gateway

!

Media
Gateway
Controller

PCM

a
Gateway

EUC'99

SIP

RTP

SIP - ISDN

i §NMP l HTTP |
/

: support

Encode
Decode TCP
UDP

1999-09-30

Erlang code sizes
in number of source lines

Encode/decode 1511
SIP stack 2476
State Machine 2285
SIP <-> ISDN

ISDN stack 6862

1999-09-30 EUC'99 10

-

SIP/ISDN Gateway -
realisation

1999-09-30

1999-08-30 EUC'99 12

Some euané characteristics
[http://www.erlang.org/white_paper.html]

I Concurrency I Hot code upgrade
I lightweight processes

I Distribution _ .
I transparent message B Components/Libraries:

passing I Mnesia

I External interfaces

§ Robustness I SASL
I node fail-over : ISNTSP
I process monitoring : G”:
I Soft real-time I
1999-09-30 EUC'99 '3

Users

1999-09-30 EUC'99 14

Mobility Server VoIP Prototype Configuration

DECT
H H \P JLLLIICH @

NT Server: Mobility Server
1

|
4— Feature

ISDN SIP H.323
1999-09-30 EUC'99 15

Mobility Server VoIP Prototype Objectives

* Show Inter-operability between IP Terminals
and DECT Terminals or PSTN

* Identify effects from implementing
existing Mobility Server services over VolIP

* Create qualified arguments on SIP versus H.323
for the Mobility Server product

1999-09-30 EUC'99 16

The Future

1999-09-30 EUC'99

Future:
Work, work, work...

I Standard MG protocol (MGCP,...)
B Less prototypish :-)

I Administration:

I SNMP
| HTTP/CGI

B Connect to Ericsson Phone Network

1999-09-30 EUC'99

5

18

Redundancy and Capacity

l“Eddie”
“Eddie”

1999-09-30

| o

ERLANG

Next Erlang/OTP Release - Highlights

CosTransaction

Secure IIOP over SSL

Release handling improvements.
Disklog improvements.

ASN.1 extended standard support.

Extended support for dynamic reconfiguration
and code update in Mnesia.

Performance improvements.
Stacktrace and other trace improvments
New compiler

NO JAM
Release date October 27, 1999

Open source available ---

Towards an Event Modeling Language

Maurice Castro Michael Dwyer Geoff Wong

maurice@serc.rmit.edu.au dwyer@serc.rmit.edu.au geoff@serc.rmit.edu.au

Software Engineering Research Centre
Level 3, 110 Victoria St
Carlton, VIC, 3053, Australia

Abstract

Object-oriented programming owes part of its popularity to Booch’s
notation [2], Rumbaugh’s OMT [7], and UML [8]. These notations allow
object oriented designs to be expressed graphically and furthermore have
enabled the development of case tools for object oriented languages.

The lack of a suitable high level graphical notation has been identified
as one of the factors discouraging the uptake of functional programming
and in particular the language Erlang [1].

This paper represents a first step in designing a graphical modeling
language for functional programming that encourages sound programming
practices. The initial target language is Erlang but it is hoped that the
notation can be extended to other functional languages.

1 Introduction

Graphical notations such as Booch’s notation {2], Rumbaugh’s Object Model-
ing Technique (OMT) [7], and the Unified Modeling Language (UML) [8] have
provided a strong impetus to the Object-oriented (OO) programming paradigm.

The absence of a high level graphical representation for functional program-
ming has been identified as one of the factors inhibiting the uptake of the Erlang
(1] programming language.

Graphical design notations allow designers to specify programs at a high
level in a manner more closely related to the programming paradigm rather
than the target language of the project. The notation should aid communi-
cations throughout the product life-cycle, but in particular they should aid
communications between designers and implementors by highlighting design is-
sues and leaving programmers free to handle the detail of the implementation.
Finally these notations are instrumental in the construction of case tools by pro-
viding a high level notation which can be translated into programming language
constructs.

This paper describes the first steps towards a graphical notation for the
Erlang programming language.

In the following sections the Erlang programming language is summarised
and its significant features identified, existing techniques are discussed, the ob-

jectives of the notation are discussed, the notation is introduced, and several
examples of the notation are given.

2 Erlang

The Erlang language [1] is a syntactically impoverished functional language
employing pattern matching for rule selection. The language has support for
concurrent programming and is suitable for soft real time applications.

2.1 Functions & Modules

Erlang functions return a single result which may be assigned to a variable
or used as an argument to another function call. Functions are constructed
from clauses which are constructed from function calls and the operators of
the language. Functions are arranged into modules which are the unit of code
loading. Modules are also the unit of code distribution in a distributed system.
It should be noted that no storage is associated with a module and that modules
are only collections of functions.

2.2 Types

The language is dynamically typed. Variables are untyped hence any data
element may be bound to any variable.

The language supports 7 simple data types: integers, floats, atoms, Process
IDs (PID), references, binaries and ports. Atoms are a constant name with a
value equal to their own name. PIDs uniquely identify a process. References
are values which are guaranteed to be unique. Binary data objects are used
to encapsulate sequences of bytes. Ports are used to communicate with the
external environment.

The compound data types of the language - tuples and lists - use position
within the structure to identify fields rather than names. The arity or number
of elements in a tuple is fixed at compile time. The number of entries in a list is
determined at runtime and operators are provided which allow elements to be
added to or removed from a list.

Type errors result when either bindings are attempted between incompatible
structures or a built-in function! or operator is applied to an inappropriate type.

2.3 Process Model

Processes are the unit of execution. A process consists of a stack, an associative
store known as a process dictionary, a message queue, and a thread of execution
through a piece of code.

2.4 Messages

A message may contain any data item and is addressed to exactly one process by
naming either a PID or a symbol which translates to a PID (registered name).
The following properties of a message are guaranteed:

1Built-in Functions (BIF) are defined as the set of functions provided by the interpretor in
an interpreted Erlang system

e to be sent immediately
e to be received without errors if received at all

However, messages are not guaranteed to be delivered.

Erlang also defines the concept of a node. Processes within the same node
see the same set of translations between registered names and PIDs. In practice
a node is an instantiation of the Erlang interpreter. Processes may be started

on a local node or a remote node.

2.5 Dominant Language Features

For the purposes of design, processes and messages are the dominant features
of the Erlang programming language. Erlang programs can be modeled as a
collection of communicating finite state antomata.

Processes may be represented as a finite state automata which jump from
internal state to internal state depending on a set of rules encoded as functions.
Messages represent the set of events which allow processes to change from state

to state.

2.6 Dominant Design Features

Processes are relatively inexpensive and easy to use in Erlang, differentiating
Erlang from many other languages and forcing processes to be considered as a

major design element.
Generic servers are relatively simple to write and their functionality is dis-

tinguished by passing in the module and function name of each function to be
called when the server receives a particular event.

3 Existing Notations

Isaksson and Sturesson [6] identify a number of existing design notations em-
ployed by Erlang programmers. The notations included State Transition Dia-
grams (STDs) and Data Flow Diagrams (DFDs). This section briefly discusses
these techniques and identifies the need for another notation to describe the

design of an Erlang program.

3.1 State Transition Diagrams

The State Transition Diagram and its related tabular form represent a process
or system as a collection of states connected by a set of transitions. Associated
with each transition is a pre-condition and an action — the action may be null.
In the diagrammatic form states are usually represented by circles, transitions
are represented by arcs and the arcs are annotated with the pre-condition and
the action.

When pre-conditions correspond to the presence of a message, STDs are
well suited to representing the action of a single process and are typically easily
translated into Erlang code. It should be noted that STDs do not provide a one-
to-one correspondence with Erlang as Erlang’s receive function employs pattern

matching and hence may place an ordering on the received messages. STDs
have no mechanism to represent this ordering.

STDs do not offer any assistance in defining the interactions between pro-
cesses.

3.2 Data Flow Diagrams

Data Flow Diagrams represent the flow of data through a system and the trans-
formations applied to the data at each stage. External entities are represented
by boxes, transformations are represented by circles, data items are indicated
by arrows, and data stores are represented by a pair of parallel lines.

The mapping between DFDs and Erlang is ambiguous. Specifically, the
transformations in a DFD can be modeled as either Erlang processes or function
calls within a process, and data flows can be either modeled as the arguments
of a function call or a message passed between Erlang processes.

3.3 Deficiencies

Neither STDs nor DFDs allow processes to be shown explicitly with their inter-
faces. This deficiency prevents easy interfacing to an existing process structure.

The notation proposed in this paper allows processes and their public inter-
faces to be described. The proposed notation is not intended to replace either
of the existing notations completely instead it provides a way of explicitly de-
scribing the relationships between processes. STDs may be used in conjunction
with the proposed notation to describe the procedural aspects of the operation
of a process. DFDs may remain a useful first step in specifying the system.
However, it is envisaged that DFDs will have reduced usefulness as the design
progresses and the proposed notation is employed.

4 Graphical Design Language Features

This section identifies forces which have influenced the notation presented.
The language was required to be:

e Draw-able by hand without the need for special templates.

As a considerable amount of design work involves a group of people around
a white board and one on one communication between a designer and an
implementer may need to be carried out at varied locations where only a
pencil and paper is available, it was considered essential that the language
be usable without special apparatus.

e Machine translatable into skeleton files which can be used by programmers
as a starting point for writing programs implementing the design.

This criteria allows CASE tools to be constructed.

e Useful for both forward and reverse engineering a design.

Although the language was introduced to aid in the design stages of a
project, it was considered desirable that the language should be usable
to draw a representation of an implemented system. This extends the

usefulness of the language into the maintenance phases of projects and
into iterative development environments. By making the language useful
in the maintenance phase the chance of retaining a correct and useful
design is increased, this design can be used as a starting point in later
design cycles.

The ability to perform both forward and reverse engineering allows the
CASE tool to ‘drive’ the development process by allowing the tool to be
used at each stage of the life cycle.

e Recursive in nature.

It is rare that a complete design for a complex system can be written down
immediately and completely. The language was required to allow stepwise
refinement of the design. By making language elements recursive a design
can be drawn and then refined by redrawing an element at a higher level
of detail. This property can be used in two ways: The top level diagram
can be re-drafted to contain the refined element, or sub-diagrams can be
constructed providing greater detail than the top level diagram.

Graphical languages need to balance the amount of information displayed in
written form against overcrowding the diagram. Furthermore, the number and
types of elements must be restricted to make the diagrams sufficiently simple to
take in at a glance.

Where possible familiar notations from other languages should be used. Con-
versely, notations which resemble those used in other languages must have an
equivalent meaning in the new notation to prevent confusion.

The evolution of OMT [7] and Grady Booch’s method [2] into UML (8]
suggested that rectangular boxes with square corners were the only acceptable
geometric form for a widely used graphical notation.

The ease of writing generic server processes which are distinguished only by
the set of functions that they call in reaction to a stimulus makes it essential
that the notation support a way of representing a process started with specified
values for formal parameters. Of particular interest are module and function
names used at the instantiation of the server.

5 Notation

The event model is abstracted into instantiation, processes and interactions.
Instantiation is the act of bringing a process into existence. Processes are en-
tities which are in a state and may change state as a result of an interaction.
Interactions are events. Typically an interaction is a message or messages sent
between processes.

The notation supports recursion. Processes may specify either processes in
an implementation, a collection of processes in an implementation, or a collec-
tion of processes defined in another event model diagram.

Sources of events outside the model may be implemented as dummy pro-
cesses.

5.1 Processes

A process (see figure 1) is represented by a box with the following compartments:

e Name compartment: the left side of this compartment contains either the
name of the process or an ‘X’ to indicate that the process is known only by
its system allocated PID. The right side may contain an optional (though
recommended) unique name which is used to refer to the process within
the diagram.

e Startup compartment: This compartment is divided into 2 sections with
the second section optional. A single line is used to separate the two
sections if the second section is present. The first section is called the
parameter section and it contains: the module name, function name and
arguments used to start the process. The second section is called the
instantiation section and it contains a list of relations. Each relation con-
sists of a formal parameter named in the parameter section, an equals
sign, and the value assigned to the parameter when the process is started.
Formal parameters maybe unmentioned in which case the designer is not
specifying the initial value at this time.

e Process life compartment: A set of symbols indicating the lifetime of a
process. An infinity symbol (‘c0’, the symbol ‘inf’ may be used where a
symbol font is not available) indicates that the process is intended to live
indefinitely. If the process is intended to live for a fixed period of time
a tau (‘7’, the symbol ‘t’ may be used if a symbol font is not available)
symbol is used. If an estimate of the time or an upper bound on the time is
known then an equation using tau may be used. If the process is intended
to live to perform a number of jobs and then cease, the letter ‘n’ is used
to denote the number of major tasks the process is to perform.

o Interface compartment: A set of interface boxes, 1 for each public interface
provided.

Name

Startup

Proc Life

IF 1
IF 2

IFn

Figure 1: A process

Erlang supports both a direct message based interface and a message based
interface that has been encapsulated in functions. An interface box consists of
a unique name for the interface typically signifying a purpose for the interface,

and either a description of a set of message structures or a set of module names
and function names of the interface functions.

An interface consists of a set of message types or functions that logically
belong together to achieve some common task.

A dummy process has no interface compartments and the startup and in-
terface compartments are empty. This type of process represents a source of
events from originating from outside the model.

5.2 Instantiation

A line with a double arrowhead (see figure 2) is used to indicate the creation of
a process. The parent of the process appears at the blunt end of the arrow. The
sharp end of the arrow points towards the child. If the arrow points to a solid
dot then multiple processes may be created. A number near the dot indicates
the number of processes created. Associated with each line is a piece of text
which describes the reason for creating the process.

Parent Child

Reason

|

Y

Reason n
=0

Figure 2: Instantiation

5.3 Interactions

Interactions (see figure 3) are represented as lines with single arrowheads. Inter-
action lines run from process boxes to interface boxes. It is illegal for a line to
connect two interface boxes. If an encapsulated interface is used and a function
returns a result caused by receiving a message then a double barb should be
used. The double barb indicates the flow of information in two directions.
Associated with each interaction line is a reason for the interaction.

6 Design Technique

The first step in designing an Erlang program is to determine the major con-
current activities of the system. Each of these activities is then defined as a
process on the diagram. After the processes are drawn, interactions between
the processes are indicated with lines interconnecting processes. Interface boxes
are added to the design to provide the detail of the interactions interface. This
top level diagram may be stepwise refined by defining processes which compose
the processes provided by the top level diagram.
A number of useful ‘patterns’ are available to the designer:

Sender Receiver

Reason

#= Interface

Reason R
Function Interface

Figure 3: Interactions

o Worker processes - As processes are cheap in Erlang designers may wish
to start a worker process to complete some task

e Immortal servers - Most systems will have some co-ordinating process,
typically this process will be immortal as this simplifies the problem of
contacting the controlling process

A number of decisions are deferred to the implementation:
e The size and borders of the process name space
e The placement of processes on nodes

Description of the program logic can be provided by associating a finite state
automata, a message sequence chart, or a textual description with each process.

Although the notation supports both encapsulated and non-encapsulated
interfaces. Designers are encouraged to use encapsulated interfaces in nearly
all cases. Non-encapsulated interfaces will probably only be used for exposed
system interfaces such as gs [4] or Internet [5] libraries.

Designers are encouraged to abstract common process patterns into generic
servers which call functions by name in response to a stimulus. This approach
minimises maintenance problems by abstracting common code.

7 Examples

This section develops a simple example and a more complex example of the
application of the notation. The section closes by commenting on the design
process in relation to protocol stacks.

7.1 Simple Example

WWW servers are easily constructed in Erlang. The notation is used to describe
a minimalist WWW server [3]. The server consists of a process that listens for
incoming connections and then spawns a new process to handle the request
contained in the connection. Figure 4 illustrates the approach.

In addition to the graphical representation of the process a short description
of the logic of the server and reghd processes is required. The erts process

X X

httpd:start(Port)

start server

X erts / X server

httpd:server(Port)

1= Iinf 1= inf

gen_tcp:listen

gen_tcp:accept handle request
gen_tcp:close
gen_tcp:recv ‘n
gen_tcp:send X reqhd

httpd:reghandler(Sock)

n=1

Figure 4: A simple WWW server

represents facilities provided by the Erlang runtime system that are used by
the WWW server. The I process is used to represent any process that calls the
hitpd:start function and hence starts the server.

7.2 More Complex Example

The second example is an abridged representation of an authenticating WWW
proxy server. Many IP networks employ a firewall to control what data flows
into and out of their network. A firewall is a computer with at least 2 network
interfaces. It prevents traffic from passing from one interface to another until a
condition allowing the transfer has been met. One example of such a rule would
be that traffic would be prevented from flowing until after the user has success-
fully identified themselves. One method for implementing an authentication for
WWW page access on a firewall is to create a proxy server on a random port
on the firewall after the user has successfully authenticated themselves.

This example illustrates the use of a generic server as the basic WWW
server is abstracted and reused. Figure 5 shows the major processes of the
system. The server code is reused in both the auth and euthprzy processes. The
two processes differ only that they are instantiated with the names of different
functions associated with the action of getting a new page.

7.3 Protocol Stacks

Protocol stacks are typically a special design case in that they can be imple-
mented either in a single process or in several processes. The design approach
presented here is relevant to protocol stacks. As these diagrams do not seek
to show the procedural aspects of program flow, a protocol stack implemented
in process may not even appear on these diagrams. The authors do not view
this as a problem as they consider that the procedural aspects of design are well
covered using either a narrative description or STDs, however, current notations
neglect processes and their dynamic nature.

8 Iterative Application

The proposed method is recursive and can be applied iteratively. This sec-
tion will show how the recursion property can be exploited to perform stepwise
refinement on a design.

The more complex example (see section 7.2) provided a starting point for an
implementation. Further study of the problem indicated that it was simpler and
more desirable to separate the roles of authentication and proxying. Further-
more, it was found that it was necessary for the child process which handles an
individual connection to be able to shut down the parent WWW server process.
This facility would be used if a user failed to authenticate themselves correctly.

Figure 6 shows the separation of the authentication and proxy roles. Note
that this could also have been represented in a subdiagram providing greater
detail to the combined authprzy process (see figure 7). The subdiagram shown
includes the interaction with erts although this is optional.

X I

start auth server

httpd:start(Proxy) => X auth

httpd:server(Port

Fn, Args)
Fn = {auth, auth)

7= inf

New Connection

Y
X erts [1
X pgl
; auth:pg1(Sock)
1= inf
n=|
gen_tcp:listen

gen_tcp:accept
gen_tcp:close
gen_tcpirecv
gen_tcp:send

Auth then proxy

/

X authprxy

httpd:server(Port
Fn, Args)

/A

Fn = {proxy, auth}

7>= 10 min

New Connection

Y
@n
X proxy

auth:proxy(Sock)

n=1

Figure 5: An authenticating WWW proxy server

X

—

start auth server

h

wpd:start(Proxy)

X erts

1= inf

gen_tcp:listen
gen_tcp:accept
gen_tcp:close

X auth

httpd:server(Port
Fn, Args)

Fn = {auth, auth)

1= inf

New Connection

gen_tcpirecy
gen_tcp:send

httpd:server(Port
Fn, Args)

Fn = {proxy, proxy}

™= 10 min

@n
X pgl
Handle Authentication
auth:pg1(Sock)
n=1
X auth2
httpd:server(Port
Fn, Args)
Fn = {auth, auth3}
n=1
{term}
New Connection
Il
X auth3
auth:auth3(Sock)
X prxysrv n=1

Auth successful
Proxy on new port
Handle proxy requests

New Connection

X proxy

.

proxy:proxy(Sock)

n=]

Figure 6: Modified authenticating WWW proxy server

Terminate
Server
Auth / Fail

authprxy !

X auth2

httpd:server(Port
Fn, Args)

Fn = {auth, auth3}

»1 auth:auth3(Sock)

gen_tcp:close

n= 1
X erts
{term} <
. &New Connection Terminate
o inf : ® n Server
gen_tcp:listen : X auth3 Auth / Fail
gen_tcp:accept :
I
|
]

gen_tcp:recv n=1
gen_tcp:send
Auth successful
Proxy on new port
Handle proxy requests
y
X PIrXysrv

httpd:server(Port
Fn, Args)

Fn = {proxy, proxy}

= 10 min

New Connection

Y
®

X proxy

proxy:proxy(Sock)

=1

Figure 7: Detail of authprzy

9 Conclusion

The beginnings of a notation and a design technique for Erlang applications
have been introduced. The notation is intended to assist both in the design and
maintenance phases of project development. At this stage the notation has been
used on only a few examples which have been strongly connected with WWW
applications, however, the authors have found it helpful in both formulating
and communicating their ideas. The notation has been shown to be suitable for
reverse engineering existing code, and has been shown to be readily modifiable
as design ideas change.

References

[1] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent Program-
ming in Erlang. Prentice-Hall, 1993.

[2] Grady Booch. Object-Oriented Analysis and Design with Applications. The
Benjamin/Cummings Publishing Company, second edition, 1994.

3] Maurice Castro. Erlang in Real Time. Department of Com-
[
puter Science, RMIT, 1998. ISBN 0864447434. Also available from
http://www.serc.rmit.edu.au/~maurice/erlbk/.

[4] Klas Eriksson. Graphics System Application (GS) version 1.3. Ericsson
Telecom AB, 5 1997.

[5] Magnus Froberg. Kernel Application (Kernel) version 2.1. Ericsson Telecom
AB, 11 1997.

(6] Johanna Isaksson and Elinor Sturesson. Design guidelines for erlang. Tech-
nical Report SERC-0083, Software Engineering Research Centre, 1 1999.

[7] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-Oriented Modeling and Design. Prentice-Hall,
1991.

[8] Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling Software,
MCI Systemhouse, Unisys, ICON Computing, IntelliCorp, i-Logix, IBM,
ObjecTime, Platinum Technology, Ptech, Taskon, Reich Technologies,
and Softeam. UML Semantics version 1.1. Rational Software, 9 1997.
http://www.rational.com/uml/ (ad/97-08-04).

Protocol programming in Erlang using binaries

Claes Wikstrom Tony Rogvall®
Computer Science Laboratory
Ericsson Telecom AB

29 Sep 1998

1 Introduction

This text is an introduction to the binary data object found in an experimental
version of ERLANG. It is also a general purpose tutorial on protocol program-
ming in ERLANG in general.

Binaries are basically a sequence of octets. The operations we can perform
on binary objects as well as the internal representation of binaries are primarily
intended to be used as a means for efficient as well as beautiful protocol im-
plementations. However a wide variety of applications can take advantage of
binaries. In particular all applications that perform extensive 10, such as disk
10, GUI systems, or networking TCP/IP IO.

2 Background

Implementing protocols correctlyis hard. Implementing thern efficiently is even
harder. In particular if the protocol implementation is supposed to be a part of
a greater whole, i.e. a very large system application, it is hard. The protocol
must be implemented in a flexible manner which fits into the general model of
IO of the larger application. If the protocol implementation is completely stand
alone from the application which uses the protocol, buffer management suffers
since then typically buffers must be copied from the protocol implementation
to the application utilizing the protocol and vice versa. In the extreme, buffers
are copied between protocol layers, which hurts execution speed bad.

We believe that the binary data object implementation we propose in this
document is well suited for protocol implementations. In particular in combi-
nation with the other facilities previously found in the ERLANG programming

*email: {klacke,tony}@erix.ericsson.se

language we have a set of tools which makes it remarkably easy to implement
protocols.

The different protocol implementations found in this document have been
chosen for their reputation, not because any of them is considered to be partic-
ularly hard to implement. The advantage of this is that all readers are familiar
with the protocols at hand.

2.1 History

The binary data object saw the light of day in the Erlang 3.3 release approxi-
mately 1992. The first application for binaries was to provide an efficient con-
tainer for object code. Object code was read from a file and loaded directly into
the system. This work was done in the code loading BIFs themselves and this
was deemed inappropriate for a variety of reasons, mainly portability and flex-
ibility. Thus the binary data object was introduced and the code loading BIFs
were changed to take a binary object as input parameter instead of a filename.

Later on, the binary object was used to carry messages in distributed Erlang.
Once the binaries were introduces into the system ERLANG users started to use
binaries for all kinds of different purposes. In particular they have been used
as 10 buffers in various protocol implementations. The original binary object
was fairly suitable for this but not perfect. We have now tried to remedy this
situation by both providing a new internal implementation of binaries as well
as providing means at the language level to efficiently build and match binaries.

3 Introduction

Binaries can be constructed and pulled a part by means of matching in a way
similar to regular ERLANG lists. New binary objects are created as:

< Partl:Sizel/Modifierl , Part2:Size2/Modifier2 >

The Part is an erlang value we want to use for the construction of the binary,
the Size part is the number of bits (or sometimes bytes) we want to use from
the Part value and finally the Modifier is a dash separated sequence of type
modifiers.

This is possibly best illustrated with a simple example. For example the
expression

<777:16/integer>.

creates a 16 bit (two bytes) binary object consisting of the two least significant
bytes from the integer 777. A wide variety of types, and modifiers are available.
Say we have some bit pattern bound to an integer value as:

X = 16#abcd,

Now we want to construct a four byte binary which has the equivalent con-
tents as the list:

int32_to_list(X) ->
[(X bsr 24) band 255, (X bsr 16) band 255,
(X bsr 8) band 255, X band 255].

Why would we want to do such an operation in the first place ? Say we want
to write an ERLANG term, represented as a binary object in the external term
format to a file. Furthermore we want to prepend the size of the term in the
file as in:

B = term_to_binary(SomeTerm),
write(FileDesc, [int32_to_list(size(B)) , Bl).

Ie, we want to serialize an integer in order to use it in an output operation.
This operation is directly supported in the language through the binary con-
structor syntax. The function int32_to_list/1 returned a list, it is better to
directly return a binary.

int32_to_bin(X) -> <X:32/unsigned-integer>.

Thus the previous sequence where we write a term to a file would become.

B = term_to_binary(SomeTerm),
write(FileDesc, <(size(B)):32/unsigned | B>).

Integers come in different varieties. Size, sign and endianism ! may vary.

The size field in a binary expression indicates how many bits of the value we
want to use. For example: <255:4/integer, 255:4/integer> evaluates to a
one byte binary object holding the value 265. We can try this out at the shell
prompt:

1> <255:4/integer, 255:4/integer>.
<2565>

In a manner similar to how we build binaries we can match a binary object
when we need to pull a binary apart. We use a syntax which is equivalent to
the construction syntax when we match binaries. So for example to pull apart
some of the objects we constructed in the previous section we can write:

1The term “endian” can be traced to Jonathan Swift’s novel “Gulliver’s Travels”. In one
of Gulliver’s adventures, he encounters an island whose inhabitants bitterly argue over the
correct way to open soft-boiled eggs - the little end or the big end. Little endians and big
endians are each convinced that their method is the only correct method for opening an egg.

X = <255:4/integer, 255:4/integer>,
<Hi:4/integer, Lo:4/integer> = X,
{Hi, Lo}.

The above code first constructs an 8-bit binary and then pulls it apart.
It is also possible to mix the match on different types. We wrote a term to
a file by means of the call

write(FileDesc, <(size(B)):32/unsigned | B>).

Similarly we can pull the same binary apart as

case Binary of
<X:32/unsigned-integer|Btail> when size(Btail) == X ->

The above construction is particularly common where we have a size field
which determines the size of a some later fields. When we match such values it
is very convenient to be able to use a variable introduced in the actual match
patter as a size indicator for objects in the same pattern. This is indeed possible
and the above code could be written in a better way as:

case Binary of
<X:32/unsigned-integer, BValue:X/binary | Tail>

Note how the X variable is introduced first in the pattern and then later on
used in the same pattern.

4 Types, Compiler directives and default values

Many different erlang types can be used to match and construct binaries. In
this section we list all erlang types that are supported for binary construction
and matching as well how the different modifiers and size specifications apply
to the different types.

4.1 Integers
4.1.1 Constructing

The size of a constructed integer is not constrained by anything but the size of
the largest integer that is possible to represent.
The following list of type modifiers are applicable to integers.

e integer Indicates that we want to pack an integer.

e little The integer is packed in little endian byte order.

Example: <4042:16/unsigned-integer-big> produces a 2 byte binary
containing the integer 4042 represented in big endian byte order.

e big The integer is packed in big endian byte order. The little and big
type modifiers are only applicable when the size indicator is a multiple of
eight.

e signed, unsigned These type modifiers are allowed but don’t mean any-
thing when constructing a binary.

4.1.2 Matching

When we match integers from a binary we have the following valid type modi-
fiers.

e integer Indicates that we want to match an integer.

e little The integer in the binary buffer is considered to be packed in little
endian format.

e big The integer in the binary buffer is considered to be packed in big
endian format.

e signed The integer in the binary buffer is considered to be represented
with a 2-complement sign extension.

Example:

B = list_to_binary([255,255]),
<X:16/signed-integer> = B,

will bind the variable X to -1.
e unsigned The integer in the binary buffer is considered to an unsigned

integer. Considering the same example as above with:

B = list_to_binary([255,255]),
<X:16/unsigned-integer> = B,

will bind X to the value 65535

4.2 Characters

The same modifiers that apply to integers apply to characters as well except
that the modifier integer must be replaced with the modifier char.

o b

4.3 Floating point numbers

Construction and matching of floating point numbers is supported. Floating
point numbers are constructed and matched according to the IEEE 754 floating
point standard. A float is considered to be packed in either 32 or 64 bits. The
following type modifiers are applicable to floats.

e float The type is float.
e big The float is packed in big endian order.
e small The float is packed in small endian order.

For example the following code produces a 8-byte binary

F = 3.14,
Bin = <F:64/float-1little>,

and if we want to match such a binary we can extract the packed float as in:
<F2:64/float-little> = Bin.

Note that the two floats F1 and F2 are not necessarily equal since the conversion
process may change the floating point value with a small fraction®.

4.4 Tuples

If a sequence of equally sized and typed values need to be processed we can
either pack the values from or to a tuple.

For exampile if we have an 8-byte binary Bin and we want to pull the binary
apart in four parts each part consisting of 2 bytes, where each sequence of two
bytes is considered to be a 16 bit integer we can unpack Bin as:

<Tup:4/tuple-integer:16> = Bin,

Where Tup will be bound to an arity four tuple.

The size indicator 4 indicates how large we want the tuple to be. The
new type modifier integer:16 indicates how many bits shall be used for each
element in the newly constructed tuple.

This syntax provides an efficient way of processing several values in one
sweep. Whenever the tuple type modifier is present in the type modifier list,
the remaining type modifiers apply to each individual element that is processed
and packed in the tuple.

Similarly if we have a tuple of equally typed values and want to pack the
sequence of elements in a binary we can to that with the tuple type modifier.

Example:

21t is generally considered to be poor programming practice to compare floating point
numbers for exact equality

Tup = {1.23, 5.66, 9.00, 6.87654},
<Tup:4/tuple-float:64-little>

Will take the values in the tuple Tup from left to right and pack them in a
binary object.

4.5 Binaries

It is possible to extract sub binaries from an input binary by explicitly providing
a type modifier binary The size field in this case applies to number of bytes
instead of bits as is the case with i.e integers. Example:

<_:10/binary, X:10/binary |_> = Bin,

will strip off the first 10 bytes from the binary Bin and bind the variable X to
the next 10 bytes in the Bin buffer.

It is also possible to concatenate binaries with the same syntax. For example
if we have a binary object B and want to build a new binary object B2 with the
size of B prepended we can evaluate:

Size = size(B),
<Size:32/unsigned-integer, B:Size/binary>.

or using a tail expression as described in the section about the binary tail:

Size = size(B),
<Size:32/unsigned-integer | B>

A function that concatenates a list of binaries can be written as:

lists:foldl(fun(B, Ack) ->
<B/binary | Ack>
end, <>, ListOfBinaries)

If the size field is ommited in an expression with the binary type modi-
fier, the default value is the the size of the entire binary. Thus the expression
<B/binary? is eqivalent with the more awkward <B: (size(B))/binary>.

4.6 Lists

Exactly the same technique and syntax we used in the previous section with
tuples can be used with lists. For example to take the first 100 characters of a
binary we can call:

<Str:100/list-char:8> = Bin,

The resulting variable Str will be bound to a list of 100 characters.
The ability to combine binaries and char-list is often useful.

4.7 The Tail

Whenever a tail is provided in a binary pattern, either in a matching left hand
expression or in a right hand construction expression, the tail value is considered
to be a binary object. For example in the match expression:

<X:8/char, Z:32/integer | Tail> = Bin,

The Tail value will be the remainder of the input binary Bin when first 5 bytes
have been consumed by the X and Z variables. Thus the above expression is
equivalent to

Sz = size(Bin),
<X:8/char, Z:32/integer, B2:Sz/binary> = Bin,

The same principle applies when we construct binaries, if a tail is given in a
righthandside construct expression, it is considered to be a binary tail.

<X:8/char, Y:8/char | Tail>

Will prepend the two characters X and Y on the head of Tail.

4.8 System endianism

Sometimes it can be convenient to be able to produce an an array of integers
formated in the endianism of the underlying machine. We have the following
bit types predefined:

e sys_int The endianism and size of a system int

e sys_short

e sys_long

e sys_char

e sys_float

e sys_souble

If we use these types to produce abinary object as in:
B = <77/sys_int, 88/sys_int>,

and then send the resulting binary to an Erlang port as in:
Port ! {self(), {command, B}},

The ¢ program at the other end of the port can read the data as:

int al[2];
read(fd, a, sizeof(a));

The above code work on both little endian and big endian machines. Of
cource the ¢ program can also use this feature to directly read binary data into
a structure, thus :

B = <"abcd", X/sys_int, F/sys_float>,
Port ! {self(), {command, B}},

can be read from the port program as:

struct foo {
char c[4];
int x;
float f;
};

struct foo f;
read(fd, &f, sizeof(struct foo));

4.9 Bit defaults

Two different compiler directives are applicable when we write code that manage
binaries.
The compiler directive

-bitdefault (integer, unsigned-little)

will add the three modifiers unsigned, integer and little to each list of
type modifiers in the remainder of the source code file where adding these type
modifiers is applicable.

This can be useful in a number of different settings. Say that we are writing
a module that only deals with unsigned 32 bit integers, in that case it can be
awkward to specify the full modifier list throughout the entire file. Thus, the
lazy programmer can save keystrokes by specifying

-bitdefault(integer, size:32-unsigned-little)

Here we added a size modifier saying that the default integer uses 32 bits.
Similarly we can indicate the default type modifiers for floats as in:

-bitdefault(float, size:32-big).

where we say that the default floating point value is a 32 bit float in big
endian byte order.

Another situation is when we want to write code that is independent on
endianism of the integers. In that case we can have a single line at the top of
the file that specifies endianism.

-bitdefault(little).

If no bit default is given as a compiler directive and no type modifier is
specified in the code, a bit pattern still has a meaning since almost everything
has a default value. The same rules apply regardless of whether the pattern
appear in a match or as a constructor. We have the following default values:

e <V> is equivalent with <V:8/char>

e <V/integer> is equivalent with \verb;V:32/integer-signed-big;+
e <V/float> is equivalent with \verb;V:32/float-big;+

e <V/binary> is equivalent with \verbSz = size(V), {V:Sz/binary;,+

e <V:Size> is equivalent with <V:Size/signed-integer-big>

4.10 Bit typedefs

We can specify a name for a particular sequence of type modifiers as in:
-bittype(uint, integer-unsigned).

This allows us to use the name uint as type modifier as in
<X:32/uint>.

or if we want to indicate the size we define:

-bittype(uint, integer:32-unsigned).

4.11 Alignment

A sequence of match or construct values must always add up to a multiple of
8. The alignment requirements for binaries are very low and basically the only
requirement is that the resulting binary in a build expression is byte aligned.

It is for example possible to produce a binary with a floating point inserted
at non byte aligned positions in the output binary as in:

<X:1/uint, Pi:32/float, Y:7/uint>.

However
<X:9/uint>.

Will produce a runtime error.

10

4.12 The empty binary

The empty binary which has size 0 is specified as <>.

4.13 Bit Groups

4.14 Variable field size

A very common situation in many protocols is to let the Protocol Data Unit
(PDU) contain a size specifier which is indicating the size of some later field
in the PDU. As a very simple example the Erlang Port mechanism typically
prepend a two byte length indicator on each message it sends to an external
process that is connected to the port. When we receive such a message we can
both have the cake and eat it since we are able to first bind the initial two bytes
to an integer and then use that integer in the same match expression. So to
receive such a message we would write code such as:

receive
{data, <Size:16/uint, Data:Sz/binary>} ->
handle_data(Data),

For a more complex but truly useful example, assume that we have a port
and receive data from the port where each packet from the port is prepended
with a two byte header indicating the size of the entire packet, then the following
code receives messages from the Port and sends complete packets to the user of
the port.

-bitdefault(unsigned-integer).

port_loop(Port, User, Ack) ->
case Ack of
<H:16/unsigned, Pdu:H/binary | Tail>
User ! {pdu, Pdu},
port_loop(Port, User, Tail);
Other ->
receive
{Port, {data, Datal}} ->
port_loop(Port, User, <Ack/binary | Data>)
end
end.

11

This code solves a fairly complicated problem. Assume we have a linked in
driver which reads data from some input channel, in a UNIX environment, this
would typically be a file descriptor. If the above code sits at the Erlang end of
the port, the driver can freely read as much as it can from the file descriptor
and whatever the driver reads, it simply passes on to the port. The alternative
to this is to either let the driver perform two read operations, one where the
first two bytes, being the length indicator are read, and then yet another read
operation where the actual contents are read, or alternatively, the driver can
blindly try to read as much data as it can. In this case, the driver must be
prepared for all possible outcomes of the read operation. It can receive a half
header, a header and a half message, a header a message and yet another half
header and so on. If the PDU structure is more complicated than the one above,
the c-code to perform all these operation correctly can be fairly complicated.

5 Are they strings ?

Yes, binaries can be used as builtin character strings.
Syntactic sugaring makes the expression:

<llfunky">
equivalent to the more awkward expression:
<"funky":5/1list-char:8>

When we use binaries for strings it is very convenient to be able to search a
binary for a specific substring and split it into two different parts with the first
part being the part upto the search string and the remainder the rest.

A binary match pattern may contain unbound variables with the size field
being unbound too. This feature can be used to search a binary for a specific
string. For example the match pattern

<X:Sz/binary, "cat" | Tail> = Bin,

Will search the binary Bin for the first occurence of the string "cat” and
divide Bin in two parts, the part leading upto the string "cat", and the part
following "cat". If no "cat" is found in Bin, the pattern does not match.

This feature in combination with the rest of the binary system can be used
to implement efficent string manipulation functions.

Many of the string manipulation functions that have complexity O(n) when
strings are implemented as lists of cons cells have complexity O(1) when strings
are implemented as binary objects in Erlang. For example the length of a string:

len(S) -> size(S).

As well as concatenation:

12

concat(S1, S2) ->
<S1/binary | S2>.

have complexity O(1), whereas the chr/2 function that returns the position
of the first occurence of a char in a string:

chr(s, C) ->
case S of
<_:Size/binary, C:8/char |_> ->
Size + 1;
_ >
0
end.

of cource have complexity O(1).

The module bstring implements a number of string utility functions that
work on binary strings. The module has exactly the same interface functions as
the original string module which operates on lists of integers/characters.

Since binary strings have completely different internal representation than
list based strings, they behave differently concerning memory consumption and
speed. Many programs do behave much better with binary strings than list
based strings. In particular programs that manipulate large amounts of data.
For example a function that opens a file, partition the file into lines and returns
a list of {LineNumber, Line} tuples:

file_lines(File) ->
case file:open(File, [read,raw,binary]) of
{ok, Fd} ->
Res = file_lines(Fd, <>, 1, [1),
file:close(F4d),
Res;
Err ->
Err
end.

file_lines(Fd, 01d, Lno, Ack) ->
case file:read(Fd, 2000) of
{ok, B} ->
{A2, T2, L2} = split_chunk(<0ld/binary | B>, Ack, Lno),
file_lines(Fd, T2, L2, A2);
eof ->
Ack;
Err ->
Err
end.

13

split_chunk(<Line/binary, $\n/char | Tail>, Ack, Lno) ->
split_chunk(Tail, [{Lno, Line} |Ack], Lno+1);
split_chunk(Other, Ack, Lno) ->
{Ack, Other, Lno}.

This code is very efficient and works well even on very large input sets,
unfortunately there are a number of different operation commonly performed
on strings that are considerably less efficient. For example reversing a binary
string.

breverse(S) ->

breverse(S, <>).
breverse(<H/char|Tail>, Ack) ->

breverse(Tail, <H/Char|Ack>);
breverse(<>, Ack) ->

Ack.

The cons cell is a superior data structure in this case.

6 Classical internet style text based protocols

Many typical internet protocols are text and newline based. That means that
the participating computers send readable newline terminated text strings to
each other. Examples of such protocols are SMTP for electronic mail, NNTP
for news postings and HTTP for the world wide web.

The binary strings of ERLANG are well suited for the implementation of such
protocols. In particular the ability to search for substrings using the construct
with a variable length binary followed by a bound expression, for example:

<B:Sz/binary, $:/char |_> = InputString

extracts the intial chars of the InputString upto and excluding the first occur-
rence of a : character.
For example a typical http request to a http server looks like

GET /index.html HTTP/1.0

User-Agent: Mozilla/4.04 [en] (X11; I; Sun0S 5.5.1 sun4u)

Pragma: no-cache

Host: gin.du.etx.ericsson.se:5999

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Via: 1.0 proxy.du.etx.ericsson.se:82 (Squid/1.1.20)

14

X-Forwarded-For: unknown
Cache-control: Max-age=2592000

Each line is terminated with a pair of carriage return / newline except the
last line which has two such pairs. An efficent parser to unpack such MIME like

headers may look like:

parse(<"GET ", What/binary, "\r\n" | Tail>) ->
{Fields, Contents} = parse_tail(Tail, empty, [I).
{What, Fields, Contents}.

parse_tail(<B/binary, "\r\n\r\n" | Cont>, A) =>
{Cont, Ack};

parse_tail(<B/binary, "\r\n" | Tail>, A) ->
parse_tail(Tail, [BIA]).

This code uses substrings extensively. Http is more complicated than this
with POST requests etc, but the above code can be augmented in a straightfor-
ward way to handle the entire http protocol.

The above code can form the heart of a microscopic http server.

As another example we could have the code to extract the ”From:” field
from SMTP emails. This could be done as:

from_header (<_/binary, "\nFrom:", Sender:Sz/binary, "\r\n" [_>) ->
Sender.

6.1 Case insensitivity

Many of the text based internet protocols are case insensitive. To examplify,
the SMTP mail protocol always start a session with a line of text:

HELD <domain> CRNL

where the client tells the SMTP server which his fully qualified host name
is. The initial ”HELO?” string is case insensitive, so not only the string "HELO”
is accepted, but also the string "HeLo”. This can be addressed with the binary
type modifier icase. So to match the HELO mesage in an SMTP server we
would write:

case Message of
<"HELD"/-icase, Domain/binary, "\r\n" |_>
handle_domain(Domain) ;

15

6.2 An SMTP client

In this section we shall present a small SMTP client that constructs an email,
talks the SNMP protocol with an SMTP server and sends away the email. This is
not a complete implementation of SMTP, albeit a fully working implementation:
We start off with some definitions and support functions:

-define (READY, "220").

-define (CLOSE, n221").

-define (OKAY, "250").

~define (START, "354") .

-define (NDAVAIL, "550").

-define (CRNL, "\r\n").

-record(rec, {from, %% The from address, who am i
hname, %% our hostname
smtp}). % name of the smtp server

And a function to initialize the record:

getrec() ->
#rec{from = "<" ++ user() ++ "@" ++ hname() ++ ">",
hname = hname(),
smtp = smtp()}.

user() ->
case os:getenv("USER") of
false -> "luzer";
User -> User

end.
hname () ->
case inet:gethostname() of
{ok, H} —>
case inet:gethostbyname(H) ofy
{ok, HE} ->

HE#hostent.h_name;
{error, _} >

"localhost"
end;
{error, _} ->
"localhost"

16

end.

smtp() ->
case os:getenv("SMTP") of
false -> "localhost";
H->H
end.

Then we have the two top level functions that are the API:

send(M, To) ->
send(M, To, "No subject").
send(M, To, Subject) when binary(M), list(To), list(Subject) ->
R = getrec(),
To2 = map(fun([$<IT]) -> [$<IT];
(x) =3 NN 4 X 44+ "M
end, To),
M2 = fix_mess(M, To2, R, Subject),
case gen_tcp:connect (R#rec.smtp, 25, [binary, {packet, 0}1) of
{ok, S} ->
init(S, M2, To2, R);
Other ->
Other
end;
send(_,_,_) ->
{error, "Bad input type(s)"}.

The message is a binary object and it is massaged by the fix_mess/4 func-
tion:

%% We need to add the headers to the message body
fix_mess(M, To, R, Subj) ->
S = <"Subject: ", Subj/char-list, 7CRNL>,
F = <"From: ", (R#rec.from)/char-list, ?CRNL>,
To2 = to(To, <>),
T = <"To: ", To2/binary, ?CRNL>,
<F/binary, T/binary, S/binary, ?CRNL, M/binary, ?CRNL, ".", ?CRNL>.

to([Last], Ack) ->

17

<Ack/binary , Last/char-list>;
to([T|More], Ack) ->
to(More, <T/char-list , "," | Ack>).

If the message is correctly massaged (according to the rules in SMTP, we
try to connect to the SMTP server and enter the init state.

init(S, M, To, R) —>
receive
{tcp, S, <7READY | _>} ->
ready(S, M, To, R)
after 5000 ->
{error, timeout}
end.

If we get a READY message from the SMTP server we enter the ready state
and wait for an OKAY.

ready(S, M, To, R) ->
gen_tcp:send(S, <"HELO ", (R#rec.hname)/char-list, " \r\n">),
wait_okay(S, M, To, R).

wait_okay(S, M, To, R) ->
receive
{tcp, S, <70KAY |_>} ->
gen_tcp:send(S, <"MAIL FROM: ", (R#rec.from)/char-list,
receive
{tcp, S, <70KAY |_>} ->
send_messages(S, M, To, R, [1, [1);
{tcp, S, <Err:3/char-list |_>} ->
err(S, Err)
after 5000 ->
err(S, timeout)
end;
{tcp, S, Other} ->
<Err:3/char-list | _> = Other,
err(S, Err)
after 5000 ->
{error, timeout}
end.

If all is well so far, we start to transmit message to the list of recepients:

18

7CRNL>),

send_messages(S, M, [1, R, Ok, Nok) ->
gen_tcp:send(S, <"QUIT \r\n">),
receive
{tcp, S, <?CLOSE |_>} ->
gen_tcp:close(S),
{ok, Ok, Nok};
{tcp, S, <Err:3/char-list |_>} ->
err(S, Err)
after 5000 ->
err(S, timeout)
end;

send_messages(S, M, [TolMorel, R, Ok, Nok) ->
gen_tcp:send(S, <"RCPT TO:", To/char-list, 7CRNL>),
receive
{tcp, S, <?NOAVAIL |_>} >
send_messages(S, M, More, R, Ok, [To | Nok]);
{tcp, S, <7O0KAY|_>} ->
gen_tcp:send(S, <"DATA ", ?CRNL>),
receive
{tcp, S, <7?START | >} ->
gen_tcp:send(S, M),
receive
{tcp, S, <70KAY|_>} ->
send_messages(S, M, More, R, [To|Ok], Nok);
{tcp, S, <Err:3/char-list|{_>} ->
send_messages(S, M, More, R, Ok, [TolNok])
after 10000 ->
err(S, timeout)
end;
{tcp, S, <Err:3/char-list{_>} ->
send_messages(S, M, More, R, [TolOk], Nok)
after 10000 ->
err(S, timeout)
end;
{tcp, S, <Err:3/char-list]|_>} ->
send_messages(S, M, More, R, Ok, [To | Nokl)
after 10000 ->
err(S, timeout)
end.

err (S, Reason) ->
gen_tcp:close(S),

19

{error, Reason}.

And that is all there is. In order to mail a mail, we merely call

smail:send(Mess, ["klacke@erix.ericsson.se",
"tonyQerix.ericsson.se"],
"Is this cool or what "),

7 UDP/IP

In this section we provide a microscopic implementation of the protocol suite
UDP/IP. This is used to exemplify a number of useful techiques. The reader
who is not familiar with the internals of the IP protocol suite is well advised to
read an introductury text on the topic.

The only magic we assume here is the ability receive ethernet frames into the
ERLANG application. This can be achieved in a number of ways, however they
differ wildly on different operating systems. No name resolution is performed
at all, all addresses are supposeed to be proper IP addresses. This is of cource
a ridiculous application since there already exists a large number of highly opti-
mized implementations of the TCP/IP protocols. It is however interesting from
a educational point of view since it shows how easily protocols can be developed
in ERLANG.

We have a receive loop at the bottom most layer that receives Ethernet
frames, decodes them and dispatches them to either of the ARP [?] or IP [?]
layers. This receive loop is aware of the local ethernet address by means of the
previously mentioned magic.

8 IDLs

Many telecommunications protocols make use of ASN.1[?] to define the datatypes
that are used in a protocol. Different encodings duch as BER[?] and PER][?]
are typically used. In this section we show how what code an ASN.1 to ER-
LANGcompiler should generate utilizing the bit syntax. In particular we show
how a binary string produced by the application, inserted into an ASN.1 data
structure can find its way all the way down to the IO system without ever being
copied.
Lets assume we have an ASN.1 datatype Struct:

Struct ::= SEQUENCE {
b BOOLEAN,
s OCTET STRING }

The equivalent ERLANGrecord would of cource be:

20

-record(’Struct’, {b, s}).

In this example we shall assume that the Basic Encoding Rules, BER is
used. For a breief introduction to ASN.1 and BER [?] can be consulted.

BER is an encoding scheme which uses a Tag/Length/Value encoding. This
means that every value is encoded as three parts. The tag, identifies which type
is encoded, the length is the length of the encoded value, and the value is of
cource the coded value itself. This is often refered to TLV encodings.

In this case we have three ASN.1 components to encode, a SEQUENCE, a
BOOLEAN and an OCTET STRING.

First we need a function to encode a boolean:

ebool(true) ->
<7BO0OL/8, 1:8, 1:8>;

ebool(false) ->
<7B0OOL/8, 1:8, 0:8>.

Here we made use a constant BOOL which is the tag that defines a boolean
in BER code:

-define(BOOL, 2).
-define(OSTRING, 16).
-define (SEQUENCE, 48).

Furthermore we need to have a library function to encode octet strings. We
have:

eostring(Bstr) ->
Sz = size(Bstr),
Bits = lensize(Sz))
<?0STRING:8/integer, Sz:(Bits*8)/integer-little, Bstr/binary>.

We need a library function lensize/1 to calculate the number of bytes
necessary to hold the BER length value. We have:

lensize(S) ->
lensize(S bsr 7, 1).
lensize(0, I) -> I;
lensize(X, I) ->
lensize(X bsr 8, I+1).

The function lensize/1 is defined according to the rules for BER length
encodings.

Now that we have the primitive library functions that we need we can look
at the code that is generated by a proper ASN.1 to Erlang compiler to encode
our Struct structure:

21

enc_Struct(S) ->

Bl = ebool(S#’Struct’.b),
B2 = eostring(S#’Struct’.s),
Sz = size(B1) + size(B2),

Bits = lensize(Sz) * 8,
<?SEQUENCE:8/integer, Sz:Bits/integer,
Bi/binary, B2/binary>.

This code is particular interesting since it shows how a string produced at
the application layer, can find its way through a BER encoder without ever
being copied. The result of the enc_Struct/1 operation may in its turn be
manipulated by lower layers in the protocol stack, still without ever copying
the initial string provided by the user. This can be achieved since the memory
management system for the user is the same as the memory management system
for the protocol layers. So here we see how the binary object implementation
acts as a general purpose buffer manger for protocol implementations.

This section made a point using ASN.1 as IDL, however exactly the same
reasoning applies to other IDLs, such as Corba and XDR, albeit in the case of
Corba, more complicated.

9 Internals

In this chapter we describe how binaries are represented internally in the runtime
system. We believe that this information is important since one of the main
objectives with this experimental syntax is to achieve ERLANG programs that
are not only more beautiful but also faster and less memory consuming. Thus
it is important for protocol implementors to be at least vaguely familiar with
the internals of binaries, and thus with the characteristics of binaries.

A binary object can be represented in four different ways inside the runtime
system depending on how it was created. All binaries consist of a tagged pointer
to a structure on the ERLANG process heap. These structure, called thing
structures come in four different varieties. The user of binaries, i.e. the ERLANG
programmer doesn’t see anything about what sort of binary a specific object is
represente as internally.

At the language level all binaries are seen as consecutive series of octets.

9.1 Heap binaries

First we have the simplest variant which can be described by the c-code struct:

typedef struct heap_binary {
uint32 thing_word; /* tagged thing, with subtag and tari */
int size; /* number of bytes */
uint32 datal1]; /* The data */

22

} HeapBin;

Where the uint32 type is an unsigned 32 bit value. The thing_word field
is used to identify the type of the structure, the size field is the number of
bytes that this binary contains, and finally the data field is used to locate the
beginning of the actual data.

This type of binary object is used for small binaries, for example the result
of <X:16>. will be a tagged binary pointer pointing to a HeapBin structure on
the regular process heap. These type of objects are garbage collected similar to
tuples and all other regular ERLANG objects. Furthermore they are copied in
message passing as well as when they are inserted into ets-tables.

9.2 Reference counted binaries

Secondly we represent large binary objects as a pointer to a structure:

typedef struct refc_bin {

uint32 thing_word; /* tagged thing, with subtag and tari */
int size; /* nuber of bytes in binary */
RefcBin *next; /* heap pointer to next RefcBin */
Binary *val; /* Pointer to refc’ed object */
byte *bytes; /* actual byte* pointer =/

} RefcBin;

The principal goal of this data structure is to be able to send large binaries
to other ERLANG processes without copying the actual data. Thus the Binary*
field points to a structure:

typedef struct binary { :
int orig_size; /* total length of binary */
int refc; /* number of references to this binary */
char orig_bytes[1]; /* the data (char instead of byte!) */

} Binary;

The Binary structure contains the actual data and it is allocated off heap,
typically by means of malloc(). It contains a reference counter, so whenever a
RefcBinary object is sent in a message to another process the following things
occur. First the reference counter is incremented, then a RefcBin structure is
created on the receiving process heap. This structure is linked into a list chained
list of RefcBin objects on that heap. This last step is important. All RefcBins
created on a process heap are chained in a list visible to the process. When
the process heap is garbage collected, the chain is traversed and any object in
the chain which has not been moved by the garbage collector is first unlinked

23

from the chain, and then followed in order to decrement the reference counter.
When the reference counter is zero, the entire Binary structure can be released,
typically by means of a call to free().

The ability to send large binary objects without copying them is especially
important in implementations of protocols that carry data as opposed to pure
signalling protocols.

9.3 Segmented binaries

When constructing binaries by adding components as head or a trailer onto a
PDU it important to be able to do that in constant time. For example:

X
Y

<" stuff ">,
<"funky ", X/binary, " rules">.

Therefore a binary object can consist of an array of other binary objects, we
call this a segmented binary. A segmented binary is represented on the ERLANG
heap as as structure:

typedef struct segm_binary {
uint32 thing_word; /* tagged thing, with subtag and tari */
int size; /* number of bytes in the total binary */
uint32 datali1];

} SegmBin;

Both the HeapBin strucure and the SegmBin structure are variable sized.
The number of words that any of these structures consist of can be calculated
by extracting the 16 least significant bits of the thing_word. In the case above
we would have the following pointers and data structures:

24

size = 15

binary
binary (= X)

binary

]
thing (ari = 3)
size = 5
stuf
fo--
thing (ari = 3)
thing (ari = 3) size =5
size = § funk
rule y---
S - - -
- §
N

-

25

In the case with the ”funky stuff rules” string, all data is stored on the regular
ERLANG heap and thus subject to the standard copying garbage collection.
When a structure like this is copied, the structure is compactified and the result
will be that the varibale Y from above is bound to a single HeapBinary instead
of a segmented binary.

9.4 Sub Binaries

Code that strips off a head from a binary and performs a calculatation on the
head, and then basen on the outcome of that calculatation continues to process
the Sub is typical for man applications. The file_lines/1 from a previous
section is an example of this. Therefore the runtime system represents such a
binary in an optimized way. If we have:

<X:16 | Tail> = Bin.
the tail will be represented as a pointer to a TailBin structure on the heap:

typedef struct Sub_binary {

uint32 thing_word;

int size;

int offs;

uint32 orig; /*original binary object to use for offset */
} SubBin;

This means that the tail is only represented as an offset into the original ob-
ject. This is used for another interesting optimization in the execution machin-
ery. When a match operation is initiated on a binary object, a match_buffer
is initialized in the runtime system. If the match succeeds, a word in the match
buffer is set to the value of the initial input to the match machinery. On the next
call to the match machinery, this word is checked to see if it is the same word
we set the last time we performed a match, if this is the case no initialization
of the match buffer is neccessary at all. For example:

funky() ->
X = <"abed">,
count_16(X) .

count_16(<X:16|Tail>) ->
1 + count_16(Tail);
count_16(<>) ->
0.

In the above code, the match buffer will only be initialized once. This is on the
first call to count_16/1. On the second call to count_16/1 the match buffer
will be both initialized as well as initialized to the correct value with regards to
bit offset into the original binary object X.

26

The same data structure can also be used when a substring is extracted from
an initial binary. For example:

sub(Str, From, To) ->
Sz = To - From,
case Str of
<_:From/binary, Result:Sz/binary |_>
Result
end.

The result value Result will be prepresented as a SubBinary to the original
input binary Str.

9.5 Binaries and 10

Most modern IO devices today support a mode of IO called gather/scatter IO.
The UNIX system call writev() takes an output buffer which consists of an
array of iovec structures. An iovec structure contains the following members:

caddr_t iov_base;
int iov_len;

This maps pefectly with a segmented binary. The net result of this is that
the ERLANG programmer can construct an output buffer as a number of small
operations each operation either adds some data to the head or the tail of the
buffer. Once the buffer is ready for output, the runtime system constructs an
array of iovec structures by setting pointers, i.e. without copying any data.
This array is then passed directly to the writev() routine.

All 10 in ERLANG is performed through a driver. In order for the writev()
scenario to take place, the driver must export a writev() routine. How this is
done is described in an appendix to this document.

Appendix

Scatter IO in a linked in driver

The scatter 1O interface in linked drivers in the ERLANG system ought to be
described in some proper OTP documentation. Since it is not and the scatter
10 mechanism is of paramount importance for the implementation of efficent
protocol drivers in ERLANG the mechanism is described here.

27

