September 5, 2009

Edinburgh, Scotland

Association for
Computing Machinery

Advancing Computing as a Science & Profession

Erlang’09

Proceedings of the 2009 ACM SIGPLAN
Erlang Workshop

Sponsored by:
ACM SIGPLAN

Co-located with:

ICFP'09

Association for
Computing Machinery

Advancing Computing as a Science & Profession

The Association for Computing Machinery
2 Penn Plaza, Suite 701
New York, New York 10121-0701

Copyright © 2009 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital
or hard copies of portions of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyright for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted, To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or <permissions@acm.org>,

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923,

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously
published by ACM. If you have written a work that has been previously published by ACM in any journal
or conference proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this
work to appear in the ACM Digital Library, please inform permissions@acm.org, stating the title of the
work, the author(s), and where and when published.

ISBN: 978-1-60558-507-9

Additional copies may be ordered prepaid from:

ACM Order Department
PO Box 30777
New York, NY 10087-0777, USA

Phone: 1-800-342-6626 (US and Canada)
+1-212-626-0500 (Global)
Fax: +1-212-944-1318

E-mail: acmhelp@acm.org
Hours of Operation: 8:30 am ~ 4:30 pm ET

ACM Order Number 553092

Printed in the USA

it

Foreword

It is our great pleasure to welcome you to the Eighth ACM SIGPLAN Erlang Workshop — Erlang’09.
This year’s workshop continues the tradition of being co-located with the annual International
Conference on Functional Programming (ICFP), and being a forum for the presentation of research
theory, implementation and applications of the Erlang programming language.

All submissions to the workshop were reviewed by at least three program committee members. The
program committee accepted 10 papers that cover a variety of topics, including language aspects,
Erlang program development, testing and validation as well as teaching and learning Erlang.

Putting together Erlang’09 was a team effort. First of all, we would like to thank the authors and the
invited speaker for providing such an interesting program. We would like to express our gratitude to
the program committee and additional reviewers, who worked very hard in reviewing papers and
providing constructive criticism for their improvement. We would also like to thank Christopher Stone
and Michael Sperber, this year’s ICFP Workshop Chairs, for their efforts in coordinating all
workshops, and the ICFP local organizers for their hard work on local arrangements. As usual, special
thanks go to Bjarne Dicker for sharing experiences of previous Workshops, maintaining the Erlang’09
website, and advertising the workshop. Finally we would like to thank ACM SIGPLAN for their
continued support.

We hope that you will find this program interesting and thought-provoking and that the symposium
will provide you with a valuable opportunity to share ideas with other researchers and Erlang
practitioners from companies and academic institutions around the world.

Clara Benac Earle Simon Thompson
Erlang’09 General Chair Erlang’09 Program Chair
Universidad Politécnica de Madrid University of Kent

Table of Contents

Erlang Workshop 2009 Organization.......................ccoovvvooiereeeeeineceecesseeseeecesonesseeeesssssssssesssns vi

Keynote

¢ Title to be Announced
Jan Lehnardt (CouchDB)

Session 1: Software Engineering for Erlang

Session Chair: Kenneth Lundin (Ericsson)

¢ Cleaning up Erlang Code is a Dirty Job but Somebody’s Gotta Do Itcoveeeerreeverreeeeereeeeennn, 1
Thanassis Avgerinos, Konstantinos Sagonas (National Technical University of Athens)

e Automated Module Interface UPGrade.........coccocoeumrrireeeenieerieriienerceneesincssssensetsess e seesesseesseenes 11
Lészlé Lovei (Edtvds Lordnd University)

* Automatic Assessment of Failure Recovery in Erlang Applications...................c.cccccorvemevreeeoreesvsrsnennn. 23
Jan Henry Nystrém (Erlang Training and Consulting Ltd,)

Session 2: Teaching Erlang and OO Extensions

Session Chair: Zoltan Horvath (Eétvéis Lordnd University)

* Teaching Erlang using Robotics and Player/Stage..............ccovvereercererminresivcremssnssssssssssssssssssssnssssnsessens 33
Sten Griiner, Thomas Lorentsen (University of Kent)

¢ Development of a Distributed System Applied to Teaching and Learning.....................occoovveeeeneeneene. 41
Hugo Cortés, Monica Garcia, Jorge Hernandez, Manuel Hernéndez, Esperanza Pérez-Cordoba,
Erik Ramos (Universidad Tecnoldgica de la Mixteca)

¢ ECT: An Object-Oriented Extension t0 Erlang...................cccoocoivveviineeiosiiiecsieee e s saseseen 51
Gabor Fehér (Budapest University of Technology and Economics), Andrés G. Békés (Ericsson Hungary)

Session 3: Testing and Model Checking

Session Chair: Simon Thompson (University of Kent)

e Implementing an LTL-to-Biichi Translator in EXlangccccccoeiirieniiseessceesssenseesssessessesssneseens 03
Hans Svensson (Chalmers University of Technology)

e Model Based Testing of Data Constraints: Testing the Business Logic
of a Mnesia Application with Quviq QUICKCRECKc.cocivveieireirieeciririeecsie e ese s 71
Nicolae Paladi, Thomas Arts (IT University of Gothenburg)

¢ Automatic Testing of TCP/IP Implementations Using Quickcheck.................ccceevervevemeeneeerseeerernnnan, 83
Javier Paris (University of A Coruria), Thomas Atts (IT University of Gothenburg and Quvig AB)

¢ Recent Improvements to the McErlang Model Checker ... R RN . |
Clara Benac Earle, Lars-Ake Fredlund (Universidad Politécnica de Madrld)

AVNOT INACX ;isnisisanesiastvssisumassiisssosssssssiisssssiiesssiiasssesasssisvsiamisstimeiamssioiesbasses 101

Erlang Workshop 2009 Organization

General Chair:
Program Chair:
Steering Committee Chair:

Program Committee:

Additional reviewers:

Sponsor:

Clara Benac Earle (Universidad Politécnica de Madrid, Spain)
Simon Thompson (University of Kent, UK)
Bjarne Dicker (Independent Telecoms Professional, Sweden)

Laura M. Castro (University of A Corufia, Spain)

Francesco Cesarini (Erlang Training and Consulting, London, UK)
Torben Hoffman (Motorola, Denmark)

Zoltan Horvath, (E6tvés Lorand University, Budapest, Hungary)
Jan Lehnardt (CouchDB, Berlin, Germany)

Daniel Luna (Kreditor, Stockholm, Sweden)

Kenneth Lundin (Ericsson, Stockholm, Sweden)

Rex Page (University of Oklahoma, USA)

Corrado Santoro (University of Catania, Italy)

Tee Teoh (Canadian Bank Note, Ottawa, Canada)

Phil Trinder (Heriot-Watt University, Edinburgh, UK)

Istvan Bozo

Lilia Georgicva
Gudmund Grov
Peter King

Roébert Kitlei
Tamas Kozsik
Laszlo Lovei
Dominic Mulligan

© SIGPLAN

vi

Cleaning up Erlang Code is a Dirty Job
but Somebody’s Gotta Do It

Thanassis Avgerinos

School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

ethan@softlab.ntua.gr

Abstract

This paper describes opportunities for automatically moderniz-
ing Erlang applications, cleaning them up, eliminating certain bad
smells from their code and occasionally also improving their per-
formance. In addition, we present concrete examples of code im-
provements and our experiences from using a software tool with
these capabilities, tidier, on Erlang code bases of significant size.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restructuring,
reverse engineering, and reengineering

General Terms Design, Languages

Keywords program transformation, refactoring, code cleanup,
code simplification, Erlang

1. Introduction

Most programmers write code. Good programmers write code that
works. Very good programmers besides writing code that works
also rewrite their code in order to simplify it, clean it, and make
it more succinct, modern and elegant. While there will probably
never be any real substitute for very good programmers, one might
wonder whether there is some intrinsic reason why certain code
rewriting tasks cannot be automated and become part of the devel-
opment tool suite so that even good programmers can readily and
effortlessly employ them on their code.

This question has been bothering us for quite some time now, in
Erlang and elsewhere. Rather than just pondering it, we decided to
embark on a project aiming to automate the modernization, clean
up and simplification of Erlang programs. We started by standing
on the shoulders of erl_tidy, a module of the syntax_tools
application of Erlang/OTP written by Richard Carlsson, but as we
will soon see we have significantly extended it in functionality,
features and user-friendliness. The resulting tool is called tidier.

Tidier is a software tool that modernizes and cleans up Erlang
code, eliminates certain bad smells from it, simplifies it and im-
proves its performance. In contrast to other refactoring tools for
Erlang, such as RefactorErl [9] and Wrangler [7], tidier is com-
pletely automatic and not tied to any particular editor or IDE. In-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee,

Erlang’09, September 5, 2009, Edinburgh, Scotland, UK.
Copyright (©) 2009 ACM 978-1-60558-507-9/09/09.. . $5.00

Konstantinos Sagonas

School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

kostis@cs.ntua.gr

stead, tidier comes with a suite of code refactorings that can be
selected by its user via appropriate command-line options and ap-
plied in bulk on a set of modules or applications. This paper pro-
vides only a bird’s eye view of the transformations currently per-
formed by tidier; a complete description of tidier and its capabili-
ties is presented in a companion paper [11]. Instead, the main goal
of this paper is to report our experiences from using tidier, shed
light on some opportunities for code cleanups on existing Erlang
source code out there and raise the awareness of the Erlang com-
munity on these issues.

The next section contains a brief presentation of tidier. The
main section of this paper, Section 3, gives a captule review for
each refactoring currently performed by tidier and shows interest-
ing code fragments we have encountered while trying out tidier
on various open source Erlang applications. Section 4 presents ta-
bles showing the number of opportunities for tidier’s refactorings
on several code bases of significant size and discusses tidier’s ef-
fectiveness. Section 5 presents characteristics of Erlang code that
currently prevent tidier from performing more aggressive refactor-
ings, while at the same time preserving its main characteristics, and
discusses planned future improvements. The paper ends with some
concluding remarks.

2. Tidier: Characteristics and Overview
From the beginning we set a number of primary goals for tidier:

e Tidier should support a fully automatic mode, meaning that
all the refactorings should be such that they can applied on
programs without user confirmation.

o Tidier should be flexible. Users should be able to decide about
the st of refactorings that they want from tidier and, if they
choose so, supervise or even control the refactorings that are
performed.

Tidier should never be wrong. Due to its fully automatic na-
ture, tidier should perform a refactoring only if it is abso-
lutely certain that the transformations performed are semantics-
preserving, even if this comes at the cost of missing some op-
portunity or performing some weaker but safer refactoring.

Tidier’s refactorings should be natural and as good as they get.
The resulting code should, up to a certain extent, resemble the
code that experienced Erlang programmers would have written
if they performed these refactorings by hand.

¢ Tidier should be easy to use and not be bound to any particular
editor or IDE.

e Tidier should be fast. So fast that it can be included in the typi-
cal make cycle of applications without imposing any significant
overhead; ideally, an overhead that is hard to notice.

Tlilag Yttt
it e CLllaf ot e

SE— —— - - S8y
1
| atpAibAnvisojsrc/inviso_tool_sh.er:296 : showing complete function transformations
l Onginal Version sugnested Version
handle c311({stop_session, Dir, Prefix}, From, LD) -» ;]qu[e_cni‘[r[stnp_sm'.lon. bir, Pretix}, _From, L0 = |
case case
check_directory_exists(Dir) % Check that this directory exists here, check_directory_exists(bir) % Check that this directery exists here,
of of
true -» true ->
RTStates = get_rtstates_ld(LD), RT5tates = get rtstates 1d{LD),
Cirllode = gut_ctrinode 14{LD}, el Ctriiode = get_ctrlnode_ld{LD),

Dby = got_dhg_laild),
TracingNodes = get_all_tracing_nodes_ristates(RTStates),
case step_all_tracing(CtriNede, Dby, TracingHodes) of
ok -= % Hopefully no node is still tracing now.
TRDstorage = get_trdsterage ld{LDj,
AvailableNodes = get_all_available_nodes_rtstates (RTStates),
{Fallediodes, FetchedFiles} = transfer_legfiles(RTStates,
CtriNode, Dir,
Prefix,
TRDstorage, Dbg,
AvailableNedes),
Removelodes = ... We only delete local logs where fetch ok,
Tists:filter(tun (N) =%
tasp 1ists:keysearch(W, 1, Falledhodes)

of
{valum, _} > false]

false -» trun {stop, normal, {ok, {FailedNodes, FetchedFiles}}, LD};
00 {error, Reason} -> % Some general failure, quit.
end, {stop, norpal, {error, Reason}, LO}
AvailableNodes), end;
remove_all_local_logs(CtrlHode, TRDstorage, RemoveNodes, Dbg), false -» % You specified a non-existing directory!
[Fatan narsal Fak FEsiledladas EatehadFileseit 1ML J_‘.'J {renlv. ferror. {faultv dir. Dirdd. DY o]
| ¥ | +

Oby = get_dbg_ld(LD),
Tracinglodes = get_all_tracing_nodes_rtstates(RTStates),
case stop_all_tracing(CtriNode, Dbg, Tracinghodes) of
ok -> % Hopefully ne node 1s 5t111 tracing now.
TRDstorage = get_trdsturage_1dilLD}, |
Availabletodes = get_all_available_nodes_rtstates(RTstates),
{FailedNodes, FetchedFiles} = transfer_legfiles{RTStates,
Ctridede, Dir,
Prefix,
TRDsterage, Dbg,
Availablelodes),
Reacvedodes = % We only delete local logs where fetch ak.
(N
|| N < Availatletiodes,
lists:keyfind(N, 1, Failedhodes) =:= false],
remove_all_local_logs(CtriNode, TRDstorage, RemeveNodes, Dbg),

Use mqnesked versian, Keep eriginal versinnl

Figure 1. Tidier in action: simplifying the source code of a file from the inviso application of Erlang/OTP R13B,

Furthermore, we set a list of criteria that would serve as indica-
tors of whether a specific refactoring should be performed by tidier.
The transformations should result in code

modernizations: tidier should remove obsolete language constructs
and use the most modern construct for the job.

simplifications: The resulting code should be shorter, simpler and
therefore more elegant.

with fewer redundancies: The 1esulting code should contain fewer
redundancies than the original version.

with the same or better performance: The new code should not de-
teriorate in performance and if possible become even faster.

Modes of using tidier One of our goals has been that tidier should
be very easy to use. Indeed, the simplest way to use tidier on some
Erlang file is via the command:

> tidier myfile.erl

If all goes well, this command will automatically refactor the code
of myfile.erl and overwrite the contents of the file with the re-
sulting source code (also leaving a backup file in the same direc-
tory). Multiple source files can also be given. Alternatively, the user
can tidy a whole set of applications by a command of the form:

> tidier applicl/src applicN/src

which will tidy all *. er1 files somewhere under these directories.
Both of these commands will apply the default set of transforma-
tions on all files. If only some of the transformations are desired,
the user can select them via appropriate command-line options. For
example, one can issue the command:

> tidier --guards --case-simplify myfile.erl

to only rewrite guards to their modern counterparts (Section 3.1)
and simplify all case expressions (Section 3.3) of myfile.erl.
We refer the reader to tidier’s manual for the complete and up-to-
date set of command-line options.

A very handy option is the -n (or —-no-transform) option
that will cause tidier to just print on the standard output the list

of transformations that would be performed on these files, together
with their lines, without performing them. Alternatively the user
can use the -g (or ——gui) option to invoke tidier’s GUI and per-
form refactoring interactively. We expect that novice tidier users
will probably prefer this mode of using tidier, at least initially.

Let us examine tidier’s GUI. Figure 1 shows tidier in action. In
fact, the snapshot depicts tidier refactoring a file from the inviso
application of Erlang/OTP R13B. Tidier has identified some code
as a candidate for simplification and shows the final version of this
code to its user. What the snapshot does not show is that that the
simplification involves three different refactorings and that tidier
has previously shown all these refactorings, one after the other,
to its user. At the point when the snapshot is taken, Tidier’s GUI
shows the old code (on the left) and the new code (on the right);
the code parts that differ between the two versions are coloured
appropriately (with red color the old excerpt of the code and with
green the new). At this point, the user can either press the “Use
suggested version” button to accept tidier’s transformation or the
“Keep original version” button to bypass it. In either case, tidier
will continue with the next refactoring or exit if this is the last one.

As a side comment, at some point during tidier’s development
we were thinking of giving the user the possibility to edit the code
on the right (i.e., allowing the user to fine-tune tidier’s refactor-
ings), but we have given up on this idea as it requires dealing with
too many issues which are peripheral to the main goals of tidier
(e.g., how should tidier continue if the user inputs code which is
syntactically erroneous, should there be an “undo” option, etc.).
The user can and should better use an editor for such purposes.

3. Transformations Performed by Tidier

Let us now see the transformations that tidier performs.

3.1 Transformations inherited from erl tidy

Some of tidier’s transformations were inherited from the erl_tidy
module of Erlang/OTP’s syntax_tools application. They are all
quite simple but, since they are part of tidier and the basis for our
work, we briefly describe them here.

Modernizing guards

For many years now, the Erlang/OTP system has been supporting
two sets of type checking functions: old-style (atom/1, binary/1,
integer/1, ...) and new-style ones (is_atom/1, is_binary/1,
is_integer/1, ...). All this time, the implicit recommendation
has been that applications should gradually convert to using new-
style guards, but not al] applications have done so. Those that have
not recently got one more incentive to do so: the compiler of the
R13B release of Erlang/OTP stopped being silent about uses of old-
style guards and generates warnings by default.

Note that the modernization of guards is both a rather tedious
job for programmers and a task that cannot be automated easily.
For example, it cannot be performed by a global search and replace
without the programmer’s full attention or by a simple sed-like
script that does not understand what is a guard position in Erlang.
Consider the following Erlang code which, although artificial and
of really poor code quality, is syntactically valid. It is probably not
immediately obvious to the human eye where the guard is.

-module(where_is_the_integer_guard).
-export([obfuscated_integer_test/1]).

obfuscated_integer_test(X) ->
integer(X) =:= integer.

integer(X) when (X =:= infinity);
integer(X) -> integer;
integer(_) -> not_an_integer.

In contrast, for an automated refactoring tool like tidier, which
understands Erlang syntax, the modernization of guards is a simple
and straightforward task.

Eliminating explicit imports

This transformation eliminates all import statements and rewrites
all calls to explicitly imported functions as remote calls as shown:

-import(m1, [foo/11).
-import (m2, [bar/2]).

t(X) >

L) -> case ml:foo(X) of

case foo(X) of m2:bar (A, B),

" bara, B),

Admittedly, to a large extent the eliminating imports refactoring is
a matter of taste. Its primary goal is not to make the code shorter but
to improve its readability and understandability by making clear to
the eye which calls are calls to module-local functions and which
are remote calls. In addition, in large code bases, it makes easier to
find (e.g. using tools like Unix’s grep) all calls to a specific m: £
function of interest. Of course, it is possible to do the above even
in files with explicit imports, but it is often more difficuit.

Eliminating appends and subtracts

This is a very simple refactoring that substitutes all occurrences
of calls to lists:append/2 and lists:subtract/2 functions
with the much shorter equivalent operators ++ and --. The main
purpose of this refactoring is to reduce the size of source code but
also improve readability.

Transforming maps and filters to list comprehensions

This is a modernization refactoring that involves the transforma-
tion of lists:map/2 and lists:filter/2 to an equivalent list
comprehension. The goals of this transformation are threefold: (a)
reduce the source code size; (b) express the mapping or filtering of

a list in a more elegant way and (c) increase the opportunities for
further refactorings that involve list comprehensions as we will see.

Transforming fun expressions to functions

This is the Erlang analogue of the extract method refactoring in
object oriented languages [S]. This particular refactoring removes
fun expressions from functions and transforms them into module
local functions. This transformation primarily aims at improving
code readability but can also be used for detecting opportunities
for clone removal as also noted by the developers of Wrangler [6].

3.2 Simple transformations

From this point on, all transformations we present are not per-
formed by er1_tidy. We start with the simple ones.

Transforming coercing to exact equalities and inequations

In the beginning, the Erlang Creator was of the opinion that the only
reasonable numbers were arbitrary precision integers and conse-
quently one equality (==) and one inequation (/=) symbol were suf-
ficient for comparing between different numbers. At a later point, it
was realized that some programming tasks occasionally also need
to manipulate floating point numbers and consequently Erlanig was
enriched by them. Most probably, because C programmers were
accustomed to == having coercing semantics for numbers, compar-
ison operators for exact equality (=:=) and inequation (=/=) were
added to the language. These operators perform matching between
numbers. Up to this point all is fine. The problem is that in 99%
of all numeric comparisons, Erlang programmers want matching
semantics but use the coercing equality and inequation operators
instead, probably unaware of the distinction between them or its
consequences for readability of their programs by others.

Tidier employs local type analysis to find opportunities for
transforming coercing equalities and inequation with an integer to
their matching counterparts. The analysis, although conservative, is
often quite effective. The transformation itself is trivial.

Modernizing functions

As the Erlang language and its implementation evolve, some library
functions become obsolete. These functions typically get replaced
by some other function with similar functionality. Occasionally a
new function which is cleaner and/or more efficient than the old
one is added in the library and recommended as their replacement.

As a rather recent such example, we discuss in detail the case
of the commonly used library function lists:keysearch/3. This
function returns either a pair of the form {value,Tuple} or the
atom false. Throughout the years, it was repeatedly noticed by
various Erlang programmers that Tuple is a tuple, a whole tuple
and nothing but a tuple, so wrapping it in another tuple in order
to distinguish it from the atom false is completely unnecessary.
As aresult, R13 introduced the library function 1ists:keyfind/3
which has the functionality of 1ists:keysearch/3 but instead re-
turns either Tuple or false. Notice that a simple function renam-
ing refactoring and removing the value wrapper do nor suffice in
this case. To see this, consider the following excerpt from the code
of Erlang/OTP R13B’s 1ib/stdlib/srec/supervisor. erl:800:

case lists:keysearch(Child#child.name, Pos, Res) of
{value, _} -> {duplicate_child, Child#child.name};
_ —> check_startspec(T, [Child|Res])

end

To preserve the semantics, this code should be changed to:

case lists:keyfind(Child#child.name, Pos, Res) of
false -> check_startspec(T, [Child|Res]);
_ —-> {duplicate_child, Child#child.name}

end

and indeed this is the transformation that tidier performs, based
on type information about the return values of the two functions.
Moreover, notice that there are calls to lists:keysearch/3 that
cannot be changed to 1ists:keyfind/3. One of them, where the
matching is used as an assertion, is shown below:

{value, _} = lists:keysearch(delete, 1, Query),

This particular transformation involving lists:keysearch/3 is
Jjust one member of a wider set of similar function modernizations
that are currently performed by tidier. Their purpose is to assist pro-
grammers with software maintenance and upgrades. Judging from
the number of obsolete function warnings we have witnessed re-
maining unchanged across different releases, both in Erlang/OTP
and elsewhere, it seems that in practice updating deprecated func-
tions is a very tedious task for Erlang programmers to perform man-
ually.

Record transformations

The record transformations refactoring refers to a series of record-
related transformations that are performed by tidier. Detailed ex-
amples can be found in the companion paper [11] but briefly the
refactoring consists of three main transformation steps: (i) convert-
ing is_record/[2,3] guards to clause matchings; (ii) generat-
ing fresh variables for the record fields that are used in the clause
and matching them with the corresponding fields in the clause pat-
tern; (iii) replacing record accesses in the clause body with the new
field variables. Record transformations lead to shorter and cleaner
code, improve code readability, may trigger further refactorings,
and when applied en masse they can even improve performance.

3.3 Transformations that eliminate redundancy

Various refactorings specialize the code and remove redundancies.

Specializing the size/1 function

Tidier employs this refactoring to find opportunities to special-
ize the size/1 function. Since Erlang/OTP R12 there exist two
new BIFs that return the size of tuples (tuple_size/l1) and bi-
naries (byte_size/l). By performing a local type analysis, tidier
automatically performs this substitution whenever possible. Such
a refactoring has a lot of benefits: (i) modemizes the code; (ii)
makes the programmers’ intentions about types clear rather than
implicit; (iii) assists bug detection tools like Dialyzer [8] to detect
type clashes with less effort; (iv) slightly improves the performance
of programs; and (v) often triggers further simplifications.

Simplifying guard sequences

This refactoring removes redundant guards and simplifies guard se-
quences. Some examples are shown below (the when is not shown)
where we have taken the liberty to combine guard simplifications
with some other refactorings we have previously introduced.

| is_1ist(1), length(L) > E| = | length (L) > 42|

|is_tup1e(L), size(T) < 42| == ’tuple_size(T) < 42|

|is_integer(N), == 42|

Such refactorings reduce the code size (both source and object) and
also improve performance.

Structure reuse

The structure reuse refactoring is quite similar to (and inspired
from) transformations that optimizing compilers perform. Identi-
cal structures (tuples or lists) in the same clause containing fully

evaluated terms (i.e., not calls) as subterms are identified by tidier
and their first occurrences are assigned to fresh variables. When the
identification phase is over, tidier simply replaces all subsequent
occurrences of the identical structures with the new variables. This
refactoring reduces the code size and also improves performance.

Straightening case expressions

We use the term straightening to describe the refactoring of a case
expression to a matching statement. Such a refactoring can only be
applied when the case expression has only one alternative clause.
Tidier identifies those cases and performs this transformation pro-
vided that the body of the case does not contain any comments
(presumably commented-out alternative case clauses or some mes-
sage that the (reatment in the case body is currently incomplete).

Temporary variable elimination

This is another refactoring inspired from compiler optimizations,
namely from copy propagation. Temporarily storing an interme-
diate result in a variable to be used in the immediately following
expression is actually commonplace in almost all programming
languages. Tidier, by performing this refactoring, eliminates the
temporary variable and replaces it with its value. This transfor-
mation, combined with the straightening refactoring of the previ-
ous paragraph can lead to significant simplifications. For example,
consider the following fragment from the development version of
Ejabberd’s source code (file src/ejabberd _c2s.erl:1951, with
one variable renamed so that the code fits here):

get_statustag(P) ->
case xml:get_path_s(P, [{elem, "status"}, cdatal]) of
ShowTag -> ShowTag
end.

by straightening the case expression and eliminating the temporary
variable the code will be transformed by tidier to:

get_statustag(P) ->
xml:get_path_s(P, [{elem, "status"}, cdatal).

However, if tidier applied this refactoring aggressively, we
would end up with code ’simplifications’ that would look com-
pletely unnatural and most probably would never be performed
by a programmer. An example of unwanted behaviour from this
refactoring is illustrated below:

get_results(BitStr) ->
Tokens = get_tokens(BitStr),
ServerInfo = get_server_info(Tokens),
process_data(ServerInfo).

¥

get_results(BitStr) ->
process_data(get_server_info(get_tokens(BitStr))).

Since only few Erlang programmers would consider the resulting
code an improvement over the original one as far as code readabil-
ity is concerned, tidier does not perform such refactorings.

Instead, tidier performs the temporary variable elimination
refactoring when:

e The variable that was used to store the temporary result is
eventually used to return the result of a clause (as in the first
example we saw).

e It is determined that such a refactoring can lead to further
and more radical refactorings later on (such as the ones we
will present in Section 3.4). In this case, to ensure that such
refactorings are possible after the transformation, tidier has
to perform a speculative analysis about the result of further
refactorings after this transformation.

Simplifying expressions

While reviewing Erlang code fragments, we have come across
a conglomeration of expression simplifications that could be
achieved just by applying some simple transformations. Specifi-
cally, a very frequent case involved the simplification of boolean
case and if expressions.

As an actual such example, the first transformation of Fig-
ure 2 shows the simplification of source code from Erlang Web
(filewparts-1.2.1/src/wtype_time.erl:177). In this case the
code will be simplified further by tidier when the is_between/3
guard Erlang Enhancement Proposal [10] is accepted and by un-
folding the 1ists:all/2 call as shown in the second transforma-
tion of the same figure. This last step is not done yet.

is_valid_time({H1, H2, H3}) ->
Hour = if (H1 >= 0) and (H1 < 24) -> true;
true -> false
end,
Minute = if (H2 >= 0) and (H2 < 60) -> true;
true -> false
end,
Sec = if (H3 >= 0) and (H3 < 60) -> true;
true -> false
end,
lists:all(fun(X) -> X == true end,
[Hour, Minute, Secl).

4

is_valid_time({H1, H2, H3}) ->
Hour = (H1 >= 0) and (H1 < 24),
Minute = (H2 >= 0) and (H2 < 60),
Sec = (H3 >= 0) and (H3 < 60),
lists:all(fun (X) ~> X == true end,
[Hour, Minute, Secl).

d
is_valid_time({H1, H2, H3}) ->
Hour = is_between(H1, 0, 23),
Minute = is_between(H2, 0, 59),
Sec = is_between(H3, 0, 59),
Hour andalso Minute andalso Sec.

Figure 2. A case of multiple if simplifications.

3.4 Simplification of list comprehensions

Although the list comprehension transformations that were inher-
ited from er1_tidy are semantically correct, at times, the resulting
code was not what an expert Erlang programmer would have writ-
ten if she were transforming the code by hand. The refactorings in
this section describe a series of transformations that are supported
by tidier in order to improve the quality of the list comprehensions
that are produced and at the same time simplify them even more by
using the refactorings that were presented in the previous sections.

Fun to direct call

This is a very simple transformation. It is typically performed in
conjunction with the refactoring that transforms a fun expression
to a local function (Section 3.1), and transforms the application of
a function variable to some arguments to a direct call to the local
function with the same argument.

Inlining simple and boolean filtering funs

A simple fun within a 1ists:map/2 or lists:filter/2 which
is defined by a match all clause without guards can be inlined when

the map or filter call is transformed to a list comprehension.
This simplifies the resulting code and simultaneously makes it more
appealing and natural to the programmer’s eye. We illustrate it:

llists:filter(fun (X) -> is_gazonk(X) end, L)|

U

|[X Il X <~ L, is_gazonk(X)]l

One more case where it is possible to do a transformation similar
to the above is when the fun is used in lists:filter/2 and
defines a total boolean function (i.e., a function that does not
impose any constraints on its argument) as the code below (from
Erlang/OTP R13B’s 1ib/kernel/src/pg2.erl:278):

del_node_members([[Name, Pids] | T], Node) ->
NewMembers =
lists:filter(fun(Pid) when node(Pid) =:= Node -> false;
() => true
end, Pids),

which tidier automatically transforms to:

del_node_members([[Name, Pids] | T], Node) ->
NewMembers = [Pid || Pid <- Pids, node(Pid) =/= Node],

Deforestation in map+filter combinations

Some nested calls to lists:map/2 and lists:filter/2 are
transformed to a single list comprehension by tidier, thus elimi-
nating the intermediate list and effectively performing deforesta-
tion [13] at the source code level. (The companion paper [11]
contains an interesting such example.) Whenever the calls to map
and filter are not nested, tidier performs a speculative analy-
sis employing the temporary result elimination refactoring from
Section 3.3 to see if this can create further opportunities for defor-
estation. In either case, tidier will perform the deforestation only
in cases it is certain that doing so will not alter the exception be-
haviour of the code (e.g., miss some exception that the original
code generates). We will come back to this point in Section 5.

Zipping and unzipping

In general, type information (hard-coded or automatically inferred
through analysis) can radically improve the resulting refactorings.
For example, tidier has hard-coded information that the result of
lists:zip/2 is a list of pairs. This allows tidier to perform func-
tion inlining in cases that it would not have been possible without
such information. It also prepares tidier for the possibility that com-
prehension multigenerators become part of the language.

Since tidier is treating calls to lists:zip/2 specially, it felt
natural that calls to 1ists:unzip/1 would also receive special
treatment. One very interesting case appears in the source code
of disco-0.2/master/src/event_server.erl:123. We show
tidier performing a non-trivial code transformation including this
refactoring in Figure 3.

3.5 Transformations that reduce the complexity of programs

One of the blessings of high-level languages such as Erlang is that
they allow programmers to write code for certain programming
tasks with extreme ease. Unfortunately, this blessing occasionally
turns into a curse: programmers with similar ease can also write
code using a language construct that has the wrong complexity for
the task.

Perhaps the most common demonstration of this phenomenon is
unnecessarily using the length/1 built-in function as a test. While

S X At

i
o
x

tuulos-disco-0.2/master/srcfevent_server.er;123 : showing complete function transfermations.

Original Version

Suggested Version

ent_filter(Key, Evlst) ->
{_, R} = Usts:iunzip(lists:tilter(fun ({X, _}}
' when K == Key ->
true;
{_) -> talse
end,
Evist)),

event_filter(Key, EvLst) ->

[V || {K, ¥} <- Evlst, K == Key].

{Use suggested versmnj Keep original version

Figure 3. Tidier simplifying the code of disco-0.2/master/src/event_server.erl,

this is something we have witnessed functional programming
novices do also in other functional languages (e.g., in ML), the
situation is more acute in Erlang because Erlang allows length/1
to also be used as a guard. While most other guards in Erlang have a
constant cost and are relatively cheap to use, the cost of length/1
is proportional to the size of its argument. Erlang programmers
sometimes write code which gives the impression that they are
totally ignorant of this fact.

Consider the following code excerpt from Erlang/OTP R13B’s
lib/xmerl/src/xmerl validate.erl:542:

star(_Rule,XML,_,_WSa,Tree,_S) when length(XML) =:= 0 ->
{[Treel, [1};
star(Rule,XMLs,Rules,WSaction,Tree,S) ->
% recursive case of star function here ...
star(Rule,XMLs2,Rules,WSaction, Tree++WS++[Treel] ,S)
end.

The use of length/1 to check whether a list is empty is totally
unnecessary; tidier will detect this and transform this code to:

star(_Rule, [],_,_WSa,Tree,_S) ->
{[Treel, [13};
star (Rule,XMLs,Rules,WSaction,Tree,S) ->
% recursive case of star function here ...
star(Rule,XMLs2,Rules,WSaction, Tree++WS++[Treel],S)
end.

thereby changing the complexity of this function from quadratic to
linear.

The above is not a singularity. Tidier has discovered plenty
of Erlang programs which use length to check whether a list is
empty. Occasionally some programs are not satisfied with travers-
ing just one list to check if it is empty but traverse even more, as
in the code excerpt in Figure 4. Tidier will automatically trans-
form the two length/1 guards to exact equalities with the empty
list (e.g., AllowedNodes =:= []).Note that this transformation is
safe to do because the two lists:filter/2 calls which produce
these lists supply tidier with enough information that the two lists
will be proper and therefore the guards will not fail due to throwing
some exception.

Tidier has also located a clause with three unnecessary calls to
length/1 next to each other. The code is from the latest released
version of RefactorErl. Its refactoring is shown in Figure 5. Neither
we nor tidier understand the comment in Hungarian, but we are
pretty sure that the whole case statement can be written more
simply as:

SideEffs =/= [] orelse UnKnown =/= []
orelse DirtyFunc =/= []

choose_node({PrefNode, TaskBlackNodesl}) ->

% ..and choose the ones that are not 100% busy.
AvailableNodes = lists:filter(fun({Node, _Load}) ->

end, AllNodes),
AllowedNodes = lists:filter(fun({Node, _Load}) ->

end, AvailableNodes),

if length(AvailableNodes) == 0 -> busy;
length(AllowedNodes) == 0 ->
{all_bad, length(TaskNodes), length(AllNodes)};
true ->

% Pick the node with the lowest load.
[{Node, _}I_] = lists:keysort(2, AllowedNodes),
Node

end;

Figure 4. Code with two unnecessary calls to Length/1 (from the
code of disco~0.2/master/src/disco_server.erl:280).

thereby saving five lines of code (eight if one also includes the
comments) and also avoiding the unnecessary tuple construction
and deconstruction.

Similar cases also exist which check whether a list contains just
one or more that one elements (e.g., length(L) > 1). Whenever
relatively easy to do, tidier transforms them as in the case shown
below (from the code of 1ib/ssl/src/ssl _server.erl:1139)
where tidier has also eliminated the call to hd/1 as part of the
transformation.

decode_msg(<<_, Bin/binary>>, Format) ->
Dec = ssl_server:dec(Format, Bin),
if length(Dec) == 1 -> hd(Dec);
true -> list_to_tuple(Dec)
end.

¥

decode_msg(<<_, Bin/binary>>, Format) ->
Dec = ssl_server:dec(Format, Bin),
case Dec of
[Dec1] -> Decil;
_ —> list_to_tuple(Dec)
end.

In some other cases though, the code also contains other guard
checks which complicate the transformation. For example, consider
function splice/1 from the source code of ErtlIDE (located in file
org.erlide.core/erl/pprint/erlide pperl.erl:171):

s L o o e e

. ' =L X

frefactorerlfsrc/referl_expression.er:384 : some moronic calls to length/1 got refactored

Onginal Version

Suggested Version

lside _eTtect[Expr) -»
Children = [?Query):exec{Expr, (?Expr):deep_sub(}},
SideEffs = [Node
|| Hode <- Children,
{?Expr): kind(Node) = send_expr orelse
(?Expri:kind(Node) == receive_expr],
Funs = [?Query):exec(Expr, (?Expr):functions(}},
DirtyFunc = [Fun || Fun <- Funs, [?Fun):dirty(Fun)],
Unkniown = [Fup [] Fun =- Funs, (7Fun):dirty{Fun) = unknown],
case {length{5igeEffs) /= 0, length{Unknown) /= 0,
Length(DirtyFunc) /= 0}
of
{true, _, _} -= true;
{_, true, _} -» true;
%% egyenlore ha nem tudjuk eldonteni, hogy van-e mellekhatasa, akkor ugy
%% tekintunk ra mintha lenne, kesobh esetleg meg lehet kerdezni a
%% felhasznalaot, hogy szerinte van-e

{_, _, true} -> true;
{:_, _} -» false
end

side effect(Expr) -=

Children = (?Query):exec(Expr, (?Expr):deep_sub{}),
SideEffs = [Node
It Node <- Children,
(7EXpr):kind(Node) == send_expr orelse
{7Expr):kind{Node) == receive expr],
Funs = {?Query):exec (Expr, (?Expr):functions()),
DirtyFunc = [Fun || Fun <- Funs, [?Funy:dirty(Fun}],
UnKnown = [Fun || Fun <- Funs, {?Fun):dirty(Fun) == unknown],
case {SideEffs =/= [], UnKnown =/= [], DirtyFunc =/= []} of
{true, _, _} -> true;
{_, true, _} -> true; |
%% egyenlore ha nem tudjuk eldenteni, hogy van-e mellekhatasa, akkor ugy
%% tekintunk ra mintha lenne, kesobb esetleg meg lehet kerdezni a I
%% felhasznalact, hogy szerinte van-e |

{_, _. true} -> true;
{_« _s _} -> false
end

Use suggested version | Keep original version

Figure 5. Tidier simplifying the code of refactorerl-0.6/1lib/refactorerl/src/referl_expression.erl.

splice(L) ->
Res = splice(L, [1, (1),
case (length(Res) == 1) and is_list(hd(Res)) of
true -> no;
_ => {yes, Res}
end.

Automatically transforming such code to something like the fol-
lowing is future work:

splice(L) ->
Res = splice(L, [1, [1),
case Res of
[Resl] when is_list(Resl) -> no;
_ => {yes, Res}
end.

We intend to enhance tidier with more refactorings that detect
programming idioms with wrong complexity for the task and im-
prove programs in similar ways.

4. Effectiveness Across Applications

We have applied tidier to a considerable corpus of Erlang programs
both in order to ensure that our tool can gracefully handle most
Erlang code out there and in order to test its effectiveness. In this
section we report our experiences and the number of opportunities
for code cleanups detected by tidier on the code of the following
open source projects:’

Erlang/OTP This system needs no introduction. We just mention
that we report results on the source code of R13B totalling
about 1,240,000 lines of Erlang code. Many of its applications
under 1ib (e.g., hipe, dialyzer, typer, stdlib, kernel,
compiler, edoc, and syntax_tools) had already been fully
or partially cleaned up by tidier. Consequently, the number of
opportunities for cleanups would have been even higher if such
cleanups had not already taken place.

Apache CouchDB is a distributed, fault-tolerant and schema-free
document-oriented database accessible via a RESTful HTTP/J-

! Throughout its development, we have also applied tidier to its own source
code but, since we have been performing the cleanups which tidier were
suggesting eagerly, we cannot include tidier in the measurements.

SON API [1]. The CouchDB distribution contains ibrowse and
mochiweb as components. We used release 0.9.0 which con-
tains about 20,500 lines of Erlang code.

Disco is an implementation of the Map/Reduce framework for
distributed computing [2]. We used version 0.2 of Disco. Its
core is written in Erlang and consists of about 2,500 lines of
code.

Ejabberd is a Jabber/XMPP instant messaging server that allows
two or more people to communicate and collaborate in real-
time based on typed text [3]. We used the development version
of ejabberd from the public SVN repository of the project
(revision 2074) consisting of about 55,000 lines of Erlang code.

Erlang Web is an open source framework for applications based
on HTTP protocols [4]. Erlang Web supports both inets and
yaws webservers. The source of Erlang Web (version 1.3) is
about 10,000 lines of code.

RefactorErl is anrefactoring tool that supports the semi-automatic
refactoring of Erlang programs [9]. We used the latest release
of RefactorErt (version 0.6). Its code base consists of about
24,000 lines of code.

Scalaris is a scalable, transactional, distributed key-value store
which can be used for building scalable Web 2.0 services [12].
We used the development version of scalaris from the public
SVN repository of the project (revision 278) consisting of about
35,000 lines of Erlang code. This includes the contrib direc-
tory of scalaris where the source code of Yaws [15] is also in-
cluded as a component.

Wings 3D is a subdivision modeler for three-dimensional ob-
jects [14]. We used the development version of wings from
the public SVN repository of the project (revision 608) con-
sisting of about 112,000 lines of Erlang code. This includes its
contrib directory.

Wrangler is a refactoring tool that supports the semi-automatic
interactive refactoring of Erlang programs [7] within emacs or
erlIDE, the Erlang plugin for Eclipse. We used the development
version of Wrangler from the public SVN repository of the
project (revision 678) consisting of about 42,000 lines of Erlang
code.

Y
Qé.‘\“\ \? o ‘;.@Q c}oi\ @,‘sﬁﬁ
. :&29‘ _{Jb& @m‘; _?g‘i:' & p £ & é@é}‘ oo@Q & 9
sﬁp qsg& o & o .QQ& Qﬁk & &P 4}9 & 6§p o
<$% > éﬁb c§> o 4% Qé ¥ é§b \§P *ﬁs? o
linesofcode € & v & & & & & §F & & P F
Erlang/OTP 1,240,000 2011 | 68 | 751 | 1805 | 2168 | 487 | 36 | 1467 | 77 | 564 | 115 | 4 12
CouchDB 20,500 22 9 8 6 27 31 2 88 3 38 1
Disco 2,500 11 2 12 2 9 14 11 5 1 2
Ejabberd 55,000 2 78 18 26 6 70 | 11 | 134 40 | 2
Erlang Web 10,000 7111 37 1 12 1 1 15 6 35 7 2
RefactorErl 24,000 11 3 8 54 1 39 7 3 7
Scalaris 35,000 2 6 6 22 39 22 13
Wings 3D 112,000 10 | 13 45 1 24 26 166 | 11 25 10
Wrangler 42,000 6| 28 | 141 1 1 110 7 | 236 47 | 5| 14 2

Table 1. Number of tidier’s transformations on various Erlang source code bases.

For all projects with SVN repositories the revisions we mention
correspond to the most recent revision on the 12th of May 2009.

The number of opportunities for tidier’s transformations on
these code bases is shown on Table 1. From these numbers alone, it
should be obvious that detecting, let alone actually performing, all
these refactorings manually is an extremely strenuous and possibly
also error-prone activity. Tidier, even if employed only as a detector
of bad code smells, is worth the effort of typing its name on the
command line.

Naturally, the number of opportunities for refactorings that
tidier recognizes depends on two parameters: size and program-
ming style of a project’s code. As expected, the number of refac-
toring opportunities on the Erlang/OTP system is much bigger in
absolute terms than on all the other code bases combined. This is
probably due to the size of the code base and probably also due
to the fact that some applications of Erlang/OTP were developed
by many different programmers, often Erlang old-timers, over a
period of years. But we can also notice that it’s not only code size
that matters. The table also shows smaller code bases offering more
opportunities for refactoring than code bases of bigger size.

‘What Table 1 does not show is tidier’s effectiveness. For some
columns of the table (e.g., new guards, record matches) tidier’s
effectiveness is 100% by construction, meaning that tidier will
detect all opportunities for these refactorings and perform them
if requested to do so. For some other columns of the table (e.g.,
lists:keysearch/3, map and filter to list comprehension,
structure reuse, case simplify) tidier can detect all opportuni-
ties for these refactorings but might not perform them based on
heuristics which try to guess the intentions of programmers or
take aesthetic aspects of code into account. For some refactorings,
especially those for which type information is required, tidier’s ef-
fectiveness is currently not as good as we would want it to be. (We
will come back to this point in the next section.)

Table 2 contains numbers and percentages of numeric compar-
isons with == and /= that are transformed to their exact counter-
parts and numbers and percentages of calls to size/1 that get
transformed to byte_size/1 or tuple_size/1. As can be seen,
tidier’s current analysis is pretty effective in detecling opportuni-
ties of transforming calls to size/1 but quite ineffective when it
comes to detecting opportunities for transforming coercing equal-
ities and inequations. A global type analysis would definitely im-
prove the situation in this case. (However, bear in mind that achiev-
ing 100% on all programs is impossible since there are uses of ==/2

exact num. eq. size

Erlang/OTP || 68/577=12% | 487/645= 75%
CouchDB 9/15=60% 31/64= 48%
Disco 2/11=18% 9/9=100%
Ejabberd 6/11= 55%
Erlang Web 11/15=73% 1/1=100%
RefactorErl 11/35=31%

Scalaris 5/6= 83%
Wings 3D 13/46 =28%

Wrangler 28/54=52% 1/1=100%

Table 2. Effectiveness of tidier’ refactorings requiring type info.

or size/1 that cannot be transformed to something else, even if
tidier were guided by an oracle.)

S. Conservatism of Refactorings

Despite the significant number of refactorings that tidier performs
on existing code bases, we stress again that tidier is currently
ultra conservative and careful to respect the operational semantics
of Erlang. In particular, tidier will never miss an exception that
programs may generate, whether deliberately or not.

To understand the exact consequences of this, we show a case
from the code of 1lib/edoc/src/otpsgml.layout.erl:148
from Erlang/OTP R13B. The code on that line reads:

Functions = [E || E <- get_content(functions, Es)],

Although to a human reader it is pretty clear that this code is totally
redundant and the result of sloppy code evolution from similar code
(actually from the code of lib/edoc/src/edoc.layout.erl),
tidier cannot simplify this code to:

Functions = get_content(functions, Es),

because this transformation will shut off an exception in case func-
tion get_content/2 returns something other than a proper list.
To do this transformation, type information about the result of
get_content/2 is required. Currently, tidier is guided only by a
function-local type analysis. Extending this analysis to the module
level is future work.

Type information can also come in very handy in rewriting
calls to lists:map/2 and lists:filter/2 to more succinct
list comprehensions. Without type information, tidier performs the
following transformation:

foo(Ps) -> lists:map(fun ({X,Y}) -> X + Y end, Ps). |

4

foo(Ps) -> [foo_1(P) || P <- Ps].

foo_1({X,Y}) > X + Y.

and cannot inline the body of the auxiliary function and generate
the following code:

|foo(Ps) -> [X + Y [{X,Y} <- Ps].

because this better refactoring requires definite knowledge that Ps
is a list of pairs. Similar issues exist for refactorings involving
lists:filter/2. Despite being conservative, tidier is pretty ef-
fective. In the code of Erlang/OTP R13B, out of the 679 refactor-
ings of lists:map/2 and lists:filter/2 to list comprehen-
sions a bit more than half of them (347) actually use the inlined
translation.

We mentioned that tidier currently performs deforestation for
combinations of map and filter. A similar deforestation of
map-+map combinations, namely the transformation:

L1
L2

lists:map(fun (X) -> mil:foo(X) end, LO),
lists:map(fun (X) -> m2:bar(X) end, L1)

¥

|L2 = [m2;bar(ml:foo(X)) || X <- L.O]']

as also shown in the arrow is not performed by tidier because this
requires an analysis which determines that functionsm1:foo/1 and
m2:bar/1 are side-effect free. Again, hooking tidier to such an
analysis is future work.

6. Concluding Remarks

This paper described opportunities for automatically moderniz-
ing Erlang applications, cleaning them up, eliminating certain bad
smells from their code, and occasionally also improving their per-
formance. In addition, we presented concrete examples of code im-
provements and our experiences from using tidier on code bases of
significant size.

As mentioned, tidier is completely automatic as a refactorer but
with equal ease can be used as a detector of opportunities for code
cleanups and simplifications. Tools that aid software development,
such as code refactorers, have their place in all languages, but it
appears that higher-level languages such as Erlang are particularly
suited for making the cleanup process fully or mostly automatic.
We intend to explore this issue more.

Acknowledgements

We thank Richard Carlsson, Bjorn Gustavsson, and Kenneth
Lundin for supportive comments and suggestions for refactorings.
We also thank Dan Gudmundsson: without the use of his wx appli-
cation, the user interface of tidier would have taken longer to write
and would probably look less aesthetically pleasing.

Finally, we thank all developers of projects mentioned in this
paper for publicly releasing their code as open source and giving us
plenty of opportunities to find nice examples for our paper.

References
[1] The CouchDB project, 2009. http://couchdb.apache.org/.

{2] Disco: Massive data, minimal code (version 0.2), Apr. 2009.
http://discoproject.org/.

[3] Ejabberd community site: The Erlang Jabber/XMPP daemon, 2009.
http://www.ejabberd.im/.

[4] Erlang Web, May 2009. http://www.erlang-web.org/.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley,
Reading, Massachusetts, 2001.

H. Liand S. Thompson. Clone detection and removal for Erlang/OTP
within a refactoring environment. In Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 169-177, New York, NY, USA, Jan.
2009. ACM.

H. Li, S. Thompson, G. Orész, and M. Téth. Refactoring with
Wrangler, updated: Data and process refactorings, and integration
with Eclipse. In Proceadings of the 7th ACM SIGPLAN Workshop on
Erlang, pages 61-72, New York, NY, USA, Sept. 2008. ACM,

T. Lindahl and K. Sagonas. Detecting software defects in telecom
applications through lightweight static analysis: A war story.
In C. Wei-Ngan, editor, Programming Languages and Systems:
Proceedings of the Second Asian Symposium (APLAS’'04), volume
3302 of LNCS, pages 91-106. Springer, Nov. 2004,

[9] L. Lovei, Cs. Hoch, H. Kol18, T. Nagy, A. Nagyné-Vig, D. Horpdcsi,
R. Kitlei, and R. Kirdly. Refactoring module structure. In Proceedings
of the 7th ACM SIGPLAN Workshop on Erlang, pages 83-89, New
York, NY, USA, Sept. 2008. ACM.

[10] R. A. O’Keefe. Erlang Enhancement Proposal: is. between/3, July
2008. http://wuw.erlang.org/eeps/eep—-0016.html.

[6

—

[7

—

[8

—

[11] K. Sagonas and T. Avgerinos. Automatic refactoring of Erlang
programs. In Proceedings of the Eleventh International ACM
SIGPLAN Symposium on Principles and Practice of Declarative
Programming, New York, NY, USA, Sept. 2009. ACM.

[12] T. Schiitt, F. Schintke, and A. Reinefeld. Scalaris: Reliable
transactional P2P key/value store. In Proceedings of the 7th ACM
SIGPLAN Workshop on Erlang, pages 41-48, New York, NY, USA,
Sept. 2008. ACM.

[13] P. Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Comput. Sci., 73(2):231-248, 1990.

[14] Wings 3D, 2009. http://www.wings3d. com/.
[15] Yaws: Yet another web server, 2009. http://yaws.hyber.org/.

Automated Module Interface Upgrade *

Lasz16 Lovei

Department of Programming Languages and Compilers
E6tvos Lordnd University, Budapest, Hungary

lovei@inf.elte.hu

Abstract

During the lifetime of a software product the interface of some used
library modules might change in such a way that the new interface
is no longer compatible with the old one. This paper proposes a
generic interface migration schema to automatically transform the
software in the case of such an incompatible change. The solution is
based on refactoring techniques and data flow analysis, and makes
use of a formal description of the differences between the old
and the new interfaces. The approach is illustrated with a real-life
example.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restructuring,
reverse engineering, and reengineering

General Terms Design, Languages

Keywords Erlang, module interface change, interface transforma-
tion, refactoring

1. Introduction

Library modules may evolve during the lifetime of a software prod-
uct. The usual approach is to keep library interfaces compatible
with previous versions, but sometimes it makes sense to develop a
new, richer, but incompatible interface for a library, which provides
enhanced functionality, and gets rid of obsolete features. This paper
proposes an approach to transform the code of a software product
when such an incompatible interface change occurs. Our assump-
tion is that the new interface retains the functionality of the old one,
but makes it available in a different way. We show that by defining
a generic interface migration schema, refactoring techniques com-
bined with data flow analysis can help the automatic adaptation of
a software product to an upgraded library interface.

Our approach will be illustrated by the real-life case of migrat-
ing from the Erlang/OTP regexp library to the novel, Perl compat-
ible regular expression library, re. One of the interesting points is
that characters are indexed from 1 in regexp, but from 0 in re.

RefactorErl [3] is a refactoring tool for Erlang. It turns out that
this tool provides a convenient infrastructure to develop program

* Supported by TECH_08_A2-SZOMINO8, ELTE IKKK, and Ericsson
Hungary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang °09, Septemnber 5, 2009, Edinburgh, Scottand, UK.
Copyright (©) 2009 ACM 978-1-60558-507-9/09/09. .. $5.00

11

transformations supporting our proposed generic interface migra-
tion schema. RefactorErl represents Erlang programs as program
graphs. A program graph contains lexical, syntactic and seman-
tic nodes and edges. The AST of the represented program is a
subgraph of the program graph. Technically, the program graph
has nodes labelled with the non-terminals of the abstract syntax,
nodes that correspond to tokens either explicitly present in the rep-
resented program or generated by macro expansion, and nodes that
describe semantical information, such as the binding structure of
variables. The edges of the program graph are directed, labelled,
and for each node the outgoing syntactic edges are ordered (as in
an AST). RefactorErl supports a powerful query language to collect
information by traversing the program graph, syntax based trans-
formations (transformation that manipulate the AST) and semantic
analysis plug-ins that automatically restore the consistency of the
semantic information in a program graph after a transformation.

Our proposal to the interface migration problem is the follow-
ing. First the differences between the old and the new interface have
to be described with change descriptions written in an Erlang-like
language. Then the program to be transformed is analyzed — in this
paper we assume that the relevant syntactic and semantic informa-
tion such as the binding structure or the function call graph is al-
ready available, e.g. by using the facilities of RefactorErl. Our goal
is to find those parts of the program where transformations are the
best to perform, e.g. where the transformations result in the smallest
degradation of readability of the code. This is achieved by finding
(using data flow analysis) the expressions affected by calls to func-
tions from the library to be upgraded, and determining the very last
points in the data flow where the necessary transformations can be
safely applied.

The rest of the paper is structured as follows. In Section 2 a
motivating example is given (the upgrade of the regular expression
library). Section 3 introduces an abstract model of Erlang in which
the interface migration problem can be studied. Section 4 describes
how the necessary data flow analysis proceeds. Section 5 explains
the way transformations are performed. Section 6 sketches some
implementation issues. Section 7 presents related work, and Sec-
tion 8 concludes the paper.

2. Interface upgrade example

In the following, we will use a real-life motivating example. Er-
lang/OTP contains an old regular expression library, called regexp,
which has been made obsolete by a new, Perl compatible regular
expression library called re. The new library covers almost every
functionality of the old one, but there are small incompatibilities
between them. For example, characters are indexed starting with 1
in the old library, and starting with 0 in the new one.

Here we show three old interface functions, and explain the
details of migrating them to the new interface. The rest of the old
interface is either compatible with the new one or has the same
issues that are shown here. For details, refer to [10].

2.1 The match function

The regexp:match function finds the first, longest match of a
regular expression in a string. A simple example how this function
is used:

case regexp:match(Str, RE) of
{match, Start, Len} —->
strings:substr(Str, Start, Len);
nomatch ->
nn

end

The function returns the starting index and the length of the
match, or the atom nomatch. The same functionality is available
using the re:run function, but its interface has a number of in-
compatibilities:

e By default, the return value contains the whole match and every
subpattern match. This can be turned off with an option.

¢ The return value contains a list of match tuples, which always
has a length of one after turning off subpattern matches.

® regexp:match starts indexing at one, but re: run starts index-
ing at zero.

These are small changes that can be compensated easily in the
example by passing the necessary options to re: run, rewriting the
patlern to the new structure, and adding 1 to the returned index:

case re:run(Str, RE, [{capture,first}]) of
{match, [{Start, Len}]} ->
strings:substr(Str, Start+1l, Len);
nomatch ->
mnn

end

Unfortunately, the return value of the regexp:match function
can be used in other ways as well, which may require more com-
plicated compensations. For example, the return value may be re-
turned directly from a function, and in turn, used in many places:

word(Str) ->
regexp:match(Str, "[a-zA-Z]+").

read_word() ->
Line = read_line(),
{match, S, L} = word(Line),
string:substr(Line, S, L).

word_len(Str) ->
{match, _, Len} =
Len.

word(Str),

In this example, the desired solution is to modify the pattern
matching constructs used in functions read_word and word_len,
as opposed to converting the return value of function word. This
example involves only function calls, but generally data flow anal-
ysis has to be applied to find every code part that uses the return
value of regexp:match.

Another possibility is that the return value is used in an
expression that is not a pattern matching construct. There are
some cases that can be handled in a specific way, for example
regexp:match(S,R) /= nomatch can simply be rewritlen to
re:run(S,R) /= nomatch.

But in worse cases, the function call itself must be replaced with
a case construct that restores the original return value. In general,
this should be avoided as it leads to illegible code. For example,
tuple_to.list(regexp:match(S,R)) would look like this after
such a transformation:

12

tuple_to_list(
case re:run(Str, RE, [{capture,first}]) of
{match, [{S, L}1} -> {match, S, L};
nomatch -> nomatch
end)

2.2 The matches function

The regexp:matches function finds all non-overlapping matches
of a regular expression in a string. This functionality is provided
by the same re:run function as previously, just the global op-
tion should also be passed to specify global matching. The basic
problems and solutions are the same as in the previous case, but
there is a complication: the return value contains a list that should
be updated element-by-element. Also, in case of no match the old
function returns an empty list, while the new one uses the nomatch
atom.
A typical example of usage:

case regexp:matches(Str, RE) of
{match, [1} ->
throw(no_match) ;
{match, Matches} ->
[string:substr(Str, S, L) ||
{S, L} <- Matches]
end

The equivalent of this expression is easy to construct by hand,
but automated transformation is much harder even in this simple
example:

case re:run(Str, RE, [global,{capture,first}]) of
nomatch ->
throw(no_match) ;
{match, Matches} ->
[string:substr(Str, S+1, L) ||
[{S, L}] <- Matches]
end

Data flow analysis is necessary to find the pattern {S,L} in the
list comprehension that must be turned into a one-element list, and
the usage of S that must be incremented. As a list is returned, which
does not have a fixed length, a function call or a list comprehension
is very likely to be used together with this function, so identifying
where the list and its elements are used is essential here.

2.3 The gsub function

The regexp: gsub function substitutes every substring matching a
regular expression in a string. The re:replace function can do
the same (some options are needed), but this time the new return
value contains less information than the old one: instead of a tuple,
only the result of the substitution is returned, and the number of
replacements provided by the old interface is completely missing
from the new one. Fortunately it is rarely needed (that’s why it has
been removed), so a typical example is not too hard to migrate:

{ok, Result, _Count} = regexp:gsub(Str, RE, Repl)

If there are no references later to variable _Count, the same code
with module re:

Result = re:replace(Str, RE, Repl,

[{return, 1list}, globall)

If the missing value is used in the code, there is no generic
solution for the migration, such a code must be rewritten by hand.
Our task here is to detect this situation, and notify the user without
actually changing the code.

V = variables (including ., the underscore pattern)

A ::= atoms

I =integers

K = A | I| other constants (e.g. strings, floats)
Pu=K|V|{P,...,P}|[P,...,P|P]
E:=K|V|{E,...,E}|[E,...,E|E]| [B||P<-E] |
P =E|EocE|(E)|EE,.. E)|

case E of
P ->FE, . . E;
P -> K, . ,E
end |
fun
(P,...,P) > F,...,E;
P,...,P) -> E,...,E
end

F.=AP,...,P) > FE,...,E;

AP,....P) -> E,....E.

Figure 1. The used Erlang syntax subset

3. Model of Erlang programs

In the following discussion we do not consider the whole Erlang
language. For the sake of simplicity, we omit some of the language
elements, but the framework described here is capable of support-
ing the full Erlang syntax. The static graph construction rules of the
missing syntactic constructs are easily added to those in Fig. 2, and
no other additions are needed (o support them.

The syntax of the Erlang subset that we use is defined in Fig. 1
is used. The simplifications are the following:

e Irrelevant language constructs are left out, for example, the re-
sults are completely independent of the module structure and
the attributes of modules. Instead of a set of modules, we con-
sider Erlang programs that consist of a set of named function
definitions (F in Fig. 1).

There are missing expression types which can be handled in
the same way as one of the presented expressions, like records,
which are analogous to tuples indexed with field names.

The syntax contains further simplifications in the remaining ex-
pression types, for example, there are no guard expressions, be-
cause they would not be handled differently that other expres-
sions.

Finally, there are language elements that could be considered
relevant, but analysis of industrial code shows that they are so
rarely used in conjunction with the problem stated here that it
does not pay off to support them. These include processes, mes-
sage passing, and exceptions, as all of them would require con-
trol flow analysis in addition to the data flow analysis presented
here.

We assume that the code to be transformed is available as an
abstract syntax tree. The nodes of the syntax tree represent one of
the above rules, they are uniquely identified, and attached to the
corresponding source code part. Transformations will be expressed
as rewriting parts of the syntax tree by providing the replacement
structure for some of the nodes. This model is not elaborated further
here, RefactorErl [3] and Wrangler [5] is capable of doing such
transformations.

13

3.1 Semantic information

Information not available directly from the abstract syntax tree is
also necessary for the analyses and transformations presented here.
The information is based on standard Erlang semantics [1], so the
exact definition of these concepts is omitted here. The presentation
is also independent of how this information is represented or com-
puted.

Internal function calls: for every function call expression that
uses a constant function name, we need to know if the pro-
gram contains the definition of the referred function. In this
case, we call this an internal function call. The semantic model
must make the function definition accessible.

External function calls: function calls that use a constant function
name, but there is no corresponding function definition in the
program, are called external function calls. These include built
in functions (some of which are handled specially) and func-
tions defined in libraries, but program parts which should not be
modified during the transformation fall into this category too.

Variable bindings: every variable in a program must have at least
one occurrence that binds the variable, and it is probably used
elsewhere in the code, although there may be more bindings,
and there may be no usages. Bindings are always patterns, but
some patterns only use the value of the variable; expressions
may only use the variable. Variables have a name, but there may
be different variables with the same name in different scopes,
they must be distinguished. The needed semantic information
is the set of bindings and usages for any given variable occur-
rence.

4. Data flow graph

Data flow analysis is used to find expressions and patterns that are
affected by changing a particular data in the program. The goal of
data flow analysis is to inspect possible paths where data can travel
during the execution of the program, and follow these paths to see
what expressions can a particular data reach. The possible data flow
paths are represented by a data flow graph.

The nodes of the graph (n € AN/ = £ U P) are the expressions
(e € &) and patterns (p € P) of the program. Iis directed edges
represent single steps of data transfer. There are different kinds
of data transfers, they are identified by edge labels. We use the

. ! .
notation n1 — ny for an edge from node n1 to node no with
label [.

4.1 Direct flow information

Data flow graph edges represent direct data flow, later on we will
derive information from these edges by traversing the direct graph.
Data flow usually means copying data; when operations are used
on data, it cannot be followed in general. In our interface upgrade
problem when a modified data is used in a non-copying operation,
we must convert it to the original value to preserve the original
meaning of the program. The only exception is packing data into a
compound term and later unpacking it: such an operation preserves
the original data, so we can think of it as simple copying.

Based on these principles, the following kinds of edges are used
in the graph to distinguish between different types of data flow
steps:

Flow edges: n; B, no means that the result of n2 can be a copy
of the result of n;.

Constructor edges: n; —- n, means that the result of na can
be a compound value that contains n1 at element 4. In case
of tuples, element labels are natural numbers, meaning the ¢**

Expressions Direct graph edges
p is a binding
(@) | nisausage p-Lin
of the same variable
/
(b) €0 € —+D
p=e e L ep
!
(C) Po: Po—D1
b= e po L ps
F]
(d) €o: €1 — €p
e1oez ez -5 g
ep:
(e) (e) e L eg
€. c1 Cn
®] fer,...en} e b
Po. 51 sn
(g {pl,---,pn} Po — P1,...,P00 — DPn
(h) €0- 6120-60,...,eni>eo
le1,. .. enlenti] ent1 = =
0 €o: e1 —5 eg
le1]lp «— e2] ez —5p
G | e Po =5 Pi,...,P0 —> Pn
[ply---,pn|pn+1] Do -—f—> Dn+1
€g: Je
k) hd(e1) €p — €1

Expressions Direct graph edges
€0. f
1 I,
() tl(e1) €0 €1
I is constant,
() €0: €o S, el
element(I, e1)
€p.
case € of
1 1.
(n) P1— €1, 560, 6L>p1,...,ei>pn
elll L 601"'76{; L’eo
Dn — €Ty .o €5
end
€9:
flex,...,en)
foo1 yj
€1 —> P1y..€1 —>P§n
f/n:
1 1
(0) f(pl’-”apn) - .
e},..‘,e}; foo1 fo.m
1 €n p'nv"-ae‘n pn
- e}lLeo,...,e{:‘n—f»eo
fpT",....,00) —
er, ..., el .
€q.
e(e1,...,en) . .
(P) €1 — €0,..:,En — €0
¢ is not constant, or
e/n undefined

Figure 2. Static data flow edge generation rules

element of the tuple. In case of lists, element label e is used for
list elements (we cannot usually track their indexes).

Selector edges: n; —> ny means that the result of ns can be
element ¢ of n;. Element labels have the same meaning as in
constructor edges.

Dependency edges: n1 4, n2 means that the result of ny can
directly depend on the value of ni. This edge label is used
when data flow cannot be followed, but data usage must be
represented in the graph.

4.2 Static graph building rules

Most edges of the full data flow graph can be constructed based on
the syntax tree and static semantic information. Every expression
has a set of associated data flow edges, and the static graph is
constructed by taking all of the edges generated by the expressions
of the program.

In the following, graph edge construction rules are explained
for every expression type. The summary of these rules is shown in
Fig. 2.

Variable occurrences. Variable patterns in Erlang may bind a
value to the variable, or may use the value; variable expressions
always use the value. The value of a variable never changes during
its life. This means that the only kind of data flow through a variable
is copying the value from its binding occurrences to its usages.
This is represented by creating flow edges from every binding
occurrence to every usage occurrence (Fig. 2.a).

Expression results. There are expressions that return some of
their subexpression’s results without modifying it. An example is
the case expression, which executes one of its clauses, and returns
the result of the last expression from that clause. This is represented
by flow edges from the last expressions of the clauses to the case

14

expression itself (Fig. 2.n). Similar flow edges appear for match
expressions and parentheses (Figs. 2.b and 2.e), except that there
are no multiple clauses.

An alias pattern, which has the same syntax as a match expres-
sion, is a special construction that flows data in the opposite direc-
tion. Such a pattern means that two patterns are matched on the
same value at the same time, which is represented by flow edges
from the alias pattern to its subpatterns (Fig. 2.c).

Pattern matching expressions. During pattern matching, data is
compared with a pattern, and free variables in the pattern are bound
to values. Data is simply copied, which is represented by flow edges
from the matched expression to every matched pattern. In case of
simple match expressions there is only a single pattern (Fig. 2.b),
bul case expressions use multiple patterns, and each of them gets
a flow edge (Fig. 2.n).

Compound data handling. Compound data structures (tuples and
lists) preserve data, so putting a value in a tuple, copying the tuple,
selecting the value from the tuple is the same as copying the value.
To detect these copies, we use constructor and selector edges to
connect the flow of embedded data and the flow of its container.

Constructor and selector edges are indexed to make a note of
the position where the embedded data is stored. Only constructors
and selectors with the same index are considered to be part of
the same data flow. Tuple indexes are natural numbers, which
enables a precise tracking of tuple elements. Typical use of lists
makes tracking of list element indexes useless, so in this case only
list elements are distinguished. The “tail” of a list do not need
special handling, as almost every element of a list appears in its
tail; approximating this by representing a list tail as a copy of the
original list is good enough for our purposes.

Patterns are selectors, so they generate selector edges to their
subexpressions (Figs. 2.g and 2.j). Expressions with the same syn-
tax are constructor expressions with constructor edges (Figs. 2.f

find(...) => ...
—

Figure 3. Data flow graph example.

and 2.h). Selector expressions are built-in functions, they generate
selector edges (Figs. 2.m, 2.k, and 2.1).

List comprehensions are also selecting and constructing lists.
The expression that provides the list values has a list element
constructor edge to the whole list comprehension expression. The
generator part, which means a pattern match for every element on
its list expressions, produces a list element selector edge from the
generator list expression to the generator pattern (Fig. 2.1).

Function calls. We have two essentially distinct case of function
calls. First, calls to external functions cannot be represented in the
flow graph, but they must be taken into account: such a construct
means that data can get out of our hands, and it can be used in
program parts that we cannot transform. We represent this situation
by dependency edges from the function arguments to the function
call expression (Fig. 2.p). Such edges signal a dead end, where data
flow continues, but cannot be followed (as opposed to a node with
no edges starting from it, which means there is no further data flow
from that node). The same representation is used for expressions
(usually operators) that do some computation with their arguments:
data flow continues, but in an undefined way (Fig. 2.d).

On the other hand, functions with a known definition should use
that definition in the flow graph. We don’t even want to know that
there is a function call involved, so the representation is very similar
to a case expression, except that there are multiple arguments,
therefore multiple pattern matches. Every clause of the function
is considered, arguments from the function call are matched on the
patterns in the function definition, and the possible results of the
function are returned to the call expression (Fig. 2.0).

Example. As an illustration of these graph building rules, the data
flow graph of the following simple function is presented in Fig. 3:

find (Key, [{Key, Val}l|_1) -> Val;
find(Key, [_]1Taill) -> find(Key, Tail).

The syntax tree of the function is represented by grey lines. The
diamond-shaped nodes are the function’s clauses, these are not part
of the data flow graph. Boxes are patterns, ovals are expressions,
and the black arrows are data flow edges. Most of the edges are

15

labelled with £, these labels are omitted from the drawing to make
it clearer.

Rules applied to create this graph include variable usage rules,
element selection for list and tuple patterns, and a function call rule.
The last one is responsible for the edges between the two syntax
tree parts and the looping edges that appear because of the recursive
call.

4.3 Derived flow information

The static data flow graph represents only a part of every possible
data flow in a program, because there are many dynamic constructs
in Erlang. However, many of these constructs’ data flow informa-
tion can be approximated starting from the static graph.

Here we show the basic techniques to derive useful data flow
information from the direct data flow graph. This information can
be used to approximate the behaviour of some dynamic language
constructs. Furthermore, the same techniques will be used to define
the interface upgrade transformation.

4.3.1 Derivation techniques

The so-called “techniques” of this section are in fact simple sets or
relations which are useful, and easy to calculate based on the flow
graph.

Reaching. The most important relation we will use describes
which nodes are connected by multiple-step data flow paths. We say
that the value of node ny reaches node na, if during the evaluation
of the program a value associated with 71 may be passed to ng.
The notation n1 ~+ n2 will be used for this concept.

The ~» relation relation can be computed from the direct flow
graph by following paths set out by edges. Simple flow edges are
simply followed; dependency edges break the data flow. Construc-
tor and selector edges are handled specially: when a data is packed
into a structure, the compound data is tracked, and the correspond-
ing unpacked nodes (pointed by selector edges with the same index
as the constructor edge) are the next steps on the path. This com-
putation involves graph traversals on f-labelled edges, executed re-
cursively on c;-labelled edges.

Figure 4. Data flow graph example.

The explanation above can be formulated by defining ~+ as the
minimal relation that satisfies the following rules:

l.n~n

2.1~ N2 Ana Ln3=>n1'v>n3

3. n1 Ln;;/\nz'\»ng/\n;; i»m;:nlvm;

Example. Fig. 4 shows the graph of the first clause of the previous
example’s £ind function and expression find(a, [{a, 1}1).

Using the above reaching definition, we can deduce that the value
of expression 1 can be returned from the find function call:

L [{a,1}] -5 [{Key, Val},] = [{a, 1}] ~ [{Key, Val},]

2. {a,1} == [{a, 1}] ~ [{Key, Val},] 2% {Key, Val}
= {a,1} ~ {Key, Val}

3.1-2 {a,1} ~ {Key, Val’} 2% Val? = 1~ Val”

4.1~ Val? <L val® = 1~ Val®

5. 1~ Val® - find(...) = 1~ find(...)

One-step flow information. The following simple notation will
be useful in other definitions. Starting from a given node, they

describe the next (or previous) nodes directly accessible with a
given edge type in the flow graph:

next(l,n) {nn|n LN N }

prev(l,n) = {ny|mny —— n}

The input set of a node contains its direct predecessors on
copying fiow paths, taking data constructions into account, It’s like
taking one step backward on the ~+ relation.

input(n) = prev(f,n)U

{n1 | n1 =5 na Ang ~ nz Ang —= n}

16

4.3.2 Dynamic graph building

Data flow graph building rules introduced so far have all been static
rules, which means they don’t depend on run time data values, only
on syntactic structures which are available at compile time. While
our experiences show that these rules cover most of the interface
upgrading situations which appear in practise, it should be pointed
out that this data flow graph can be expanded to support some
dynamic construct as well.

Our goal with this work is to create a simple framework for data
flow analysis to support refactoring, and introducing sophisticated
control flow analysis is not desired here. The static data flow graph
itself contains enough information to make data flow analysis of
some dynamic constructs possible.

Constant propagation. The static direct data flow graph can be
iteratively extended with direct, but dynamic flow edges. Dynamic
constructs use run-time values to control data flow, but in some
cases these values can be derived from constants in the code.

The set of possible origins of an expression’s value can be
computed using the data flow graph, as we have all the static data
flow paths:

source(n) = {n1 | n1 ~nAPns 1 ny #n1 Ang ~mny}

This set may contain patterns, which means the information is
not complete, or expressions that compute the value in any way.
When source(n) contains only constant expressions, we have the
finite set of the possible values of n.

Dynamic control flow. A dynamic function call is a function
application where the function name is not an atom constant. In
this case, the expression in place of the name must evaluate to a
function object. If we have a dynamic function call eg(es, . .., en),
then source(eq) contains the function expressions that provide that
function objects that may be called. This means that the same
graph edges can be entered into the graph as in case of a static
function call, using the function expression instead of the function
definition. Extending the direct graph with these edges gives the
same result as OCFA [9].

Dynamic indexing. If we have the expression element(e1, e2)
where e; is not an integer constant, the possible index values may
be obtained from constant propagation. If source(e;) contains only
integer constant expressions, these integers can be used in the same
way as in case of directly used integer constants.

5. Transformation

The goal of the transformation is to change calls of old interface
functions to new ones. The interface change affects how the func-
tion is called and what is returned from the call.

Our experience shows that changes in function arguments are
usually less complex. This is probably because the arguments them-
selves are usually less complex than the return values. However, if
function arguments had to be transformed, the same approach could
be used for them as for the return values. Still, in our main examples
the only changes are some extra constant arguments.

In the following, we concentrate on the compensation of the
changes in the return value of the function. The goal of the compen-
sation is to modify existing code that expects the old return value
to work with the new return value. The trivial compensation is to
insert a run time conversion on the return value of the new function
that produces the old value, and the unmodified old code will work.
However, the approach presented here can provide a much better
result.

5.1 Compensation spreading by data flow tracking

The run time conversion of the modified function’s return value
decomposes the returned data structure, and builds the old structure
from the components. The old value is then probably decomposed
again, and the same components are used somewhere. The idea is
to skip the data structure conversion, and update the decomposition
of the old value to work with the new structure.

To do this, we need to find code parts where the modified data
can flow to. Ideally, data is copied through some expressions, and
then a pattern is matched on it, so only the pattern should be up-
dated. However, there are constructs that not only copy the modi-
fied data, but use it in an uncontrolled way. When an expression’s
value may be used in such a situation, compensation must be done
on that expression at run time,

In the following, we formalise how to calculate the set of ex-
pressions that simply copy the modified data and should be left
intact, and the set of expressions and patterns that terminate these
data flow paths and should be transformed.

1. Let’s start from a set of source graph nodes (S). This set con-
tains the function calls which return a modified value, or other
data flow path start nodes which contain modified data. First,
calculate the set of nodes that may get their value from this set:

reach(S) = {n e N'| § ~ n}

2. Next, we must leave out every node from this set that may get
its value from somewhere else, because it means that the node
may receive values from unmodified sources, so it must not be
transformed:

strict(S) = S U {n € reach(S) | input(n) C reach(S)
A prev(d,n) = 0}
Element of S are explicitly included in this set, because they are

the starting point of changes, so they are known to be modified,
but the other conditions obviously do not hold for them.

3. We say that a node is unsafe if its value is used in an uncon-
trolled way, that is, copied to a node outside strict(S), put into
a compound value, or used in an unspecified way. Nodes that

17

safely copy their value are the following;:
safe(S) = {n € strict(S) | next(f,n) C strict(S)
Anext(d,n) =0
A next(ci,n) = 0}

4. Now we have to follow those flow paths which safely copy a
modified value. These paths are terminated by non-safe nodes.
We say that nodes found on these paths are safely reachable.
Nodes that are safely reachable from set S are denoted with
S ~», n, and this is the minimal set that satisfies the following
conditions:

(@) n € SAn € strict(S) = S~y n

) S ~, n1 Any € safe(S) Any S ny = S e
Note that S ~+, n implies n € strict(S).

5. Finally we have arrived at the scope of transformations. We
modify the code so that safely reachable nodes will get the
new data, and non-safe nodes will return the original data. This
means that safe expressions, that only copy their value, remain
unchanged; safely reachable patterns must be updated to reflect
the structure of the new data; and finally, the return value of
safely reachable but non-safe expressions must be converted at
run time to the old form. Formally, the nodes to be transformed:

trf,(S) = {peP|S~sp}
trfe(S) = {e€&|S~;e,e ¢ safe(S)}

Example. Let’s have a look at how these concepts work on real
code. We will use the find function shown on Fig. 3 and the
function call show on Fig. 4, and a simple new function:

find(Key, [{Key, Val}|_]) -> Val;

find(Key, [_1Taill) -> find (Key, Tail).
£0) -> find(a, [{a, 1}1).

dbl(X) -> 2x%X.

As we have seen before, the value of expression 1 reaches the
find function call in £ (). If you check the conditions, this call
is an element of strict(1), because it cannot get its value from
anywhere else; and it is in safe(1), because its value is not used
in an uncontrolled way (in fact, it’s not used at all in this code).

Let’s extend this code with the expression db1(f ()). Now the
value of 1 can reach the call to £ (), and variable X in dbl (both
the pattern and the expression). These are elements of the strict(1)
set, but expression X in the body of dbl is unsafe: it is used in
expression 2*X in an uncontrolled way. This is represented by

edge X 4, 24X in the graph, therefore next(d, X) is not empty,
which violates the conditions of safe. In this case, trf,(1) contains
patterns Val in £ind and X in dbl, and trf. (1) contains expression
X.

If there is another call to dbl, e.g. we extend the code with
dbl(3), the situation changes: input(X) (for pattern X in dbl)
now includes expression 3, so X is not in the strict set anymore.
This means that £ () in db1(£()) is not safe, because its value is
used in a non-strict expression, so it will become the only element
of trfe(1), and trf,(1) now excludes X (as X in dbl is not safely
reachable anymore).

5.2 Change descriptions

The goal of this section is to provide a formal description of data
changes and a mechanism to reflect these changes in affected code.
Changes are specified by a set of change descriptions. A change
description can be applied to an expression or a pattern that works
with the old data, and it results in two things: a new expression or
pattern that works with the new data, and a (possibly empty) set of

P =K |V |{P°,...,P°}| [P°,..., P°| P°]
E°u=K |V |{E°....,E°} | [E°)....E°| E°] |
A(V) |map(A4,V)

Figure 5. Syntax of change patterns and expressions

induced transformations. Descriptions sometimes need to refer to
each other, so each of them has a unique name.

Applying changes to a pattern means rewriting the pattern itself.
This approach puts a restriction on possible changes, but changing
only patterns leads to a much better result than changing expres-
sions. This is because applying a change to an expression means
doing run time data conversion, which is usually less readable and
possibly slower.

Complete transformations are specified by a change description
cd and a set S of source nodes. The transformation is executed by
applying cd on trf.(S) and trf,(S); this may induce a set of other
transformations on nodes. The source nodes of the same transfor-
mations are joined together, and the transformation is applied on
the joined set.

5.2.1 Structural change descriptions

Changes in the data structures returned by a function can be con-
veniently handled through the pattern matching mechanism. When
the changed data is used in a pattern matching expression, the pat-
tern can usually be updated; when a compensating expression must
be generated, it can be a case expression that decomposes the new
data, and constructs the old one from the pieces.

Structural changes can be described quite naturally by provid-
ing the conversion from the old data structure to the new one, using
Erlang patterns and data constructors, just as if we would imple-
ment a run time converter function. We will shortly see that such
a description can be used to generate every kind of compensation
that we need during the application of a change description.

A structural change description is formulated by a set of change
patterns and change expressions (see Fig. 5). Change patterns are
usual Erlang patterns, change expressions may additionally contain
function call expressions (these refer to other change descriptions).

There are some restrictions on variables. We will use these de-
scriptions to generate conversions between the old and new struc-
tures in both ways, so every variable must occur both in the change
pattern and in the change expression exactly once. When a piece of
data cannot be mapped to anything on the other side, it should be
marked with the underscore pattern.

Matching patterns. When transforming a pattern, we need to find
out which change patterns to apply. This decision is made based
on the concept of matching between patterns. We use subst(p) to
denote the set of substitution functions that map the free variables
of pattern p to arbitrary patterns. The application of a substitution
to p means replacing the variables in p with their mappings.

We say that pattern p; matches pattern po when there is a
substitution s € subst(pz) that satisfies s(p2) = pn. In this case, s
maps subpatterns of p; to the free variables of po.

Example. A very simple interface change is migrating code that
uses the gb_trees module to represent dictionaries with balanced
trees to use the dict module instead, which represent dictionaries
as hash tables. The changes in the return value of the lookup
function are described this way:

{value,V} — {ok,V}, none error

Substitutions of the first change pattern, elements of the sub-
stitution set subst({value,V}), map V to patterns. Examples of
patterns that match {value, V} are {value, X}, where the sub-

18

stitution is V +— X, and {value, [1,2]}, where the substitution is
Vi [1,2].

Pattern transformation. When pattern p matches a change pat-
tern cp, its transformation is straightforward. The new pattern for
the data is given in the corresponding change expression ce, and
we have the substitution function s € subst(cp) so that p = s(cp).
All we have to do is apply the substitution s to ce, and replace the
original pattern p with the result, s(ce).

Applying a substitution to a change expression is similar to
change patterns, that is, we replace the variables with their map-
pings in s. For example, let’s transform the following code using
the change description from the previous example:

case lookup(Key, Store) of
{value, 0} -> inf;
{value, N} -> 1/N;
none ->0

end

Let n be the lookup function call node. trf.({n}) is empty,
trf,({n}) contains the patterns of the case expression. Each of
these pattern match a change pattern:

e {value, O} matches {value, V}, the substitution is V — 0.
The result of applying this substitution to the corresponding
change expression {ok, V}is {ok, 0}.

e {value, N} is similar, it should be changed to {ok, N}.

® none is exactly the same as the second change pattern, so it
should be replaced with error.

After replacing the patterns (and the lookup function call), the
result is the following:

case find(Key, Store) of
{ok, 0} -> inf;
{ok, N} -> 1/N;
error -> 0

end

Change description references. There is a change expression con-
struct that has to be dealt with: references to other change descrip-
tions of the form name(v). This reference is substituted just as if
only the variable was there, but this construct induces a new trans-
formation. As we noted earlier, s(v) refers to a subpattern of p,
which is substituted into the place of the reference, and the induced
transformation is applying the referred change description on the
graph node of this subpattern.

For example, look at the following change description, where
lookup is the name of the previous example’s change description:

{4,B} — {lookup(B), A}
Let’s transform the expression
{X, {value, Y}} = £Q)

by changing the return value of £ () with the above change descrip-
tion. trf({£()}) is empty, trf,({£()}) contains only the pattern
of the match expression, which matches the change pattern {4,
B} using the substitution A — X, B — {value, Y}.

The first step is replacing the pattern with the substituted change
expression, ignoring the lookup reference:

{{value, Y}, X} = £()

The second step is applying the induced transformation, which
is lookup on {value, Y}. Repeating the same procedure as pre-
viously, the final result is:

{{ok, Y}, X} = £0O

Generalised patterns. When a pattern does not match any of the
change patterns, it is much harder to find a solution. Usually this
means that the set of change descriptions is incomplete, in that
case a warning should be given about the pattern that could not
be transformed.

There is an exception: when a change pattern matches the pat-
tern, there is a possibility for compensation. Consider the follow-
ing change description: {ok, {A, B}} — {ok, A, B}. How to
transform the pattern in the following code?

{ok, Tup} = read(),
process(Tup) .

In this case, the change pattern matches {ok, Tup}, the substi-
tution is Tup — {4,B}. A solution is to replace the pattern with
the change expression, and replace the occurrences of the change
pattern’s variables with their substitution:

{ok, A, B} = read(),
process({4,B}).

When a change description reference occurs in the change ex-
pressions, the generated replacements should contain the variable
compensated by the referred change description (as an expression).
Note that this solution generates new variables in the program,
which may introduce name clashes that must be resolved by re-
naming the variables in the change expression.

Multiple matches. Consider the following change description:

{ok, []} ~ none, {ok,Lst} — Lst

In this situation the old, homogeneous data structure is replaced
by at least two different constructs. This means that some of the
patterns used in the old code cannot be used in the new code, be-
cause the same pattern cannot describe the various new structures.

In this case our approach is to duplicate the code that contains
the pattern. In a case expression, problematic clauses are dupli-
cated; in case of match expressions, the expression is turned into a
case expression with one clause, which is then duplicated.

This situation can be recognised by a pattern that matches mul-
tiple change patterns. Every matching change pattern should get
its own duplicate of the original code, and each duplicate is trans-
formed according to one of the change expressions.

For example, let’s transform the following expression by chang-
ing the return value of £ () according to change description above:

case f() of
{ok, L} -> length(L);
error -> 0

end

There are two possible ways to transform the first pattern: it is a
generalisation of the first change pattern, and it matches the second
change pattern. First the corresponding clause is duplicated:

case £() of
{ok, L} —> length(L);
{ok, L} -> length(L);
error -> 0

end

Then the first duplicate is transformed using the first change
expression, and the second duplicate using the second change ex-
pression:

case £() of
none -> length([1);
L -> length(L);
error -> 0

end

19

Transforming expressions. Expression transformation means
that the return value of the expression should be converted at run
time from the new structure to the original. This can easily be done
by putting the expression into a case construct which uses patterns
to decompose the return value according to the new structure, and
rebuild the old structure using the components.

The patterns of the case expression should be generated from
the change expressions. This means leaving the change description
references out, only leaving their variables in the pattern; these
variables will be converted at their usage places.

The results for the patterns are generated from the change pat-
terns (these describe the original structure). The patterns are simply
copied, except variables that have a change description reference in
the change expressions: these are converted as expressions by the
referred change description.

Note that the generated expression contains new variables,
which may clash with existing variables names in the program;
in this case, they should be renamed consistently.

Example. For an expression e, the following converter expression
is generated from the Lookup change description:

case e of
{value, V} -> {ok, V};
none -> error
end

List element handling. There is a special change description ref-
erence with syntax map(cd, Var), where cd is a change descrip-
tion name. We use this syntax to denote an element-wise applica-
tion of a change description on a list. The meaning of this operator
is simple, but cannot be described by the structural change elements
introduced so far.

When such a change description reference is applied on a pat-
tern, it makes no direct syntactic changes, because the outer data
structure is unchanged: both the old and the new data is a list. Only
the elements of the list are changed, this is reflected with a number
of induced transformations:

e When the pattern has the form [p1,...,pn | Pn+1], the induced
transformations are cd on p1,. . ., and p;, and the same mapping
transformation on pp41.

e Other patterns are not affected.

When this transformation is applied on an expression, it may be
directly transformed, based on its type:

e [e1,...,enleny1] is converted by inducing transformation cd

on ei, ..., and ey, and the same mapping transformation on
€nt1.

® [ex || p <~ e2] is converted by inducing transformation cd
onej.

® Any other expression e is enclosed in the following compen-
sation expression: [case E1 of ... end || El <- el,
where the clauses of the case expression are the same as de-
scribed in the transformation of expressions.

5.2.2 Non-structural changes

In case of non-structural changes, like incrementing a value by one,
we take a quite different approach. Instead of generating pattern and
expression compensations from a common description, we provide
two compensating expressions, one that converts old values to new
values (used in updating patterns), and another that converts new
values to old values (used on expression return values).

Such change descriptions are supposed to be used on atomic
data. In case of patterns the compensation must result in a con-
stant, so it makes sense to restrict the possible compensations to

side effect free expressions that can be evaluated during the trans-
formation.

The syntactic representation of a non-structural change descrip-
tion is a pair of Erlang expressions. Both expressions may contain
only one variable, that will be replaced with an expression. The first
expression describes how to convert an old value to a new value, the
second is the inverse of the first one.

Application on a constant pattern thus done by evaluation the
expression on the constant, and replacing the original constant with
the result. Variable patterns are not modified, their usages will
be transformed (a safely reachable variable pattern is always safe
itself).

Application on an expression is simply done by substituting the
expression into the compensation expression.

Example. Transform the call to f in the following code using the
non-structural change description (01d-1, New+1):

case f() of
0 ->0;
N -> 1/N
end

trf,(£()) contains the patterns of case, trf.(£()) contains
variable N in 1/N. Pattern O is a constant, so it is substituted into
01d-1 and evaluated; pattern N is a variable, so it is not changed,
expression N is substituted into New+1. The result is:

case £() of

-1 -> 0;

N -> 1/(N+1)
end

5.3 Change descriptions for the regexp module upgrade

Finally, the complete change description set that specifies the trans-
formations proposed in Sec. 2 is provided here. They use all the fea-
tures described in Sec. 5, which demonstrates that this rule set, in
spite of being minimalistic, is strong enough to support real world
applications.

When changing the calls to interface functions of module
regexp, the new call expressions are to be transformed using the
change description with the same name as the function. Applying
these change descriptions on the examples in Sec. 2, the result is
the solution proposed there.

match:

{match, St, Len} ~— {match, [{decr(St), Len}1}
nomatch +— mnomatch

matches:

{match, [1} + nomatch
{match, Ms} — {match, map(match_elem, Ms)}

match_elem: {St, Len} — [{decr(St), Len}]
decr: (01d-1,New+1)
gsub: {ok, Result, _} — Result

6. Implementation experiences

The main question about the real-world applicability of the pre-
sented approach is how large the data flow graph wiil be, and what
the computational cost of the ~» and ~», relations is.
Experimental implementation in the RefactorErl system shows
that the size of the presented static data flow graph is comparable to
the size of the syntax tree. A syntax based transformation tool has
to handle data structures of that size, so this should not be an issue.

20

The calculation of the relation based on the graph is a more del-
icate problem. These relations can be computed by either an itera-
tive algorithm that finds new relation elements based on previously
found elements and rules, or recursively applied graph traversals.

The former approach requires storage of the whole ~» and
~~, relations, which is much more expensive than the direct flow
graph, and its calculation time is proportional to its size. The latter
approach with recursively called full-blown graph traversals seems
to be no better.

Fortunately, using the graph traversal approach we don’t have to
calculate the whole ~» and ~»; relations. In case of a large module,
the data flow graph falls apart into many isolated components,
because most data flow paths are not interconnected. The relations
to be computed obviously cannot cross these graph component
boundaries, which means we only have to compute them over the
affected flow graph components.

In fact, we don’t even compute the relations themselves, only
the sets that are used during the transformation: reach, strict, safe,
trfp, and trf.. These sets can be computed using graph traversal,
starting from the initially changed node set, and the results will
automatically restricted to the affected graph components, as the
traversals won’t cross component boundaries. This solution ensures
that the run time cost of the transformation is proportional to the
size of the affected code parts.

7. Related work

Restructuring software code while maintaining its consistency,
known as refactoring, is a well known topic [2]. Tool support for
refactoring Erlang programs exists for some years now [3, 5], but
no support has been provided for automated data structure refactor-
ing based on change descriptions. A scripted refactoring framework
is built by Verbaere [11], targeting generic refactoring implemen-
tation for object oriented languages, it provides syntax-based ma-
nipulations opposed to declarative style descriptions used by this
work.

Data flow analysis for functional languages has been studied by
Shivers [9], but this work and its followers like [4] target optimis-
ing compilers with flow analysis. For Erlang programs, data flow
analysis was used by Dialyzer for type inference, but that approach
has been dropped in favour of success typing [6]. Control flow and
data flow analysis has been successfully applied to improve testing
of Erlang programs by Widera [12].

8. Conclusions and future work

A refactoring-based generic approach to introducing incompatible
module interface changes to existing source code has been pre-
sented. The main contribution of this work is an automatic transfor-
mation mechanism that uses a simple, intuitive change description
schema to describe interface changes.

Transformation is done applying data flow analysis based on
simple data flow graphs. This is a cost-effective technique that pro-
duces a good static approximation of data flow paths in a program,
and it is applicable for other data structure refactorings as well [7].

A complete real-life example of migrating regular expression
module calls shows that while the presented approach is not capable
of handling very complicated changes, it is still useful in practise.

An obvious area of necessary improvement is support for more
language elements. The complete Erlang syntax can easily be sup-
ported by defining direct data flow edges for the missing constructs,
this is straightforward to do in the same way as in Fig. 2.

A more complicated work that may improve the scope of data
flow analysis is real support for those language features that re-
quire control flow analysis as well. These include processes and
message passing, and exceptions. Analysing the process structure

and matching send and receive expressions is a really interesting,
but hard problem.

Finally, it is also possible to extend the scope of the transforma-
tion by defining new change description schemes or improving the
current ones. This can be done based on experiences with the cur-
rent system, or by studying other interface migration cases which
could be useful in practise.

References

[1] Armstrong, J.: Programming Erlang, Software for a Concurrent
World. Pragmatic Bookshelf, 2007,

[2] Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D.:
Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[3] Horvéth, Z., Lovei, L., Kozsik, T., Kitlei, R., Vig, A., Nagy, T.,
Téth, M., and Kirdly, R.: Building a refactoring tool for Erlang.
Proceedings of the Workshop on Advanced Software Development
Tools and Techniques, Paphos, Cyprus, 2008.

[4] Jagannathan, S. and Weeks, S.: A Unified Treatment of Flow
Analysis in Higher-Order Languages Proceedings of the 22nd ACM
Symposium on Principles of Programming Languages, 393-407, San
Francisco, California 1995

21

[5] Li, H. and Thompson, S.: Tool Support for Refactoring Functional
Programs. Proceedings of the Second ACM SIGPLAN Workshop on
Refactoring Tools, Nashville, Tennessee, USA, 2008.

[6] Lindahl, T. and Sagonas, K.: Practical type inference based on
success typings. Proceedings of the 8th ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming, 167-178,
Venice, Italy, 2006.

[7] Lovei, L., Horvdth, Z., Kozsik, T., and Kirély, R.: Introducing
Records by Refactoring. Proceedings of the 6th ACM SIGPLAN
Erlang Workshop, 18-28, Freiburg, Germany, 2007.

[8] Muchnick, S. 8. Advanced Compiler Design and Implementation.
Morgan Kauffmann Publishers, 1997,

[9] Shivers, O.: Control-Flow Analysis of Higher-Order Languages. PhD
thesis, Carnegie Mellon University, 1991.

[10] STDLIB Reference Manual.
http://www.erlang.org/doc/apps/stdlib/

[11] Verbaere, M., Ettinger, R., de Moor, O.: JunGL: a scripting language
for refactoring. Proceedings of the 28th International Conference on
Software Engineering, 172-181, Shanghai, China, 2006.

[12] Widera, M.: Flow Graphs for Testing Sequential Erlang Programs.

Proceedings of the ACM SIGPLAN 2004 Eriang Workshop, 48-53,
Snowbird, Utah, USA, 2004,

Automatic Assessment of Failure Recovery in
Erlang Applications

Jan Henry Nystrom

Erlang Training and Consulting Ltd.
henry.nystrom®@erlang-consulting.com

Abstract

Erlang is a concurrent functional language, especially tailored for
distributed, highly concurrent and fault-tolerant software. An im-
portant part of Erlang is its support for failure recovery. A de-
signer implements failure recovery by organising the processes of
an Erlang application into tree structures, in which parent pro-
cesses monitor failures of their children and are responsible for
their restart. Libraries support the creation of such structures during
system initialisation.

We present a technique to automatically analyse that the process
structure of an Erlang application is constructed in a way that guar-
antees recovery from process failures. First, we extract (part of) the
process structure by static analysis of the initialisation code of the
application. Thereafter, analysis of the process structure checks that
it will recover from any process failure. We have implemented the
technique in a tool, and applied it to several OTP library applica-
tions and to a subsystem of the AXD 301 ATM switch.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal methods; D.4.5 [Reliability]: Fault-tolerance

General Terms Reliability

Keywords Erlang, Fault-Tolerance

1. Introduction

Erlang is a concurrent functional language, especially tailored for
distributed and fault-tolerant software, e.g., in telecommunications
applications [Armstrong et al. 1996]. It has been used successfully
in several commercial applications [Blau et al. 1999, Mullaparthi
2005, Stenman 2006] Prominent features of Erlang include sup-
port for light-weight processes, asynchronous message passing, and
fault handling as integral parts of the language. The Open Telecom
Platform (OTP) [Eri 2000] provides a number of libraries which
support program design patterns that commonly occur in concur-
rent distributed software. Examples of such patterns, called “be-
haviours” in OTP, are event handlers, generic servers, and finite
state machines.

The Erlang language supports implementation of failure recov-
ery by a mechanism in which links can be created between pro-
cesses. When a process fails, all process linked to it are notified,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’09, September 5, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-1-60558-507-9/09/09. . . $10.00

23

and can react either by failing themselves (thereby informing other
linked processes), or by initiating a recovery action such as restart-
ing a copy of the failed process.

The supervisor behaviour in OTP is used to program processes
which monitor a set of children. Using links, it is notified about
failures of its children, and can then restart new copies of failed
children, possibly after some cleanup operations. This encourages
designers to organise the processes of an Erlang system into super-
vision structures, i.e., trees of processes in which parent processes
supervise their children.

The failure recovery mechanisms in Erlang and OTP can be
seen as a way to catch exceptions caused by some anomalous
condition in a process: it makes it possible to write clear code
for each process, which is not obscured by defencive code. When
using such a style of programming, it is important to ascertain that
the global process structure of the system is set up in such a way
that it recovers from arbitrary process failures. This can be done
by extracting the process structure, and thereafter inspecting it to
analyse the effect of any particular process failure, saying which
processes will be affected and determining whether the process
structure will be restored after recovery.

Currently, to obtain the process structure of an application,
one must rely on external documentation or manual inspection of
the source code. However, it is nontrivial to extract the process
structure from source code since an Erlang program is structured
according to modules and functions, whereas process creation and
communication may occur anywhere in the code, and since the
created process structure is not unique: it may depend on the system
environment and configuration parameters.

In this paper, we present a technique for automatically detecting
deficiencies in the failure recovery mechanism of Erlang applica-
tions, which are due to improperly designed supervision structures.
The technique is structured in two phases.

¢ The set of possible process structures is extracted by static anal-
ysis of the source code. More precisely, we extract an over
approximation of the set of possible static parts of process
structures by symbolically executing the initialisation code of
the application. By “the static part” we mean the processes
started when the application is started and are to remain run-
ning (possibly restarted to handle failures) until the application
terminates. The extraction assumes that the OTP libraries are
used in the recommended way to set up the process structure;
otherwise the precision will be poor.

e Each extracted process tree is analysed to determine the ef-
fect of process failures. We present a technique to determine
the effect of a particular process failure on the entire process
structure, which shows which processes will be terminated and
restarted and whether the structure itself is restored to the situ-
ation before the failure.

In addition to providing sufficient information for analysis, the
extracted process structure is also of independent interest; it can be
presented to the designer for visual inspection, with the possibility
to choose different views depending on the information sought. As
an example, the parts of the application that are affected by an
abnormal process termination can be visualised.

We have implemented the techniques in this paper in a tool,
which extracts sets of possible process static structures from source
code, and which automatically checks the effects of a process fail-
ure in each process structure. The tool can also check that princi-
ples for construction of “good” supervision structures are followed.
If the principles are not followed strictly, the tool can check the ef-
fects of process failures; this is useful when analysing legacy code
applications, which may not have been designed using current de-
sign principles. We have applied the tool to several OTP-library
applications and a subsystem of the AXD 301 ATM switch [Blau
et al. 1999].

Overview In the remainder of the introduction section we survey
related work. In Section 2, we introduce relevant features of Er-
lang and OTP libraries. In Section 3, we present our technique for
analysing the effect of a process failure, based on relevant infor-
mation in the process structure. In Section 4, we present how the
possible process structures are extracted from source code by static
analysis. Section 5 contains an extensive example of the informa-
tion we are able to extract. Section 6 contains a report from applica-
tion of our tool to several OTP-library applications and a subsystem
of the AXD 301 ATM switch [Blau et al. 1999]. Finally, Section 7
presents our conclusions and directions for future work.

1.1 Related Work

We have not found any report of work that performs the same type
of analysis as ours. This could partly be due to the fact that there
are few other languages where failure recovery on the process level
is supported by language and library primitives in the same way as
in Erlang.

Analogous to our extraction of process structures is the extrac-
tion of call-graphs of a program in inter-procedural program anal-
ysis (e.g., by Agrawal in [Agrawal 2000]). There is a relationship,
since an argument to a process creation statement in Erlang should
be the function executed initially by the created function. A compli-
cation in Erlang is that this function may be computed in arbitrary
ways, making it hard to obtain precision in the analysis.

Our aim is also to some extent related to the area of fault
analysis, where one is also interested in the potential effects of
faults in a system component (e.g., Sampath et al. in [Sampath
etal. 1995]). However, most work in this area assumes that suitable
models of system components are given (e.g., as state machines),
and does not address the extraction of these models from source
code.

1.2 Model extraction

The extraction of analysable models (e.g., finite state machines) of
concurrent system from source code has recently attracted much
attention in the model checking community. The aim is to extract
control skeletons from source code.

C Holzmann extracts Promela models from C with threads in
the tools FeaVer [Holzmann and Smith 2000] and AX [Holzmann
20001, This method relies on user defined abstractions, i.e. deciding
what procedures and variables are unimportant, and consequently
if the user definitions are incorrect executions that violates the
properties under investigation might not be found.

Java and Concurrent ML An approach similar to Holzmann’s,
which does not rely on user definitions, is applied by Corbett for

24

JAVA [Gosling et al. 1996] in the Bandera project [Corbett 2000]
where shape analysis is used to determine what variables are only
accessible from one thread. A method for the derivation of a finite-
state control skeleton from Concurrent ML [Reppy 1993] pro-
grammes, abstracting values to their types, is presented in [Nielson
et al. 1998].

Erlang Arts and Earle has investigated translation of Erlang pro-
grams into 4CRL [Blom et al. 2001] models which can be model
checked by the CESAR/ALDEBARAN [Fernandez et al. 2000] tool
set. Properties to proved are specified in alternation free modal p-
calculus and checked against state spaces generated by the uCRL
tool set [Wouters 2001]. A problem of translating Erlang into
#CRL is that Erlang requires process fairness, whereas the parallel
composition of (CRL lacks this notion. The fairness assumptions
of Erlang must be explicitly stated in the correctness properties.
In [Arts and Earle 2001] they investigate a simplified version of a
resource locking mechanism in the AXD 301 ATM switch [Blau
et al. 1999]. This has been continued in [Arts et al. 2004a,b].

In [Leucker and Noll 2001] Leucker and Noll has continued this
work and has implemented a prototype distributed model checker
and proposes to employ the ELAN [Borovansky et al. 1998] envi-
ronment for specifying and prototyping deduction systems as the
next step. When using ELAN, they would have to specify the syn-
tax and semantics of Erlang in terms of abstract data types and term
rewriting rules similar to that of [Noll 2001]. The use of rewriting
rules enables them to to develop higher level specifications in the
same way as in [Arts and Noll 2001]. The ELAN work is presented
in [Noll 2003, Amiranashvili 2002]. This work with rewriting log-
ics has been continued using the Maude system {Clavel et al. 2003]
in [NeuhduBer and Noll 2007].

1.3 Analysis of Erlang

The analysis of Erlang programs has received increased attention
in the last years. This can be seen in the steadily increasing number
of papers on the subject.

Static Type Analysis The first attempts made to analyse Erlang
was to derive type information. It has been the approach with
the largest practical impact with the Dialyzer tool [Lindahl and
Sagonas 2004] included in the OTP release.

In [Lindgren 1996] is developed a soft-typing system for Er-
lang, where types are not declared but derived from the code. The
constraint solver used was however deemed to be unsuitable for
Erlang. That was followed by a paper [Marlow and Wadler 1997]
describing another soft-typing scheme, in which however not all
legal Erlang programs could be typed.

A third soft-typing scheme was presented in [Nystrom 2003],
where the type inference is based on data flow with optional user
annotations, the intention being that the user would annotate all
the interfaces, and warnings generated for all possible type clashes.
The main drawback of this system is that it tends to generate too
many false positives.

A slightly different approach is followed in [Lindahl and Sago-
nas 2004] where a data flow analysis is applied to the virtual ma-
chine byte code to derive the possible values of the live variables at
each program point. This type information enables the tool to find:
places that would raise exceptions, unreachable branches, and dead
code. The work has be extended in [Lindahl and Sagonas 2006]
to generate success typings. The success typings, unlike the other
soft-typing schemata already described, allows for compositional
bottom up type inference which has been shown to scale well in
practice.

To provide the necessary information to provide optimisations
using a new heap structure and allocation strategy, a variant of
escape analysis is presented in [Carlsson et al. 2006].

Abstract Interpretation Huch has developed an approach for the
formal verification of Erlang programmes using abstract interpre-
tation and model checking. In [Huch 1999] an Erlang system is
viewed as a set of expression evaluations in the context of the iden-
tity of the processes executing the expressions and their message
queues. The abstraction consists of truncating the terms in the ex-
pression at a predefined depth. It is mentioned in the paper how one
could tailor the interpretation so that for selected terms the terms
are either kept as they are or truncated at a greater depth. The lan-
guage used to specify the desired properties is a linear temporal
logic [Manna and Pnueli 1992], expressive enough to state most
interesting properties.

The interpretation can only handle tail recursive programs and
does not handle exceptions, links, nor process termination. This
work has been extended in [Huch 2001] where he handles non
tail recursive calls, through a technique of jumps which makes
his approach much more realistic for real life programs. The work
has been further extended in [Huch 2003], where a technique to
automatically generate an abstracted finite graph representation of
the possible evaluations of a process. This graph is used to model
check properties of the program.

A factor that hinders this method, in its current cast, from
handling realistic applications is that the model checking does not
scale to: dozen of processes and over 50’000 lines of source code
of the AXD 301 subsystem analysed in Section 6.

Theorem Proving The Erlang Verification Tool(EVT) [Fredlund
et al. 2003] is an interactive proof assistant with an embedding of
the language in the proof rules. The specification logic used [Fred-
lund 2001] is a first order logic inspired by the modal p-calculus
[Kozen 1983] and extended with Erlang-specific features. The logic
is quite powerful, with both least and greatest fix points, allowing
the formalisation of a wide range of behavioural properties. The
strength of the specification language however leaves the verifica-
tion problem undecidable, although normally a considerable parts
of a proof can be automatically produced.

There have been extensions to allow the tool to reason about Er-
lang code on an architectural level, where the specified behaviour
of the OTP behaviours can be characterised by sets of transition
rules [Arts and Noll 2001]. This enables the tool to reason about
OTP behaviours without having to consider their concrete imple-
mentation.

There are two great differences between this work and my
thesis. First that the proof of properties, using the proof assistant,
are very much done by hand even if most of the tedious details
are automated, whereas an analysis by my tool will performed
automatically. When performing an analysis with my tool one may
have to state an initial configuration, such as contents of database
tables, but this constitutes only a small effort. Secondly, with the
proof checker one can prove a wide range of properties, whereas
if I were to examine anything else but the fault tolerance aspects
of Erlang, I would have to redesign the model extraction and the
subsequent analysis.

Conditional Term Rewriting Systems In [Giesl and Arts 2001] it
is shown how techniques for analysing termination of conditional
term rewriting systems, can be used to show properties for Erlang
programmes. The correctness properties of the query lookup proto-
col of the Mnesia distributed database is transformed into a termi-
nation problem, and then it is shown that, using refinement of de-
pendency pairs techniques [Arts and Giesl 19971, the transformed
properties can be proved without manual intervention. The same
properties have also been shown to hold using EVT [Arts and Dam
19991.

Model Checking Wiklander has in [Wiklander 1999} imple-
mented a translation from a finite state subset of Erlang to Promela,

25

the specification language of the model checker Spin [Holzmann
1991, 1997]. The main difficulties were to translate the dynamic
data structures lists and tuples to Promela constructs. Without a
good translation of these basic data structures of Erlang, it is hard
to translate any program. Another major obstacle was, finding an
effective encoding of Erlang’s receive statement using Promela’s
different style of message passing.

Another process algebraic model is presented in [Noll and Roy
2005] and then refined in [Roy et al. 2006]. In these two papers
a subset of Erlang is translated into asynchronous -calculus with
monadic communication. The model can be checked using existing
tools for 7-calculus. The advantage one gets from using w-calculus
as opposed to uCRL used in [Arts et al. 2004a] is that name passing
feature of -calculus allows the direct representation of the sending
of process ids between processes. The models deal with a subset of
the language and do not handle distribution or concurrency at a
level that is even near what is required to analyse real systems.

A distinctly new approach is examined in [Fredlund and Earle
2006], where model checking is achieved by running the program
being checked in lock step with an automaton representing a safety
property on a new run time system for Erlang. The result is a system
where everything is Erlang. The system was only a prototype with
the semantic model not fully completed, lacking elements of the
semantics presented in [Claessen and Svensson 2003]. This has
now been extended to support to the entire semantics, including
the modeling of distributed Erlang as described in [Fredlund and
Svensson 2007]. It is the approach that has most similarities with
the techniques used in this thesis.

2. Erlang

Erlang[Armstrong et al. 1996, Barklund and Virding 1999] is a
concurrent functional language especially tailored for distributed
and fault-tolerant software. The language has explicit concurrency
and distribution and is dynamically typed. It supports process cre-
ation, management, communication, and failure handling, through
a number of built in functions (BIF for short) and through the OTP
libraries.

Communication Communication in Erlang is asynchronous via
message passing. The nonblocking function !, called as
“Pid ! Message”, transmits the message Message (which may
be any Erlang term) to the mailbox of the process with process
identifier Pid. The receiver’s mailbox preserves the order of mes-
sages sent from the same process.

A process accesses its mailbox through the receive statement,
which matches a number of clauses against the messages in the
mailbox queue. The first message in the queue which matches some
clause will be received. If there is no such message, the receive
statement blocks; blocking may be avoided by an optional timeout
clause with a specified waiting time.

Process Handling A process is created by calling a function in
the spawn family of functions, with arguments specifying what
function and with what arguments the created process should ex-
ecute. Optional arguments determine on which Erlang node the
process should be created. The spawn functions return the process
identifier (pid) of the created process.

A process can terminate normally by returning from the last
function call, or abnormally by not catching an exception. We
use the term failure to denote abnormal termination. A process
can force another process to terminate normally or abnormally by
calling the BIF exit(Pid, Reason), where Pid is the pid of the
terminated process. There is also a mechanism for giving names to
processes, which can be used instead of pids.

Failure Detection and Handling The basis for failure handling
is that links can be created between cooperating processes. If a
process terminates abnormally, by an uncaught exception, all pro-
cesses linked to it will be informed by a special type of message.
If the boolean process flag trap_exit is false, the informed pro-
cess will also terminate abnormally and its linked processes be in-
formed in the same way, i.e., the failure spreads. If the process flag
trap_exit is true, the informed process is not terminated, and may
use the received information to take some recovery action. We will
say that a process fraps exit when the process flag trap_exit is
true. Supervisor processes use this mechanism to monitor termi-
nation of their child processes, and to restart them, possibly after
performing some cleaning up actions.

A process creates a link by a call to the BIF 1ink with the pid
of the other process as an argument. Alternatively, the spawn_link
functions behave in the same manner as the spawn functions, but
also link the parent and child processes when creating the child.

2.1 Behaviours

To support the use of supervision structures, and other structures,
the Open Telecom Platform[Eri 2000] provides a number of be-
haviours, which support design patterns addressing common prob-
lems of distributed concurrent systems. A behaviour is a library
module that implements the generic parts that are shared by all
processes with this behaviour. The behaviour is used by writing a
callback module implementing the specific parts of a particular pro-
cess. For example, in the supervisor behaviour the callback mod-
ule will contain an init function which returns the list of children
that should be started; the supervisor library module will handle
the actual starting, supervision, restarting and stopping of the child
processes.
The behaviours provided in OTP are:

application is a packaging of system components, and has a num-
ber of resources such as modules, registered names and processes.
The processes can be loaded, started and stopped logether and it can
be checked that the needed resources are available when loading
the application. Associated with an application is not only a call-
back module, but also a resource file which declares the resources
needed by the application, such as the names that will be registered
by the application, and what other applications have to be running
before the application is loaded.

gen_event is a manager for a number of event handlers, each of
which can be added and removed dynamically. The event manager
applies every present event handler, via a call to the callback mod-
ule, to a received call or notification.

gen_fsm s used to write [inite state machines, where the callback
module for each state has a function which describes the transitions
made on events.

gen_server provides a simple way of writing the server part of
client server applications, where the gen_server module handles
debugging and termination of the parent.

supervisor is used to structure applications for failure recovery.
A supervisor is a process which has a number of children which
it monitors through links. When a child fails, one or several chil-
dren are restarted, possibly after first shutting down one or sev-
eral children. A child is shut down using the exit BIF with rea-
son shutdown: this reason tells supervisors to shut down their chil-
dren before terminating. The callback module’s init function de-
termines what children will be statically started by the supervisor
whenever it starts or is restarted. Note that children of a supervisor
can also be added later, but we will not regard such children as part
of the static process structure.

26

The precise reaction to the failure of a child is determined by the
SUpervisors restart strategy (returned by its init function), which
is either

one_for_one: only the terminated child is restarted,
one_for_all: all children are shutdown and then restarted, or

one_for_rest: all children started after the terminated child are
shutdown and restarted.

Each child of also has a restart strategy, being either

permanent: the process is always restarted if it terminates,
transient: it is restarted only if it fails, or

temporary: it is not restarted.

There is a limit to the number of times a supervisor will restart
its children, given by two numbers maxR and maxT. If more than
maxR restarts are made within maxT seconds the supervisor fails.
This mechanism allows the system to attempt more global recovery
action if restarting only the children of a particular supervisor is
insufficient.

Apart from the restart strategy the children will have as parame-
ters: a name, a triplet {Module, Function, Arguments} called
as apply(Module, Function, Arguments) to start the child;
shutdown time which is the time a child is given to terminate after
being told to shutdown, after which it will be exited; and finally the
type of child either a worker or supervisor.

supervisor_bridge Supervisor_bridge enables a subsystem, not
originally intended to be part of a supervision hierarchy, to be con-
nected to a supervision hierarchy. The process having the supervi-
sor_bridge behaviour behaves as a bridge between the supervision
tree and the subsystem.

2.2 Supervision Structures

An important pattern in Erlang/OTP is the supervision structure
which consists of a tree of supervisors monitoring their chil-
dren through links. The children processes normally execute one
of the OTP behaviours or are connected to its supervisor via a
supervisor_bridge.

The children are started with its behaviour’s library function
start or start_link with its call-back module as an argument.
The call-back’s init function is then responsible for creation of
the process, and all other initialisation to be made. An exception
is the supervisor behaviour for which the init function will
only return the parameters of the supervisor; the library functions
will create the supervisor and start its children. The children are
started one after the other, and a child has to acknowledge that it
has finished its initialisation before the next is started.

3. Analysis of Failure Recovery Through
Supervision Structures

The main aim of the analysis is to ensure that the process structure
built by the application is robust, meaning that it will recover from
failures in an appropriate manner. In this section we will describe
the restart mechanism in the supervisor behaviour, what problems
may arise and how our tool detects these problems. We will also
present conventions used in order to avoid these problems.

Our analysis will work if the extracted supervision structure is
not altered by the dynamic behaviour of the application, and it will
not alter the supervision structure if the OTP design principles are
followed.

The effect of a process failure on the supervision structure is the
following:

(1) Al processes linked to the failed process are notified. Any
process notified that does not trap exit will fail and the effect
spreads.

(2) When a supervisor is informed that a child has failed, it will shut
down some of the other children. What children are shut down
depends on the supervisor’s restart strategy. If a shutdown child
is a supervisor that will cause it to shut down its children in turn,
shut downs propagating down the supervision structure. Since
shutting down is achieved using exit the process will fail and
the effect will spread according to (1). A supervisor shuts down
the children in the inverse order of creation and wait for a child
to terminate before shutting down the next.

(3) When a supervisor has shut down all its children it will restart
them, unless it was being shut down itself, in which case it
terminates.

We will describe two properties that capture much of the core
intentions of the supervision structures, and for which we can check
automatically that the properties hold.

Property P1: Whenever a process that takes part in the supervi-
sion structure fails, the supervision structure returns to the process
structure prior the failure after a reasonable delay.

Property P2: When the cause of a failure is not transient or suf-
ficiently infrequent to let the application function acceptably, only
a small number of recoveries should occur before the supervision
structure fails.

An example supervision structure, illustrating violations of the
properties P1 and P2 is shown in Figure 1. In the figure supervi-
sors are depicted by rectangles, and all other processes by circles.
Solid arrows indicate parent-child relationships and the dashed
lines show links between what processes. Within process is either
a registered name or a process id of the form <number>. In Asso-
ciated boxes show parameters and flags values.

3.1 Analysis of Property P1

Property P1 implies that in the recovery actions caused by a failure,
(a) each processes that fails is replaced by an equivalent “restarted”
process in the structure, and (b) each process replaced by a restarted
process has indeed terminated. We now claim that, in fact, proper-
ties (a) and (b) are sufficient to guarantee property P1, under the
two extra assumptions that (¢) a non-supervisor that is linked to
a failed process does not trap exits, and (d) the initialisation of a
restarted process creates the same structure as the process it re-
places. Property (c) mirrors the recommendation that only supervi-
sors trap exits. Property (d) is true if the initialisation of a process
is not dependent on configuration parameters that change during
system operation; it holds in all but one of the applications that we
have analysed.

Our claim can be “proved” as follows. Assume that a supervi-
sion structure satisfies properties (a) and (b). We then prove prop-
erty P1 by structural induction over the supervision structure, start-
ing from its leaves. For a leaf process, the property is immediate.
Consider a non-leaf process p, and assume that the substructures
rooted at the children of p satisfy P1. If p fails, then it will be
restarted (by (a)), and (when reinitialising, by (d)) recreate the en-
tire substructure rooted at p, thus establishing P1. If p does not fail,
then if no child fails, the connections between p and its children are
preserved. If a child fails, then if p is a supervisor, it will restore its
children and its connections to them, otherwise (by (c)) p must fail,
and we are back to the previous case.

The possible violations of property P1 are the following:

case 1: A process is terminated but not restarted, because it is
not connected by a sequence of links to a supervisor, directly or
in several steps, where no intermediate process traps exit.

27

In Figure 1 the process <3> might not be restarted if it fails
since process X_serv traps exit. We can not determine if process
<3> is restarted since this depends on the dynamic execution of
X_serv.

case 2: A process is restarted without having terminated first,
because its parent is a non-supervisor and it is either not linked
to its parent or traps exit. In Figure 1 the process <3> might
be restarted without having terminated if X_serv fails, since it
traps exit.

Another reason is, if a supervisor has less time, to shut down
its children, then the combined shutdown times of the children.
In this case, when time expires for the supervisor all remain-
ing children will be left unterminated. In Figure 1 processes
<1> and <2> have the combined shutdown time of 4 seconds
whereas the supervisor Y_sup has 2 seconds. Even if the <2>
where linked to Y_sup, process <1> might not be terminated
when Y_sup is shut down.

Should the supervisor with limited shut down time be dead-
locked by a child the remaining children would remain. In Fig-
ure 1, when shutting down Y_sup process <2> will deadlock
Y_sup, as described below, and Y_sup consequently will not
shut down <1>.

case 3: A supervisor is deadlocked, when trying to shut down a
child which is not linked to the supervisor, since the supervisor
is never informed that the child has terminated. In Figure 1
the supervisor Y_sup is deadlocked when trying to shut down
process <2>.

Another reason for a supervisor to deadlock is that a child with
shut down time infinity that traps exit does not terminate,
e.g., a deadlocked supervisor.

Figure 1. Supervision structure example.

In order to determine if property P1 is violated by an application
the tool extracts a set of supervision structures, and for each process
records what the effects are of a failure.

As a first step the tool records processes that will fail by follow-
ing links via processes that do no trap exit. As a second step, for
each supervisor with a failed child, it records what children are shut
down. Which children are shut down is decided by the supervisor’s
parameters, and for each shut down child we have to repeat step
one and two. As a final step, the children that would be restarted by
the supervisor are recorded.

Note that a supervisor can fail for two reasons. First it can have
a maximal restart frequency of 0, and then the first and second steps
are performed recursively up the supervision structure until reach-
ing a supervisor that does not fail or until the entire supervision
structure has failed. Secondly the number of restarts can exceeds
the highest allowed restart frequency, in this case both the case
where the supervisor fails and the case where it restarts its children
must be recorded.

When all effects of the failure have been applied the tool can de-
termine if property P1 has been violated by checking that properties
(a) and (b) are satisfied for each process. For example, if a process

has failed but not restarted, then property P1 is violated according
to case 1.

3.2 Analysis of Property P2

Property P2: When the cause of a failure is not transient or suffi-
ciently infrequent to let the application function acceptably, only
a small number of recoveries should occur before the supervision
structure fails.

A supervision structure can violate Property P2 in two ways:
(a) a substructure fails and is restarted too many times before
the supervision structure itself (represented by its root processes)
fails, (b) the supervision structure never fails although there are an
unbounded number of repeated failures in the structure.

Such situations can be detected as follows. The maximum rate
of failures (MRF for short) that can occur in a structure before the
structure itself fajls, can be calculated from the restart strategies,
the numbers maxR and maxT, as follows.

The MREF for a process with supervisors s1, . .., s, above in the
process structure, where the supervisors are numbered from the top
down is given by the following equations

MRF = Restarts per TimeUnit
Restarts = MazR(s1) [[(MazR(s:)+ 1)
i=2
TimeUnit = rn_ri? MazT(s;)

where Maxz R(s;) is the parameter maxR for the i:th supervisor and
analogously for maxT.

Violations of type (a) occur if MRF is too high. The meaning
of “too high”, of course, varies from application to application. We
suggest that a threshold for this number shall be provided for each
application by designers or by company coding principles.

Violations of type (b) occur if the structure contains a supervisor
for which the maximum time it takes to restart one child is larger
than the least time between failures needed to cause failure of the
supervisor itself.

The maximal time to restart a child is the combined shut down
time of the other children that are shut down and the start times of
all the terminated children. We can only determine the shut down
times', but if this is already to large (in effect assuming a start time
of 0) we are certain that it is too large. The least time between
failure needed is simply supervisor parameter maxT divided by
maxR.

In Figure 1 the shutdown time of Y_sup is 2 seconds but its
supervisor X_sup will fail only if more than 2 restarts are performed
within | second. If the shutdown of Y_sup actually takes 2 seconds
then, even if the process X_serv fails immediately upon each restart
the supervisor X_sup will never fail. This is a typical violation of
(b).

When designing an application one wants to determine param-
eters of the entire supervision structure as well as over individ-
ual processes; restarts and shutdown times can be calculated auto-
matically. Interesting Parameters include: (a) the maximum restart
frequency for any process before the application restarts; (b) the
largest shutdown time allowed for any process; (c) the largest shut-
down time allowed for the entire application.

! There is a OTP library that aliows the designer to set an upper limit on
the time it takes to start and initialise process, if that was used throughout
we could give an upper limit on startup and as a consequence of testart as a
whole.

28

3.3 Conventions

There exists a number of coding conventions designed to prevent
violation of properties P1 and P2, which catch a subset of these
violations. The tool checks whether the conventions are followed:

All process should create its children using spawn_link, rather
than spawn, and children should not unlink from their par-
ents. If a process is started with spawn rather than spawn.link
it can fail before it has time to link to its parent, in which case
its parent will not be informed.

The maximum restart frequency of intermediate supervisors 0
in order to minimise the MRF of leaf processes in the supervi-
sion structure.

Only supervisors should have shutdown time infinity and all non-
supervisor children of supervisors should have shutdown set to
a limited time. This ensures that the supervisor has time to ter-
minate its children and that no child can indefinitely block the
shutdowns. This eliminates one of the causes of violation of
property P1 in case 3.

4. Process Structure Extraction

Our tool extracts an over approximation of the set of possible
static process structures of an Erlang application by symbolically
executing its initialisation code. For each process that could be
in the static process structure, the tool evaluates its initialisation
code, in order to extract all possible combinations of children
and relevant parameters and flags. The evaluation uses a symbolic
representation? of the set of possible execution states, consisting of
a set of triples of form <value, side effect, state> where

value is either a normal Erlang term, an exception, the ele-
ment (T Term) denoting an unknown term, or the element
(T Exception) denoting an unknown exception. The top element,
i.e., an unknown value which is either a term or an exception,
is represented by two triples, one containing Trerm and one
containing T Exception-

side effect isarepresentation of the process tree, including rel-
evant parameter and flags, which results from previous side ef-
fects. The tree may contain the element (T sigeEfrect), TEPresent-
ing an unknown (possibly absent) side effect, meaning that we
have no information about the behaviour of the subtree rooted
at the position of T sideEffect.

state isan abstraction of the current state of the Erlang-node. This
abstraction is tailored to contain those parts that are relevant for
the current process; typically it contains representations of per-
sistent data storages, such as the Erlang tabling system (ETS),
which is a simple database.

Intuitively, a set of triples represent all possible states of the compu-
tation at a particular point in the execution of the
application:start function. The elements at each position in
triples are ordered in the natural way (e.g., TTerm is larger than
any Erlang term). The ordering is extended pointwise to triples.

The evaluation is performed for each process in the static tree,
starting from the root process, proceeding with its detected chil-
dren, and so on. The evaluation of one process does not use all
information about potential interaction with other processes: for
instance, the value of a received message is always unknown and
must be approximated by T Term.

Our symbolic evaluation is not performed directly on Erlang,
but on Core Erlang [Carlsson et al. 2000]. Core Erlang is an
intermediate format used, e.g., in the OTP Erlang compiler, where

2'We use the terminology of abstract interpretation [Nielson et al. 1999].

some syntactic sugar has been removed and a restricted set of
constructs and formats is used. It also has constructs that are not
present in Erlang, such as let and letrec which are used to
replace explicit matching and local functions generated by list
expressions.

For our symbolic evaluator, we have defined a symbolic seman-
tics for Core Erlang, based on the semantics for Core Erlang by
Carlsson [Carlsson 2001]. Its key property is that

if in standard (Core) Erlang the call foo(args) in state
state returns result, new state state’, and has side ef-
fect effect,

then a call to foo in the symbolic semantics, starting
with a set containing a triple <absargs, abseffect,
absstate> where absargs and absstate approximate
args and state, will result in a set containing a triple
<absresult, abseffect’, absstate’> where absresult
and absstate’ approximate result and state’, and
where abseffect’ approximates the addition of effect
to abseffect.

Space does not permit a presentation of the symbolic semantics. Let
us here briefly describe parts that are not straight-forward, notably
function calls, receive and case,

Function calls The treatment of a function is divided into three

categories.

e Calls to local functions in the current module are evaluated
symbolically in the extended value domain.

e Calls to functions that are not in the local module or a library
module are evaluated as local functions, after ensuring the mod-
ule is loaded.

¢ Calls to functions in library modules are treated in different
ways, depending on the nature of the library:

= Some library modules which influence the processes struc-
ture are supported in our tool. This means that behaviour of
these modules is emulated by functions in the tool, which
generate (an abstraction of) the same results and side effects
as the library modules. Calls to the more important library
modules are emulated by calls to the emulating functions in
the tool. In the current implementation, we have introduced
support for approximately 2% of the modules.

= [t is not reasonable to support all of the over a one thousand
library modules. Unsupported library modules are treated in
two ways:

— Functions in library modules which do not influence the
processes structure (e.g., the module lists which con-
tains list manipulation functions) are handled as follows.
For each triple <value, side effect, state> in
the set, where value is a normal Erlang term, we call
the function with argument value, and replace the triple
by <result, side effect, state>, where result
is returned by the function. For triples where value
is Trerm, We approximate the call by returning both
T Term and T Exception. We do not need to worry about
the other elements of triples, since we know that the call
can not generate side effects.

— Functions in library modules which may influence the
process structure are difficult to handle. An example of
such a module is mnemosyne, an interface to mnesia
a internal distributed database in OTP. We approximate
their effect by returning T rerm and T Exception, together
with adding the unknown side effect T sideEfiect 10 the
tree.

29

To determine if the approximated call actually performed
side effects we have to inspect the call manually; in the
future we will categorise all OTP library functions as having
side effects or not. The supported libraries, together with the
libraries without side effects, account for more than 99%
of called library functions in the experiments presented in
Section 6.

Receive The receive statement is handled specially since our
evaluator does not spawn any processes, and consequently the
evaluator has not created anyone who could send the message we
are waiting for. As a consequence all the clauses of the receive
statement must be evaluated, including timeout clause, with all free
variables in the match of the clauses bound to T rerm, and the set
of all resulting triplets returned.

Case In the case statement, which is the only conditional state-
ment in Core Erlang, the argument on which we switch may con-
tain an approximation such as Trem. We must then evaluate
all branches that could possibly match a value approximated by
T Term, and return the set of resulting triplets.

Termination

In general, the symbolic execution may generate infinite execution
paths. We use two mechanisms to avoid a potentially nonterminat-
ing analysis.

e There is a user definable bound on the depth of function ap-
plications allowed before terminating the execution and ap-
proximating the value of the execution branch with T erm and
TException-

¢ If in one branch of execution, a call to a function is repeated
twice with the same parameters, the result is approximated by
the top element of the value and state domains.

In both these cases of approximations a side effect could have
occurred, and T sideEsfect 18 added to the side effects.

Limitations

The tool can handle applications that are syntactically correct, i.e.,
those that pass through the initial phases of the compiler which
produces Core Erlang. Applications can be analysed even if only
parts of the source code are available; missing parts are handled
in the same manner as calls to functions in unsupported library
modules.

The most noticeable limitation is that when many unsupported
library calls are made, the number of possible executions become
intractable. This is the case both for the OTP application mnesia
and for the first tries to analyse applications from the real life
system AXD 301[Blau et al. 1999]. Precision can be improved by
supporting more OTP libraries and emulating a larger part of the
Erlang runtime system, as has been done in order to analyse the
AXD 301 applications.

Another limitation is that we can effectively analyse only ap-
plications that have been designed according to the suggestions
of the OTP documentation and using the OTP library behaviours.
This includes the restriction that the essential parts of the super-
vision structure should be set up by the initialisation code. This
is a way to encourage use of standard coding idioms. It is in gen-
eral intractable to analyse automatically the behaviour of arbitrarily
structured code.

5. Example: Os_mon

As an example we will use the result of applying the tool to the OTP
application os_mon, that monitors the underlying operating system

s

-
o
X
5
* Soratoay ot Tor_oma
& ~—
.

SR A0 W

R

Figure 2. Creation tree for the OTP application os_mon with ex-
panded information nodes.

for disk, memory and CPU usage. Snapshots from the tool after
analysing os_mon is shown in Figure 2.

The os_mon application running on a Linux system will have
seven processes and one external port. Below we describe each
process in the order of creation.

os_mon The application master process registered as os_mon.

os_mon_sup The supervisor of the processes responsible for moni-
toring the operating system resources, this process is registered
as os_mon_sup. From the parameters one can see that the high-
est frequency of restarts it will allow is 4 per hour, and the
restart strategy is one_for.one.

disksup The generic server registered as disksup is responsible
for monitoring the disk usage. From the supervisor’s parameters
associated with this process we can see that it will be started
by a call to disksup:start_link(), its restart strategy is
permanent, it will have 2000 milliseconds to shut down and
type worker.

This process will during initialisation start an external port
which communicate with an external process used to monitors
the disk usage.

<0.5.7> This process, without registered name, starts process
<0.6.7> of which the analysis can not determine anything.

memsup The generic server is registered as memsup is responsible
for monitoring the memory usage by the Erlang-node. In this
case we have highlighted the actions:

process_flag(<0.7.7>, trap_exit, true)
process_flag(<0.7.7>, priority, low)
monitor (process, T Term)
memsup_helper!{<0.7.7>, collect proc}
receive {collected_proc, Term}
memsup_helper!{<0.7.7>, collect.sys}
receive {collected_sys, T Term}

send_after (60000, <0.7.7>, time_to_collect)
demonitor (T merm)

The two first actions set process flags, followed by the mon-
itoring of an unknown process. After these initial setups,
the process will communicate with the registered process
memsup_helper, sending and receiving twice. After these calls
and responses it uses a BIF that will send the message after
60’000 milliseconds time_to_collect. Finally it demonitors
an unknown process.

30

The monitor BIF enables a process to monitor various aspects
in the Erlang-node, getting messages from the runtime system
when something happens which affects the process.

cpu_sup The generic server registered as cpu_sup is responsible
for monitoring the cpu usage of the system.

When analysing the os_mon application our tool generated
200 different trees, depending on approximations as mentioned
in Section 4. The great multiplicity comes from a receive statement
where the memsup process either gets information back from the
memsup_helper process or a timeout occurs, this is repeated 10
times giving rise to 100 different trees. The final step from 100
trees to 200 is taken by a previous process, namely the anonymous
<0.5.7>, that may fail during initialisation, but in such a manner
that the remaining processes can be started. The tree presented here
is the simplest where no resends due to timeouts have to be done,
and the process <0.5. 7> initialises successfully.

The automatic check performed by the tool for each tree shows
that os_mon respects properties P1 and P2 provided that process
<0.0.6> behaves correctly. This clearly indicates that in order to
be confident in the failure recovery we need to examine <0.0.6>.

6. Experiments

In order to test the tool we, have applied it to several OTP-
library applications and a subsystem of the AXD 301 ATM switch.
The OTP applications analysed were os_mon, mnemosyne, sasl,
megaco, inets and crypto; in the AXD 301 subsystem, consist-
ing of ten applications, we analysed rcm, rcmInit, rcmKernel,
rcmUtilities, remNtp, sysi and sysCmd.

The OTP applications could be analysed simply by invoking the
tool with the name of the application. When analysing the AXD
301 applications it was necessary to create and initialise a few ETS
and Mnesia tables in the tool.

The analyses were made on a 450MHz Pentium III with 256MB
memory. The statistics of the analysis of the applications are shown
below in Table 1, with the exception of mnemosyne, megaco and
inets which are trivial.

| Name | Time | #Trees | #Lines [#Executed | #Total |
OTP:
os_mon 8.0s 200 260 620 2588
sasl 1.1s 2 291 312 9467
crypto 0.3s 1 52 65 337
AXD 301:
rcm 180s | 1’674 822 306°176 | 197250°
rcmInit 5.4s 1 650 57320 37744
rcmKern | 582s | 3708 | 17068 570°976 16272
rcnUtil 1.7s 1 140 164 62
rcoltp 1.9s 3 89 93 2’583
sysi 28.2s 8 897 58’395 337227
sysCmd 0.2s 1 9 9 1’359

Table 1. Analysis Statistics
Int the table: Time = runtime of the analysis, #Trees = number of
process trees extracted, #Lines = number of source code lines used
by initialisation, #Executed = total number of lines executed, #Total
= total number of lines in the entire application.

3The rcm application only contain 63 lines of source code, however it
includes the applications rcmKernel, rcmUtilities and remNtp, and
together with the it makes a total 19°250 lines.

From the results in Table 1 we draw conclusion regarding the
following issues:

Code size: For larger applications our tool can symbolically
execute in the order of 1000 lines of source code per second.
Initialisation is normally only a small part of the application. As
an example in the AXD 301 subsystem consisting of 57°310 lines
of source code at most 1’068 out of these were executed in order to
analyse one of its applications.

Language constructs Looking at the language constructs and
library functions used by the OTP and AXD 301 subsystem ap-
plication, we can conclude that they use all Core Erlang language
constructs and many of the libraries.

Incomplete source code When analysing the AXD 301 sub-
system parts of the code was missing, as was the remainder of the
system. The tool could analyse all the applications after initialisa-
tion of configuration tables, with some increase of approximations
made.

Precision For all OTP applications we have traced an execution
of the application, and compared the process tree created with the
trees created by the analysis. For all applications the trace generated
tree was matched by one of the analysis generated trees.

For the AXD 301 applications we could not execute the incom-
plete subsystem. We have, however, showed the results to the senior
engineers within the AXD 301 that provided us with the subsystem;
they confirm that the analysis results correspond to the actual sys-
tem.

The large number of trees generated by three of the applica-
tions (os_mon, rcm and rcmKernel) all arise from polling per-
formed in the initialisation and results in a number of trees only
differing in the number of sends and receives performed. If we ig-
nore the number of differing send and receives only a few trees
remain; in the case of os_mon only two out of the 200 trees would
remain.

7. Conclusion

We have described a method for assessing failure recovery in Er-
lang applications by means of symbolic execution, were the pro-
cess structure of the application is extracted automatically from
the source code. The extracted process structure, although incom-
plete, is analysed automatically to find undesirable process struc-
tures. With these techniques we have automatically examined the
supervision structures created by a number of industrial applica-
tions. The examination has either shown the supervision structures
to be sound or where we should further investigate the application
source code.

In the cases where we can not say anything conclusively, due
to approximations, we can still use the result to guide us to places
where we may have unwanted structures. The structures, conclusive
or not, may be used to gain understanding of the application.

Future Work We are presently in the process of analysing ap-
plications from a real life system: the Ericsson AXD 301 ATM
switch[Blau et al. 1999]. This work we believe will give inspira-
tion not only on what properties to focus analysis but also how to
perform the analysis.

Of the technical issues the most important is how to find infor-
mation beyond the predefined OTP behaviours and in the dynamic
part of the applications. We will first investigate the approach of
combining evaluation of Core Erlang terms with finite state meth-
ods, where the dynamic parts are approximated by finite models
extracted from the code.

References

G. Agrawal. Demand-driven construction of call graphs. In D.A. Watt, edi-
tor, Proceedings of the 9t International Conference on Compiler Con-

31

struction (CC'00), volume 1781 of Lecture Notes in Computer Science,
pages 125-140. Springer-Verlag, 2000.

V. Amiranashvili. A rewriting logic formalization of core erlang semantics.
Master’s thesis, Aachen University of Technology, Germany, 2002.

J. Armstrong, R, Virding, C. Wikstrom, and M. Williams.
Programming in ERLANG. Prentice Hall, 2nd edition, 1996,

Concurrent

T. Arts and M. Dam. Verifying a distributed database lookup manager writ-
ten in erlang. In J.M. Wing, J. Woodcock, and J. Davies, editors, FM'99—
Formal Methods, Volume I, Proceedings of the 1¢ World Congress on
Formal Methods in the Development of Computing Systems (FM'99),
volume 1708 of Lecture Notes in Computer Science, pages 682-700.
Springer-Verlag, 1999,

T. Arts and C.B. Earle. Development of a verified ERLANG program for
resource locking, In S. Gnesi and U. Ultes-Nitsche, editors, Proceedings
of the 6th International Workshop on Formal Methods Sfor Industrial
Critical Systems (FMICS'01), Paris, 2001.

T. Arts and J. Giesl. Automatically proven termination where simplification
orderings fail. In M. Bidoit and M. Dauchet, editors, Proceedings of
TAPSOFT: T International Joint Conference on Theory and Practise
of Software Development, volume 1214 of Lecture Notes in Computer
Science. Springer-Verlag, 1997.

T. Arts and T. Noll. Verifying generic erlang client-server implementa-
tions. In M. Mohnen and P. Koopman, editors, Praceedings of the
12th International Workshop on the Implementation of Functional Lan-
guages (IFL'00), volume 2011 of Lecture Notes in Computer Science,
pages 37-52. Springer-Verlag, 2001.

T. Arts, C. Earle, , and J. Derrick. Deveolpment of a verified erlang
program for resource locking. International Journal on Software Tools
for Technology Transfer, 5(2-3):205-220, March 2004a.

T. Arts, C. Earle, , and J. Penas. Translating Erlang to 4CRL. In In Pro-
ceedings of the International Conference on Application of Concurrency
to System Design (ACSD2004), 2004b.

J. Barklund and R. Virding. Erlang 4.7.3 reference man-
ual, draft (0.7). Ericsson, Computer Science Laboratory,
www.erlang.org/download/er]l_spec47.ps.gz, 1999.

S. Blau, J. Rooth, J. Axell, F. Hellstrand, M. Buhrgard, T. Westin, and
G. Wicklund. AXD 301: A new generation ATM switching system.
Computer Networks, 31(6):559-582, 1999.

S. Blom, W. Fokkink, J.F. Groote, I. van Langevelde, B. lisser, and
J. van den Pol. ucrl: A toolset for analysing algebraic specifications. In
Proceedings of the 13" International Conference on Computer Aided
Verification (CAV'01), volume 2102 of Lecture Notes in Computer Sci-
ence, pages 250-254. Springer-Verlag, 2001.

P. Borovansky, C. Kirchner, H. Kirchner, p. E. Moreau, and C. Ringeisen.
An overview of elan. In Proceedings of the International Workshop on
Rewriting Logic and its Applications, volume 15 of Electronic Notes in
Theoretical Computer Science. Elsevier Science, 1998.

R. Carlsson. An introduction to core erlang.
PLI'O] Erlang Workshop, Florence, Italy, September, 2001.
http://www.erlang.se/workshop/carlsson.ps.

In Proceedings of
URL

R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S.-O. Nystrom,
M. Pettersson, and R. Virding. Core ERLANG 1.0 language specifica-
tion. Technical Report 2000-03, Department of Information Technology,
Uppsala University, Sweden, 2000.

R. Carlsson, K. Sagonas, and J. Wilhelmsson. Message analysis for concur-
rent programs using message passing. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 28(4):715-746, July 2006.

K. Claessen and H. Svensson. A semantics for distributed erlang. In
In Proceedings of the ACM SIGPLAN 2005 Erlang Workshop, Tallinn,
Estonia, 2005.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso
Marti-Oliet, José Meseguer, and Carolyn Talcott. The maude 2.0 system.
In Robert Nieuwenhuis, editor, Rewriting Techniques and Applications
(RTA 2003), number 2706 in Lecture Notes in Computer Science, pages
76-87. Springer-Verlag, June 2003.

J.C. Corbett. Using shape analysis to reduce finite-state models of concur-
rent JAVA programs. ACM Transactions on Software Engineering and
Methodology, 9(1):51-93, 2000.

OTP Documentation. Ericsson Utvecklings AB, 2000.

J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. Cadp: A protocol validation and verification toolbox.
In Proceedings of the 8% International Conference on Computer Aided
Verification (CAV'96), volume 1102 of Lecture Notes in Computer Sci-
ence, pages 437-440. Springer-Verlag, 2000.

L.-A. Fredlund. A Framework for Reasoning About ERLANG Code. PhD
thesis, Department of Microelectronics and Information Technology,
Royal Institute of Technology, Sweden, 2001.

L.-A. Fredlund and C. B. Earle. Model checking erlang programs: The
functional approach. In In Proceedings of the ACM SIGPLAN 2006
Erlang Workshop, Portland, USA, 2006.

L.-A. Fredlund and H. Svensson. Mcerlang: A model checker for a dis-
tributed functional programming language. In Proceedings of the ICFP
'07 conference, volume 42 of ACM SIGPLAN Notices, pages 125-136.
ACM Press, 2007.

L.-A. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G. Chugunov. A
verification tool for erlang. International Journal on Software Tools for
Technology Transfer, 4(4):405-420, 2003.

J. Giesl and T. Arts. Verification of erlang processes by dependency
pairs. Journal of Applicable Algebra in Engineering, Communication
and Computing, 12(1):39-72, 2001.

1. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison-Wesley, 1996.

G.J. Holzmann. Design and Validation of Computer Protocol. Prentice-Hall
International, 1991.

G.J. Holzmann. The model checker spin. IEEE Transactions on Software
Engineering, 23:279-295, 1997.

G.J. Holzmann. Logic verification of ANSI-C code with SPIN. In Proceed-
ings of the T** International International SPIN Workshop (SPIN'00),
volume 1885 of Lecture Notes in Computer Science, pages 131-148.
Springer-Verlag, 2000.

G.J. Holzmann and M.H. Smith. Automating software feature verification.
Bell Labs Technical Journal, 5(2):72-87, 2000.

F. Huch. Verification of ERLANG programs using abstract interpretation and
model checking. In Proceedings of the 4R International Conference
on Functional Programming (ICFP'99), volume 34 of ACM SIGPLAN
Notices, pages 261-272. ACM Press, 1999.

F. Huch, Model checking ERLANG programs — abstracting the context-
free structure. In Proceedings of the 10" International Workshop on
Functional and Logic Programming (WFLP’01), 2001.

F. Huch. Model checking erlang programs — Itl-propositions and abstract
interpretation. In Proceedings of the 12" International Workshop on
Functional and (Constraint) Logic Programming (WFLP'03), 2003.

D. Kozen. Results on the propositional u-calculus. Theoretical Computer
Science, 27:333-354, 1983,

32

M. Leucker and T. Noll. A distributed model checking tool tailored erlang.
In Proceedings of PLI'01 Erlang Workshop, Florence, Italy, September,
2001.

Tobias Lindahl and Konstantinos Sagonas. Detecting software defects in
telecom applications through lightweight static analysis: A war story.
In Chin Wei-Ngan, editor, Programming Languages and Systems: Pro-
ceedings of the Second Asian Symposium (APLAS'04), volume 3302 of
LNCS, pages 91-106. Springer, November 2004,

Tobias Lindahl and Konstantinos Sagonas. Practical subtype inference
based on success typings. In In Proceedings of the Eight ACM SIGPLAN
Intermational Symposium on Principles and Practice of Declarative Pro-
gramming (PPDP'06), pages 167-178. ACM Press, July 2006.

A. Lindgren. A prototype of a soft type system for erlang. Master’s thesis,
Computing Science Department, Uppsala University, Sweden, 1996.

Z.Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, 2nd edition, 1992,

S. Marlow and P. Wadler. A practical subtyping system for erlang. In Pro-
ceedings of the 2™* International Conference on Functional Program-
ming (ICFP'97), volume 32 of ACM SIGPLAN Notices, pages 136-149,
ACM Press, 1997.

C. Mullaparthi. Third party gateway. In Proceedings of the 11" Interna-
tional ERLANG/OTP Users Conference (EUC'05). Ericsson Utveckling
AB, 2005.

M. NeuhduBer and T. Noll. Abstraction and model checking of CORE
ERLANG programs in MAUDE. In G. Denker and C. Talcott, editors,
Proceedings of the 6" International Workshop on Rewriting Logic
and its Applications (WRLA 2006), volume 176 of Electronic Notes in
Theoretical Computer Science, pages 147-163, 2007.

F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

H. R. Nielson, T. Amtoft, and F. Nielson. Behaviour analysis and safety
conditions: A case study in CML. In Proceedings of the 15t Interna-
tional Conference on Fundemantal Approaches to Software Engineer-
ing (FASE'98), volume 1382 of Lecture Notes in Computer Science,
pages 255-269. Springer-Verlag, 1998.

T. Noll. A rewriting logic implementation of erlang. In M. van den Brand
and D. Parigot, editors, Proceedings of the 1°* International Workshop
on Language Descriptions, Tools and Applications (ETAPS/LDTA’01),
volume 44 of Electronic Notes in Theoretical Computer Science. Else-
vier Science, 2001.

T. Noll. Term rewriting models of concurrency: Foundation and applica-
tions, 2003.

T. Noll and C.K. Roy. Modeling erlang in the m-calculus. In In Proceedings
of the ACM SIGPLAN 2005 Erlang Workshop, Tallinn, Estonia, 2005.

S.-O. Nystrom. A soft-typing system for erlang. In In Proceedings of the
ACM SIGPLAN 2003 Erlang Workshop, Uppsala, Sweden, 2003.

J.h. Reppy. Concurrent ml: Design, application and semantics. In PE.
Lauer, editor, Functional Programming, Concurrency, Simulation and
Automated Reasoning, volume 693 of Lecture Notes in Computer Sci-
ence, pages 165-198. Springer-Verlag, 1993,

C.K. Roy, T. Noll, B. Roy, and J.R. Cordy. Towards automatic verification
of erlang programs by m-calculus translation. In In Proceedings of the
ACM SIGPLAN 2006 Erlang Workshop, Portland, USA, 2006.

M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Tekenekekzis. Diagnosability of discrete-event systems. IEEE Trans-
actions on Automatic Control, 40(9):1555-1575, 1995.

E. Stenman. Betting on fp (and winning?). In Proceedings of the 13t" Inter-
national ERLANG/OTP Users Conference (EUC’06). Ericsson Utveck-
ling AB, 2006.

C. Wiklander. Verification of erlang programmes using spin. Technical
report, Department Of Teleinformatics, Royal Institute of Technology,
Sweden, 1999.

A.G. Wouters. Manual for the pcrl toolset (version 2.07). Technical Report
To appear???, CWI, Amsterdam, 2001.

Teaching Erlang using Robotics and Player/Stage

Sten Griiner

University of Kent, UK
sten.gruener@gmail.com

Abstract

Computer science is often associated with dull code debugging in-
stead of solving interesting problems. This fact causes a decrease
in the number of computer science students which can be stopped
by giving lectures on an interesting context like robotics. In this pa-
per we introduce an easily deployable and extensible library which
allows programming a popular robot simulator in Erlang. New pos-
sibilities for visual, simple and attractive teaching of functional lan-
guages are open.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; 1.2.9 [Robotics]:
Commercial robots and applications; K.3.2 [Computers and Edu-
cation]: Computer and Information Science Education

General Terms Experimentation, Languages

Keywords Erlang, Player/Stage, Teaching

1. Introduction

Computer science students of the 21* century are not willing to
write “Hello World” applications any longer and demand for a more
fascinating and innovative learning environment. Several years ago
Patterson (2005) drew attention to the falling number of CS stu-
dents despite increasing number of career opportunities. The fact
of falling student interest has even led to the closure of several CS
departments in the United Kingdom. Rashid (2008) points to the
same fact in 2008 suggesting a solid association of computer sci-
ence with debugging code in front of a computer screen all day
instead of solving real-world problems to be responsible for the
downturn of the student interest.

This development is not surprising since similar observations
have already been made by Fisher and Margolis (2002) in the
early 2000s when a lack of female interest in studying computer
science was associated with women’s wish to have a “context of
computing” instead of “hacking for hacking’s sake”.

Robotics, a field which can inspire young people quickly, has
been suggested by Blank (2006) as one of the key-fields to restore
the personality of computer science by giving students a real hands-
on experience and discarding the classical pedagogical “correct
answer” paradigms. Patterson (2006) points out several challenges
for the CS education in the upcoming century which unfortunately
are still missed by many CS departments. The key points among

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’09, September 5, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-1-60558-507-9/09/09. . . $5.00

33

Thomas Lorentsen

University of Kent, UK
tom@thomaslorentsen.co.uk

these are concurrency, the usage of cutting edge libraries from the
first educational year and open source programming.

In this paper we will introduce our idea for solving these prob-
lems in terms of:

* Introducing the Erlang-based Kent Erlang Robotic Library
(KERL), available from http://kerl.sf.net, for the
open source robot middleware Player (Section 3). The library
can be used in connection with both physical robots as well as
a simulation framework — Player/Stage.

Describing the created infrastructure such as installation scripts,
examples and assignment ideas (Section 4) which can be used
as an out-of-a-box environment for a functional programming
course.

Discussing alternative approaches (Section 5) as well as future
improvements (Section 6).

With our approach we try to reach several educational goals pro-
posed by Patterson. The usage of a functional, highly-concurrent
language, which becomes more and more popular in the industry,
is a crucial part of the whole educational stance and should help
students not only to learn the syntax and semantics of Erlang more
quickly, but also to work in Erlang’s natural environment, concur-
rent real-time systems, from the very beginning. The presented li-
brary was developed during an undergraduate final-year project at
the University of Kent in the academic year 2008/09.

2. Background
2.1 Erlang

In the 1980s Ericsson started to search for a new programming
language to be used in telephone exchanges. The research showed
that descriptive languages were better suited for programming con-
current telecommunication tasks than imperative languages. Erlang
was developed for this purpose. It is a functional language, influ-
enced by logical and imperative languages (Armstrong 1997). De-
signed for concurrent, fail-tolerant systems, Erlang’s main running
component is a process which can be understood as a lightweight
thread which is cheap to initialise and run. Processes do not share
any resources and interprocess communication is achieved by the
use of message parsing. Furthermore, processes can monitor and
restart each other in case of a failure. This philosophy makes devel-
oping distributed applications simple and comfortable.

Erlang syntax is convenient and allows a smooth transition
from well-known imperative languages. Another important aspect
is the concurrency specialisation of the language, which makes
Erlang perfectly suitable for robotic applications because they are
inherently concurrent.

2.2 Player

A robot is built up of devices for sensing and manoeuvring in
an environment, Different devices provide different interfaces, e.g.

movements require a speed and direction. Some devices may be
used for gathering information such as laser sensors that produce
an array of readings. The wide range of proprietary devices makes
porting applications difficult.

Player' has been developed to solve this problem (Gerkey et al.
2003). It provides a hardware-independent API allowing rapid de-
velopment of distributed systems (Gerkey et al. 2001).

Each device is represented by an independent proxy. These can
be shared by different applications, e.g. an application may log data
while another displays camera feeds on a screen.

Player is effectively language independent since it uses TCP for
communication and most modern programming languages support
sockets.

Clients have already been written for Java and Python (Collett
et al. 2005). LibPlayerC, utilised in our project, is a widely used C
library providing functions to implement a Player client.

2.3 Stage

Stage compliments Player by providing a graphical robot simula-
tion in a 2D indoor environment. Robots from different vendors
(e.g. Pioneer 3-DX?) equipped with various sensors (e.g. laser,
sonar and fiducial) can be simulated. Multiple robots operate inside
of a black and white image, often denoted as world. A world has
several parameters, e.g. the number and type of the simulated robots
and their starting positions. Stage also allows user interaction dur-
ing runtime, e.g. allowing to monitor and modify the positions of
robots.

One goal of the Stage development was to produce “good
enough fidelity” (Gerkey et al. 2003) meaning that the user can
not usually tell the difference between a simulated and a physical
device making it a perfect tool for testing robotic application. As
reported by Gerkey et al. (Gerkey et al. 2003), a program that per-
formed well in Stage could be transferred onto a physical robot
with little or no modification. Stage is considered to provide an ac-
curate real world simulation. We think that the simulation realism
is likely to draw more student interest, as well as a wide range of
applications using KERL. Another feature making Stage perfect
for educational purposes is the fact, that it was designed to simu-
late multi-robot environments and has linear computational scaling
respective to population. Therefore Stage allows a simulation of
multiple robots controlled by KERL in real time.

The Player/Stage Project is used for teaching and research
in various computer science departments as well as laboratories
around the world (Gerkey et al. 2003). We hope, that KERL can
increase interest in this great project.

3. KERL

KERL consists broadly of two major components: the linked-in
driver and several Erlang modules. Together they harness a simple
interface to the Player server. They were designed with the follow-
ing goals in mind.

Teachable — the amount of information students are required to
know in order to be able to start developing concurrent programs
using KERL should be minimal.

Maintainable — the time and effort required to install the library
should be small.

Featureful — even if a simplified interface for the beginners is
provided, KERL should be able to support all the features of Player.

Extensible — the code should be modular making it simple for
developers to extend KERL with additional features.

Portable — KERL should be usable on different platforms sup-
porting Erlang.

! http://playerstage.sourceforge.net/
2 http://www.activrobots.com/

34

Fast and Concurrent — KERL should be able to handle mul-
tiple robots with various devices without major performance prob-
lems; real-time performance is vital for robotic applications.

Open Source — KERL should avoid the use of any proprietary
technologies and encourage further development.

3.1 Wall Follower Example

Controlling a robot in KERL is very simple. The minimalistic ex-
ample in Listing 1 shows how to make a robot navigate around a
world following convex walls. Using two processes, one for con-
trolling the motors and another to detect the proximity of the walls,
the robot can be navigated successfully around a world. When the
collision detection process detects an obstacle, it passes a message
to the movement process. When this happens the movement pro-
cess will et the robot rotate until a message is passed from the col-
lision detection process telling it is safe to move forward again. The
robot being controlled in Stage using the example code is shown in
Figure 1.

-module(wallfollow).
-export ([start/0, movement/l, collision/21).
% Runs the wall follower with a single robot
start() -»>
init(rih:init(mrh:start(), 0)).
% Detects an error when initialising
init({error, Erxror}) ->
io:format("Error: “p~n", [Error));
% Spawns the collision and movement processes
init(Rid) ->
Pid = spawn{?MODULE, movement,
spawn { ?MODULE, collision,
Pid.

[Rid]),
[Pid, Rid]),

% Movement process
% Controls the robot’s movements
movement (Rid) ->
receive
{collision, true} ->
mvh:rotate (Rid,
{collision, false} ->
mvh:move (Rid, speed, 0.5)

speed, 10);

end,
movement (Rid) .

% Collision process

% Reads the lasers and checks for collisions

collision{(Pid, Rid) ->
% 360 laser results representing 180 degrees
{_, Results} = dvh:results{Rid, lasers),
Front = lists:sublist(Results, 90, 180),
is_collision{Pid, lists:min(Front)),
timer:sleep(50},
collision(Pid, Rid).

% A proximity check using the smallest laser
% measurment
is_collision(Pid, Min) when Min < 1 ->

Pid ! {collision, true};
is_collision(Pid, _) ->
Pid ! {collision, false}.

Listing 1. wallfollow.erl

‘We would like to emphasise the fact, that even this small exam-
ple already makes use of Erlang’s concurrent task philosophy and
not of the common sense-think-react approach used in robotic ap-
plications. The details of the robot initialisation and the movement
control will be reviewed later in this section.

Figure 1. Stage shows the trail of the robot being controlled by the
wall follower. The shaded area represents the robot’s laser sensor.

3.2 Architecture

An overview of the architecture can found on the Figure 2. Dashed
lines mark the parts of the KERL library — the low-level module
communicating to LibPlayerC through a linked-in driver and some
high-level modules providing a programming interface.

3.2.1 KERL Driver

The driver went into a few development cycles where we started
with a very simple driver and then built more complicated func-
tionality into it. The driver is modular to help with refactoring and
makes adding functionality simple. This also allows the same code
to be used to support other robotic libraries or even other languages
with little effort.

‘We had studied LibPlayerC and decided to utilise it rather than
to implement the Player protocol itself. This pragmatic decision
was based on the fact, that the understanding of the protocol in-
volved exploration of Player’s source code while the C library is
documented and referenced in the Player/Stage manual. Another
advantage of using LibPlayerC is the forward compatibility — in
case of a protocol update only the library needs to be replaced.
We also decided that this common library is known to many de-
velopers who may want to support KERL. A disadvantage of our
approach is the handling of concurrent TCP connections by the C
side regardless the better suitability of Erlang for this task. Another
disadvantage is the need for interfacing with the C library which
was very problematic to implement. Looking back, we think that
the implementation of the Player protocol directly in Erlang over
TCP would be more elegant than using LibPlayerC. However we
doubt if it is worth losing the mentioned advantages.

In order to integrate the library into Erlang we used Erlang’s
foreign function interface (FFI) known as Ports. A port appears to
Erlang as a normal process which can pass and receive messages.
Messages are passed to the C driver as a serial byte stream.

Using Erlang Interface (EI) Erlang terms are encoded from and
decoded into C primitives. We initially used this to determine which
function to call by passing a string that identified the function that

35

Process Process Process
A A A
ko B T T LT [T Terepe s i
E Y Y i
5 User Level Modules ’
L] »
H Module H
E Player E
H Mulil X
; o ;
: ;
: A A :
L] L}
: :
H A 4 Y y H
1] 1]
I Middleware Layer Modules -
i Device Helper Movement Helper Hobo;:’r;:;arliser .
: :
L]
H ;
| Muiti Robot Helper H
E A A H
: :
! A 4 \ 4 !
E Driver Module E
: 7 :
| P et e g e o S g Catpee et e Pt St e R it '
A 4
Erlang Linked-In Driver
Erlang Interface
A A A
grimuanmessensenonduesasnennng-f === =- == -funmmmemm e .=y
H Y y \ 4 H
" L]
H Player KERL Interface '
1 L]
L] L]
1 A A ;
[R NSRRI RSO AUPI HON :
4 A 4
LibPlayerC
A A A
A 4 Y A 4
Robot Robot Robot

Figure 2. KERL's architecture. Dashed lines show the components
we developed.

should be called. The function that was called would then decode
the rest of the passed terms.

Initialising a robot and its devices with Player is simplified by
our driver. For every initialised robot an instance of the Player client
is stored in a C++ Map located in shared memory. This approach
allows accessing every robot from different driver instances. Once
the connection has been made, our driver will then automatically
detect what devices are available and make them ready for use.
Each robot is associated with a unique hash which is used as the
key to the map and tracked by an Erlang module.

Sensor results are returned in the form of a list of variable
length. EI makes it easy to retum a fixed size list, but dealing
with dynamic sizes is a much more complicated issue. The data
is obtained from Player first and saved in an auxiliary array. A
sufficient amount of memory is then allocated for an Erlang list
term that is passed to Erlang. Failing to determine the exact amount
of needed memory would cause the driver to crash, Every value
passed is paired with an Erlang term type. The amount of required
memory can then be calculated from this.

Some performance issues were discovered while working with
multiple robots. For example, robot initialisation was slow because
it was done sequentially. We noticed that robots’ movements were
not synchronised which was caused by commands not being passed
in a timely manner. A concurrency problem in the Erlang driver
caused this performance bottleneck.

In order to solve this issue the synchronous driver was replaced
by an asynchronous one. There are no major differences between
the synchronous and the asynchronous driver; the program flow and
the memory management were the only parts modified. The asyn-
chronous driver helped to move KERL towards a more complete
and usable state and allowed us to refocus our attention on high-
level features.

3.2.2 Accessing the Driver from Erlang

While a linked-in driver is used to communicate with LibPlayerC,
the driver module in Erlang carries out the message handling. The
module locates the driver first. After the driver is loaded a process
is started which passes messages from KERL modules to the port
and vice versa.

The synchronous driver was able to be spawned multiple times
so our first approach was to spawn a new driver for each robot. A
message could be passed and the expected data would be returned
because the single driver could only do one task at a time. This
also allowed the driver itself to save the robot’s ID, which is the
key to the robot map stored in the driver. A few minor changes
were required to support the asynchronious driver. We modified the
driver o take the robot ID as a parameter and moved the handling
of robot IDs (o a separate part of KERL.

In order for the driver to work concurrently we needed to keep
track of the original caller. The best way achieve this was to pass
the caller’s process ID (PID) into the port driver instead of keeping
track of it internally. Only the process that spawned the instance
of port driver can pass messages to it, which is why we only run a
single driver module process.

Messages can be continually passed into the driver without
bigger impacts on performance. There were, however, performance
issues found when spawning large numbers of threads in a virtual
machine (like the one installed in Section 4).

3.2.3 High-level KERL

In this section we will place special emphasis on the high-level
KERL modules written in Erlang. The modules philosophy has to
differ from the driver since they are directly accessible by the user.

We divided the modules into two layers: the middleware layer
and the user layer. The middleware provides the required functions

36

to control robots, such as initialisation, sensor readings and move-
ment. These functions are then utilised at a higher level by the user
layer.

This approach has many benefits, e.g. the modularity and the
extensibility of the code. The modularity allows to provide a simple
interface that helps students to learn KERL quickly.

Middleware Layer The middleware layer consists of following
modules:

* Multiple Robot Helper (mrk) which provides control of multi-
ple robots via a single asynchronous driver instance,

* Robot Initialisation Helper (rik) which provides functions to
initialise robots,

* Movement Helper (mv#1) which provides simple functions for
robot control, such as movement and rotation,

* Device Helper (dvh) which allows controlling and reading data
from robot devices such as the laser sensors.

The best way to understand the usage is to consider an example:
connect to Player server on the local host, initialise a robot and
move it for one meter.

Driver = mrh:start().
Robot = rih:init(Driver, 0).
mvh:move (Robot, distance, 1).

The first command to be executed is the mrh: start () command
of the multiple robot helper module which starts the asynchronous
driver and retumns its PID. This is used to spawn a process for each
robot. All the middleware functions accept the PID of the robot
process. In order to initialise a robot weneed tocallrih:init ().
The last function is the mvh :move () function which moves the
robot for one meter in the simulated world.

Please note that the last call will unblock instantly while
the robot is moving since all the middleware functions are non-
blocking.

The middleware layer modules provide simple and modular ac-
cess to the main robot’s functions. It extends on the basic functions
to give more or less control depending on user’s requirements. For
example the Robot Initialisation Helper provides a very simple or a
highly configurable method of robot initialisation. A sequential and
concurrent method of initialising multiple robots is also provided.

User Layer The user layer provides abstractions and extended
functions needed for a comfortable process interaction and device
handling. It consists of two main modules:

* Player Module (player) which provides a simple interface to the
middleware functions,

* Comm Module (comm) which is used to manage a mailbox of
a single process,

* Multi Module (multi) which provides a framework of interpro-
cess communication.

Similarly to Armstrong’s book (2007), we provide a gentle in-
troduction to Erlang before moving towards concurrency concepts.
The player module is intended to be the first module which a user
encounters in KERL. It provides almost all the functions of all the
middleware layers in one module. An important feature is the PID
binding — once a robot has been initialised its PID is bound to the
process and the user will not have to remember the PID again.
As a careful reader may have noticed this simple approach has a
restriction: only one robot can be controlled by a process. While
all the movement functions in mvh are non-blocking, many of the
movement functions in player are artificially made to block until
the robot reach its position and stops. Let us consider the usage of

Figure 3. A group of four robots bouncing off the walls in a
diamond formation.

the module briefly; the selected example has the same functionality
as the previous one — initialise the robot and let it move for one
meter.

Driver = player:start{).
player:init(Driver, 0).
player:move(distance, 1).

We observe that the function signatures are shorter and more con-
venient to use since the user does not need to track the PID of the
robot anymore. The simplifications of the player module provide
an ad-hoc usage of KERL. The first working application can be
created very quickly by using it.

The comm module currently provides only a function called
comm:discard () which allow the process to discard undesired
messages from it’s mailbox. An example of usage of this function
is given in the case-study below.

The multi module is designed to provide a framework for inter-
process communications and extends the features of Erlang with
some useful functions. The main entity of the module is the dis-
patcher process which controls the group of processes associated
with the robots. The dispatcher process itself can be part of a pro-
cess group. This possibility allows the creation of hierarchical tree
structures of processes. We will show the usage of this function in
the next section.

The high-level modules have been designed to provide both
a simple and detailed user interface to KERL. The modules are
kept as simple and intuitive as possible to help teaching Erlang’s
programming philosophy.

3.24 A Case Study: Multibouncer

In order to illustrate the usage of user layer modules let us consider
the following task: a group of robots should move in a world while
staying in their starting formation. This behaviour is illustrated in
Figure 3.

All the robots share the same code, which allows any of them
to accept and give commands when a wall is sensed. They all need
to be commanded by the robot that senses a wall first in order to

37

main{Dispatcherid, Driver, Playerid) ->
% Initialise the robot
player:init(Driver, Playerid),

loop{Dispatcherid).

loop (Dispatcherid)
% Time-synchronisation
multi:barrier(Dispatcherid),
% Travel to a wall and rotate
travel (Dispatcherid),
% Infinite loop
loop (Dispatcherid) .

->

Listing 2. Listing main() and loop() functions.

avoid collisions. In this example called multibouncer we want to
demonstrate how the multi module is used to achieve this goal.

We use the player module for the robot control in this case
study. The usage of this user layer module will allow only one pro-
cess to control the robot in contrast to the wall follower example.
This reduces the complexity of dealing with individual devices al-
lowing us to concentrate on interprocess communication.

The first steps are: initialise the driver, initialise a dispatcher
process to handle the interprocess communication and at last,
spawn 4 control processes using the multi:createrobot ()
function.

Driver = player:start(),
Disp = multi:start(),
% Spawn four processes running the main function
% and give them the Dispatcher’s and Driver’'s PID
lists:map(fun(X) -> multi:create_robot(Disp,
?MODULE, main, [Disp, Driver, X]) end,
lists:seq(0,3,1)).

Let us take a more precise look at the main () function (refer to
Listing 2) which receives the PIDs of the dispatcher, the driver and
the ID of the Player robot controlled by it. The function remains in
a loop which is time-synchronised by using multi:barrier ()
function. The barrier will only unblock if all processes belonging
to the same group call it.

The travel () function sets the formation in motion until one
of the robots locates a wall, then the group stops and rotates so
that they can safely continue their journey. The basic structure of
this function is listed in Listing 3. Every robot senses the environ-
ment every 40ms and alerts the group if it detects an obstacle by
broadcasting a warning: all the robots stop when the wall is sensed.
The multi:broadcast () function allows a process to send
messages to all group members except itself. The originator of the
warning becomes the master, the recipients become slaves for the
current turn.

A naive implementation of the master () and slave () func-
tions relied on the time synchronisation of the robots’ rotations.
The master announced the start and the end of the rotation with a
broadcast. As expected due to the nature of the concurrent system
this approach failed — after the first rotation robots did not move
parallely anymore and therefore collided.

How can we remedy this problem? Our idea was to use the
robot’s odometer sensor which can be accessed by calling the
player:get_position() function. It returns the robot’s po-
sition in a local coordinate system with its starting point as the ori-
gin. Every robot saves its initial position (the one before calling the
travel ()) function. After a rotation the master then computes
the difference between the saved and the actual position which is
broadcasted. The slaves receive the position difference and add it
to their initial position. In order to cope better with the measure-
ment errors of the odometer only the differences are transferred.

travel (Dispatcherid)
receive
{_, {stop}}
player:stop(),
% Do the slave part
slave()
% Sense the wall every 40 ms
after 40 ->
% Read lasers
{_, Results} = player:results(lasers),
case lists:min(Results) < 1 of
% No obstacle found -> keep moving
false -»>
player:move({speed, 0.35),
travel (Dispatcherid);
% I see an obstacle!
true ->
% Alert the group and stop
multi:broadcast (Dispatcherid,
player:stop(),
% I am the master for the turn
master (Dispatcherid)

—->

->

{stop}),

end
end.

Listing 3. The travel() function without voting.

The modified functions resulted into a stable system where robots
were able to stay in formation.

However, this system was not perfect: occasionally, two of the
robots sensed the wall at the same time and both tried to rule the
group which resulted in chaos. In order to solve this problem the
multi:voting () function was introduced. The modified body
of the travel () function is listed in the Listing 4. Similarly to
a barrier the multi:vote () function needs to be called by all
the processes in the group in order to unblock. After unblocking
a randomly chosen PID of one of the participants (the processes
which set the participation flag) is returned. We also make use of
comm:discard () function in order to discard the duplicates of
the warning message sent by more the one potential masters. The
modified system works stable and completes the task.

We hope that the presented case study demonstrate the user level
functions provided by KERL. Describing all the features provided
by the modules is beyond the scope of this paper — please refer to
the documentation and tutorials packaged with KERL.

4. Infrastructure

Making KERL suitable for teaching means not only to have a stu-
dent friendly programming environment, but also (o help teaching
staff to establish this environment quickly. The provided infrastruc-
ture consists of:

Installation scripts We provide a script which installs only the
dependencies, required by Player/Stage, and configures an Ubuntu
Server creating a minimal distribution using 2.5GB space. This
distribution can be run as a virtual appliance inside of freeware
VMware Player supported by Windows. A second script automat-
ically installs Player/Stage for GNU/Linux distribution. This re-
duces the time consuming installation to 30 minutes. A tutorial on
Player/Stage installation and getting started with KERL is also pro-
vided. These components create an environment suitable for teach-
ing with KERL.

Live CD A modified Ubuntu Live CD with preinstalled Play-
er/Stage and KERL is available. It provides a possibility to try
KERL without installing anything on the hard drive.

38

travel (Dispatcherid) ->
receive
{_, {stop}} ->
player:stop(),
% I do not want to become a leader
multi:vote(Dispatcherid, false),
% Discard received duplicates
comm:discard({stop}),
% Do the slave part
slave()
% Sence the wall every 40 ms
after 40 ->
% Read lasers
{_, Results} = player:results(lasers),
case lists:min(Results) < 1 of
% No obstacle found -> keep moving
false ->
player:move (speed, 0.35},
travel (Dispatcherid) ;
% I see an obstacle!
true ->
% Alert the group and stop
multi:broadcast (Dispatcherid,
player:stop(),
% Discard received duplicates
comm:discard({stopl),
% Save my PID
MyPid = self (),
% Participate as a master-candidate
Leader = multi:vote(Dispatcherid, true),
case Leader of
MyPid ->
% I have won the election
master (Dispatcherid) ;
->
% I have lost the election
slave()

{stop}),

end
end
end.

Listing 4. The travel() function using voting.

Examples Several examples are included which show the usage
of different KERL modules. We provide examples of using simple,
as well as multiple robots communicating with each other. The
examples should allow an easy ad-hoc KERL learning.

Tutorials 'We made tutorials, explaining difficult examples, which
should help students to understand advantages and disadvantages
of several high-level techniques.

Assignment Idea The task for a lecture is to extend the presented
wall follower to cope with non-convex shapes. Additionally it can
be extended into a maze solver which which makes use of the right
hand rule or the Pledge algorithm.

5. Related Work

There is a lot of scope for using robotics as an effective vehicle
for teaching Computer Science, with a lot of research taking place
in this area (Blank 2006). However, complicated, incompatible
hardware and software, with high set up costs, make it difficult
to work effectively with robots. Also, universities often lack the
facilities to provide every student with a chance to work with
robots, especially when it comes to working in their own time.
Many of these problems cannot be resolved with physical
robotic hardware, therefore a growing interest in simulators has
been observed. Player/Stage has been found to fit successfully

into teaching applications (Anderson et al. 2007). The learning
curve is low due to having a very simple interface. Imperative lan-
guages like Java, usually taught during the first year, can be used
with Player/Stage. For this reason it is possible to focus more on
teaching robotic control algorithms and paradigms using a familiar
language.

An example of the usage of the Player/Stage is a concur-
rency module taught at the University of Kent which explored
programming robots using the Occam-7 language. The module
went through several phases before it matured. The Lego Mind-
storms NXT Transterpreter (Simpson et al. 2007) was used in the
early stages. It was, however, noticed that better documentation
and a more complete implementation was required for teaching
purposes. The latter problems led to a development of RoboDeb
— a VMware based Linux distribution with built in Player/Stage
(Jacobsen and Jadud 2007). Simulating robots enabled students to
control multiple robots what would have been impossible for the
discussed reasons.

Robotics is used in conjunction with functional languages for
education. Wakeling (2008) sees clear advantages in this problem-
based learning approach allowing students to learn Haskell in an
exciting manner. Therefore, he proposes to use a Haskell interpreter
on a Lego Mindstorms NXT robot. One of his proposed assess-
ments for the module is the building and programming of a line-
following robot. One of the disadvantages are the high setup ex-
penses, due to the high costs of the Lego Mindstorms kits. We do
not know if the interpreter is currently used by any university.

Erlang has been used for teaching highschool pupils inter-
ested in computer science at the University of Kiel, Germany
(Huch 2007). Multikara®, a program simulating ladybugs (sim-
plified robots) in a discrete space, was modified to support Erlang
as a programming interface. Erlang was preferred to finite state au-
tomate and Java, because the recursion concepts seemed to be more
intuitive for pupils. An example of this superiority is the fact that
many pupils were able to implement backtracking during their first
day. The overall results were very positive; pupils learned a new
functional programming concept very quickly with help of Kara’s
visual environment.

Erlang controlled robots can compete with traditional impera-
tive language based systems. In his work Santoro (2007) introduces
a framework for controlling autonomous mobile robots. The latter
provides various layers of control starting with hardware abstrac-
tion and ending with a complicated reasoning system. A robot con-
trolled by the framework achieved 14" place among more than 50
competitors at the Eurobot 2007 competition. In contrast to C/C++
based systems, the Erlang based framework allowed the rapid de-
velopment of reusable and maintainable code less prone to concur-
rency related problems. Unlike Santoro’s framework, our library
utilitises Player for hardware abstraction and does not currently
provide any intelligence. However, users can benefit from the same
advantages as described above while using KERL.

6. Further Work

KERL matured to a stable, usable, concurrent library which is
ready to use for teaching Erlang. However, further work and several
improvements of a different nature can be done.

The limited amount of time available for our project made it
impossible to implement all features we wanted. However, we tried
our best to make KERL easy to extend and hope it would not be a
big problem to add support of features Player offers like fiducial or
sonar sensors. We spent most of the development time working on
the C code needed for Erlang—Player communication. The project
would benefit from more user layer modules providing complex

3 http://www.swisseduc.ch/compscience/karatojava/multikara/

39

algorithms, e.g. navigation or robot recognition. The provided ex-
amples are very artificial and explain the usage of single functions
— more real-world related examples are substantial.

Better error handling in our Erlang modules would be apprecia-
ble. We would like to provide two types of error management. One
to be used by developers to provide details about what went wrong,
reporting back on states of the robots. A second type would be for
students, hiding problems from them, but attempting to seek so-
lutions intelligently. For example, if the robot connection was lost
then we would like to attempt a reconnection automatically.

Our original aim was to support Windows, Linux and OSX.
Our solution to support Windows by providing a VMware image
of Ubuntu resulted in speed issues. This was due to the virtual
machine not providing fast enough support for OpenGL required
by Stage. KERL itself can run on every platform supporting Erlang.

Some other features were considered but not implemented,
mostly because of technical limitations in Stage. Such a feature
is the spatial synchronisation, e.g. critical regions of the world or
object interaction used to provide more challenging tasks.

We hope the described features will be implemented in future.

7. Conclusions

Despite problems during the development, mostly related to the
poor documentation of both EI and Player, we have managed to
reach the level of functionality and stability required for a public
release. However, KERL’s potential has not yet been fully realised.
The modular structure of the library allows extension with minimal
effort, encouraging ongoing support from the open source commu-
nity.

KERL successfully connects the world of robotic applications
with a powerful concurrent language. By being simple and trans-
parent to the end user, it can be a valuable tool in teaching Erlang.

We hope that our work will be used to improve teaching of
functional languages, to spread Erlang in the educational domain
and to inspire the next generation of computer scientists. KERL
has yet to be tried and tested for teaching Erlang and we welcome
CS departments to use it. Let us know your opinion about it, as we
eagerly await your feedback.

Acknowledgments

We would like to thank Allen Brooker and Mathew Champ for
their contribution. Without their help the project would have not
been accomplished on time. We also thank Dr. Olaf Chitil for his
patience and supervision throughout the project.

References

Monica Anderson, Laurence Thaete, and Nathan Wiegand. Player/stage: A
unifying paradigm to improve robotics education delivery. In Robotics:
Science and Systems: Workshop on Research in Robots for Education,
2007.

Joe Armstrong. The development of Erlang. SIGPLAN Not., 32(8):196—
203, 1997. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/258949.
258967.

Joe Armstrong. Programming Erlang: Software for a Concurrent World.
Pragmatic Bookshelf, 2007. ISBN 193435600X, 9781934356005.

Douglas Blank. Robots make computer science personal. Commun. ACM,
49(12):25-27, 2006. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/
1183236.1183254.

Toby H.J. Collett, Bruce A. MacDonald, and Brian P. Gerkey. Player
2.0: Toward a practical robot programming framework. In Proc. of
the Australasian Conf. on Robotics and Automation (ACRA), Sydney,
Australia, Dec 2005.

Allan Fisher and Jane Margolis. Unlocking the clubhouse: the carnegie
mellon experience. SIGCSE Bull., 34(2):79-83, 2002. 1SSN 0097-8418.
doi: http:/doi.acm.org/10.1145/543812.543836.

B.P. Gerkey, R.T. Vaughan, K. Stoy, A, Howard, G.S. Sukhatme, and M.J.
Mataric. Most valuable player: a robot device server for distributed
control. In Intelligent Robots and Systems, 2001. Proceedings. 2001
IEEE/RSJ International Conference on, volume 3, pages 1226-1231
vol.3, 2001. doi: 10.1109/IR0OS.2001.977150.

Brian P. Gerkey, Richard T. Vaughan, and Andrew Howard. The play-
er/stage project: Tools for multi-robot and distributed sensor systems.
In In Proceedings of the 11th International Conference on Advanced
Robotics, pages 317-323, 2003.

Frank Huch. Learning programming with Erlang. In ERLANG '07: Pro-
ceedings of the 2007 SIGPLAN workshop on ERLANG Workshop, pages
93-99, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-675-2.
doi: http://doi.acm.org/10.1145/1292520.1292534.

Christian L. Jacobsen and Matthew C. Jadud. Concurrency, Robotics, and
RoboDeb. In Proceedings of AAAI Robotics and Education, Palo Alto,
CA, USA, March 2007. American Association for Artificial Intelligence.
URL http://www.cs.kent.ac.uk/pubs/2007/2875.

40

David A. Patterson. Restoring the popularity of computer science. Com-
mun. ACM, 48(9):25-28, 2005. ISSN 0001-0782. doi: http://doi.acm,
org/10.1145/1081992.1082011.

David A. Patterson. Computer science education in the 21st century.
Commun. ACM, 49(3):27-30, 2006. ISSN 0001-0782. doi: http://doi.
acm.org/10.1145/1118178.1118212,

Rick Rashid. Image crisis inspiring a new generation of computer scientists.
Commun. ACM, 51(7):33-34, 2008. ISSN 0001-0782. doi: http://doi.
acm.org/10.1145/1364782.1364793.

Corrado Santoro. An erlang framework for autonomous mobile robots.
In ERLANG '07: Proceedings of the 2007 SIGPLAN workshop on ER-
LANG Workshop, pages 85-92, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-675-2. doi: http://doi.acm.org/10.1145/1292520.1292533.

Jonathan Simpson, Christian L. Jacobsen, and Matthew C. Jadud. A Native
Transterpreter for the LEGO Mindstorms Rex. In Alistair A. McEwan,
Steve Schneider, Wilson Ifill, and Peter H. Welch, editors, Communi-
cating Process Architectures 2007, pages 339-348, 10S Press, Jul 2007.
ISBN 978-1-58603-767-3.

David Wakeling. A robot in every classroom: robots and functional pro-
gramming across the curriculum. In FDPE '08: Proceedings of the 2008
international workshop on Functional and declarative programming in
education, pages 51-60, New York, NY, USA, 2008. ACM. ISBN 978-
1-60558-068-5. doi: http://doi.acm.org/10.1145/1411260.1411268.

Development of a Distributed System Applied to Teaching and
Learning

Hugo Cortés ~ Ménica Garcia

Jorge Hernandez

Manuel Herndndez Esperanza Pérez-Cordoba

Erik Ramos *

Universidad Tecnoldgica de la Mixteca
{hugoe,mgarcia jahdezp,manuelhg, mapercor,erik } @mixteco.utm.mx

Abstract

The emergence of networked computers has originated new tech-
nologies for teaching and learning, particularly, the technology of
learning management systems. We have applied Erlang to deal with
the concurrent part of a distributed system to support teaching and
learning tasks. We have also employed declarative programming to-
gether with some formal tools to elaborate the specification and the
conceptual model of the system and some extreme programming
techniques to deal with some issues of software development. We
show how Erlang supports the transition from the specification to
the implementation, and the whole concurrent and computational
process of our distributed system.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages|: Concurrent, Distributed and Parallel Programming; H.5.3
[Information System]: Computer-supported cooperative work; K.3.1
[Computers and Education): Computers uses in Education—
Computer-assisted Instruction (CAT)

General Terms Erlang, Distributed Programming, Learning,
Functional Programming, Extreme Programming

Keywords Concurrency, Erlang, Passing Messages, CCS, UML,
Bloom’s Taxonomy

1. Introduction

In this paper we report an experience based on using Erlang to deal
with the concurrent part in the specification and a partial implemen-
tation of a distributed system. This distributed system is intended to
support some of the concurrent tasks of teaching and learning. With
this proposal we want to complement the traditional classroom en-
vironment through a computerized teaching-learning tool. We use
Erlang to help us in some concerns, including the fact that con-
current programming is complex by itself. Erlang ameliorates this
complexity by using built-in functions to establish communication

* Members of the research group Redes y Sistemas Distribuidos (Networks
and Distributed Systems), RESDI, Instituto de Electrénica y Computacidn,
Universidad Tecnolégica de la Mixteca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page, To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang 09, September 5, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-1-60558-507-9/09/09. . . $5.00

41

among processes via message-passing and by omitting shared re-
sources. In addition, Erlang is a functional programming language
with automatic processes management and built-in fault-tolerance
mechanisms. Erlang gave us a realistic prototype of our system in
a short time, hiding low-level implementation details, and allowing
us to concentrate on the logic of the system.

To implement our distributed system we experiment with a
method of software development: the combination of extreme
(Bec99) and declarative programming (Mac90; Bir98). When us-
ing extreme programming we attempt to produce code by invol-
ving programmers and customers from the beginning of a project.
Because Erlang code is so clear it can be seen as an ‘“‘executable
specification,” extreme programming acts as a method for rapid
prototyping. Departing from traditional techniques of rapid proto-
typing, the prototype is not disposable; instead, the prototype can
be enhanced in some aspects like fault-tolerance, improved in its
efficiency, and enriched with new characteristics.

In this sense, modeling is helpful for all phases of system devel-
opment: from establishing and expressing the specifications to sys-
tematically deriving a correct-by-construction implementation. As
asserted in (Bro07), when engineering software systems, the qual-
ity of the resulting product depends strictly on the quality of the
models used explicitly or implicitly in the engineering process. Pro-
totype information can also be commented and explained, and, by
taking advantage of the declarative parts of Erlang, the code of the
prototype can be modified following strict methods, like the trans-
formational or those based on refinement (BD77; PP96; Bro97).

We have also designed a formalized distributed architecture. Af-
ter proposing some commands we have detected actors executing
them. Thus, we specify our system from a pair of complementary
viewpoints: on the one hand, we model the action flow of activities
carried out for each actor by using the Calculus of Communicating
Systems (CCS); on the other hand, we model the external behavior
of each actor by using the use case model, a technique belonging
to the Unified Modeling Language (UML). We have divided the
specification and implementation of the system into complemen-
tary layers; these layers are illustrated in Fig. 1.

Specification

Natural

Erlang
support

Implementation

Figure 1. Our general methodology.

To manage complexity, our system has only one shared re-
source: evaluation tests, which are intended to be applied to bache-
lor students. This resource is planned to be shared by several teach-
ers, so that they can write or read common databases. To design our
tests we have used Bloom’s taxonomy. Each test incorporates some
skill evaluation according to this taxonomy. Next, we have formal-
ized a set of commands to interface with these tests. The interfaces
are intended to be distinct for the case of a teacher or a student.

This writing is organized as follows: In Section 2 we describe
Erlang as well as a software development methodology; in Section
3 we propose a distributed architecture and describe in detail the
case of a student process; In Sections 4 and 5 we describe our sys-
tem from two complementary viewpoints: internal and external. In
Section 6 we deal with tests. Finally, we present some conclusions
in Section 7.

2. Erlang: extreme and declarative programming

In this section, we give a succinct description of Erlang. Further
or more detailed information about Erlang can be found on the
Internet (Sit09b) or in the book (Arm07). This section also deals
with the advantages of applying extreme programming techniques
and declarative programming to a system like ours.

2.1 Erlang and concurrence

Erlang is a functional programming language oriented to concur-
rency. To support concurrency, Erlang is described as follows: An
Erlang node is an activation of a Erlang system. A process is a pro-
gram being executed on an Erlang node. A host is a computer ma-
chine hosting nodes. A distributed system consists of several hosts,
nodes and processes. In a distributed system based on message-
passing every communication among processes is based on mes-
sages. Erlang has two basic mechanisms to send or to receive mes-
sages: receive and send (written as the asymmetric binary op-
erator !). In Erlang, we can send or receive any valid term (even
a process). Messages are stored in mailboxes. A message is at-
tended in an asynchronous way when the messages matches a pat-
tern of reception. Erlang has also other characteristics to support
the construction of distributed systems: a fault-tolerant mechanism,
industrial capacity (many processes can be alive without a sensi-
ble decrement in the efficiency of the overall system), and asyn-
chronous communication. Moreover, Erlang has many libraries to
solve specific problems (from interfacing with other languages, in-
cluding Java, to managing databases), is open-source and excludes
an explicit treatment of share-resourcing, facilitating the reasoning
about the properties of a distributed system (San07).

In the part of functional programming, Erlang follows an eager
evaluation computational model. Erlang also has higher-order func-
tions, comprehension lists, and a module system; these characteris-
tics place Erlang within the mainstream of other well-matured and
well-crafted functional programming languages, such as Haskell
(Sit09c¢c) or Clean (Sit09a).

2.2 Extreme and Declarative Programming

We have used extreme programming methodology together with
Erlang because our customers are our teachers and students. Fur-
thermore, we are teachers (and, sometimes students) an so appli-
cation intended to support teaching/learning activities is within our
knowledge and direct experience. Moreover, our application is in-
tended to be a medium-sized one and our team is small; thus we
only want to apply lightweight formal methods.

Other reasons to adopt some techniques from extreme program-
ming are the following. We want not only review each other’s code
(which is highly valuable), but also to review to general design de-

42

cisions at specification level. Sharing high-level ideas along with
every stage of implementation is also a good idea, as well as rea-
sonably changing the specification on demand. In fact, a good spec-
ification should also be a good guide of the overall development
process; in our case, this is possible because Erlang code is close
to specification. We want to strengthen extreme programming with
formal methods, like stepwise refinement, refactoring, detailed doc-
umentation and transformational programming, or with techniques
taken from other methods of Software Engineering, such as UML.
Prototypes are seen as naive programs which must be enhanced and
developed to get final, efficient, and correct implementations.

To summarize, extreme programming is a useful lightweight
software development methodology, but this methodology must be
complemented with other useful practices of programming; partic-
ularly, with a good and topic-oriented programming language and
with techniques based on code and library reuse (where Erlang
stands out by its vast set of reusable OTP libraries). The main pur-
pose in using our tools is to establish whether the actual behavior of
the system is in agreement with its intended behavior. In developing
a complex distributed system of emergent interacting components,
it is important to be able to describe the behavior of the system in a
precise way at various levels of detail, and to analyze and to enrich
it on the basis of descriptions.

In this work, in fact, we try to use an eclectic collection of meth-
ods that work together such as transformational techniques (Par90),
mathematical models of concurrence (Mil89), and modeling lan-
guages (BR98)) having Erlang as a pivot. Erlang programs are the
acid-test of our ideas. Moreover, declarative programming should
be viewed as a good complement to formulate rapid prototyping
and transformational programming.

3. A basic instance of our model

In this section we describe some basic aspects of our architecture,
a classification of users, some examples of actions and events
attached to a student, and some steps to declare and implement a
student command. We also sketch the actions and events associated
with a teacher.

3.1 Basic architecture

To describe our basic architecture, we need the following termi-
nology. A server is a process in execution from a node. A client
is a process requiring the services or resources from the server. A
centralized distributed system is a distributed system having many
clients but only one server. A request is a message from the node
to the server. An answer is a message from the server (o the node.
Message reception is managed by mailboxes. A mailbox receives
messages. Message reception is asynchronous: the sender will not
wait for an answer from the receiver.

A configuration of a distributed system is a diagram showing
nodes and connections at a given time. This diagram describes the
essential components within a distributed system as well as the
current existent connections. These connections are shown through
continuous lines connecting nodes (in a Graph Theory sense), and
are called direct connections. In the configuration showed in Fig. 3,
clients are able to communicate each other in an indirect way: an
intermediate node is used. This type of communication channel
is indicated by a dashed line. Server S, in this case, works as a
receiver and transmitter of messages. Other tasks can be directly
implemented in the server, but this basic scheme allowed us to
begin our architecture.

Let S be a server and C1, Cy be clients. Suppose the server
S is activated at time to; from time to on, clients may open a
communication channel with the server (see Fig. 2). Once activated,
the server S is able to accept or reject requests formulated by the
clients. The most basic request formulated by a client to the server

C1 Ca

Figure 2, Clients connect to server at time ¢, with ¢ > to.

Figure 3. Clients communicate each other via an intermediate
node.

is connect. The most basic answers formulated by a server to one
request connect is either accept or reject. A request connect is
always done before an answer accept or reject.

Let us suppose that server .S accepts both requests formulated
by nodes C and Cs. The current distributed system is represented
in Fig. 2. In this figure, both clients have been accepted by the
server. Nodes execute client processes. These processes can be
accepted or rejected by the server.

Our model incorporates some functions for interacting with
users. Modern interfaces are based in Graphical User Interfaces
(GUIs) systems. Erlang has a basic GUI to do interface with hu-
mans. The package is named gs, a component of the OTP system.
To follow a disciplined and uniform architecture, interfaces should
be considered as processes. Given the Erlang capacity to create and
to control processes, this does not represent any problem. How-
ever, interfaces should be designed, developed and maintained quite
apart from the fundamental system. To achieve this goal, we pre-
fer to create a GUI process, and open communication channels be-
tween this and a client process, or between a GUI process and a
server process; see Fig. 4. This “separation of concerns” (Dij76)
is a ubiquitous and useful technique in developing programs. In
particular, we can extend our architecture by including final users
linked with the system via mobile devices.

Following this design, we would have a system like that of
Fig. 4. After activating the communication channels, the config-
uration given in Fig. 4 is seen like that of Fig. 5.

Graphical interfaces can also be considered to be final user
interfaces, not necessarily related to Erlang. User interfaces can
be implemented on a mobile device. We propose hybrid systems,
where Erlang is a process manager, but interfaces are perhaps
implemented using another programming language. Java and its
virtual machine is a good candidate, because implementations of
Java virtual machines on mobile devices are common right now.
The flow of messages between an Erlang node and a Java ME
virtual machine could be carried out through pipeline techniques
or through binary flow data (reduced to the minimum size). The
design we propose includes using Bluetooth or Wi-Fi technology,
in such a way that students can use mobile phones or PDAs as
learning tools.The most important part of this proposal is that the
topology of the distributed system is considered highly dynamic.

Following, we describe the basic architecture and model of our
distributed system. We have classified users into three basic types:
teachers, students, and an administrator. In the next section, we
describe some representative cases of clients, as well as some of
the functions or actions associated with these clients.

3.2 Clients

To continue, we should classify clients according to their charac-
teristics. This classification is described in the next.

43

GS

G5

| / \052

Figure 4. Activation of graphics processes.

Teachers: r-’t' '1_ I _’Ji_'

N = _K_ - ...//_ ‘]
Administrator: A——F§

. s / i _X_ =

Students: l_("_. _____ Cg_]

Figure 6. A classification of users.

First, to ensure level maintenance, our architecture only in-
cludes an administrator. Next, we consider a classification of nodes
as either students or teachers or administrators. In Fig. 6 the nodes
C1 and C} are classified as students, nodes 77 and 7% are classified
as teachers, and the node A is an administrator,

The system given in Fig. 6 can be improved to fault tolerance
as showed in Fig. 7 by using a link. This is a built-in mechanism
of Erlang to implement fault tolerance. From now on, we fill in this
skeleton to implement a distributed system of learning and teaching
where fault-tolerance is optional. Leamning is emphasized accord-
ing to the proper characteristics of students; teaching is emphasized
according the requirements and functions from the point of view of
teachers.

If the server accepts the connections with these users, this gen-
erates new system configurations (i.e., the topology connection is
dynamical). We represent a generated configuration in Fig. 7, where
we have added an administrator, and a basic mechanism to support
fault tolerance: we link a server S with a server S'. If the server S
fails, S” is ready to support all the system by using specific built-in
functions of Erlang.

A possible and ideal configuration of our distributed system
is given in Fig. 8, where MF denotes a mainframe computer (a
high capacity computer), DPC a desktop computer, MD a mobile
device, and the protocols of communication are represented by
LAN (local access networks), Wi-Fi and BT (to represent Wi-Fi and
Bluetooth wireless technology, respectively). Bluetooth and Wi-
Fi technologies can support the communication between mobile
devices and computers (HR07; Smi03) by using Java (Knu03;
KKO03).

3.3 Student actions and events

Having split the set of users of the system into three subsets, we
need to specify what functions or activities are available for each
subset. We should note that, in spite of having locally referential

Figure 7. A distributed system with a basic fault-tolerance system.

@ link

LAN
LAN
LAN
. wi-fi
wi-fi BT
@ @ @

Figure 8. An example of an ideal distributed system for teaching
and learning.

transparency, globally Erlang depends on the flow time when the
system is in performance. Users have a behavior described by a set
of actions carried out through events. For us, the interesting events
are those caused by interaction with the rest of the distributed
system, with processes as well as with other events. We think
of events in some temporal reasoning setting: events can have
associated either a logical clock or events can be embedded within
an absolute time.
Students have the following available activities:

1. The command subscribe: the student can try to belong to the
system; this request is sent to the server; after filling a form, the
answer from the server can be: accept or reject;

2. The command logon: A student can log on the system; server
tries to log the user on; answers are either You are logged or
You are not accepted;

3. The command test; an answer can be: Type of test?, and the
student can select a kind of test; later, the test is sent to the
student from the server; we propose two kind of tests: either
simulated or real; after the selection, the student receives a test
of the selected kind;

. The command do_test: A student does an test within the interval
(absolute time) [t1, t2], 21 < t2; time can be monitored from the
main server or directly from the local computer;

5. The command chat(friend): a student can chat with other
student named friend if she is not occupied (for example, if
she is not doing an test);

6. The command invitation(friend): this command is to request
communication with another student named friend. The an-
swer can be accept or reject;

7. The command cgroup(name) is a command to create a work
group: students can decide to join to this group; the leader of
this group is whomever initiated the creation of the group;

8. The command who reveals who is logged to the system, the
student can know who is available to chat (including other
students or teachers);

44

9. The command groups shows the current existent groups;

10. The command chat(teacher): a student can chat with teachers

it a teacher is available;

11. The command exit: a student can exit from the system, and

terminate his session;

12, The command resources: this command indicates the available

resources (notes, books, and so on);

13. The command history_resources: this command allows one to

obtain a history of the obtained resources;

14, The command update_resources accesses a local repository to

get the latest resources.

Some commands already implemented are shown in Fig. 9, with
a simple proposal of graphical interface. Further commands can
be available to students and teachers, but these commands can
be standard or local to the machine. We illustrate how to define
commands in the next subsection.

M Distributed System: Student int ,. & %

Solve Examn

WWIrite s

Figure 9. Student interface.

3.4 User-command definitions: student case

Now, we explain how to add a command to be used by a student.
First, we name the command. Suppose we want to obtain a home-
work assignment from the server. Supposing that the server is al-
ready activated and the studentId exists (and a studentId exists
within the system when the user has logged on the system, follow-
ing the use-case model and the CCS description).

The studentId process must receive a message as follows:

homework() ->
studentId ! homework.

The homework () function gives the homework of the current
day. If we want to get a homework with a distinct date, we would
add an additional time parameter. The homework () function is ei-
ther accessed directly from the prompt or indirectly by using a but-
ton, linked with the homework () function, within a graphical in-
terface. This is so because we allow (and encourage) to experiment
with prompt-based commands before giving its graphical versions.

From here, the studentId process notifies the request of the
homework to the server:

homework_request ->
{server, sv_node()} ! {self(), homework};

Where homework_request is a constant pattern (a word) within
a received construction (please note that we give only segments

"o

of code and incomplete definitions on purpose). Now, the server
receives the request, and calls a function named sv_homework:

receive
{From, homework_request} ->
sv_homework(From),

Depending on the requester identity, as filtered by the flow of
events, the server begins to dispatch the request.

sv_homework(From) ~>
Homework=homeworkR() ,
From ! {server, homework, Homework},
io:format ("Ready: Some homeworks were semt.n",[]).

8

Where homeworkR () is the available local resource. The user now
receives the homework, and from now on the homework is a data
available within her node.

{_FromServer, homework, Homework} -> %5E, response
io:format ("Homework: “w“n", [Homework]) ;

This finishes the construction of a new command. Optionally, if
we want to deal with a graphical interface to manage a homework
request, we proceed as follows. Suppose we have already activated
a graphical process. We add a button to the visible graphics layout:

gs:create (button,buttonGetHomework,mainWindow,
[{label, {text,"Get homework"}},{y,190},
{bg.blue},{fg,yellow}]),

We link the buttonGetHomework with a specific function; in this
case, with the homework () function.

R -

{gs, buttonGetHomework, click, _Data, _Args} ->
homework(),
loop_student();

The homework () function can now use the received data.

3.5 Teachers actions and events

Having described some student’s commands, we proceed to clar-
ify some teacher’s commands (to complement our treatment, see
(Vra04)). Teachers can use the following commands:

1. The command subscribe: the teacher can try to belong to the
system; this request is sent to the server; after filling a form, the
answer can be: accept or reject;

. The command logon: A teacher can log on the system; server
tries to log the user on; answers are either You are logged on
or You are not accepted;

. The command design_test: A teacher can collaboratively de-
sign a test;

. The command public(test) A teacher can publish a test;

. The command chat(friend) A teacher can chat with a friend (a
teacher or a student);

6. The command who reveals who is logged into the system;

. The command exit: a teacher can exit from the system, and
terminate his session;

. The command resources: this command indicates the available
resources (notes, books, and so on);

. With the command update_resources we access a local repos-
itory to get the latest available resources.

Server dispatches each request and coordinates the overall per-
formance. Examples of other server tasks would be: blocking com-
munication with the external world, logging (in a hidden and spe-
cial file) services used by students, and limiting the time for test
solving.

45

4. Formal specification at internal level

To characterize the internal flow of actions of each user, we use
CCS calculus (Mil89) (however, recognizing that the most seri-
ous restriction of CCS is that for any particular system its con-
nection topology is static, other proposals are possible, like that
in (Hen07)). To express the sequential activation of processes (fol-
lowing the guidelines given in (NR05; RNRCO06)); here we must
understand process definition as:

def

Proc

signalin.Proc1 + signalOut.Proc2

where the dot notation means sequence and the plus sign is an
exclusive choice. The bar over the signalOut indicates an output
signal; in contrast, signalln has no bar because it is a signal input.
Signals are generated by processes for synchronization purposes.
We differentiate between a signal and a process by inspecting the
first letter on the name, using initial lowercase letters for signals
and initial uppercase letters for processes. We may also include an

idle state as follows: Idle d§f|dle.Something.

We have a model consisting of three special processes: Admin,
Student and Teacher. The process Admin coordinates the overall
system by allowing or blocking other processes. The process Admin
will generate (spawn) other processes when needed by user inter-
action. The processes Teacher and Student directly interact with a
human, teacher or student. Any time Student or Teacher needs a
system resource, it will be managed by Admin. This approach takes
into account the Erlang capacity to generate processes as well as its
message-passing technology. Besides, we can use a socket to con-
nect to non-Erlang processes (transmitting data in a binary format).

The process Student models activities of a student, and hides
communication interchanges issues. In Fig. 10 we show the Student
definition. An analogous model holds for Teacher and Admin. The
process Admin coordinates education activities, accepts online and
offline user activities, and controls the accesses and privileges.
The startEnvironment and startinterface both open communication
channels with the final user. The clients could be portable devices
with low resources such as PDAs or a mobile phones, via interme-
diate nodes. We can think of a course activity as a set of constrained
events by time and space.

As you can read on lines 4 and 5 in the text in Fig. 10, Bad and
NoMoreAttempts processes are in charge of conducting system’s
behaviour on the event of wrong conditions. These processes trig-
ger timerOut or maxCount signals to match with the Login process.
So we may think of Counter and Clock as independent processes
that communicate with Login as stated in lines 14 and 18 through
Counter | Login | Clock. As a partial example of how we can imple-
ment on Erlang the login process we use the existence of a studentd
as a guard for the execution of a valid command on the system. For
sake of simplicity, we show the case of a good login and how the
logoff, test and who commands need a prior validation of the user
through the sequential reading of the validCommand function.

validCommand (Id,Command) ->

case whereis(Id) of

undefined ->
io:format("You are not logged on“n",[]);
_ -> Id ! Command

end.
logoff() ->

validCommand (studentId,logoff).

test() ->
validCommand(studentId,test).

who() ->
validCommand (studentId,who).

17
18

19

20

=

32
33

34
35

36
37
38

4u
41

Student dgf Student.Login

Login dgf

RegAdminAut(user,pswd).(Ok +
Bad +

NoMoreAttempts +
NoGoodClosing.Recover +
cancel.Student)

def
Recover =
LoadStudentLastGoodState.startEnv(statelnfo)

def

goodLogin.LoadStudentPreferences.StartMenu +
goodLogin.LoadStudentLastActivity.startEnv(lastActivity)

Ok

def

timerOut.LockStudentAccount +
wrongUser.increaseCounter.Login +
wrongPasswd.increaseCounter.Login

Bad

NoMoreAttempts dgf

maxCount.LockStudentAccount

LoadStudentlLastGoodState dgf

GetAdminConnection(statelnfo).SearchStudentLog(statelnfo)

LoadStudentPreferences dgf
StartStudentCommModel.CheckSchedule.
JoinCourse.SendSyncinfo

StartMenu dgf

LoadOptions.Startinterface

LoadStudentLastActivity o
SearchStudentLog(lastActivity)

StartEnv(x) dgf
InitProperState(x).Startinterface

GetAdminConnection(command) CE

RequestSafeMode.SendCommand(command).GetSystemResponse

SearchStudentlLog(x) def
GetAdminConnection(x).QueryDataBase(studentld, x)

StartStudentCommModel dgf

LoadGrouplnfo(courseAtendantList). SetPrivilegies.StartCommSetMenu

CheckSchedule %

GetAdminConnection(schedulelnfo).
queryDataBase(studentld, schedulelnfo).
LoadProperActivity

) def
JoinCourse =
RequestCourseServConnection(courseSelection).LoadCourseMaterial

Figure 10. A student characterization via a flow of actions.

5. Formal specification at external level

Having described how to deal with successions of actions, now we
present some techniques belonging to UML to specify the external
behavior of the system, including extension handling.

To specify the system behavior from the external point of view,
we have applied the technique called use-case model (Coc97) of the
Unified Modeling Language (UML). This model represents the in-

46

teraction among distinct actors (students, teachers or administrator)
as well as the interaction of the actors with the system under design.
A use-case model describes the characteristics of the system under
design, without any compromise with implementation details, al-
though in our concurrent application, we intermix some implemen-
tation and specification stages. Extreme programming methodol-
ogy suggests to write user stories for the same purpose as use cases;
but use cases and user stories are not the same specification tech-
nique: first, user stories are written with the format of about three
sentences of text; second, user stories are written by a user; further
user stories are used to define time estimates for the release plan-
ning and, finally, they are also used instead of a large requirement
document. However, user stories can fail to serve as reliable docu-
mentation of the system and can also be difficult to scale them to
large projects. Instead of applying user stories for specifying the
system external behavior, we have adopted use cases. Moreover,
use cases allow us to have a basis for estimating, scheduling, and
validating programming efforts. To summarize, we have adopted
the use-case model technique as a replacement of the user stories
proposed by the extreme programming methodology.

The adopted use-case model is basically a text where an actor is
endowed with actions and events. Each action can be modelled by a
command, whereas an event modifies the current system state. We
must build a use case for each activity carried out by an actor, to
create an overview of the functions that the system should provide
to the users. The Fig. 11 shows the dressed' use case specification
for the login command when it is executed by a user of the system;
other cases are omitted for sake of brevity. To summarize, we
have focused on extension handling analysis through use cases for
detecting rare, irregular or extreme behaviour of the system.

Extension handling is a major contribution of the use-case spec-
ification to the system: extension handling enforces the planning of
all alternative ways or potential abnormal events that can occur dur-
ing the execution of the main successful scenario, thus capturing
bad behaviors and so improving system robustness. With respect
to exception handling, though Erlang has a let-it-crash philosophy,
we are cautious and our proposal is to be preventive.

An alternative view of this use-case specification can be built
using UML sequence diagrams; in this way, sequence diagrams de-
scribe the logic of events between an actor and the system in a vi-
sual style, enabling both documentation of the flow of messages as
well as validation of Erlang’s logic of message passing. Sequence
diagrams show the use-case main successful scenario, plus one or
more alternative scenarios of the extensions. Currently, the use-case
model is helping us to detect, in a user-oriented way, some strange
misbehaviour of the system.

Due to the multidisciplinary character of our project, the next
sections deal with educational concerns and the case of the design
and the implementation of tests.

6. Designing and managing tests

Now we focus our attention on the only collaborative part we
currently have: tests; in (JMREO2) there are related concerns.
Sometimes, teachers have the experience of doing boring, tir-
ing and repetitive tasks, like revising homework and grading tests:
these tasks can be achieved by an computerized wizard. Tests can
have several formats: from multiple-selection (Mar(08) to free text
(Cra01). One point to take into account in our system is the degree
of desirable automation, but without neglecting the pedagogical is-
sues. A well-designed test should go along with a good evaluation
method: Students are impeded from cheating, and their evaluations
are fast and precisely delivered. Except in courses requiring an ad
hoc resources classroom (perhaps where, for example, the evalu-

I Dressed case: A detailed use case, following the UML terminology.

26
27

28
29
30
31

32
33

Use Case: User login.
Brief Description: User proceeds to log into the system.
Scope: System.
Level: User goal.
Preconditions: User must previously be registered
(through the subseribe command).
Post-conditions: User is successfully
authenticated and log into the system.
Main Successful Scenario:
1.User introduces data for authentication by the system.
2.8ystem notifies the user that he or she has been accepted.
3.8ystem loads user preferences.
Extensions:
2a System detects that the authentication is incorrect:
2a.1 System notifies to the user that has been rejected.
2a.2 System logs the event.

2b System detects that the user has try a number n of
unsuccessful attempts:
2b.1 System blocks user account.
2b.2 System logs the event.

2c System detects that the time for entering data has expired:
2c.1 System blocks user account,
2¢.2 System logs the event.

2d System detects that the user last session was not correctly closed:
2d.1 System loads the last good state.

2e System detects that the user is already login:
2e.1 System notifies to the user that he or she has been rejected.

2f User cancels the authentication procedure:
2f.1 System notifies the user that the authentication procedure
has been canceled.
2f.2 User returns to step 1 (line 8).

3a System detects that there are pending activities from the last
session of user:

3a.1 System loads the pending activities from the last session of user.

Figure 11. Use case specification for the login command.

ation of projects could hardly be done by computers), multiple-
choice tests would be a good source of designing and automation.

Each evaluation question should associate with an acquired
skill: knowledge, comprehension, application, analysis, synthesis,
and evaluation, as described by Bloom’s taxonomy (Bar08). This
taxonomy categorizes levels of abstraction of questions, and gives
us general guidelines in the formulation of tests. The taxonomy also
provides a useful framework to categorize test questions, supposing
teachers ask questions with respect to particular or mixed levels.
Finally, the taxonomy is officially recognized in México and is used
in some universities abroad (SitUV09). Tests and questions are the
topic of the following two subsections.

6.1 Elements of tests

We can divide tests into two kinds: either action-research or real.
An action-research test diagnoses the state of students’ proficiency,
giving to student a major preparation and to teachers valuable
pieces of pedagogical information. But these tests do not contribute
to the final evaluation. In contrast, we can find real tests. Grades
obtained in these tests by students give us an accumulative final
evaluation (perhaps like an average).

Managing tests is one task of a learning content management
system. Now we describe some commands for managing tests, as
a possible set of tools for authoring and re-using or re-orienting
content:

1. createTest(subject,testType,testNum,time). This com-
mand creates the test container within a database. The com-

47

mand has the following paramelters: subject declares the sub-
ject or topic of the test; testType, the type of test, either au-
tomatic or not; testNum is an identifier of the test; and, finally,
time, a parameter given by the teacher to solve the test. Be-
cause the automatic nature of the system, we prefer questions
oriented to be answered without supervision’s teacher.

2. openTest(identifier). This command allows us to open the
container of a test.

3. searchQuestion(subject, type,level). With this command
we look for questions to be inserted into the test. The subject
parameter is the topic of the test; type is the type of the ques-
tion, and level is the assigned level according to Bloom’s tax-
onomy. The command returns the properties and the identifier
of a question.

4. selectQuestion(id, score). This command selects the ques-
tion that will be add to test. This command requests an id (iden-
tifier) question and a score assigned by the teacher.

5. deleteQuestion(id. This command erases the question of a test
container. Only the test creator would erase questions.

6. checkup(container, group). This is a broadcasting mes-
sage, and the command sends a test to be checked by a spe-
cialized team.

7. closeTest. This closes the test container for both checkup or
application. After issuing this command, the test can no longer
be modified.

8. application(container, group,date). This command sched-
ules the application of a test for a specific group or student on
the specified date.

9. scoring. The command calculates and shows the grade obtained
for the group or people that took the test.

10. supervision(container,student). This command opens the

answers container for a supervised evaluation test.

11. grade(question,score). This command returns the chosen
value to the answer valuated by score. This command requires

the previous opening of a student test.

12. total(). This command calculates and shows the obtained grade

by the student in a supervised evaluation test.

13. grade(container, student). This command shows the ob-

tained grade for a specific student.

In the following subsection we give some details about test design-
ing.

6.2

Tests consist of questions. We create a database of questions. The
following list of commands returns accept or reject within our
system mainly by integrity constraints of the database (other rea-
sons to accept or reject a question can be defined in the corre-
spondent use-case specification but are omitted). These commands,
similarly to the previous ones, are intended to be accesible only to
teachers. The level levelBloon is given according to Bloom’s tax-
onomy.

Questions

1. questionTF (question,answer,levelBloom). This com-
mand stores True or False questions.

2. questionMO (question,answer,
disl,dis2,dis3,levelBloom). This com-
mand stores a multiple option question. Typically, four pos-
sible options are representative of this kind of question. At least
three options are named distracters and only one is named the
answer: the correct answer.

e = N T N R

3. questionSA (question,answerComplement ,levelBloom).
This command stores a question to be complemented with a
short answer; typically, a word or a number,

Tests under supervision are created by the command
questions (template). This command creates and stores tem-
plates used for open questions.

Other commands to insert information into the database are the
following.

1. cSubject(subject) allows the creation of a new theme. It re-
turns accept or reject.

. oSubject(subject) opens the question database for searching
or updating. It returns accept or reject.

3. close(subject) closes an open database.

Currently we are using a simple database to maintain a list of
users logged on and textual representations of tests, by using ETS
and DETS (direct OTP tools for database management), but a
database like Mnesia would give us a good support for this part
of our proposal. Through ODBC we can interact with some other
databases, like PostgreSQL? and MySQL?>.

Erlang is not only suitable to deal with the distributed part of our
system, but also to deal with common programming tasks from a
declarative view. We exemplify this point with the implementation
of tests. Suppose we need a test consisting of a finite succesion of
optional questions. Each time the teacher selects only two, three
or four options (the recommended real questions should have four
options). The student must answer the question by selecting one
option. The pattern of the test includes a solution when a teacher
accesses it. The student receives only the question and the possible
answers. The server node stores the complete test, including the
correct answers.

To illustrate our example from the point of view of the server,
we show the following test template, where each question has the
following structure:

question(Question,optionsN(Options)),sol(Solution).

where optionsN can be options2 with only two options or options3
or optionséfor three or four options, respectively.

testTemplateServer() ->

testExample (comics, %Topic

{

question("Which is the color of Homer Simpson?",
options3("Yellow","Green","Blue"),s0l1(1)),

question("What animal is Donald?",
options4("A mouse", "A duck","A dog","A pig"),sol(2)),

question("What is the favourite meal of Bugs Bunny?",
options2("Artichokes", "Carriots"),sol(2))

n.

A student learning the comics topic receives the test as follows:

testExampleStudent () ->

question("Which is the color of Homer Simpson?",
option3("Yellow","Green","Blue")),
question("What animal is Donald?",
option4("A mouse", "A duck","A dog","A pig")),
question("What is the favourite meal of Bugs Bunny?",
option2("Artichokes", "Carriots"))

1.

In a graphical format, the first question of this test looks like
Fig.12. When the student clicks over a button, the student’s answer

2
3

wWw.postgresql.org

www.mysql.com

48

is stored. After the final answer, the student is notified of his or her
grade by the server.

We use the following raw interface to indicate the obtained
grade, where the empty list indicates that the test has finished:

loop_answers(Ls, [1) ~>
Lsl = lists:reverse(Ls),
io:format("Got Ls="w"n", [Ls1]),
Ls2 = sols(testExampleStudent()),
io:format("Original="w"n", [Ls2]),
Total=match(Lsl,sols(testExampleStudent())),
io:format("Points: “w™n", [Totall),
L=length(sols(testExampleStudent())),
Result=Total#*(10/L),
io:format("Grade result: ~“w™n",[Result]).

The simple algorithm to calculate the grade is as follows: We
extract the solutions from the test, and compare them with those
given from the student. After normalizing, the number of successful
comparisons divided by the total number of questions gives us the
final grade. Other statistical pieces of information can be obtained
if we give qualitative characteristics to the questions.

Which is the cofor of Hemer Simpson?

Yellow |

",.__jafen -
. Blue

Figure 12. Test interface.

7. Conclusions

In this work we have tried to extend the traditional classroom envi-
ronment through a computerized teaching-learning tool. New edu-
cational technologies, software support, and hardware are constan-
tly emerging, and they present unique opportunities for the applica-
tion of teaching and learning (WMO8). Educational activity is the
result of a distributed and concurrent system performed by seve-
ral actors collaborating together. In a methodological setting, we
have tried to complement extreme programming by using declara-
tive programming and Erlang. Two key points make Erlang a good
tool for experimenting with the development of such a computer-
ized educational system: First, concurrent events and collaborating
activities involve a heavy communication load. And second, as a
methodology we have chosen extreme programming to show that
functional languages can fit the restrictions associated with this
methodology. Trying to maximize comprehension and design of
the system, we have used several tools supporting our system. In
our efforts to produce the system’s specifications we have relied on
some formal methods like CCS, and on some specification tech-
niques like UML designs.

Some decisions are still being specified and implemented by
our research group to produce a system that incorporates our expe-
rience as both teachers and students. This report shows that some
fine tuning is necessary to accomplish the goals we may want to be
included in the final design, but the tools we have chosen to work

with are flexible enough to make changes that will not have nega-
tive repercussions.

7.1 Future work

Currently, our system is operative although incomplete with respect
to the actual specification. The parts already specified are valuable
documentation to guide the implementation. At the same time,
the parts already implemented contribute to improvement of the
specification. The actual system has been used only by our team.
As future work, we hope the system will be used by students within
our university.

We have selected Erlang because this programming language
incorporates many facilities for doing concurrent programming. We
have identified concurrence as a fundamental part of a learning-
teaching system like ours. In the short term, our goal is to integrate
Erlang and some other languages heavily used by industrial produc-
ers of mobile devices. Also, another goal is to link the semantics of
UML and CCS, adapting it to our case. Other goals include: to in-
corporate multimedia tools, to connect Erlang and other languages,
to use Erlang to control mobile devices, and to attach specialized
databases to the system. We would also be happy for incorporat-
ing Artificial Intelligence in our system: eventually, teachers would
be completely independent of human supervision, automatized and
“smarts,” or we could provide an administrator as a rational agent.
A major research on the important topic of shared-resources man-
agement is necessary. Finally, we are interested in applying our
framework to develop ubiquitous systems seen as distributed sys-
tems specified through UML and CCS, and implemented through
Erlang.

Acknowledgements

We thank reviewers of the Seven and Eight Erlang Workshops for
their valuable comments. We also thank Universidad Tecnolégica
de la Mixteca (UTM) for giving us a nice working environment
for doing research. Manuel Herndndez thanks Consejo Nacional
de Ciencia y Tecnologia (CONACYT).

References

[ArmQ7] Joe Armstrong. Programming Erlang. Software for a concur-
rent world. The Pragmatic Programmers, 2007.

[Bar08] William M. Bart. Encyclopedia of Educational Psychology,
chapter Bloom’s taxonomy of educational objectives, pages
110-111. SAGE Publications, 2008.

[BD77] Rod M. Burstall and John Darlington. A transformation system
for developing recursive programs. Journal of the Association
Jor Computing Machinery, 24(1):44-67, January 1977.

[Bec99] Kent Beck. Extreme Programming Explained. Embrace
change. Addison-Wesley Professional, 1999.

[Bir98] Richard Bird. An introduction to functional programming using
Haskell. Prentice-Hall, second edition, 1998.

[BRIO8] Grady Booch and James Rumbaugh. The Unified Modeling
Language User Guide. Addison-Wesley, 1998.

[Bro97] Manfred Broy. Compositional refinement of interactive sys-
tems. Journal of the ACM, 44(6):850-891, November 1997.

[Bro07] Manfred Broy. From formal methods” to system modeling. In
Cliff B. Jones, Zhiming Liu, and Jim Woodcock, editors, For-
mal Methods and Hybrid Real-Time Systems, Lectures Notes in
Computer Science, pages 24-44. Springer-Verlag, 2007.

[Coc97] Alistair Cockburn. Goals and use cases. JOOP, 10(5):35-40,
1997.

[Cra01] Edward F. Crawley. Creating the CDIO Syllabus, a universal
terplate for engineering education. Vol. 3, 32nd Annual Fron-
tiers in Education (FIE’02), ASEE/IEEE, November 2002.

49

[Dij76] Edger W. Dijsktra. A discipline of programming. Prentice-Hall,
1976.

[HenO7] Matthew Hennesy. A distributed Pi-Calculus.
University Press, 2007.

[HRO7] Albert S. Huang and Larry Rudolph. Bluetooth Essentials for
Programmers. Cambridge University Press, 2007.

[JMREO2] Mike Joy, Boris Muzykantskii, Simon Rawles, and Michael
Evans. An infrastructure for web-based computer-assisted
learning. J. Educ. Resour. Comput., 2(4):4, 2002,

[KKO03] James Keogh and James Edward Keogh. J2ME: The Complete
Reference. McGraw-Hill/Osbome, 2003.

[Knu03] Jonathan Knudsen. Wireless Java: Developing with J2ME.
Apress, 2003.

[Mac90] Bruce J. MacLennan. Functional programming. Practice and
theory. Addison-Wesley, 1990.

[Mar08] Kim Marshall. The use of multiple choice options in law, In
Reggie Kwan, Robert Fox, F.T. Chan, and Philip Sang, ed-
itors, Enhancing Learning Through Technology. Research on
emerging technologies and pedagogies, pages 263-276. Scien-
tific World, 2008.

[Mil89] Robin Milner. Communication and concurrency. Prentice-Hall,
1989.

[NRO5] Thomas Noll and Chanchal Kumar Roy. Modeling Erlang in the
Pi-Calculus. In ERLANG '05: Proceedings of the 2005 ACM
SIGPLAN workshop on Erlang, pages 72-77, New York, NY,
USA, 2005. ACM.

[Par90] Helmut Partsch. Specification and Transformation of Pro-
grams. Texts and Monographs in Computer Science. Springer-
Verlag, 1990.

[PP96] Alberto Pettorossi and Maurizio Proietti. Rules and Strategies
for Transforming Functional and Logic Programs. ACM Com-
puting Surveys, 28(2):360-414, 1996.

[RNRC06] Chanchal Kumar Roy, Thomas Noll, Banani Roy, and James R.
Cordy. Towards automatic verification of Erlang programs by
m-calculus translation. In ERLANG '06: Proceedings of the
2006 ACM SIGPLAN workshop on Erlang, pages 38-50, New
York, NY, USA, 2006. ACM.

[San07] Nicola Santoro. Design and Analysis of Distributed Algorithms.
Wiley-Interscience, 2007.

[Sit09a] Clean Site. www.cs.kun.nl/"clean, 2009.
[SitUV09] Bloom’s taxonomy and University of Victoria Web Site.

http://www.coun.uvic.ca/learning/exams/
blooms-taxonomy.html, 2009

[Sit09b] Erlang Site. www.erlang.org, 2009.
[Sit09c] Haskell Site. www.haskell.org, 2009.

[Smi03] Raymond Smith. Wi-Fi Home Networking. McGraw-Hill/TAB
Electronics, 2003.

[Vra04] Charambolos Vrasidas. Issues of Pedagogy and Design in e-
learnnig Systems. In SAC2004, Nicosia, Cyprus, March 2004,
ACM.

[WMOS8] Leonard Webster and David Murphy. Enhancing learning
through technology: Challenges and responses. In Reggie
Kwan, Robert Fox, E.T. Chan, and Philip Sang, editors, Enhanc-
ing Learning Through Technology. Research on emerging tech-
nologies and pedagogies, pages 1-16. Scientific World, 2008.

Cambridge

ECT: An Object-Oriented Extension to Erlang

Gabor Fehér

Budapest University of Technology and Economics
Budapest, Hungary
feherga®@gmail.com

Abstract

To structure the code of an Erlang program, one can split it into
modules. There are also available some basic data structures: lists,
records and tuples. However, there are no fully functional classes
that encapsulate data and functionality, and can be extended with
inheritance. We think these features could promote code reuse in
certain cases, therefore we decided to extend the language with
object-oriented capabilities. A strong evidence of the usability of
this is the fact that part of the program itself was rewritten using our
newly created language elements, and the new version was simpler
and cleaner than the original Erlang one.

Our main goals were to preserve the single-assignment nature
of Erlang and to keep method-call and value-access times constant.
It was also a priority to make the extension easily installable, to
reach as much developers as possible. For this, we avoided changes
in the Erlang compiler itself. Instead, we created the extension as
a parse transformation’. In our implementation a class is a module
that contain the methods, and a record type whose instances are the
object instances. Both methods and fields can be inherited.

We also examined the currently available other object-oriented
extensions for Erlang, and compared them with ours. Our imple-
mentation has strong advantages, but it also lacks some features.
Compatibility with records and speed are the main advantages. In
this paper — among describing and comparing our extension — we
also show the possible ways of adding the missing features.

Categories and Subject Descriptors 1D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Design, Languages

Keywords Object Oriented Programming, Erlang

1. Introduction

Computer programs can be large and complex. However the
amount of complexity a programmer can handle is limited. To
bridge this gap, several techniques emerged to structure programs
into isolated segments, so that programmers can deal with them
one by one. Structuring has two aspects: structuring the data the
program works on, and structuring the instructions of the program.

! The Erlang compiler interface for lan guage extensions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’09, September 5, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-1-60558-507-9/09/09. .. $10.00

51

Andras G. Békés

Ericsson Hungary
Budapest, Hungary
andras.gyorgy.bekes®@ericsson.com

Lifespan of programs might be long as well, and during that
maintenance is required. This is especially important in the field
where Erlang was developed. Reusing the already written segments
can decrease the cost of maintenance, and also the number of
programming faults. If the segments have been used before, it is
less likely that they contain errors. One of the advantages of Object
Oriented Programming (OOP in the sequel) is that it promotes code
reuse.

The possibilities of segmenting a program are determined by
the programming language. In the Erlang community, there is a
constant debate about whether Erlang should be extended with fea-
tures of OOP, or Erlang is capable of providing all the advantages
of OOP, as is. We think that although most advantages of OOP can
be reached in pure Erlang, some aspects of OOP are laborious to
achieve. We have developed an OOP framework as an extension to
Erlang, and in this paper we discuss our extension.

1.1 Object-oriented programming and Erlang

Object-oriented programming is a way to structure a program.
In an object-oriented system, the segments of the program are
objects. An object encapsulates data and functionality. Objects are
grouped into classes, where instances of a class have the same data
structures and functionality, but might have different values in their
data structures. Classes can be extended with data structures or
functionality to create new classes. An important aspect of OOP
languages is polymorphism, so that objects of an extended class
can be used in any place where objects of the original class can
be used. This makes reusing code written in objects possible. We
highlight some costs and benefits of OOP based on (kssenbiick
1993):

The advantages and disadvantages are:

+ If a suitable algorithm works with an object class, it can be used
with extended objects and this way even its behaviour can be
altered.

+ If a program contains suitable classes, new functionality can be
added to the program without the modification of these classes,
just by extending them.

- Programmers need to learn applying the concepts of classes,
inheritance and polymorphism.

- Programmers need to learn when to use classes and when not to
use them.

- Inefficiency: run-time overhead and storage-overhead.

Erlang has some features that provide the main advantages
of OOP, however more work from the programmer is needed to
achieve these. With the introduction of objects our aim is to gen-
eralise and simplify these solutions. It is important to note, what
is not our intention: we are not saying that the use of objects will
always improve a program written in Erlang. This can be stated in

parallel with the processes of Concurrency-Oriented Programming.
Processes, when used carelessly, provide no benefits: e.g. evaluat-
ing each function call in a new process is too resource-hungry. In
this paper we will not deal with the questions of object-oriented de-
sign. Most of the examples will be so short that they can not show
the benefits of using objects.

1.2 The outline of the paper

The paper is structured as follows.

In Section 2 we describe the available object-oriented exten-
sions to Erlang and OO-related techniques offered by Erlang. In
Section 3 we specify the exact objectives for our object-oriented
system and describe the new language elements in detail. In Sec-
tion 4 we show the architecture of the implemented system. We
measured the speed of the implemented system and other object-
oriented systems for Erlang. In Section 5 we describe the process
of measurement and present the results. In Section 7 we conclude
the paper and show possible development directions.

2. Related work

We collected and tested the following other object-oriented, and
semi-object-oriented approaches for Erlang. We found that there
are basically two approaches.

According to the first approach, an object is represented by a
data structure that contains field values and type information. The
methods of the object are functions and the type information is used
to find these functions.

In the second case, not only a data-structure, but one or more
Erlang processes represent the instance of a class. In their general
pattern, when the client creates such an object, a process is created
and its PID is handed to the client. This newly created process
contains the field values of the object, and executes the loop waiting
for messages from clients. A client then can send a message to
query or update a field or to call a method of the object. As a
response, the server sends the value back, updates the field, calls
the method or terminates the loop.

Both approaches have advantages and disadvantages. Our
framework tries to make switching from one approach to the other
easier: The source code of a class can be used for creating data-
based objects and process-based objects as well.

2.1 Programming objects with funs

In Erlang, just like in other functional languages, functions can
be stored in data structures. One can store the methods of an
object (funs) in a data structure, together with the fields of the
object. Users of an object need to call the methods through these
funs. This makes inheritance and overriding possible: an object
of an inherited class can have a fun at the same place of its data
structure as its superclass, but either with the same functionality or
with overridden functionality. The most serious problem with this
approach is that it makes code upgrade almost impossible®.

2.2 Behaviours and parameterized modules

The behaviour concept of Erlang provides similar functionality to
interfaces of OOP. An Erlang behaviour simply defines a set of
functions. A module that wants to implement a behaviour (a call-
back module) has to define these functions. In practice, behaviours
are used just like virtual methods of OOP. The behaviour mod-
ule defines an abstract class, while the callback module defines the
functionality that was omitted from the behaviour module.
Behaviours use the fact that functions can be called from a
module that’s name is only known at runtime. The name of the

ZProcesses holding funs from an old module are killed when the old
module is replaced.

52

callback module is passed as argument to the functions of the
behaviour module, and the functions of the callback module are
called from the behaviour module, when needed.

Behaviours do not provide methods for inheritance and for
structuring data.

Parameterized modules ({arlsson 2043) address these issues.
They are already built into the Erlang distribution, but not yet
officially documented, and programmers are not recommended to
use them. Therefore it is possible that their behaviour changes from
release to release. Because of this, we are describing the behaviour
we experienced in Erlang/OTP R12B-4, released at 3rd September,
2008.

Parameterized modules provide a way to define parameters for
a module. Functions of such a module can not be called directly.
Instead, an instance of the module should be initialised with pa-
rameter values, and functions of that instance can be called. These
parameter values are then implicitly available for the functions.

Erlang modules also support virtual function inheritance
(Curlsson 2007), but this is also an unofficial new feature. Exported
functions in a base module that are not implemented in the exten-
sion module are inherited to the extension module. Field inheri-
tance is also available, but not fully supported.

The problem is because of the fact that fields of objects are
stored in a nested structure. Let us assume that we have three
classes: beta extends alpha and gamma extends beta, moreover
alpha has two fields, and the other classes both have one. The fol-
lowing examples show the underlying data structure of an instance
of gamma:

AlphaInstance = {alpha,FieldiVal,Field2Val}
BetaInstance = {beta,Alphalnstance,Field3Val}
Gammalnstance = {gamma,Betalnstance,Field4Val}

In the first line, alpha is just like a record. However, the sub-
sequent two module instances contain the fields of superclasses
in nested instances. This implies that fields can only be accessed
or updated if we know which base module defines them. An-
other problem is that a function in a base class has only access
to a “stripped-down” module instance: it only sees that part of the
nested structure that corresponds to that module. This has trouble-
some consequences. First, the base module can not invoke the over-
ridden implementation of its functions, however this is the desired
behaviour in object-oriented languages.

Another consequence is a problem with the update of fields in
base modules. By update, we mean creating a copy of the module
instance, which has some of its fields changed. The problem is
that a field update in the base module must be implemented in ail
extension modules, because the inherited function from the base
module can not see and copy those data parts of the instance, which
belong to an extended module. The diagram in Figure 1 shows the
case when a function in a base class updates some variables and
returns the module/object instance.

Parameterized Desired behaviour:
modules:

;:g_a_l_'rgma . gamma gamma

i beta Possible more : Possible more
alpha alpha metainformation metainformation
X, Y X', Y]

[z s Z,U W Z, U

L | |
u

Figure 1. Field updating with Parameterized modules

Apart from implementing functions involving field updates in
all extension modules, we could not find other ways to work this
problem around.

2.3 eXAT Objects

eXAT (Srefano and Sunfore) (Santoro 2604) is an experimental
agent-programming platform written in Erlang. It provides object-
oriented programming features for the programming of agents. It
supports virtual methods and methods can be extended by adding
new clauses (before the inherited ones). Each object runs in sepa-
rate processes. Fields are declared per instance, the first time they
are given a value (much like a dictionary, mapping field names to
values). eXAT classes can be defined as modules. According to
(eX AT wehsile), every instance of an object has two associated Er-
lang processes: one of them serves the method call requests, and
the other the field manipulation requests. This implies that every
function call and field manipulation involves inter-process message
sending. For the programmer, this is hidden: the methods and fields
of an object can be accessed through function calls.

2.4 WOOPER: Wrapper for OOP in Erlang

WOOPER (Boudeville) is also a process-per-object class imple-
mentation for Erlang. It supports virtual methods and methods can
be extended by adding new clauses (before the inherited ones). For
fields, it uses a similar directory approach like eXAT. An advan-
tage over eXAT is the possibility of multiple inheritance. A pos-
sible disadvantage is that the programmer needs to send messages
for method calling by hand. However this can be useful in certain
cases, for example, more than one method calls can be initiated
at a time, and the the response messages can be processed asyn-
chronously in a batch. To create a class, its main parameters — ex-
ported methods, constructor parameters, etc. — should be defined as
Erlang macros. Macros should also be used in methods to perform
some basic tasks. These are the getting and setting of field values,
and specifying the return value of the method.

3. The Erlang Class Transformation Extension —
Specification

In this section we describe the object-oriented extension we created
for Erlang. Its name is ECT, which stands for Erlang Class Trans-
formation. In the first subsection we state the goals for ECT. In the
consecutive subsections we describe our design decisions that sat-
isfy these goals and their results: the new syntax elements and their
semantics.

3.1 Motivation and design goals

In the following list, we summarise the necessary features for our
object-oriented system. We also highlight some goals that have
been motivated by the related works.

e field® inheritance
o Method inheritance and virtual methods

¢ Polymorphism — if class B is a descendant of A, than it should
be possible to use instances of B any place where A can be used.

e Uniform access to fields — inherited paramelerised modules
showed that it is inconvenient when access of a field depends
on the class where it was defined.

31n other terminologies these are called attributes, or the state of the object.
We will use the term field, because we build objects on records that have
fields. The other reason is that in the Erlang terminology, attributes usually
refer to module attributes.

53

® Single-assignment behaviour of fields. — one problem with
the object-as-process paradigm is that it breaks the single-
assignment nature of Erlang. We wanted to integrate objects
into Erlang as smooth as possible: objects are immutable, just
like records.

® Provide objects-as-processes optionally. For certain uses, sup-
porting this is useful (see (Stefano wind Suntore; Santore 2004;
Bowdeville)).

® Only O(1) runtime overhead. Our measurements show that the
method-call times of certain OOP systems increase with the
depth of inheritance. We should keep this constant.

e All this should be achieved without modifying the Erlang com-
piler.

We don’t implement the following possible features:

e Single-clause overriding. We show that it can be simulated
easily by the use of full-method overriding.

e Multiple inheritance. According to section 8.6 of (Missenbiick
13493), multiple inheritance has several issues, and can be left
out from an object-oriented language.

3.2 Overview

To create a system satisfying the above requirements, we have
chosen an Erlang technology named Parse Transformation. See
page erl_id_trans of (Filung Muanual).

There are two options to extend a language with a parse trans-
formation. One can use certain syntactically correct elements, and
give them new semantics by the transformation. Second, one can
find syntactic elements that are invalid for some reason, but ac-
cepted by the parser, and give semantics to them. An example for
the former will be pattern-matching with objects, and method-calls
for the latter.

When using our framework, the programmers write their pro-
grams using our extended syntax, and the parse transformation gen-
erates code that is standard Erlang. Behind the scenes, for each
class a record type is generated, and each object instance is rep-
resented by a record instance. These records contain all the fields
of the class, including the inherited ones. The name of the record
type is the same as the module that implements the methods of the
class. The methods are ordinary Erlang functions. They receive the
object instance record in their first parameter. Methods are virtual,
and the function of the method is always called from the module
with the most specific implementation of the method.

The novel feature of our approach is that object instances can be
pattern-matched, and the pattern can also be a pattern of an ancestor
class. There is no such feature in other OO extensions of Erlang.

3.2.1 Source files

Our extension distinguishes two types of modules. Class mod-
ules begin with -class(classname) instead of the origi-
nal -module(modulename), and each such module defines
exactly one class. Client modules begin with the usual
-module (modulename). They differ from class modules in that
they do not define classes, only use them. They are more similar to
normal Erlang modules. Class-aware pattern matching, expressions
and method calls are available in both module types.

Modules of both types use the same parse transformation, which
detects the -class attribute and performs appropriate — class mod-
ule or client module — transformations. Software developers using
this system do not need to know about this parse transformation:
the preferred way of using it is to include the ect.hrl header file
in each module.

L T I~ SRV TP TR TR

3.3 Defining a class

A class is a bundle of a module and a record having the same name.
Some of the functions of the module are the methods of the class,
and all of the fields of the record are the fields of the class. This
means that a module defines exactly one class. When defining a
class, the -module (modulename) attribute at the beginning of the
file should be replaced with -class(classname). This can be fol-
lowed by three possible types of optional class specific attributes:

7SUPERCLASS (superclass_name) Defines the superclass by its
name.

?FIELDS (fieldl valuel, field2, ...) Fields of the
class in the same format as in record definitions. After trans-
formation, they will be added to a record, which has the same
name as the class. Its definition will also contain the fields of
the superclasses and an extra field for administration.

?METHODS ([methodname/arity, ...]) List of methods in the
usual Erlang export syntax. (Methods are always automatically
exported.)

The transformer generates a new record type and creates an
includeable header file with the definition of it, and with some
other administrative attributes that are necessary for compilation
of client modules. It has the same name as the module, but with
a .class.hrl extension. This header file must be included in a
module if one wants to use class-aware pattern matching for the
class (see later).

Let us see an example of a simple class definition:

-include_lib("ect/include/ect.hrl").

-class(classl).
PFIELDS({fieldi,field2 2,field3}).
?METHODS ([method1/2, method2/2]).

-export ([motmethod/1]).

method1(This, X) ->

{This, X+1}.
method2(This, a) ->
13
method2(This, b) ->
2.
notmethod(A) ->
A+,

In the above code, we defined a class with three fields. Field
field2 has a default value. There are also two methods: they are
almost the same as ordinary functions. The only difference is that
non-method functions — such as notmethod/2, which is not in the
7METHOD list — will not be inherited to subclasses, while methods
will be. This class has no superclass, therefore it will not inherit
any methods.

When calling a method of an object, the object is automatically
passed as the first parameter. It is analogous to this pointers in
OOP languages. The name of the first parameter can be any valid
variable name, however we will refer it by the name This, and
we recommend the use of this name. Variables are immutable in
Erlang, therefore if a method changes the value of a field, it must
return the updated This object. Method method1/2 shows the
preferred way to return the modified object along with a return
value. Note that the fields of the object are not used in this example.

3.4 Method calls and -inheritance

To understand method overriding, we must first discuss our method
calling mechanism. When an object — an instance of a class — has a

54

o =

A W -

(5]

method, it can be called from any module using our transformation,
with the following syntax:

-include("classl.class.hrl").
%% create a class instance:
Instance #classname{initialisers,
exactly like for records},

%% method call:
{Instancel}:methodname (Param2, Param3, ...)

Class instances can be created like record instances. This is not
surprising since we represent classes with records.
A method call' is expanded into the following expression:

(element (1, Instance)):methodname(Instance,
Param2,

Param3, ...)

This shows that the object is always passed as the first parameter of
the method. From the method’s point of view, this is the equivalent
of this pointer. Ordinary function calls can play the role of static
method calls.

The other thing to notice here is that the module name of the
called method is determined by the first element of the tuple of
the class, which is in fact its name. It is extracted at runtime to
ensure that having an object, method calls are always directed to
the module of its most specific class. The methods implemented
in the module of that class are called therefore directly. But this
does not make it possible to call a method implemented in one
of the superclasses — an inherited method. To achieve this, a so
called stub function is generated in the module of the class for each
inherited method. The name and arity of this function is the same
as the inherited methods’ , but it has only one clause with only one
expression: a call to the inherited method. Consider the following
example: let us suppose that area/2 is a method in a class named
geometry:

area(This, {rect, W, H}) when W > 0, H > 0 ->
W+H;

area(This, {square, A}) when 4 > 0 ->
A*A.

And also let us suppose that another class named xgeometry
extends this class, and does not define a method with name and
arity of area/2. However, users of this class should be able to
call {0bj}:area/2 on its instances, therefore the following stub
is generated:

area(Argl, Arg2) ->
geometry:area(Argl, Arg2).

This stub calls the implementation. Creating stubs is optimised
in the sense that always the direct implementation is called.
For example if a third class would extend xgeometry and
does not implement area/2, its stub method would call directly
geometry:area/2 and not xgeometry:area/2. Thus we limit
the number extra function-calls per method call to one. We used
guards and patterns in geometry:area/2 to emphasise that no
guards and patterns are copied to the stub. Choosing the clause re-
mains the responsibility of the implementing class.

4The value of the {Instance} expression can never be a valid module
name, but this construct is accepted by the parser. We use this syntax to
denote a method call.

M oA T M B e b -

W o T o B e R =

T T NV R N TR S

3.5 Defining a subclass

In the following example we extend class1 to class2.

-include("classl.class.hrl").

-class(class2).
7SUPERCLASS (classl) .
PFIELDS({x, y, z}).
?METHODS ([method2/2]) .

method2(_, _) -> ok.

It is essential to include the header file of the superclass, because
that contains all necessary information about it.
First, let us see the generated source code:

-module(clags2).
~export ([method1/2,method2/2]) .
-include("classl.class.hrl").
-include("class2.class.hrl").
method2(_, _) ->
ok.
methodl(Var2, Vari) ->
classl:method1{(Var2, Varl).

As the code shows, a stub function is generated for method1/2, be-
cause it must be available through the call of class2:method1/2,
since it is inherited. No stub is generated for method2/2, since
its implementation in class2 overrides the implementation in
classli.

It is time to examine the generated header file as well:

-include_lib("/ect/include/ect.hrl").
-record(class2,{’_types’ = {classi,class2},
fieldl,
field2 = 2,
field3,
X, ¥, 2Z}).
-classlevel ({class2,2}).
-vmt ({class2, [{methodl,2,class1},
{method?2,2,class2}]1}).

The role of the different things are the following:

e The class2 record contains the fields of both class1 and
class2. The new fields are always appended at the end, in
the same order as defined in the ?FIELDS directive of the erl
file. This is an unambiguous representation, because we do not
support multiple inheritance.

Altribute -classlevel and the record field _types are used
for O(1) time runtime type checking. (See section 3.8.)

The attribute vmt® stores for each method, which is the most
specific class that implements it. Methods are represented by
their names and arities. This information will be used when
compiling a subclass of class2. It makes possible to create
stubs that redirect in one step to the implementation functions,
instead of calling through a chain of stubs.

The vmt for a class can be generated from its methods, and the
vmt of the superclass.

3.6 Method inheritance

An important principle of OOP is the principle of substitutability.
It says that if A is a subclass of B, then instances of B can be used
in any place where instances of A can be used. By usage, we mean
method calls and field manipulation. Field manipulation is a more

5 virtual method table

55

& W K-

complex matter and will be discussed in the next section. As for
method calls, the principle is followed, because a subclass always
inherits all the methods of the superclass.

The following example demonstrates possible method-call sce-
narios. It also introduces a new syntax element for method calls:
calling a method of the superclass. Note that in this simplified
source code, all functions are methods.

% extract of classl.erl
methodl(This) -> 2.

method2(This) -> {This}:method1().
method3(This) -> method1(This).

% extract of class2.erl
?SUPERCLASS (classl).
methodl(This) -> {{This}}:methodi()+40.

This example introduces the following new syntax:

{{Instance}}:methodname (Arg2, Arg3, ...)

It can not be used in client modules, only in such class modules
that have a superclass. The meaning is: “call the method named
methodname in the superclass of the current class (and not in the
superclass of Instance)”.

The key point in this example is method1. We demonstrate the
issues of method-calls on it. For this, let us suppose that we have an
instance of class1 named 01, and an instance of class2 named
02. There are six possible calls:

{O1):method1() is dirceted 0 clasel :methodl (01).

{O1}:method2() is directed to classi:method2(01). The call in
its body is directed to class1:method1(01).

{O1}:method3() is directed to class1:method3(01). The call in
its body is directed to class1:method1(01).

{O02}:method1() is directed to class2:method1(01),
because it overrides classl:method1/2. It calls
classi:methodl1(01), and adds 40 to its return value.

{02}:method2() is directed to classi:method2(01), because
it is an inherited method. The call inside it is directed to
class2:method1(01), because it is overridden. This latter is
a desired behaviour, and can be utilised for example to create
easily extendable algorithms.

{O1}:method3() is directed to class1:method3(01), because it
is an inherited method. However, the call inside it is always di-
rected to class1:method1(01), because the ordinary (static)
function-call syntax is used.

Now let us return to the syntax of superclass-calls. The imple-
mented one is:

‘{{Instance}}:methodname(Arg2, Arg3, ...) |

And an alternative one is:

J?SUPERCLASS:methodname(Instance, Arg2, Arg3, ...) I

The alternative one stresses better that the destination of the call is
static — it is the superclass. However, the implemented one empha-
sizes better that this is a method-call of an object.

3.6.1 Overriding a single clause

In eXAT, it is possible to override the behaviour of a method
by adding new clauses before the clauses of the method of the
superclass(2.3). There is no such feature in ECT, however it is easy
to program such overriding:

-class(beta).
?SUPERCLASS (alpha) .
?METHODS ([m/2]) .

m(Patternl,Pattern2) when Guard -> do_something(...)
o/ m(This, X) ->

7 % call implementation of superclass.

% {{This}}:fact(This, X).

3.7 Field manipulation

The following example recalls the possible ways of record field
manipulation in Erlang:

-record(example, {a, b, c}).
demo () ->
% instance creation:
X = #example{b = 6},
% field extraction (with pattern match):
#example{a = A, b = B} = X,
% field update:
Y = X#example{a = 1, b = 2},
% single field extraction expression:
10 C = Yi#example.c,

W @ N B W o —

The important thing here is that all operations explicitly state the
name of the record. When a record pattern match, single field
extraction or record update is executed, it is checked whether the
input value is a valid record instance. This type check passes if two
conditions are met:

e The input value is a tuple with the correct size (number of
record fields + 1)

¢ and the first field of the tuple is the record name.

However, similar operations on objects should behave such a
way that instances of any descendant class of a superclass can be
matched and updated with the type of the superclass. The following
example shows what should work:

1|%...definition of classa and a descendant class classb
2| demo () ->

3 % instance creatiomn:

4 X = #classb{b = 6},

5 % field extraction (using own class):

6 #classb{a = A1, b = B1} = X,

7 % field extraction (using superclass):

8

9

t#tclassafa = At, b = B1} = X,
% field update (using own class):
10 X1 = Xi#tclassb{a = 1, b = 2},
11 % field update (using superclass):
12 X1 = X#classa{a = 1, b = 2},
13 % single field extraction (using own class):
14 C1 = X#classb.c,
15 % single field extraction (using superclass):
16 Cl1 = X#classa.c,

Lines 6, 10 and 14 work with the standard record operations. Lines
8, 12 and 16 would fail with standard record operations, but should
work in ECT.

There is no easy way to turn off type-checking of records’.
However switching type checking completely off would have an
undesired side-effect: it would became possible to access a field of a
class with the pattern of an unrelated class. For a correct behaviour,
we need a type check that answers the following question: “Is X an

S For single-field extractions, it can be turned off with compiler option
no_strict_record_tests

56

instance of class Y or one of its descendants?” The implementation
of this check is discussed in section 3.8.

In the previous example we showed class-operations with the
same syntax as record-operations. Objects are records with an extra
field, so the only difference is the method of type-checking. How-
ever it is not obvious that using the same syntax is the best choice.
We have two options:

Use a new syntax — a new syntax that the parser accepts, but was
not legal in Erlang. An example for this is
obj#classname{fieldl = Patternl,...}
for patterns, and
{Instance}#classname{fieldl = Valuel,...}
for field-updating expressions.

Extend record syntax — the semantics of the current record-
syntax can be extended: record manipulations behave ordinar-
ily when the stated name is the name of a record, but behave
according to class-semantics when the stated name is the name
of a class. The parse transformer should know the set of class-
definitions, locate all record-manipulating constructs and trans-
form those that work on classes.

Until a point in the development, we planned to create a syntax
that differs from record manipulation for these behaviours, but
according to the following arguments, we have changed the design.

Possible arguments about having the same syntax for classes as
records:

- Misunderstandable, because the same expressions has a different
meaning.

+ The meaning is different, but strongly related to the original:
“Check the type of an entity and take/update a field of it”. This
makes the usage intuitive.

+ Simpler source code: easier to learn and understand.

+ In common imperative languages like C++ and C# record/struct
and object fields are accessed the same way. There are examples
where only one construct exists for the role of records and
classes: classes in Java and records in Oberon.

Therefore we have chosen to implement field manipulations
for objects with record syntax. To emphasise the differences of
object field-handling in the following texts, we will distinguish
the patterns and expressions when they deal with classes from any
other patterns or expressions by the terms: class-patterns and class-
expressions.

3.8 Type checking

The current implementation transforms a record-pattern or -
expression, if and only if the stated record type is the type of a
known class. Known classes in a module are the included classes
and the current class if the module is class module. The gener-
ated code does the type checking instead of the built-in record
type check. All the field extractions and updates are decomposed
into code using the following Erlang guards and BIFs: element/2,
setelement/3, tuple_size/1. The begin-end construct is also
used.

Before any object-field manipulation, the class of the object will
be checked, like the type is checked for record instances. This can
be done in O(1) time, with the following rule(hiBssenbick 194 2):
the class of object O is subclass or equal to the class C if and only
if O.types|C.classlevel] = C, where

e O.types is an array containing the classes of O from the most
general to the most specific. The most general superclass is at
index 1, and the last element is the most specific class of O.

L

e C.classlevel is the depth of C in the class hierarchy. In other
words, this is the number of superclasses + 1.

It is easy to see that C' can only appear at the C.classlevelth
position in the array of any object. Our objects carry the types
array as a tuple in their _types field. This is the second field in the
tuple of the object.

The formula can be rewritten as a guard:

}ClassName =:= element(ClassLevel, element(2, Object)) |

or as a pattern match:

|ClassName = element(ClassLevel, element(2, Object)) __1

As we mentioned above, the _types record-field contains the
names of the superclasses and the class of Object. This informa-
tion is in fact the property of the class of Object. We store it per
object, just like the record name is stored per record instance.

Note that in the above code piece, ClassSize, ClassLevel
and ClassName are written as Erlang variables, but in fact all of
them are known at compile-time, and are literal constants in the
generated code. The value of ClassName is the stated name — the
name after the hash-mark (#classname). The level and size for the
stated class can be extracted at compile-time from the header file
of the class.

Generated source code examples after this point will be
written as if there would be a BIF for the previous guards, named
is_object(0bject, ClassName).The name choice is based on
the similarity to Erlang BIF is_record(Record, Name). When
it appears in a guard, it stands for

ClassName =:= element(ClassLevel, element(2, Object)).
When it appears as an expression, it stands for
ClassName = element(ClassLevel, element(2, Object)).

3.9 Query expressions
A query expression extracts one field from an object.

Expression#classname.field _]

is converted to

begin
X1 = Expression,
is_object (X1, classname),
element (NNN, X1)

end

where NNN is a constant number, representing the position of
field in class classname. First, the expression is evaluated and
stored into the variable X1, this is to avoid evaluation more than
once. After that, a type check is done, which when fails, causes
a runtime error. The result of the third expression is the field
in question. Naturally, Expression can also contain class field
queries, therefore they are converted recursively if needed. An
example for a nested query expression can be found in (Fohé
200%).

The name of the variable X1 is generated by the transforma-
tion. In the current implementation, to minimise the risk of name
clashes, these variables in fact named _CCTRANS_1, _CCTRANS_2,
etc. For better readability, we use X1, X2, etc. in this text.

3.10 Update expressions

Update expressions create a new object from an existing one,
changing some fields of it. The existing object, and the new field
values can of course be results of expressions. So

Expression#classname{
fieldl = ValueExpri,
field2 = ValueExpr2

is converted to

begin
X1 = Expression,
is_object(X1, classname),
X2 = ValueExprl, X3 = ValueExpr2,
setelement (NNN1, setelement(NNN2, X1, X3), X2)

end

NNN1 and NNN2 are the positions of fieldl and field2, respec-
tively. After the type-check, all the fields are evaluated. According
to section 3.5 of (Friang Fiiiciency Cuids), the Erlang compiler op-
timises setelement calls when there are no other function-calls,
or access to the tuple between them, and the indices are variable
literals in descending order. This optimisation causes that only one
copy of X1 is made during the setelement chain, instead of mak-
ing one copy per one setelement call. The values are evaluated
before the setelement chain to trigger this optimisation. The or-
der of the calls is also rearranged to update fields in descending
order.

Due to the use of begin-end blocks, nesting is also possi-
ble here. So an expression of a field can contain further class-
expressions.

3.11 Pattern-matches
A pattern-match expression has the following form:

|Pattern = Expression J

If a pattern is (or contains) a class-pattern, the pattern-match is
converted, as in the following example:

‘#classi{fieldl = 5, field2 = B} = Obj

is transformed to

begin
X0 = Obj,
s_object (X0, classl)
5 = element (3, X0),
B = element(4, X0),
X0

end

® Line 2 binds a variable to the matched object. The matched ob-
ject is used several times in the next lines. If it is an expression,
it is important to evaluate it only once.

e Line 3 is the type-check.

® Line 4 and 5 test the value of fieldl and field2 with a pattern-
match.

® Line 6 sets the result of the begin-end to the value what the
pattern-match would have.

More examples of complex pattern matches can be found in
(ehdy 2008%).
3.12 Patterns in clause heads

Besides pattern match expressions, patterns show up in clause-
based constructs (case, try-catch and receive expressions, functions

and funs). These patterns need to be handled differently than pat-
tern matches. In the following subsections, we describe some of the
interesting issues.

We must consider that:

¢ Any value-tests derived from the class-pattern must be placed
in the guard, to maintain correct program behaviour, which is:
skipping to the next clause instead of raising a runtime error on
match failure.

o It is not possible to assign values to variables in the guard.

These imply that the class-patterns must be split into two parts: a
value-testing, which goes into the guard, and a variable assignment,
which goes into the beginning of the body. Luckily, every pattern
can be converted into a single-variable pattern plus a guard and
variable assignments in the body. In the following subsections we
describe each case to consider when doing this transformation.

3.12.1 An unbound variable in a pattern

An unbound variable means that its value is to be determined by
the pattern-match; in case it is in a class-pattern, it means that its
value will be extracted from the object, against which the pattern
is matched. (If it is not in a class-pattern, the transformation keeps
it untouched.) What is done is the following: class-patterns in the
head are substituted with variables, a type-check is added to the
guard, and the values are extracted at the beginning of the body:

clausedemol (A = {_, #classi{field2 = B}}, C)
when C > 6 ->
A+B+C;

w b

is transformed to

clausedemol (A = {_,X0}, C)
when is_object(X0, classl), C > 5 ->
B = element(4, X0),
A+B+C;

T

3.12.2 Constants in the pattern

When the pattern contains constant expressions, they can not be
checked in the body, because then the match-failure will cause a
runtime error, instead of the desired behaviour which is to step to
the next clause of the function. The solution is to do the check in
the guard:

clausedemo1 (
A = {_, #classl{field2 = B, field3 = xyzl}},
C) when C < 5 ->
A+ B+ C;

Bow N —

is transformed to

clausedemoi(d = {_,X1}, ©)

1

1 when

1 is_object (X1, classl),
4 xyz =:= element(5, X1),
5 C <5 ->

o B = element(4, X1),

7 A+ B + C;

3.12.3 Bound variables in a pattern

When the pattern contains a variable which aiready has a value, it is
treated similarly to constants: checked in the guard. The boundness
of a variable tells whether to put its value-extraction into the guard
as a test, or into the body as a variable binding. Because of this,
ECT needs to know if a variable is bound or unbound. To achieve

58

P F S

w

L B

this, it detects variable creations as it parses a source code, and
maintains the set of bound variables.

3.12.4 Variables present in a pattern and also in the guard

Another case is when a variable appearing in a class-pattern, also
appears in the guard. This does not affect the transformation of the
pattern in any ways, but since the variable will only be bound in
the body, the guard can not use it. Instead, it can use an expression
whose result is the value of the variable. For example, in:

clausedemol (A = {_, #classi{field2 = B}}, C)
when B =:= 42 ->
A+B+C;

is transformed to

clausedemol (A = {_,X3}, C)

when
is_object (X3, classl),
element (4, X3) =:= 42 ->
B = element(4, X3),
A+B + Cy

Inline 5, element (4, X3) extracts the value of B for the guard.

3.12.5 Variables appearing multiple times in patterns

One more case remains, when a variable appears more than once in
a pattern. In this case, binding the variable in the function body
multiple times is not acceptable, because in this case different
values trigger a runtime error, while the desired behaviour is that
the clause is not selected. Therefore the guard must check that all
occurrences of the variable get the same value, and the variable is
bound in the body.

3.12.6 Composite sub-patterns for field extraction

Until this point, we only discussed single value extractions from
objects into variables, and single value tests. Further complications
appear when a class-pattern contains complex sub-patterns i.e. not
variables or constants, but tuple, record or list structures with vari-
ables inside.

Because the class pattern matching happens in the guards, the
sub-patterns found in the class pattern must also be transformed
into guard tests and variable assignments in the body. This always
can be done, because there are selector functions for all the com-
pound data types, and they can be used in guards:

hd(List): The head of List.
t1(List): The tail of List.
element (N, Tuple): The Nth element of Tuple.
All variables appearing in class-patterns will be extracted with

the combination of these. For example, the transformation of a
clause with complex patterns, and special cases:

clausedemo3([_,#class1{fieldl = A,
field2 =
#class2{z = #rec{b = Z}}},
#class1{field3 =

L, {.,.,2314, 2> ->
A+Z.

is transformed to

clausedemo3([_,X0,X1], 2Z)
when

is_object (X0, classl),
is_object(element (4, X0), class2),
%% test record type:
is_record(element (8, element(4, X0)), rec, 4),
Z =:= element(3, hd(tl(element(5, X1)))),
%% test tuple size:
3 =:= tuple_size(hd(tl(element(5, X1)))),
is_object (X1, classl),

Z =:= element (3, element(8, element(4, X0)))
%% test list closure:
[=:= tl(tl(element(5, X1))) ->

A = element (3, X0),

A+ Z,

Note that Z occurs (once) outside of a class-pattern, so it gets
its value in the head, it can be used in the guard. The other two
occurrences of Z are inside a class-pattern, so their values are
extracted with nested hd/t1/element calls in the guard.

One might ask how efficient are these nested value extraction
functions in the guard. We examined the compiled assembly code
of our generated class-matches with “normal” Erlang record pattern
matches, and found that they are very similar or the same. However,
we have not examined this in detail.

3.12.7 Summary of transformation

When processing a pattern, the following steps are done in the
following order:

1. The class-patterns are substituted with variables in the head.

2. These class-patterns are converted into sequence of value-
extractions, and stored.

3. Based on the list of bound variables, these extractions are sorted
into two groups: (1) real extractions, and (2) extractions that are
in fact value-tests, which access constants or bound variables.

4. Those variables in the guard, which appear in class-patterns,
substituted with their corresponding value extractions.

5. Members of group (1) are appended to the beginning of the
function body.

6. Members of group (2), along with necessary type-checks are
appended to each guard sequence of the current guard.

7. Equality tests for variables that are the result of multiple extrac-
tions — group (1) — are appended to each guard sequence of the
current guard.

3.13 Remote objects

In our approach, an object is an Erlang record, and a method invo-
cation is a function that calculates some return value and possibly
a modified copy of the record. Sometimes it is desirable to be able
to call the methods of an object from several different processes.
To achieve this, an object can have a process that receives method
invocation requests, sends the return value of them, and stores the
state object record in the process loop data. WOOPER and eXAT
only allow this approach. With ECT, this approach is also avail-
able. Currently, we only have a prototype implementation. It was
implemented in order to be able to compare the object-as-process
performance of ECT to WOOPER and eXAT, but in the future it
will be part of ECT.

We added some extra generated code to class modules and
created a new module ectremote which is the API for handling
objects remotely. Currently, the following operations are available
for a remote object.

59

get Queries a field by its name.
set Sets the value of a field.

query_call Invokes a method of the object. The return value will
be sent back to the client unchanged, and the fields of the object
are not changed.

update_call Invokes a method of the object. The return value will
be sent back to the client unchanged. The state of the object is
updated.

delete Terminates the server process.
copy Sends (a copy of) the internal object to the client.

To make remote objects efficient, the server-loop is generated at
compile-time into the class module, and the processing of incoming
messages is done entirely by pattern matching. This is most notable
in the case of get/set operations, where in the receive construct a
separate clause is generated for each field’s get and set operations.

4. Implementation

When a module is processed by ECT, first it checks if it is a class
module. If this is the case, its class specific parts are compiled into
native Erlang code. After this, the module can be treated as a client
module: resolving of class-patterns and class-expressions is done
by the client transformation.

Our parse transformation has to satisfy two equally important
requirements:

e It must reach every expressions in the Abstract Syntax Tree
(AST in the sequel) of the transformed module, even at deeply
nested places such as “in a case construct in a fun in an if
construct in a function”.

e QOur transformation is not context-free, so some state informa-
tion must be maintained while traversing the AST. Examples for
state information: the class name, the record definitions found
so far, the set of bound variables, a counter to guarantee that no
two variables with the same name are generated, etc.

The first requirement can be satisfied, if we take
erl_id_trans.erl’ from the Erlang distribution, and re-
place the necessary function clauses with our custom processing.
This is how we created our first transformation (currently used as
bootstrapper).

For the second requirement, some additional arguments must
be appended to the argument list of all clauses, and every return
value must contain their updated instance. We solved this by a
single extra argument, a record with the state variables as fields. For
this, return values were turned into 2-sized tuples that contain the
state record and the original return value of the function. The main
problem with this is the lack of flexibility and readability, because
clauses responsible for traversing normal Erlang AST, and clauses
responsible for the transformation of our modified semantics AST
are mixed in a module. Also, this module must be edited, whenever
there is a change in the Erlang AST specification.

Our idea to improve the situation was the use of the Tem-
plate method patiern (Giuimnng ot 2l 1395) with our new QO-syntax.
erl_id_trams.erl is turned into a class named idtrans, with
no fields. Then we extended this class, with fields that store the
state information that are maintained as the AST is traversed (class
cctrans). To change the behaviour of a certain clause in the iden-
tity transformation, there’s no need to rewrite it, it can be overrid-
den as a virtual method in cctrans.erl. When something in the
official erl_id_trans.erl changes, there is a good chance that

7 erl_id_trans.erl is an identity parse transformation, which traverses
the syntax tree and returns it unchanged.

only idtrans needs to be updated, and cctrans can be kept un-
modified.

This way we separated the transformation-logic-specific and
Erlang tree traversal specific aspects of the transformation. This
is a good general pattern for writing parse transformations. It could
also be extended with a third class between idtrans and cctrans,
which provides general, domain-independent services for parse
transformations, for example: unique variable name generation,
error handling, etc. We did not implement this because then the
bootstrap compilation would be more difficult.

5. Performance analysis

In this section we describe the performance tests we made on our
and on other OO extensions for Erlang. In the first subsection, we
describe what properties we measured. In the second subsection,
we highlight some of the technical issues that were raised during
the measurements. In the third subsection, we present and analyse
the results.

5.1 Measured properties

We measured and compared the
in the following systems: ECT,
rameterized Modules, WOOPER. We also measured the
corresponding non-OO operations of Erlang: records, static
function call (module:function()), dynamic function calls
(Module:function()) and funs. The measured operations were:
method calls, field queries and field modification. The term field
modification means different things for different systems. For
ECT and Erlang records it is making a copy of an object with
some fields changed. For Remote ECT, eXAT and WOOPER, it is
destructively updating a field.

‘We examined the how the execution time depends on the depth
of the inheritance chain. We created the class hierarchy seen in

speed of object-operations
Remote ECT, eXAT, Pa-

field operation might trigger a type-check. With the use of mul-
tiple fields, the overhead of the type checks per field operation
could be smaller.

5.2 Technical issues

A method call or a field read is a rather short operation. Their exe-
cution times are usually in the range of nanoseconds or microsec-
onds. This is such a short time that operating-system interrupts can
significantly influence it. The timer function for Erlang also works
in the range of microseconds. To measure such a short time, we ran
the operation several times, and divided the total time by the num-
ber of operations. We also made some steps to minimize the effect
of the loop itself that runs the operations.

To get a picture on the stability of these measurements, we
repeated each of them several times, and the average was taken
as final result. The point of this was that the difference of single
measurements from the average characterises the stability: for 77%
of the cases, the difference was under 1%; for 20% of the cases, it
was between 1% and 5%, and for the remaining 3% it was between
5% and 7%.

The computer we used for the measurements had an Athlon64
X2 4200+ CPU running at 2210MHz, with the second core turned
off.

5.3 Results

The following table summarises the results of the performance
tests. Each row with a bold face denotes the beginning of the section
of a system. Each remaining row represents a measured operation
of the system they belong to. Columns denote the class, whose
instance was tested. The values are in microseconds.

Figure 2 for each system, and measured method call times on an _ | alpha | beta | gamma | delta [epsilon | zefa
instance of alpha, beta, gamma ...etc. The body of each method Erlang static function call
is just the atom ok, which they return as a result. Call | 0.010 | n.a.
o : Erlang dynamic function call
._alpha = ~—— beta | — Call [0.088 | n.a.
fieldl [f— ! ‘ - | A Erlang fun call
jrieldz —— epsilon | Call [0.042 | na.
fl’:ld4 T - Erlang records
p— 4 Read | 0.026 n.a.
methodl1() =
method2 () | Write | 0.102 n.a.
method3 () L zeta Parameterized modules
method4 () — Call | 0.090 | 4283 | 8.451 | 12.626 | 16,773 | 20.848
delta .
—_— ECT classes
— Call 0.094 | 0.105 0.104 0.104 | 0.104 0.104
Read | 0.047 | 0.047 0.047 0.047 0.047 0.047
Figure 2. Class hierarchy used for benchmarking Write | 0.107 | 0.107 | 0.107 0.107] 0.107 | 0.109
ECT remote classes
This way we could examine how the distance of the method Call 0.839 | 0.885 0.884 0.889 0.891 0.879
implementation and the object instance in the inheritance chain Read | 0.715 | 0.702 0.702 0.702 0.701 0.698
affects the time of a call. Write | 0.436 | 0436 | 0.437 0439 | 0.444 0.440
We set the following parameters to be constant: eXAT classes
e The number of defined fields: 4. Call 1.394 7.301 13.254 19.635 25.453 31.533
) Read | 1.759 | 1.761 1.768 1.767 1.766 1.769
% The number of defined methods: 4. Write | 2.736 | 2.750 | 2.759 | 2.747 | 2740 | 2.739
e The number of accessed fields per operation: 1. Wooper classcs
Records and ECT support pattern matching, and more than Call 1.915 | 1.977 1.968 1.968 1-971 1.979
one field-extractions can appear in a pattern-match. An update- Re‘fd 2,342 | 2.354 2.337 2.337 2.335 2.342
expression for records can also update more than one field. We Write | 2.012 | 2.017 | 2015 | 2.014 | 2016 | 2.012

chose to measure one-field operations for two reasons. First,
for comparison with systems that support only one. Second, be-
cause in theory, this is the worst-case scenario, because each

60

In the following subsections we highlight some facts from the
above table.

5.3.1 Dependence on the depth of class hierarchy

e Field manipulation times are near-constant functions of the
depth in all systems.

e Method calls for ECT, Remote ECT and WOOPER are near-
constant functions of the depth.

® Method calls for eXAT and Parameterized Modules are near-
linear functions of the depth.

5.3.2 ECT versus Erlang

e Method calls of ECT are about 10 times slower than statically
bound, global function calls.

e However if they are compared to dynamic function calls, the
picture is better: only 2.5 times slower than fun-s and 1.2 times
slower than dynamic calls.

e Field read is about 2 times slower than record field read.

e Field update is less than 1.1 times slower than record field
update.

5.3.3 ECT versus other OOP

When considering object-as-process systems, Remote ECT out-
performs both eXAT and WOOPER. The narrowest difference is
against eX AT, when comparing the times of method calls with no
inheritance: ECT is 1.6 times faster.

The only object-as-data OOP system we measured was Param-
eterized Modules. We did not measure field access times because
- as we stated in section 2.2 — we did not find field handling fully
functional. The results for method calls:

e When the called function is not inherited, Parameterized Mod-
ules are faster by about 1.04 times.

® When the called function is inherited, the speed of parameter-
ized modules decreases linearly. In this case ECT is at least 40
times faster.

6. Future work

While ECT already provides the main functions of an object-
oriented extension, there are areas to improve:

¢ Generating proper error messages when invalid source code is
found.

¢ Implementing is_object(Object, Class) to be available
for programmers.

e Improving the currently available ad-hoc automated tests.
¢ Check for name-clashes of variables generated by the compiler.

e Integration with Erlang behaviours: if a class implements a
behaviour, subclasses should inherit this feature so that they will
also implement it.

6.1 Use of upcoming Erlang features

There is a proposal ({3 keefe 200%) for the Erlang language to
allow binding variables in guards. If it will be implemented, the
transformation can be simplified: no separate value-extraction will
be needed in the beginning of clauses, and there will be no need for
equality test of these values.

6.2 Better integration with the compiler

One possibility is to modify the Erlang compiler to create code im-
mediately from our syntax. However records — which are similar
to our classes — are also implemented by a preprocessor transfor-
mation. Another possibility is to propose new elements for Erlang
language that make code generation for classes easier:

61

Support Object:method()-style calls: The Erlang language al-
ready supports Object:method()-style calls for parame-
terised modules. This syntax is similar, and possibly ECT
should be switched to this. However semantics differ, because
the instance variable is passed as the last argument — and not
the first, as in ECT.

Better support for class-patterns and class-expressions: The
following concept would made class-matching very simple.
(We have not examined its feasibility.) Let us consider the
following tuple-pattern:

{SubPatternl, SubPattern2, ..., SubPatternN, x*}

It matches any tuple that has at least N elements, and the cor-
responding SubPatternss match the corresponding elements.
For example:

{A, _, B, ok, ¥} = {1, 2, 3, ok, 4, 5, 6, 7},
A=1,B=3 % the results of the match

This would allow the following transformation of class-
patterns®:

[#class2{b = 4, field2 = Z} = 0Obj I

to

‘{class2, {_, class2, *}, _, 4, _, _, Z, _, *} |

New syntactic elements: Some of the current syntax elements are
ugly or clumsy. This is because a parse transformation can only
work on a source file if it can be parsed. If the parser of the
Erlang compiler is modified, any new syntax can be introduced.

One example is the This parameter of method functions. It is
possible to automatically insert the first argument — which is the
“This” object — for methods, like for Parameterized Modules.
This might seem convenient, but the problem is that pattern-
matching on This in the head would be impossible.
In Oberon-2 (Mds ok 1991), functions that are methods
have a different syntax from plain functions:

5

The this-pointer — obj — is defined separately from the other
arguments. This would seem the following in ECT:

PROCEDURE (VAR obj: Object) Name(parami: Typel,

(This)method (Argl, Arg2, Arg3) -> ...
% or
method (This) (Argl, Arg2, Arg3) -> ...

The intention behind this concept is to separate the This in-
stance from other arguments. It would also make it possi-
ble to mark methods, instead of the currently used marking:
7METHODS ([method1/N, method2/N, ...]).

7. Conclusions

In this paper, we discussed the design, the implementation and
the performance of ECT, our object oriented extension to Erlang.
The new language elements we added provide extensible objects
that encapsulate data and functionality, while preserving the single-
assignment nature of Erlang. Fields and methods can be inherited.
The objects instances of ECT are in fact records, which implies
that the related features and tools of Erlang can be used with them:
they can be matched with record patterns, can be pretty-printed in

8 class1 and class?2 are defined in sections 3.3 and 3.5

the shell, can be stored in MNESIA, etc. The other approaches that
we studied do not have this feature. We believe storing objects as
records is the main advantage of our solution compared to others.
The main difference from eXAT and WOOPER is that in our
solution the programmer is not forced to create processes for each
class instance. Although it is still possible to do so when necessary.

We also measured the performance of other implementations,
To compare ECT with other OOP extensions that store objects in
processes, we added a similar feature to ECT, which we named Re-
mote ECT. When ECT is compared to standard Erlang constructs, it
has a slowdown of maximum 2.5 times. However when compared
to other OOP extensions for Erlang, it outperforms them in all sit-
uations by at least 1.6 times, with one exception: in a very special
case ECT and Parameterized Modules perform equally.

ECT is free software and its source code can be downloaded
from http: //ect. googlecode. com.

We demonstrated the applicability of ECT by using it in the
client transformation part of the system itself. By using ECT, the
client transformation code received a better structure and will be
easier to maintain.

Acknowledgments

We would like to thank Péter Szeredi his valuable ideas, advises
and all his help in writing this paper.

62

References

Olivier Boudeville. WOOPER: Wrapper for OOP in Lrlang.
hetp://ceylan. sourceforge . net/main/
docunentation/wooper/.

Richard Carlsson. Inheritance in Erlang. Erlang/OTP User
Conference, November 2007. http://www.erlang.se/euc/
07/papers/1700Carisson. pdf (slides only).

Richard Carlsson. Parameterized modules in erlang. 2nd ACM
SIGPLAN Erlang Workshop, August 2003. http://www.
erlang.se/workshop/2003/paper/p29-carlsson. pdf,

Erlang Efficiency Guide. Erlang Efficiency Guide. http://wa.
erlang.org/doc/efficiency_guide/part_frame.html.

Erlang Manual. Erlang/OTP RI12B online manual. httyp: / /waw.
erlang.org/doc/man/.

eXAT website. eXAT download site. http://www.diit.unict.
it/users/csanto/exat/download. html.

Gdbor Fehér. Object-Oriented Extension to Erlang. Student
Conference (TDK). Budapest University of Technology and
Economics, 2008. http://ect.googlecode. com/files/
tdk2008., pdf.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Addison-Wesley, 1995.

Hanspeter Mossenbock. Object-Oriented Programming in
Oberon-2, chapter Appendix A Oberon-2 Language Definition.
Springer-Verlag, 1993.

Richard A. O’Keefe. EEP14: Guard clarification and extension,
2008. nttp://wuw. exlang. org/eeps/eep-0014. html.

Corrado Santoro. Erlang eXperimental Agent Tool. Reference
Manual, 2004. http://www.diit. unict.it/users/
csanto/exat/exat . ps.

Antonella Di Stefano and Corrado Santoro. Designing
collaborative agents with exat. 2nd International Workshop on
Agent-based Computing for Enterprise Collaboration (ACEC
2004) at WETICE 2004. http://www.diit. . unict.it/
users/csanto/exat/ACEC- Santoro-eXAT. ps Modena,
Italy, June 14-16, 2004.

Implementing an LTL-to-Biichi Translator in Erlang

a ProTest Experience Report

Hans Svensson

Department of Applied IT, Chalmers University of Technology, Gothenburg, Sweden
hanssv@chalmers.se

Abstract

In order to provide a nice user experience in McErlang, a model
checker for Erlang programs, we needed an LTL-to-Biichi transla-
tor. This paper reports on our experiences implementing a trans-
lator in Erlang using well known algorithms described in litera-
ture. We followed a property driven development schema, where
QuickCheck properties were formulated before writing the imple-
mentation. We successfully implement an LTL-to-Biichi transla-
tor, where the end result performs on par (or better) than two well
known reference implementations.

Categories and Subject Descriptors
gingl: Testing tools

D.2.5 [Testing and Debug-

General Terms Algorithms, Verification

Keywords LTL-to-Biichi translator, QuickCheck, property driven
development

1. Introduction

Correctness of concurrent or distributed software is a well known,
and immensely complicated problem. It is also a fact that during
the last couple of years, the problem has become more important
due to the introduction of multi-core processors. This has led to an
increased interest in the problem, and a variety of good work has
made the problem a lot more tractable.

Model checking is one of the most successful and mostly used
techniques to prove correctness of a (hardware or software) system.
The standard model checking problem consists of a model system
expressed as a finite state machine (FSM), and a specification given
by a temporal logic formula. Model checking for temporal logic
formulas was pioneered by Clarke et al. (1986) and as well by
Queille and Sifakis (1982). The main obstacle in model checking is
the famous state space explosion problem, due to a combinatorial
blow-up of the state space (the size of the FSM). This combinatorial
blow up is very problematic when dealing with concurrent and fault
tolerant systems (meaning that most Erlang software falls into this
category). However, there are some different techniques that try to
deal with the problem such as:

e Symbolic model checking, where the state space is instead
represented symbolically in terms of logic formulas.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’09, September 5, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-1-60558-507-9/09/09. ... $10.00

63

e Partial order reduction techniques, where equivalent paths
through the FSM are grouped together and reduced to a sin-
gle path.

e Abstraction techniques, where the system is simplified by an
abstraction function, thus reducing the size of the FSM.

One tool that aims to simplify the verification of correctness
for distributed Erlang programs is McErlang, a model checker for
Erlang. McErlang was first presented in (Fredlund and Svensson
2007), and has been used in a couple of successful projects (Fred-
lund and Sanchez Penas 2007; Earle et al. 2008). Since 2008 McEr-
lang is an important part of the ProTest project and the release of
the first public open source version in March 2009 is a result of
this.

McErlang (Fredlund and Svensson 2007) is a fairly standard ex-
plicit state model checker, although through plugins more advanced
concepts such as state abstraction can easily be used. The interest-
ing part of McErlang is that it is a model checker for Erlang written
in Erlang. As a result of this, side-effect free parts of a system can
be evaluated as is, without tedious translation. This means that one
can focus on the complicated parts such as distribution and fault
tolerance, and the result is that McErlang supports a large subset of
Erlang. McErlang implements the full distributed Erlang semantics
(Svensson and Fredlund 2007) and all the important OTP compo-
nents (gen_server, gen_fsm, ...).

The first (non-public) versions of McErlang encoded correct-
ness properties (specifications) as simple automata programmed
directly in Erlang. Having very little support for higher level con-
structs, this meant that writing properties was both tedious and error
prone. For more complex properties (such as fairness properties)
McErlang also supported Biichi automata, but they still needed be
hand written.

To make McErlang more accessible before its first public re-
lease it was decided to simplify the specifications by adding the
possibility of using LTL properties. This is fairly straightforward,
since LTL expressions can be automatically translated into Biichi
automata (Wolper et al. 1983). However, for model checking to be
efficient it is important to produce as small an automaton as possi-
ble, thus a good translator was needed. The obvious solution was
to use an existing implementation. However, no Erlang implemen-
tation could be found and although it is a simple task to wrap an
existing Java implementation (such as Giannakopoulou and Lerda
(2002)) it did not appeal to us aesthetically having advocated the
all-in-Erlang aspect of McErlang. From a distribution point of view
it is also simpler to have a native implementation, we avoid the li-
censing aspect as well as the problem of missing external compo-
nents, while being in control of new releases and bug fixes. In the
end, this made us decide to implement an LTL formula to Biichi
automata translator ourselves.

This paper describes the implementation of an LTL to Biichi
automata translator in Erlang. The implementation includes some
state-of-the-art technologies and it performs quite well as seen in
Sect. 5. The paper focuses quite a lot on the verification of the
correctness of the implementation, and could be seen as an expe-
rience report on property driven development and property based
testing. We used Erlang QuickCheck (Hughes 2007) to formulate
propetties and run test cases randomly generated from the prop-
erties. Property driven development is the QuickCheck dual of
test driven development (TDD) (Beck 2003), where the test cases
drive the implementation forward. In practice it consists of three
stages; (1) tests are written that do not pass for the implementa-
tion, (2) the implementation is extended so the tests pass, and (3)
the code is refactored to produce the end result. The development
process is iterative, and it worked well for our implementation. Us-
ing QuickCheck makes phase (2) even more productive. Whenever
a test fail, QuickCheck provide a minimal counter example, and in
many cases the counter example shorten the time to diagnose an
error. In our work it was very useful to get small LTL formulas for
which the implementation produces an incorrect automaton.
Paper organization ~ The paper is organized as follows; in Sect.
2 we introduce the theoretical background as well as the problem
of testing an LTL to Biichi automata translation. Sect. 3 describes
the properties that were defined during the implementation, and
how various model checking concepts are mapped to QuickCheck.
The implementation is described in Sect. 4, the implementation is
evaluated and compared to other implementations in Sect. 5 and the
paper is summarized in Sect. 6.

2. Theoretical background

In this section, we provide some theoretical background to the
concepts discussed in later sections.

2.1 Linear temporal logic - LTL

To write specifications for reactive systems, we need to be able to
precisely describe how the system behaves for (possibly) infinite
executions. Temporal logic (Pnueli 1977) has become a de facto
standard formalism for this kind of specifications, and there are
quite a few flavors of temporal logic, here we focus on linear tem-
poral logic. LTL is an extension of propositional logic. If AP is
a (non-empty and finite) set of atomic propositions, then the LTL

formulas are:
— All p € AP are LTL formulas.

— If and v are LTL formulas, then -, (¢ A),
X ¢, (¢ U %) are also LTL formulas.

The standard semantics for an LTL formula is defined in terms
of an infinite sequence (£) over 24P Let ¢* be the infinite sub-
sequence of £ that begins at the ith position of £ (¢ > 0). Now the
relation (=) is defined as:

- Forp € AP, ¢ |= piff p € &. (& is the first element of £).

- & |= —piff =(€ =), usually written & & .

- EEXpiffé! o , 4

- EE(pU¥) iff 3i>0. &' EyYandV0<j<i. & o
If £ = ¢, then £ is called a model of . The set of all models

{€ € 277)¥ | ¢ |= o} is called the language of and is denoted
by L.

2.2 Biichi automaton

Biichi automata were introduced by Biichi (1960). A Biichi au-
tomaton accepts infinite input sequences if and only if there exists
a path that visits an accepting state infinitely often. A Biichi au-
tomaton is a tuple BA = (2, Q, A, Q°, F) where:

64

~ X isthe alphabet,

— Q 1is the finite set of states,

- ACQxXZXxQ isthe transition relation,
- Qo C Q is the set of initial states, and

— F C Q isthe set of accepting states.

An execution of BA for an infinite sequence £ = (zo,%1,...) €
X* is the infinite sequence of states ¢ = (qo, g1, ...) € Q@ where
g € Q% and forall i > 0, (i, pi,q41) € A. Letinfle) C Q
denote the states that occur infinitely often in an execution o, then
o is an accepting execution if and only if (inf(c) N F) # 0.

We say that the automaton accepts £ € L exactly when there
exists an accepting execution of BA on &. If there is no accepling
execution, then BA is said to reject €. The accepted language of an
automaton BA is the set of sequences £ accepted by the automaton
BA, it is denoted by Lp4.

There is a close connection between languages induced by an
LTL formula and the accepted language of a Biichi automaton, in
fact any LTL formula can be represented as a Biichi automaton.
This connection was explicitly shown by Wolper et al. (1983) and
this property was used to develop the automata-theoretic approach
to LTL model checking (Vardi and Wolper 1986).

2.3 LTL model checking

The LTL model checking problem answers the question of whether
a specification (in the form of an LTL formula) is satisfied in a
finite model of a system. The system is often (translated into) a
state-transition graph where each state is augmented with exactly
the atomic propositions that hold in the state. Such a transition
system is known as a Kripke structure; more formally defined as a
tuple M = (S, p, w), where:

— S the finite set of states,

- p C 8 xS isthe transition relation,

- 7 : 8 — 247 is the labeling function, which means

that () is the set of propositions that hold in a state s € S.

The model checking problem can thus be formulated as: “For a
Kripke structure M = (S, p,n), a state s and an LTL formula
i, is it true for all infinite paths z = (so,s1,...) € S (with
so = s) that £ = (n(s0),7(s1),...) |E ©”. For practical reasons
this is often reformulated as looking for any = such that £ =
(m(s0),m(s1),...) = —gp, ie. M E holds if no such z can
be found.

By treating the set of paths starting in a specific state s as a lan-
guage L s the problem can compactly be expressed as checking
whether Lar,s N L, = 0. This means that the LTL model check-
ing problem can be solved by constructing BA-,, and BAs,s from
the LTL formula ¢ and the Kripke structure M respectively, and
then checking the automaton BA-, ® BAxs,, for emptiness (®
is the synchronous composition of two automata, and the result-
ing automata recognizes exactly the infinite sequences recognized
by both automata). This check can be done by an algorithm that
checks whether the constructed automata can reach an accepting
cycle from any of its initial states (Clarke et al. 2000). The time
complexity is linear in the size of the new automata.

2.4 Testing an LTL to Biichi automata translation

The theoretical aspect of how to test an LTL formula translation
into Biichi automata is thoroughly covered by Tauriainen and Hel-
janko (2002). Here we briefly describe the most important aspects
from Sect. 3 of (Tauriainen and Heljanko 2002). The methods de-
scribed do not aim to prove the correctness of the implementation,
but instead perform tests to detect inconsistencies in the implemen-
tations. Most of the ideas test the results given by an LTL-to-Biichi
translator with the results from using other implementations. One
particular situation could be to test different optimizations against

Test 2

Test 1

¢ —¢
LTL-to-Biichi LTL-to-Biichi
translator A translator B

BAy BA_g

Bdp® BA_

Check
emptiness

Generate ¢

LTL-to-Biichi
translator A

OK Fail

emptiness

¢ —~ ¢

LTL-to-Biichi
translator B

Test 3

¢ a4

LTL-to-Biichi
translator A

Generate
M={(S,p,x)

Fail

Fail OK

Figure 1. Testing an LTL-to-Biichi translation

(a stable) reference implementation. This is something that we
have used frequently. We also used two reference implementations
WRING by Somenzi and Bloem (2000) and LTL2BUCH!1 by Gian-
nakopoulou and Lerda (2002).

Interestingly, we found that WRING fails for some particular in-
put. Therefore, in order to be able to use WRING as a reference
implementation, we implemented a pre-condition check that guar-
antee that the generated formula is one that does not crash WRING'.

2.4.1 Language property tests

The first two tests use properties of the langu&‘l’{ges L, and L, in
particular we use the fact that for each £ € (2 P)“, £ € L,ifand
only if ¢ & L. Thus we can conclude that:

e The languages £, and £, are disjoint, which means that
LoNLoy=10

e Each ¢ € (247)“ belongs to either £, or £, and therefore
L, UL, ={2A%)

The first test is easy to realize in practice, we just need a way to
generate random LTL formulas. For each formula ¢ we produce
BA, and BA-, using different translators and check that the
intersection (BA, ® BA-,) is empty. If the intersection is non-
empty we know that one (or both) translator did not produce the
correct behavior.2

The second test is harder to utilize directly. The sequences
involved are infinite (and infinitely many), thus we can not generate
them all, and to algorithmically check for universality is PSPACE-
complete (as shown by Vardi (1996)). The test can (as shown
in Fig. 1) be reduced to emptiness checking, by complementing

"n the documentation, it is claimed that the reason for the crashes is an
incompatibility between WRING and more recent versions of Perl

2 We should also note that this test itself is not enough since a translator that
produces the empty automaton for all LTL formulas would pass the test.

65

BA,U BA_,. However, the complementation automata of a (non-
deterministic) Biichi automata may have an exponential blow-up in
size. (Currently the upper bound is (0.97n)" states and the lower
bound is (0.76n)™ states, see Vardi (2007).) Therefore, instead of
using complementation, we simplify this test into something which
can easily be used in QuickCheck, as shown in Sect. 3. Since we
are only testing for defects, a simplified test is of interest.

2.4.2 Model checking result tests

For a given model (Kripke structure) M and a given LTL formula
 the value of M = ¢ is well defined by the semantics of LTL.
This means that we can use the result of the model checking
problem to test the LTL-to-Biichi translations against each other.
Using two different LTL-to-Biichi translators we can produce BA;,
and BAZ. Then we translate the model M into another automaton
BAps. The test then compare the results of the emptiness checks
for BA}, ® BAxs and BAZ ® BA . The three tests are graphically
described in Fig. 1.

3. Properties

In this section the QuickCheck specification for the testing of
the LTL-to-Biichi translation is introduced. Most of the section is
devoted to explaining how the tests from Sect. 2.4 are implemented
in terms of QuickCheck.

3.1 LTL formula generator

Random LTL formulas are generated by the QuickCheck generator
presented in Fig. 2. The generator is recursively defined. In the base
case we pick an element from the alphabet, and in the recursive
case we pick one of the seven different ways to produce an LTL
formula from sub-formulas. Note, here we use the more common
operators always (() and eventually (Qp). These operators are
defined in terms of the until-operator (O = true U ¢ and Q¢ =
—(trueU—y)). In the generator, the LETSHRINK-macro is used to be

able to shrink generated formulas when a counter example is found.
(Refer to Hughes (2007) for a thorough introduction to QuickCheck
and its shrinking facility, and Arts et al. (2008) for an explanation
of LETSHRINK.) The divisors (2 and 4) are rather arbitrarily chosen
since they resuit in reasonably complex LTL formulas. An alphabet
is a sorted non-empty list of propositional variables (chosen from
a-f). The SIZED-macro is used to grab the implicit size-parameter
in QuickCheck and pass it to the formula generator.

Iprop () —>
elements ([{ Iprop ,X}
|| X <— [a,b,c,d,e,f}]).

alpha () —
ILET(Lst, [lprop () | list (1prop())1],

lists :usort(Lst)).

Itl_formula () —>
?SIZED(Size ,
?7LET(Alpha, alpha(),
Itl_formula(Size, Alpha))).
Itl_formula (0, Alpha) —>
elements (Alpha);
Itl_formula (Size , Alpha) —>
Small = Itl_formula(Size div 2,Alpha),
Smaller = 1tl_formula(Size div 4,Alpha),
oneof (
[Itl_formula (0, Alpha),
?LETSHRINK ([Phi , Psi],[Smaller , Smaller],
{land ,Phi, Psi}),
?LETSHRINK ([Phi, Psi],[Smaller , Smaller],
{lor ,Phi,Psi}),
?LETSHRINK ([Phi].[Small],{next,Phi}),
?LETSHRINK ([Phi] .[Small],{ eventually ,Phi}),
?LETSHRINK ([Phi] ,[Small],{ always,Phi}),
?LETSHRINK ([Phi] .[Small],{1not ,Phi})
1.

Figure 2. LTL formulas generator

3.2 Testl

The first test is implemented in the property prop_testi, listed in
Fig. 3. The property is parametrized by the LTL-to-Biichi transla-
tion functions to use B1 and B2. The rest of the property is straight-
forward, we create the two Biichi automata, calculate the intersec-
tion and check for emptiness.

3.3 Test2

The second test is implemented in the property prop_test2, listed
in Fig. 4. This property is also parametrized by the LTL-to-Biichi
translation functions to use B1 and B2. Since it is not computation-
ally feasible to check exactly what is presented we have simplified
the test a bit. We have introduced a simple deterministic Kripke
structure, which we denote a witness. A witness is in effect an in-
finite sequence of sets of labels produced by a prefix and a (non-
empty) loop. The generator for witness is also presented in Fig.
4. The test checks that exactly one of the two automata BA,, and
BA-, accepts the witness.

3.4 Test3

The implemented property for the third test is very similar to the
second test. Instead of generating BA, and BA-,, we generate
BA[, and BAZ and check that their model checking results agree
for different witnesses W. The third test property is listed in Fig. 5.

66

prop_testl (B1, B2) —>

FORALL(Phi, (ltl_-formula()),
begin
Bul = B1(Phi),
Bu2 = B2(negate (Phi)),

BulBu2 = buchi:intersection (Bul, Bu2),
buchi:is_empty (BulBu2)
end).

Figure 3. Test 1 — QuickCheck property

witness (Alpha) —>

#witness{alpha = Alpha,
prefix = list(lbl_set(Alpha)),
loop = [Ilbl_set (Alpha)

| list(lbl_set (Alpha))1}.

prop-test2 (Bl1, B2) —>

YFORALL(Alpha, alpha(),
?FORALL(
{Phi, W},
{Itl_formula (Alpha), witness(Alpha)},
begin
Bul = B1(Phi),
Bu2 = B2(negate(Phi)),

is_witness (W, Bul) =/=
is_witness (W, Bu2)
end)).

Figure 4. Test 2 — QuickCheck property

prop_-test3 (B1, B2) —>

7FORALL(Alpha, alpha(),
?FORALL(
Phi, Itl_formula(Alpha),
begin
Bul = B1(Phi),
Bu2 = B2(Phi),

7FORALL(W, witness (Alpha),
is-witness (W, Bul) ==
is_witness (W, Bu2))
end)).

Figure 5. Test 3 — QuickCheck property

3.5 Additional tests

The properties listed above cover all of the high level properties for
the LTL-to-Biichi translation. In order to help during development
we used many more, more fine grained, properties that only covered
small parts of the translation. We also wrote some tests to check
the intersection function used in the tests listed above. One
example of a property for the intersection function is listed in Fig.
6. This test checks that for all Biichi automata B1 and B2, if the
intersection B1B2 accepts a witness, then also B1 as well as B2
should accept the same witness.

When using this test, we ran into one of the standard problems
with QuickCheck; namely that randomly generated data is not good
enough. For a random (non-empty) Biichi automaton B, only about
2 out of 100 random witnesses are accepted by B. For the more
complex B1B2 in the intersection property, the numbers are even
worse: only in about 1 out of 250 generated combinations of B1B2
and W, was W accepted by B1B2.

The general solution to this problem is to use a better (more
specific) data generator. In our case the problem is two-fold; (1)
the intersection of two random non-empty Biichi automata is often

prop-intersection () —>
7FORALL(A, alpha(),
TFORALL({B1, B2}, {buchi(A), buchi(A)},
begin
B1B2 = buchi:intersection(B1, B2),
7FORALL(W, witness(A),

(not is_witness (W, BIB2)) orelse
(is_witness (W, Bl) andalso
is-witness (W, B2)))

end)).

Figure 6. Intersection — QuickCheck property

prop-intersection () —>
?7FORALL(A, alpha(),
TFORALL({B1, B2}, {buchi(A), buchi(A)},

begin
B1B2 = buchi:intersection(B1, B2),
?7IMPLIES (

not buchi:is_empty (B1B2),
FORALL(W, witness_for_buchi(B1B2),
(is_-witness (W, Bl1) andalso
is_witness (W, B2))))
end)).

Figure 7. Intersection — optimized QuickCheck property

an automaton that do not accept any witnesses and (2) a random
witness is not very likely to be accepted by a non-empty Biichi au-
tomaton. Therefore, we added a filter (using the IMPLIES-macro
in QuickCheck) for empty automata and implemented a new gen-
erator witness_for_buchi(B), that given a non-empty Biichi au-
tomaton B produces a witness that is accepted by B.

The trick is to search for an accepting cycle (picking one ran-
domly if there are several) in the automaton, and use this together
with a suitable prefix leading up to the cycle as a witness. For a
non-empty automaton this generator, by construction, always gives
a witness accepled by the automaton. This might not always be de-
sired, but for the intersection property we are interested in the case
when W is witness for B1B2 and witness_for_buchi is the perfect
generator to use. In Fig. 7 the optimized property is presented.

4. Implementation

After having all the QuickCheck properties available, as well
as some already tested Biichi automaton manipulation functions
(intersection, is_empty, etc), we were ready to implement
the LTL-to-Biichi translator. Most of what is implemented has al-
ready been described elsewhere, we have looked for inspiration in
several different places and combined many bits and pieces. Most
well performing LTL-to-Biichi translator consist of the following
three parts:

1. A rewrite engine, which aims to simplify the LTL formula.
It normally uses a fixed set of (heuristically chosen) rewrite
rules. One example is well documented by Somenzi and Bloem
(2000).

2. Core translation algorithm — Construction of the Biichi automa-
ton from the re-written LTL formula. There are two main al-
gorithms for this phase: the tableau-based algorithms (for ex-
ample described by (Gerth et al. 1996)), and algorithms based
on alternating automata as introduced by Gastin and Oddoux
(2001).

3. If needed, a translation of the result in phase 2, into a standard
Biichi automaton. (Many translations works with intermediate

67

automata formats, such as generalized Biichi automata, alter-
nating automata, transition-based Biichi automata, etc.) There-
after, reductions and optimizations, such as simulation reduc-
tions (see for example Etessami and Holzmann (2000)) and re-
moval of non-reachable and non-accepting states, are applied
to the Biichi automaton.

4.1 Rewrite LTL formula

Implementation of a rewrite functionality is fairly straightforward.
You have to choose which rewrite rules to use and implement the
application of a rewrite rule. We chose to use the rewrite rules de-
scribed by Somenzi and Bloem (2000), these rules are the result
of some thorough experiments and have also been used in (Gian-
nakopoulou and Lerda 2002). The rules aim to simplify the LTL
formula in a way that is (according to the heuristics) favorable in
terms of the size of the resulting Btichi automaton. For example the
LTL formula (X) U (X 9) is re-written into X (¢ U 1). Testing
the rewrite facility using the properties described in Sect. 3 (by us-
ing one translator function with rewriting and one function without)
quickly removed some (rather silly) implementation errors.

4.2 Core translation algorithm

As indicated above, there are two main alternatives for this phase:
the tableau-based algorithms and algorithms based on alternating
automata. We have chosen to use a tableau-based algorithm. We im-
plemented an algorithm in the style described by Giannakopoulou
and Lerda (2002). The main reason for choosing a tableau-based
algorithm was non-technical, we simply were more familiar with
this style of algorithm. We believe that a core translation based on
alternating automata would have performed at about the same level.

The translation algorithm generates transition-based general-
ized Biichi automata, which carry labels on transitions instead of
the normal state-based automata. The benefit of using a transition-
based automata for the core translation is that more states can possi-
bly be merged during translation. The result is a potentially smaller
resulting automaton. The algorithm is tableau-based and works by
expanding ¢ U 4 into ¢ V (¢ A X (¢ U v)). Step by step the
automaton is build up, while keeping track of equivalent states as
well as acceptance conditions.

By using the QuickCheck properties and the (small) counter
examples it produced it was a rather painless process to get the
core translation algorithm correctly (at least to the level of passing
a very large number of tests) implemented.

4.3 Degeneralization

Since the core translation algorithm produces a (transition-based)
generalized Biichi automaton, while McErlang only supports non-
generalized automata, we needed to implement degeneralization.
Again we follow what is described by Giannakopoulou and Lerda
(2002), with some additions. A generalized automaton has (possi-
bly) more than one set of accepting states, and an infinite sequence
is accepting only if it passes through all accepting sets infinitely
often. To convert a generalized automaton into a non-generalized
automaton we need to translate the concept of visiting all states
into a single accepting state set. The approach taken is to use a
second specialized automaton called a degeneralizer. The degener-
alizer has a size (and shape) that corresponds directly to the number
of accepting sets in the generalized automaton. The degeneralizer
“counts’ the visits of accepting sets, and all accepting cycles in the
degeneralizer visit all accepting sets. To produce the final degener-
alized automaton the synchronous product between the generalized
automaton and the degeneralizer is computed. (For a thorough ex-
planation of degeneralization, refer to (Gastin and Oddoux 2001).)

Although the size and shape are fixed, the order in which the ac-
cepting sets are counted can be varied. If the number of accepting

-

sets is n, there are n! variations. Normally a heuristic, for exam-
ple based on the sizes of the accepting sets, is used to select an
order. Using some additional QuickCheck properties that compare
the size of the result, we performed some experiments with differ-
ent ordering heuristics. We tried to avoid having to calculate (and
use) all possible degeneralizers, but unfortunately we could not find
a heuristics that was consistently better than the random choice.
However, since we are not worried about the performance of the
translator, we decided to settle for a computationally more expen-
sive solution. That is, we generate all possible automata and pick
the best result after computing the synchronous product. This en-
sures that we get the smallest final automaton. We should note, that
in many cases the reductions described in the next section actually
produces the same final automaton regardless of the degeneralizer
used. Finally, the justification for this more expensive solution is
simply that more is hopefully gained in the model checking phase
by having a smaller automaton, than what is spent in translation.

4.4 Reductions and optimizations

In automata theory there is a multitude of different reduction tech-
niques and optimizations proposed. Some perform well on some
structures, while others work best in completely different cases.
We have chosen to implement some reduction algorithms that have
proved useful for others, see for example (Etessami and Holz-
mann 2000; Giannakopoulou and Lerda 2002; Somenzi and Bloem
2000).

We have particularly opted for algorithms that reduce the size of
the automaton, there are other algorithms that for example tries to
make the automaton more deterministic (but also larger), see (Se-
bastiani and Tonetta 2003). Although a more deterministic automa-
ton is sometimes preferable, we have chosen not to consider it in
our implementation.

4.4.1 Simple reductions

We have implemented a couple of simple reductions:

* Remove unnecessary transitions — Unnecessary transitions
are removed. For example two transitions from state X to state
Y with the labels aAb and aA—b can be merged to one transition
with the label a.

* Remove non-reachable states — States that cannot be reached
from an initial state can be removed (together with their out-
going transitions).

¢ Remove never accepting states — States, from which it is
impossible to reach an accepting state (or rather an accepting
cycle) can be removed.

e Reducing the number of accepting states — Not technically
a reduction, but it is favorable for the particular simulation
reductions we have implemented to have few accepting states.
Thus, accepting states that are not part of a cycle are removed
from the set of accepting states.

It is worth pointing out that these reductions are usually not nec-
essary for the initial result of the translation algorithm. However,
after performing other reductions, also these simple reductions can
be useful.

4.4.2 Bi-simulation reduction

Bi-simulation reduction is a standard reduction algorithm (see
Kanellakis and Smolka (1983)). The reduction algorithm is based
on a color-refinement partitioning of the states. The algorithm is
adapted to the fact that transitions are labeled by conjunctions of
propositional variables rather than just variables, we followed the
algorithm presented by Etessami and Holzmann (2000).

68

Most problems with the implementation occurred due to the fact
that most algorithm descriptions are rather imperative and thus took
some time to convert into something not-so-ugly looking in Erlang.
Again having the possibility to quickly find small counter examples
when things went wrong helped a lot.

4.4.3 Strong fair simulation reduction

The most elaborate reduction algorithm we implemented was a
strong fair simulation reduction. There are many different versions
of fair simulation (see, e.g. Henzinger et al. (1997)). The version
we implemented is described by Etessami and Holzmann (2000), it
is rather similar to the bi-simulation reduction algorithm. However,
more details are considered and a more fine grained ordering makes
it possible to perform some more complicated reductions.

We had some difficulties implementing the strong fair simula-
tion algorithm, mostly due to a misinterpretation of the algorithm
description. (The i-dominates relation should be seen as a total or-
der, if transition A i-dominates transition B then B cannot also
i-dominate A. This is not clear from the definition.) While looking
for this bug we were actually not helped by the QuickCheck tests,
rather the opposite. Since errors occurred quite infrequently (and
for rather complex automata), we were for a long time looking for a
less fundamental(!!) error. Eventually we found the error, thanks to
more basic debugging techniques, and could quickly verify that the
algorithm implementation was working by running a large number
of tests.

5. Results
[Translator | Max size | Avg.size | Total size |
erl_1t12buchi 416 17.202 17202
erl_1tI2buchi+red 32 6.15 6150
erl 1t12buchi+red+rew 31 6.005 6005
WRING 74 10.997 10997
LTL2BUCHI 31 6.066 6066

Table 1. Test results - 1000 random LTL formulas

To measure the performance in terms of size of the resulting
automata we used a simple QuickCheck property, ulilizing the
built-in measure functions. An alternative would have been to use
something readily available, like LBTT (Tauriainen 2001), but still,
quite a bit of work would have been needed to write wrappers for
the compared implementations. Therefore, since we had already
used WRING and LTL2BUCHI as reference implementations dur-
ing testing and thus had all the plumbing in place, we settled for
the more lightweight QuickCheck measuring approach. The prop-
erty listed in Fig. 8, is all that is needed to measure the performance
for randomly generated LTL formulas. We test three different ver-
sions of our implementation: only the basic translation, translation
+ reductions and rewriting + translation + reductions.

Running the property for 1000 tests (1000 randomly generated
LTL formulas) gives a result as presented in Table 1. The results
vary slightly due to the random nature of the tests, but the numbers
presented are representative. The table presents the maximal size
of an individual translated automaton, as well as the average size of
the automata.

We see that for random LTL formulas, we perform a lot (about
45%) better than WRING and also slightly (about 1%) better than
LTL2Buchi. It is a result that we are satisfied with, since the alterna-
tive to writing a new implementation was to wrap LTL2Buchi and
use it in McErlang. Nevertheless, we believe that there is still some
room for improvement, and with the properties in place it should
be easy to test new ideas for reduction algorithms in the future.

9%% List of five different translations ,
%% used in prop_compare.size.
translations () —>
[{”erl_1tl12buchi”,
fun 1tl2buchi:translate_basic/l1},
{”erl_1t12buchi+red”,
fun 1tl2buchi:translate_norew/t},
{”erl_1t12buchi+red+rew”,
fun 1ti2buchi:translate/1}
{”wring”,
fun wring_wrap:run/l},
{”1t12buchi”,
fun 1t12buchi_wrap:run/1}
1.

prop.compare_size () —>
7FORALL(Phi, (ltl_formula()),

%% Filter formulas crashing Wring

?IMPLIES (wring.ok (Phi),
begin
Trs = [{N, F(Phi)} || {N, F} <—

translations ()],

nested_measure (Trs,
end)).

true)

Figure 8. Performance measurement property

For two reasons we have not measured the speed of the transla-
tors; (1) it is impossible to fairly compare a native implementation
with wrapped implementations called externally, and (2) the model
checking connection for the translator makes siz¢ much more im-
portant than speed.

6. Summary

Using a property driven development for the implementation of an
LTL-to-Biichi translator in Erlang turned out to be a nice experi-
ence. We had a fun time, and the implementation quickly stabilized
into a mature translator. We believe that by first formulating the
properties, we saved time both in testing and debugging and also in
having a clearer picture of what to implement. Also, the shrinking
facilities of QuickCheck meant that we usually got a fairly sim-
ple LTL formula for which the translator produced an incorrect au-
tomaton, which in the end probably reduced the time spent debug-
ging the translator.

However, we should also note that we were helped (quite a
lot) by the implementation task being very well defined. This also
meant that the properties were not too hard to formulate. So, for
situations where a clearly defined and well described algorithm
should be implemented, this style of development is especially well
suited. Having the paper about testing LTL-to-Biichi translations by
Tauriainen and Heljanko (2002) was also very helpful.

In the end we managed to implement an LTL-to-Biichi transla-
tor that performs at least as well as our reference implementations
WRING and LTL2BUCHI.

To further improve the QuickCheck experience it would be good
to directly generate and effectively shrink Biichi automata. Espe-
cially when working with reduction algorithms it would be nice to
not get the smallest LTL formula that translates into an automaton
where the reduction fails, but rather the smallest automaton. We did
implement a generator for Biichi automata, but shrinking them in
an intelligent way was deemed a too complicated task and we did
not have time to investigate this further.

Finally we should also comment on our focus to trade a smaller
resulting automaton for a longer translation time. The run time of
the LTL-to-Biichi translator is usually some couple of hundred mil-
liseconds, while a model checking run could easily spend some

69

hundred seconds. Thus spending a factor ten longer time in gener-
ation for gaining 10% of the model checking time is still a good
trade-off.

Acknowledgments

This research was sponsored by EU FP7 Collaborative project
ProTest, grant number 215868. Many thanks to the McErlang team
(Lars-Ake Fredlund and Clara Benac Earle) for their efforts in
including the translator in the McErlang release. Also thanks to
Koen Claessen for helpful comments on testing and optimization
of Biichi automata.

References

Thomas Arts, Laura M. Castro, and John Hughes. Testing Erlang data
types with Quviq QuickCheck. In ERLANG °08: Proc. of the 7th ACM
SIGPLAN workshop on ERLANG, pages 1-8, New York, NY, USA,
2008. ACM.

Kent Beck. Test-driven development : by example.
Boston, MA, 2003.

J.R. Biichi. On a decision method in restricted second order arithmetic. In
Proc. Internat. Congr. Logic, Method. and Philos. Sci., 1960.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244-263, 1986.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 2000.

C. Benac Earle, L-A. Fredlund, J. A. Iglesias, and A. Ledezma. Verifying
Robocup teams. In Proc. 5th International Workshop, Mochart 2008,
pages 34-48. Springer, 2008.

K. Etcssami and G. Holzmann. Optimizing Biichi automata. In CONCUR
'00: Proc. of the 11th International Conference on Concurrency Theory,
pages 153-167, London, UK, 2000. Springer-Verlag.

L-A. Fredlund and J.J. Sénchez Penas. Model checking a VoD server using
McErlang. In In proceedings of the 2007 Eurocast conference, Feb 2007.

L-A. Frediund and H. Svensson. McErlang: A model checker for a
distributed functional programming language. In Proc. of Interna-
tional Conference on Functional Programming (ICFP). ACM SIG-
PLAN, 2007.

P. Gastin and D. Oddoux. Fast LTL to Biichi automata translation. In
CAV °01: Proc. of the 13th International Conference on Computer Aided
Verification, pages 53-65, London, UK, 2001. Springer-Verlag.

R. Gerth, D. A. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Proc. of the Fifteenth IFIP
WG6.1 International Symposium on Protocol Specification, Testing and
Verification XV, pages 3—18, London, UK, UK, 1996. Chapman & Hall,
Ltd.

D. Giannakopoulou and F. Lerda. From states to transitions: Improving
translation of LTL formulae to Biichi automata. In FORTE '02: Proc.
of the 22nd IFIP WG 6.1 International Conference Houston on Formal
Techniques for Networked and Distributed Systems, pages 308-326,
London, UK, 2002. Springer-Verlag.

T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation. In
Information and Computation, pages 273-287. Springer-Verlag, 1997.

Addison-Wesley,

J. Hughes. QuickCheck testing for fun and profit. In Michael Hanus, editor,
Practical Aspects of Declarative Languages, volume 4354 of LNCS,
pages 1-32. Springer-Verlag, Berlin Heidelberg, 2007.

P. Kanellakis and S. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. In PODC '83: Proc. of the second annual
ACM symposium on Principles of distributed computing, pages 228-240,
New York, NY, USA, 1983. ACM.

McErlang — hitps://babel.ls.fi.upm.es/trac/McErlang/. (Web page, 2009).

A. Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46-57, Nov 1977.

ProTest Project — http://www.protest-project.eu. (Web page, 2009).

J-P. Queille and J. Sifakis. Specification and verification of concurrent sys-
tems in CESAR. In Proc. of the S5th Colloguium on International Sym-
posium on Programming, pages 337-351, London, UK, 1982. Springer-
Verlag.

R. Sebastiani and S. Tonetta. “more deterministic” vs. “smaller” Biichi
automata for efficient LTL model checking. In 72th IFIP WG 10.5
Advanced Research Working Conference, CHARME. Springer-Verlag,
2003.

F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In
CAV ’00: Proc. of the 12th International Conference on Computer Aided
Verification, pages 248-263, London, UK, 2000. Springer-Verlag.

H. Svensson and L-A. Fredlund. A more accurate semantics for distributed
Erlang. In Erlang '07: Proc. of the 2007 SIGPLAN workshop on Erlang
Workshop, pages 43-54, New York, NY, USA, 2007. ACM.

H. Tauriainen and K. Heljanko. Testing LTL formula translation into Biichi
automata. STTT, 4(1):57-70, 2002.

70

Heikki Tauriainen. 1btt 1.0.0 — an LTL-to-Biichi translator testbench.
Helsinki University of Technology, Laboratory for Theoretical Com-
puter Science, Espoo, Finland, December 2001. Software.

M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Proc. of the VIII Banff Higher order workshop conference on Logics for
concurrency . structure versus automata, pages 238-266, Secaucus, NJ,
USA, 1996. Springer-Verlag New York, Inc.

Moshe Y. Vardi. The Biichi complementation saga. In STACS 2007, volume
4393 of Lecture Notes in Computer Science, pages 12-22. Springer
Berlin / Heidelberg, 2007.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. Ist IEEE Symposium on Logic in Com-
puter Science (LICS'96), pages 332-344, New York, 1986. IEEE Com-
puter.

Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about
infinite computation paths. In Foundations of Computer Science, 1983.,
24th Annual Symposium on, pages 185-194, Nov. 1983.

Model Based Testing of Data Constraints
Testing the Business Logic of a Mnesia Application with Quviq QuickCheck

Nicolae Paladi

IT University of Gothenburg, Sweden
paladi@ituniv.se

Abstract

Correct implementation of data constraints, such as refer-
ential integrity constraints and business rules is an essen-
tial precondition for data consistency. Though most modern
commercial DBMSs support data constraints, the latter are
often implemented in the business logic of the applications.
This is especially true for non relational DBMS like Mnesia,
which do not provide constraints enforcement mechanisms.
This case study examines a database application which uses
Mnesia as data storage in order to determine, express and
test data constraints with Quviq QuickCheck, adopting a
model-based testing approach. Some of the important stages
of the study described in the article are: reverse engineer-
ing of the database, analysis of the obtained database struc-
ture diagrams and extraction of data constraint, validation
of constraints, formulating the test specifications and finally
running the generated test suits. As a result of running the
test suits randomly generated by QuickCheck, we have de-
tected several violations of the identified and validated busi-
ness rules. We have found that the applied methodology is
suitable for applications using non relational, unnormalized
databases. It is important to note the methodology applied
within the case study is not bound to a specific application
or DBMS, and can be applied to other database applications.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering|: Software/Program Verification; D.2.5 [Software
Engineering]: Testing and Debugging;

General Terms Verification

Keywords Business rules, model based testing, formal
specifications, Erlang, Mnesia, QuickCheck.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page, To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’09, September 5, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-60558-507-9/09/09. .. $10.00

71

Thomas Arts

IT University of Gothenburg and Quviq AB,
Sweden

thomas.artsQituniv.se

1. Introduction

Referential integrity is the database-related practice of en-
suring that implied relationships between tables are en-

forced. Most modern Database Management Systems (DBMSs),

especially relational DBMSs have built in mechanisms for
defining and ensuring basic data constraints [24]. However,
in practice far from all constraints are defined in the database
management system itself, but many are rather encoded in
the application using the data. For example, an application
supporting an internet shop would impose a relation be-
tween a customer willing to make a purchase and the credit
balance of that customer. In a purely relational database, one
could hard code that the credit must at least be the purchase
amount, but this is hardly ever done, since this constraint
is based on a business strategy that may well change or is
different for different customers.

Many database applications have a layered architecture,
part of the data constraints are hard coded as relational con-
straints in the DBMS, other constraints are implemented
in the business logic of the application. There are several
reasons for implementing constraints in the business logic
rather than in the DBMS. For example, the above mentioned
situation in which one wants to get flexibility in the rela-
tionship; either in the future or for special subset of the cus-
tomers. Other reasons may be purely social, such as lack of
developer time or required expertise and insight, or strictly
technical. An excellent example of the latter case is Mne-
sia [26], a distributed DBMS, appropriate for telecommu-
nications applications and other Erlang [2] applications
which requires continuous operation and exhibit soft real-
time properties. According to Mattsson et al, [26], Mnesia
employs an extended relational model, which results in the
ability to store arbitrary Erlang terms in the attribute fields.
However, Mnesia is not a relational database and does not
have any mechanisms for ensuring database constraints other
than ensuring them in the business logic of the application.

Problem: ensuring the constraints

When data constraints cannot be ensured by a DBMS alone,
then those constraints are much less visible in the software

design. As a consequence, constraints are often implicitly
defined and certain parts of an application may acciden-
tally violate a constraint. Constraint violation may result the
database to be in an inconsistent state and software assuming
certain properties of the data may crash. In addition, viola-
tion of constraints may impact the business, since it may be
possible to perform actions that the business disallows.

When software needs to be reliable, the constraints imple-
mented in the business logic need to be satisfied and there-
fore it should be tested that they cannot be violated by exe-
cuting the application.

Defining and enforcing database constraints within rela-
tional (and to a lesser extent object oriented) databases has
long been in the focus of both academia and industry. The
SQL implementation [17] of database constraints is cur-
rently supported by most relational DBMSs. A simple ex-
ample is that the SQL standard for ensuring referential in-
tegrity (which is a typical example of a database constraint)
is supported by DBMS like MySQL, Microsoft SQL Server,
DB2, Oracle and even MS Access (through its graphical re-
lational tool) [9]. However, this does only solve simple re-
lations and not the more dynamic relations captured by the
business rules.

There has been little research done on the topic of en-
suring business rule constraints, especially when we con-
sider databases which do not use SQL. Furthermore, pre-
vious research assume the database to be in at least the 3rd
normal form [22] or higher, and do not consider the case
of unnormalized databases [14], [12], [15]. Nevertheless,
non-relational unnormalized databases are rapidly becoming
more popular.

The case: a large Mnesia application

Recently, Castro and Arts [4] have developed a method for
testing business logic constraints with Quviq QuickCheck.
They used their method to verify business logic constraints
in an application on top of a normalized relational database.
In this paper we show that the method is also applicable to
unnormalized, non-relational databases and that we are able
to identify business logic violations in existing applications.

Kreditor AB is a Stockholm-based financial organization
which has developed for its operations a database applica-
tion implemented in Erlang using Mnesia for data storage.
The application, further referred to as the Kred application,
uses an unnormalized database supported by a non relational
database system. In this paper we show that the method of
Arts and Castro is applicable to Kreditor’s database ap-
plication. We show that we can identify violations of the
constraints. Therefore, it will help improve the existing
solutions for testing data constraints for non relational
database systems, and minimize the occurrence of situa-
tions when invalid data input can lead to data corruption.

As part of this study, we have reverse engineered the Kred
application to create its database schema and the correspond-
ing entity-relationship (ER) diagram. Besides,

72

we have identified a number of data constraints that are
implemented in the business logic of the application.

The presented approach is generally applicable to non-
relational databases, but in particular to Erlang applications
build upon Mnesia.

2. Related Research

We base our case study on the method developed by Castro
and Arts [4], which is a general methodology for testing
data consistency of database applications. In this approach,
the system under test is modeled as a state machine, the
state of which is examined after consecutive calls to database
interface functions. In the method, the focus lies on keeping
the state as simple as possible and not making the state a
copy of the database; only data generated by the interface
functions (such as unique keys, etc), should be stored in
the state, the rest is assumed to be correctly stored. The
state machine model is tested against the real application
with QuickCheck, (cf. [5]). The novelty of the method of
Castro and Arts is that business rules are formulated as data
invariants and are checked after each test.

The method is applied to a normalized, relational database
and invariants are described and executed as SQL queries.

2.1 Other approaches

Chan and Cheung support the idea that current “tradi-
tional” approaches in software testing cannot reveal many
of the software errors which can lead to database corrup-
tion. Therefore, they suggest the idea of extending the white
box testing approach with the inclusion of SQL statements
that are embedded into the database application. In order to
do that, they suggest to convert the SQL statements to the
general programming language in which the application is
implemented and include them into the white box testing
framework [10].

In addition, Chan et al propose to integrate SQL state-
ments and the conceptual data models of an application for
fault-based testing. In their paper, they propose a set of mu-
tation operators based on the standard types of constraints
used in the enhanced entity-relationship model. The oper-
ators are semantic in nature and guide the construction of
affected attributes and join conditions of mutated SQL state-
ments [11].

Chays et al have developed a framework for testing re-
lational database applications called AGENDA. AGENDA
has a strong reliance on the relational model and SQL and
its use has not been described for non-relational databases
[12].

Dietrich and Paschke describe a test-driven approach to
the development and validation of business rules [16]. They
propose a way to develop JUnit test cases based on formal
rules, however they propose a manual implementation of the
test cases.

As a complement to the above method, Kuliamin’s de-
scription of the UniTestK test development technology [25]
contains some practical advice on using models to test large
complex systems. In particular, the author describes the use
of well known software engineering concepts such as mod-
ularization, abstraction and separation of concerns in order
to manage the stages of determining the interface functions,
development of the model, and finally the development of
the test scenario.

3. Research Approach

The project has been carried out with an emphasis on quan-
titative post positivist approach, focused on a combination
of qualitative in-depth analysis of the database application
under examination, and empirical observation of the results
of an extensive set of randomly generates test instances.

In the light of Boudreau’s claim that “Field experiments
involve the experimental manipulation of one or more vari-
ables within a naturally occurring system and subsequent
measurement of the impact of the manipulation on one or
more dependent variables” [8], this study heavily relies on
field experiments which will focus on studying the change of
the variables in the Kred application as a response to certain
alterations of the database. Furthermore, during the study
we have not only observed and measured the occurrence of
changes, but also compared them with the expected alter-
ations. Based on the outcome of the latter comparison, we
have been able to draw conclusions on whether the business
logic of the system conforms to the requirement of maintain-
ing the data in a consistent state. Other methods used include
interviews [23], data analysis, and heuristic estimations of
the functionality limits of the system under examination for
test design purposes [27].

In the course of the project we had to answer several ques-
tions concerned with database representation, identification
of database constraints, as well as their codification. This
section will describe the tools used, as well as the steps taken
to conduct this study.

3.1 Limitations of the study

This study focused on database applications implemented in
Erlang and which use Mnesia as data storage. Despite the
fact that both Erlang and Mnesia have highly concurrent and
distributed properties, such aspects have not been taken into
consideration in the current study.

3.2 Tools
3.2.1 Test generation tools

In order to fully leverage the power of the formal veri-
fication approach adopted for testing the business logic,
we choose QuickCheck to generate and execute the tests.
Quviq QuickCheck is a specification based testing tool [5]
which tests the software with randomly generated test cases,
which follow a formal specification expressed in Erlang.

73

QuickCheck has several libraries for expressing higher level
system specifications like the state machine library that we
used.

There are several other test generation tools available,
which are listed below ':

e TVEDA, a tool developed by France Telecom CNET
[28], which generates tests against formal specifications
written in TTCN, which is an ISO test suit notation stan-
dard [31], [34]. This tool is used by France Telecom,
mainly for testing telecommunication protocols.

e TorX is an on-the-fly testing tool. i.e. which offers support
for test generation and test execution in an integrated
manner. It generates tests against specifications expressed
in PROMELA and LOTOS [30].

* Blom and Jonsson describe a case study of automatic test
generation for a telecom application implemented in Er-
lang. In their detailed paper, the authors also describe the
test generation algorithm, as well as a formal specifica-
tion language, Erlang-EFSM [7]. However, it is not fully
developed and has not moved further from the concept
state described in the article.

QuickCheck’s support of Erlang and library for state ma-
chines, together with a larger number of previous case stud-
ies, has made it the preferred tool for our research project.
However, it is important to note that the method followed in
our case study is generalizable, and it is not strictly bound to
either QuickCheck or the Kred application.

3.2.2 Structure visualization

As a consequence of the compelling lack of suitable database
reverse engineering tools as well as of database structure vi-
sualization tools that could be used for Mnesia, Dia has been
used to visualize the database structure, both the ER diagram
and the Database schema. Dia is a lightweight open source
tool that has been chosen particularly for its relatively exten-
sive capabilities [35]. While Dia may not be a specialized
database visualization tool, its capabilities allow to plot the
structure of databases as complex as the database used by
the Kred application.

3.3 Examination of the database structure

One of the first steps in our work has been the manual
examination of the database structure. Reverse engineering
of relational databases has been in the focus of research, and
several approaches are available.

To mention a few, Premerlany and Blaha offer a generic
approach to reverse-engineering legacy relational databases
[29]. In their paper the authors describe a manual process
of analysis, deconstruction and visualization of the database
model, which consists of seven steps. Premerlany and Blaha
support the idea that reverse engineering of legacy databases

! Far from being a complete list, this is an example selection of test genera-
tion and execution tools

should be carried out in a flexible, interactive approach. The
authors also claim that an approach based on rigid, batch-
oriented compilers will most likely fail [29].

Similarly, Andersson describes the process of Extracting
an Entity Relationship Schema from a Relational Database
through Reverse Engineering [1]. In his approach, Andres-
son also use an ER model extended with multi-valued and
complex data, as well as multi-instantiation. This makes
the latter approach suitable for reverse engineering of the
database under assessment.

The method described by Premerlany and Blaha has nu-
merous similarities with the current study, and in partic-
ular the focus on large unnormalized databases, the con-
sideration of the lack of enforcement for foreign keys, as
well as consideration of the “optimized or flawed schemas
which are often found in practice” , [19]. Furthermore, this
approach is suggested by the authors as suitable for large
legacy databases with little or no semantic advice avail-
able [29]. However, this method is not entirely applicable,
mainly due to its focus on relational database systems, as
well as due to the large effort required to reverse engincer
the database structure, especially since reverse engineering
of Mnesia databases is not a central issue for this project.

Following the above idea, reverse engineering of the Kred
database has been performed in an iterative process consist-
ing of the steps described below.

® Determine Candidate Keys, a step focusing on identify-
ing the primary keys of the tables. In case of Mnesia,
this is facilitated by the peculiarities of record definition,
where the first element of the record serves as a key to
the record.

® Determining Foreign-key Groups by observation of the
tables’ elements, search for synonyms, homonyms, and
fields with the same name.

® Discovering associations by revealing additional links
of all types between the tables, with the help of code
comments and other semantic information. However as
Premerlany and Blaha state, “one should be careful at
this stage, since reverse engineering produces hypothesis,
which must nevertheless be validated with the help of
semantic understanding”.

Performing the transformation by transferring of the dis-
covered information, based on decisions on the exact
representation of certain components. For example, in
many cases a one-to-one relationship implies that the el-
ement can be represented as an attribute (even perhaps a
complex attribute) rather than entity. Furthermore, N-ary
associations should be decomposed into binary (rarely
ternary [29]) relationships, for a more realistic visualiza-
tion of the database structure. Other similar steps must be
considered as well.

An additional consideration to be added to the process is
the earlier mentioned ability of Mnesia to store Erlang terms

74

of arbitrary complexity in the attribute fields, for example a
record that in itself would candidate for being an entity.

The goal of the described method is to obtain a visual
representation of the database schema, the corresponding ER
diagram of the most important components of the database,
as well as getting acquainted with the overall structure and
functioning of the database. The iterative approach allows
to gradually add entities, based on their relevance to the
identification of data constraints.

3.4 Identification of data constraints

In order to test the business logic, we need to find the data
constraints. However, it is often the case that data constraints
are not explicitly documented, and identifying them is not a
trivial task. There have been several case studies focusing on
the extraction of business rules from COBOL programs [21]
and applications using object oriented databases [6]. Un-
fortunately these efforts resulted in very narrow automated
solutions, suitable for the specific purpose of the respective
studies. Therefore, in the current project we approach the
identification of database constraints from two directions:
an analysis of the database reverse engineered into a visual
structure and individual in-depth interviews with several of
the developers of the Kred application,

The analysis of the visual representation of the database
structure focused on the key elements of the database struc-
ture, such as the schema tables and primary keys, entities
within the ER diagram as well as the relationships between
them. We used Chen’s notation for entity-relationship mod-
eling [13], particularly since in this notation relationships
are first class objects and can thus have attributes of their
own. The latter is important for modeling Mnesia databases,
where the relationship between two tables can be expressed
in a table containing several additional elements. We express
such elements as attributes of the relationship in the entity-
relationship diagram. The first step in identifying constraints
is to note the primary and foreign keys of the entities in order
to establish the relations between the entities. For example,
if two entities have a relationship between them, and share
a set of foreign keys (which are primary keys in other ta-
bles), we expect the values of the foreign keys to be equal
in all cases. Multiplicity will not be a deciding factor in this
process, since it cannot be precisely determined without ad-
ditional semantic information. This approach will help iden-
tify a part of the referential integrity constraints within the
application.

The identified constraints have been validated during a
presentation to the system developers. Furthermore, inter-
views with the developers have identified additional seman-
tic information determining domain specific data constraints.
The goal has been to identify an initial set of constraints that
were recognized by the developers, rather than identifying
all of constraints, which would require a lot of effort for a
non-trivial large scale system. The initial set has been used to

perform testing and to evaluate whether our approach could
find inconsistencies in the data.

The ER diagram, together with the database schema pro-
duced as aresult of the above mentioned reverse engineering
of the database should yield enough information to deter-
mine part of the constraints. We have identified the follow-
ing two categories of data constraints: referential integrity
constraints, and domain specific data constraints.

3.4.1 Referential integrity constraints

As mentioned above, Mnesia does not provide support for
referential integrity constraints. Therefore, referential in-
tegrity should be embedded in the business logic imple-
mentation. Referential integrity checks are easiest to dis-
cover, by examining the ER and the schema representation
of the database as previously described. An example of a
referential constraint identified in the current project. It is
expressed as an SQL query, and should return NULL in case
the constraint is satisfied. This particular example describes
the relation between the tables ptrans and pbal:

SELECT ‘ptrans‘.‘ano®
FROM ptrans, pbal

WHERE
((‘ptrans‘. ‘pbal key‘ =‘pbal‘. ‘key*)
AND NOT
(‘ptrans‘. ‘invno‘ =‘pbal‘.‘invno‘))

This example constraint ensures that the pbal events (i.e.
events that influence the payments balance of the account)
and the ptrans events (i.e. events that are related to a per-
sonal account but do not influence the payment balance of
the account) refer to the same invoice number, in case the
ptrans table contains the key of the pbal event. Since there
is a simple direct relationship between the two tables, it is
likely that the constraint has been identified and checked by
the developers, hence the probability of revealing an incon-
sistency error is quite low.

3.4.2 Domain specific data constraints

Business rules are domain- and business-specific constraints
which are expected to be expressed in the business logic.
Identification of domain specific data constraints is difficult,
especially in the situation when semantic information about
the system is not available. This task requires a combina-
tion of the above mentioned analysis of the schema repre-
sentation and ER model of the database, code analysis and
finally interviews with the developers familiar with the sys-
tem. Code analysis includes tracing the events generated
by the execution of the interface functions, examination of
event logs and static code review. Below follows an example
constraint, which is similarly to the previous one expressed
in SQL and should return NULL in case the constraint holds.

SELECT ‘pbal‘. ‘key®
FROM ‘pbal‘, ‘invoice‘
WHERE

((‘invoice‘. ‘invno‘ = ‘pbal.invmo‘)

75

AND

(‘invoice‘.flags‘ = ?FI_IS_PACC))

This slightly more complex domain specific business rule
ensures that the invoices that have their *pstatus’ flag set to
“?FIIS_PACC”, which means that they belong to a personal
account and therefore should have at least one payment
balance (pbal) entry. Certainly such a constraint should not
be incorporated into the implementation of the DBMS and
is therefore left to the business logic implementation.

3.5 Testing data constraints

Before actually testing the identified data constraints, they
have first been validated by the developers familiar with the
system. This is needed in order to avoid errors in formulating
constraints as a result of the lack of familiarity with the
system. The earlier mentioned methodology of Castro and
Arts is used to test the data constraints. Below are the stages
of the methodology, adapted to the specifics of the project.
A more thorough description can be found in [4].

Since the system under test uses Mnesia as data stor-
age, the identified data constraints will have to be converted
to Query List Comprehensions (QLC), which is Mnesia’s
query language. This query is written as an invariant to val-
idate that the business rules hold before and after test ex-
ecution. For example, the business rule presented above is
expressed using QLC as follows:

invariant_pbal() ->

QH = (qlc:q([Pb#pbal.key ||
Pb <- mnesia:table(pbal),
Inv <- mnesia:table(invoice),
Pb#pbal.invno == Inv#invoice.invno,
Inv#invoice.flags == PFI_IS_PACC])),

{atomic, Response} =

mnesia:transaction(fun() -> qlc:e(QH) end),
Response /= [].

The state of the database will be checked against the
invariant both at the start and end of the test case, thus
ensuring that the business rule is respected. A very important
aspect at this point is the correct design of the test cases that
will be run. A few test cases selected by the developers will
be insufficient, because of the developers assuming system
constraints that may not hold. Instead, a large number of test
cases, that are valid operations but are extremely unlikely to
ever happen during system operation, has to be generated.

The next step will be to identify the available interface
functions to modify the states of the system. Depending on
the architecture and the implementation of the system under
test, this stage can be very time consuming. In examining the
choice of the interface functions it is important to note their
position relative to the implementation of the business logic.

If the interface functions are determined, generators are
written for sequences of interface calls to the system. The
generators will produce only the minimal set of data which is

needed for the interface calls, in order to produce valid state
transitions. At the same time, the generated data sets should
be as varying as possible, in order to explore any potential
non standard behavior of the application.

We present a few of the generators we developed to show
what they look like and how similar they are to Erlang func-
tions. The following generator would generate lists of items
that can be used as an argument to an interface function. The
generator shown below will produce sequences of varying
length containing fairly different item sets. The generators
for artno, vat and discount will produce small natural num-
bers:

list(#item{artno = nat(),
description = list(char()),
vat = choose(nat),
flags = 0,

discount = nat(),

The generator for price will produce large numbers with
two decimals. Finally, the generator for quantity will pro-
duce either very large values, or small values for the quantity
parameter. This will produce values at the boundaries rather
than obtaining a normal distribution of number, as the use of
choose/1 would yield.

price = ?LET({H,F},{nat(), choose(0,99)},

(H¥100)+ F\ 100),

quantity = ?PLET({N,T,I},{nat(),choose(0,1),largeint()},

N + Txabs(I))})

It can be argued that the values of these sequences do
not affect the business logic, and are artificial, hard coded
sequence of goods would suffice. However, this depends on
the implementation of the business rules and the price paid
for random generation is extremely low.

For the selected interface functions, a local function is
written in order to validate that the response from the inter-
face function corresponds to the expected result. For exam-
ple, the interface function via the estore_server module
that is used to activate a reservation gets a local variant as
follows:

activate_reservation(Reservation, Items, Pno) ->
Result =
estore_server:handler(
’undefined’,
{call, activate_reservation,
[Reservation, Items, Pno, (...))1}),
Person = person:read_d(Pno),
Blacklisted = (Person#person.blacklisted == 1),
case Result of

false,{response, [{array, ["no_risk",Invmo]}]
P y

when not Blacklisted -> Result;
{false, {response, {fault, -4,"blocked"}}}
when Blacklisted -> Result;
_ => exit(unexpected value)
end.

76

First the function is called and the result is stored, after
that, the result is compared to the expected outcome.

After having added all the interface functions, QuickCheck
will create test cases by running sequences of generated in-
terface calls. The results will be validated through the ex-
pected values, and finally the invariant will be checked. A
situation in which the invariant evaluates to ’false’ would
mean that the business rule has been invalidated, and the
database is in an inconsistent state. The available test se-
quence will make it possible to observe the exact actions
that have invalidated the data constraints. Furthermore,
QuickCheck will automatically shrink the test sequence to a
minimal failing case in order to show the exact cause of the
error.

3.6 Analysis of the test results

The results collected by running the tests developed accord-
ing to the above described methodology will be used to
evaluate the way the business logic actually enforces the
data constraints in contrast to the expected enforcement of
data constraints. Furthermore, the data will be used to verify
whether the approach is fully applicable to database applica-
tions which use non-relational unnormalized databases.

4. Results
4.1 Reverse engineering

One of the obtained results is the reverse engineered ER dia-
gram and a raw representation of the schema of the database.
The obtained ER diagram is a useful artifact for Kreditor,
and together with the initial set of defined and formalized
constraints will contribute to the current system documenta-
tion. At the same time, it is an essential document for our test
approach, since we extract constraints from this ER diagram
that we use to test against.

We used the data in the schema files, the table descrip-
tions to obtain our first rough estimate of the ER diagram. A
schema is a set of record definitions, each record has a name,
the table name, and a number of fields, corresponding to the
table fields. We initially assumed each record to correspond
to an entity and the fields to attributes. After that we assume
equal field names (attributes) to symbolize relations. That is,
if a entity pbal has an attribute invno and the entity ptrans
also has an attribute invno, then we assume that these enti-
ties are related and the attributes are replaced by a relation
symbol. The kind of relation is unknown, it can be one-to-
one, many-to-one, or something else, but that is impossible
to infer from the schema file.

In the second iteration of the reverse engineering pro-
cess, 18 of the entities were transformed into relationships.
This was done in order to both reduce the complexity of the
ER model, as well as bring the ER model close to the ac-
tual structure of the database. For example, the entity per-
sonal_email was converted to a relationship between

2PrETLLSSEPAS

o
>
P

il

Figure 1. Fragment of the ER model of the database

estore and person. The other elements contained in the
personal_email were noted as the attributes of this relation-
ship.

The primary key of each table is assumed to be the first
field of the record definition, since that’s the standard in
Mnesia. In this way we visualized the ER diagram using
43 of the 87 tables that the developers considered as most
relevant.

Of course, we identified entities that had more than one
attribute in common with each other. For example, the entity
pbal and ptrans have 2 attributes in common: invno and
key. Since key also occurred in a third entity, viz. pace, we
created two relations between the entities, as depicted in
Figure 1.

There is, of course, a risk that certain attributes have the
same name, but do not identify a relationship. Similarly, it
may be the case that there is a relationship between fields
that have different names. In our case for example the at-
tributes invno and ocr expressed a relation, where ocr is a
non-standard name for the invoice number. In addition, it is
totally unclear what kind of relation the attributes symbol-
ize. Therefore, we consulted the domain experts to look at
the ER diagram and provide us with feedback.

This revealed a number of unclarities in the author’s
model of the database, for example the already mentioned
relation hidden behind invno and ocr, but also more sophis-
ticated issues. For example, the Prno which is used as an
alias for Personal Number throughout the database imple-
mentation, can be used to denote both the Personal Number
for physical persons, as well the Organization number for
legal entities. Therefore, the relation between two entities is
context dependent and a zero-to-many relationship.

After consulting the developers, the resulting ER diagram
contained 23 entities and 36 relations and a total of 250
attributes. Obviously, attempting to discover all data con-
straints that can be found in the ER diagram would be a
daunting task, therefore we only selected a subset of pos-

77

sible constraints for the five weeks we had left for our case
study.

4.2 Constraints Identified

For the purpose of the project, 24 constraints have been iden-
tified and recorded for further testing. The constraints were
initially expressed in SQL in order to be validated during in-
dividual interviews with developers. Unexpectedly, of the 24
identified constraints only 16 have been considered as valid,
while the other 8 were considered as either irrelevant, or not
true for the system.

The reason for such large number of invalid constraints
can be explained cither by the misinterpretations and mis-
ccllaneous errors in the process of reverse engineering the
database, or by the often stated lack of familiarity with the
system. However, the identification of invalid, or false con-
straints should not be considered as a waste of time. This
is simply because formulating and discussing these incor-
rect constraints made it possible to both learn that not all
relations are relevant at some point in the business process,
despite their apparent semantic similarities.

In any case, even areduced set of constraints is important,
since no other constraints of the Kred application have been
recorded earlier. The above mentioned constraint

SELECT ‘ptrans‘.‘ano®

FROM ptrans, pbal

WHERE
((‘ptrans‘. ‘pbal_key‘=‘pbal‘. ‘key*)
AND NOT
(‘ptrans‘. ‘invno‘=‘pbal‘. ‘invno‘))

was remarked as particularly relevant, since there have
been situations in the past when this constraint was not
respected.

4.2.1 Failing constraints

We used QuickCheck to generate random sequences of calls
to the interface functions, or in other words, have users of
the system “go wild on it. After each such sequence we
validated the identified constraints. Surprising enough, we
detected that two of them could be violated.

Contrary to the ecarlier expectations that the referential
constraints are most likely to hold (in contrast with the do-
main specific business logic, the errors in which are more
difficult to spot), the constraint provided earlier as an exam-
ple, did not pass the test (the output details are ignored):

QuickCheck has found a counterexample when ptrans.invno

is not equal to pbal.invno, when pbal.pno is equal with
ptrans.pno. This data constraint has been detected through
the analysis of the ER diagram and later confirmed by sev-
eral developers as correct. However, in some apparently
rare cases this referential integrity constraint does not hold.
QuickCheck’s shrinking technique made analysis of this rare
case an easy task.

A second failing constraint that has been discovered was
a “domain specific data constraint” (according to the above
classification). It will not be described further, however its
discovery demonstrates that the applied methodology allows
us to discover both failing referential integrity data con-
straints, and domain specific business rules.

4.3 Constraints testing results
4.3.1 Validation of the test specifications

When constraints are violated by a sequence of interface
calls, one needs to ensure oneself that indeed the constraint
should hold and the sequence of calls introduces an error.
When recognizing this, the error can be fixed and the same
sequence can be executed again, now not resulting in a
violation.

However, what do we know if a constraint is not violated?
Probably we simply formulated a database query that is
always satisfied and does not really describe the constraint
we wanted to validate. For each constraint we also wanted to
check that this constraint expressed what we intended. This
is problem similar to ensuring that your test suite is correct.
Several methods to do so exist.

¢ Mutation testing, which involves changing the source
code of the system under test [36], [33].

¢ Fault injection, a method involving altering the source
code to test code paths that might not be visited [3].

¢ The use and probation of various test design approaches:
using classification trees [18], the Z method [20], or
even a combination of the two [32].

¢ Deliberately alter a constraint so that it must fail, and test
that it actually fails during test execution.

¢ Introduce a change in the implementation of the system —
the change should produce a controlled fault that would
invalidate a constraint (that otherwise holds) during test
execution.

We believe that combining all (or several) of the de-
scribed methods would yield the highest certainty that the
test specifications are correct. However, this section will de-
scribe the application of the second method, and namely the
deliberate introduction of a software fault that would invali-
date a certain constraint during test execution.

In order to apply this approach, the following constraint
has been chosen:

SELECT ‘invoice‘. ‘pno®
FROM ‘invoice‘, ‘estore_data‘
WHERE

(‘invoice‘. ‘eid‘ =
AND NOT
(‘invoice®. ‘pno

‘estore_data‘. ‘eid

¢ in ‘estore._data‘. ‘customers‘))

This constraint ensures that whenever a new customer makes
a purchase in the estore, they are added to the list of cus-
tomers in the estore_data table of the corresponding estore.

78

This example has been chosen both for its simplicity
(which becomes highly valuable in an unknown and com-
plex system) and for the relatively low effort of adding a
fault that would violate the constraint. To produce this fault,
the code is altered to that the customers list of estore_data is
emptied each time a new invoice is added. Though it might
seem rather raw, the constraint is guaranteed to fail once
there are some invoices added.

Once the tests are run, QuickCheck quickly spot an ex-
ample sequence in which this property is violated. It might
be worth noting that despite the apparent triviality of the de-
scribed bug, other existing test suites did not discover it.

5. Discussion

The results of the project show that overall, the method de-
scribed in the paper of Castro and Arts [4] and applied to
the present case is easily extendable and applicable to appli-
cation which use databases such as Mnesia. The quality and
time efficiency of applying this methodology depends signif-
icantly on the level of documentation of the system, the ap-
plication’s complexity and the clarity of the application’s im-
plementation. The approach produces several positive out-
comes, namely the updated ER model of the database, and a
schema representation of some of the tables. The most im-
portant outcome however, is the set of specifications and for-
malized constraints that is available once this method has
been applied. Such a test framework can be used (and con-
tinuously updated) later to ensure that the data constraints
are always ensured when new functionality and components
are being developed.

As mentioned above, there are two main steps in the
methodology (performed iteratively), namely identification
of the constraints, and development of the test specifications.
There are several factors that influence the outcome of the
test procedure using the above described method.

5.1 Available Documented Constraints

First of all, the availability of documented constraints would
significantly facilitate the testing process. However, the fact
that there is a set of documented constraints does not im-
ply that one need not search for additional constraints. Con-
sidering that documentation can be outdated or incomplete,
the constraints identification process should precede the con-
straints testing stage. Nevertheless, explicitly formulating
the business constraints along the development of the sys-
tem would greatly facilitate their later testing.

5.2 System Documentation

Availability of system documentation is also important when
defining the data constraints and developing the test spec-
ifications. Semantic information, extracted out of the sys-
tem documentation can add details to the ER model of the
database in case it is developed through reverse engineering,
or increase its understanding, in case it is readily available,

Furthermore, system implementation can help obtain the do-
main knowledge necessary for an effective detection of the
data constraints. The experience of this project has shown,
that a combination of absent documentation and insufficient
domain knowledge can lead to a situation when 33% (8 out
of 24) of the identified constraints will be unusable.

At the same time, absence of documentation is a fact of
live and documentation easily gets outdated. The formalized
constraints together with a QuickCheck framework are help-
ful in keeping the documentation alive, since changes in the
program may make test cases fail.

5.3 Choice of Interfaces

A limitation encountered during the study was that the cho-
sen XMLRPC interface did not provide access to the entire
functionality of the Kred application. In the process of daily
usage, the data within the application is modified through
other existing system interfaces as well, for example the
GUIL However, the effort required for the extra set up for
the GUI testing was disproportionally high compared with
the overall scope of the project. The inability to fully mimic
all peculiarities of data handling during the tests has thus
prevented us from a more thorough examination of the busi-
ness logic. We can assume, that in a database application
with multiple data access interfaces, a complete testing of
the business logic also requires simultaneous testing of all
available application interfaces.

In case that all, or most of the above conditions are ful-
filled, the testing process can be focused on developing the
test specifications. However, the current project has followed
a different path and the following steps have been taken:

e Reverse engineer the database to obtain the database
schema and ER model.

® Analyze the ER diagram to determine initial data con-
straints.

¢ Analyze the source code to identify other business logic
constraints.

® Verify the obtained constraints with the developers who
posses the domain knowledge about the system under
test.

® Determine the interface functions that will be called in
the testing process.

* Design test cases to test the data constraints.
e Implement the test case specifications using QuickCheck

¢ Run the tests and analyze the results.

6. Conclusions

In this case study we wanted to evaluate the methodology
of Castro and Arts [4] for testing data consistency of data-
intensive applications by examining a database application
which uses an unnormalized non relational database. We
have adopted a customized approach for extracting the data

79

constraints by reverse engineering the database and express-
ing the constraints in a database-specific query language.
Further, we have tested several interface functions with the
QuickCheck testing tool and revealed a constraint violation.

There were several notable points in the process of con-
straint testing according to the adopted methodology. First,
reverse engineering of the database structure is a crucial
stage for the identification of data constraints. We have ex-
amined an unnormalized non relational database, and reverse
engineered it according to a simplified version of the method
described by Premerlany and Blaha [29] to obtain an ER di-
agram of the database. We have seen that important elements
like multiplicity cannot be inferred without semantic infor-
mation and can therefore affect the elicitation of database
constraints.

The obtained ER model was used to extract and define
data constraints that were present in the application. We
have determined two types of constraints, namely referential
constrains and business rules. Referential constraints can be
identified by examining the ER model of the database and
represent constraints based on foreign key relations between
tables. We have seen that, despite our expectations and their
relative discoverability referential integrity constraints can
contain implementation faults, since we have found a viola-
tion of a referential constraint during the testing process.

On the other hand business rules cannot, in most of the
cases, be identified through the examination of the database
ER model, and therefore require the semantic knowledge
of domain experts. We did not discover any violations of
the business rules that have been tested. One of the reasons
for this is the relatively small number of business rule con-
straints that were identified and tested. Another possible rea-
son is the choice of system interface to be tested.

We have observed that the ratio of invalid or else incorrect
constraints out of the total number of identified constraints
was significantly higher in the first stages of the project, after
the first iteration of database reverse engineering. Later on,
the number of valid constraints has grown together with the
understanding of the internals of the database application.
Based on this, we can state that there might be a connection
between the understanding of the application’s implementa-
tion and the efficiency of the constraints elicitation process.
On the other hand, improving and refining the process of
constraints elicitation —both referential constraints and busi-
ness rules — would be a topic for further research.

As mentioned above, in the current study we have exam-
ined a selection of data constraints and tested them with a
limited number of interface functions. However, a complete
clicitation of the data constraints present in the Kred appli-
cation would require a revision and completion of the ER
database model, further analysis of the relations between the
entities in the model and interviews with domain experts.

We have limited ourselves and did not explore the ef-
fects of distribution and concurrency on the data constraints

within the application, despite both of them being important
properties of Mnesia. Studying the effect of these two as-
pects can also be the topic of future research.

Taking into account the findings of the project, we can
state that the adopted methodology could be applied to
database applications which use non relational database
management systems (particularly Mnesia), and unnormal-
ized databases. We also contributed by applying the ap-
proach of Premerlany and Blaha to non relational databases
and thus touching upon the topic of reverse engineering
Mnesia databases.

Acknowledgments

The authors would like to thank everyone who has con-
tributed to this paper with corrections, feedback and valu-
able input. Special thanks to the operational and software
development teams at Kreditor for their help and support.

References

[1] M. Andersson, “Extracting an entity relationship schema from
a relational database through reverse engineering,” in ER
"94: Proceedings of thel3th International Conference on the
Entity-Relationship Approach, (London, UK), pp. 403-419,
Springer-Verlag, 1994.

[2] 1. Armstrong, Programming Erlang: Software for a Concur-
rent World. Pragmatic Bookshelf, 2007.

[3] J. Arlat, A. Costes, Y. Crouzet, J. C. Laprie, and D. Powell,
“Fault injection and dependability evaluation of fault-tolerant
systems,” IEEE Trans. Comput., vol. 42, no. 8, pp. 913-923,
1993.

[4] T. Arts and L. M. Castro, “Testing data consistency of data-
intensive applications using quickcheck,” Technical report
ITU, to be published, 2009.

[5] T. Arts, J. Hughes, J. Johansson, and U. Wiger, “Testing tele-
coms software with Quviq QuickCheck,” in ERLANG ’06:
Proc. of the 2006 ACM SIGPLAN workshop on Erlang, pp. 2—
10, ACM, 2006.

[6] N. Bassiliades and I. P. Vlahavas, “Modelling constraints with
exceptions in object-oriented databases,” in ER '94: Proc.
of thel3th Int. Conf. on the Entity-Relationship Approach,
(London, UK), pp. 189-204, Springer-Verlag, 1994.

[7] J. Blom and B. Jonsson, “Automated test generation for indus-
trial erlang applications,” in ERLANG ’03: Proceedings of the
2003 ACM SIGPLAN workshop on Erlang, (New York, NY,
USA), pp. 8-14, ACM, 2003.

[8] M.-C. Boudreau, D. Gefen, and D. W. Straub, “Validation in
information systems research: A state-of-the-art assessment,”
MIS Quarterly, vol. 25, no. 1, pp. 1-16, 2001.

[9] C. Calero, M. Piattini, and M. Genero, “Empirical valida-
tion of referential integrity metrics,” Information and Software
Technology, vol. 43, no. 15, pp. 949 — 957, 2001.

[10] M. Y. Chan and S. C. Cheung, “Testing database applications
with sql semantics,” in In Proc. of the 2nd Int. Symp. on
Cooperative Database Systems for Advanced Applications,
pp. 363-374, Springer, 1999.

80

[11] W. K. Chan, S. C. Cheung, and T. H. Tse, “Fault-based test-
ing of database application programs with conceptual data
model,” in QSIC ’05: Proc. of the Fifth Int. Conf. on Quality
Software, (Washington, DC, USA), pp. 187-196, IEEE Com-
puter Society, 2005.

[12] D. Chays, Y. Deng, P. G. Frankl, S. Dan, FE 1. Vokolos, and
E. J. Weyuker, “An agenda for testing relational database
applications: Research articles,” Softw. Test. Verif. Reliab.,
vol. 14, no. 1, pp. 1744, 2004.

[13] P. P.-S. Chen, “The entity-relationship model—toward a uni-
fied view of data,” ACM Trans. Database Syst., vol. 1, no. 1,
pp. 9-36, 1976.

[14] K. H. Davis and A. K. Arora, “Converting a relational
database model into an entity-relationship model,” in Proc. of
the Sixth Int. Conf. on Entity-Relationship Approach, pp. 271~
285, 1988.

[15] Y. Deng, P. Frankl, and D. Chays, “Testing database transac-
tions with agenda,” in ICSE "05: Proceedings of the 27th int.
conf. on Software engineering, (New York, NY, USA), pp. 78—
87, ACM, 2005.

[16] J. Dietrich and A. Paschke, “On the test-driven development
and validation of business rules,” in Information Systems Tech-
nology and its Applications, 4th Int. Conf., 23-25 May, 2005,
Palmerston North, New Zealand, volume 63 of LNI, pp. 31—
48, GI, 2005.

[17] A. Eisenberg and J. Melton, “Background sql:1999, formerly
known as sql3,” Commun. ACM, 2008.

[18] M. Grochtmann and D. benz Ag, “Test case design using
classification trees,” 1994.

[19] J.-L. Hainaut, “Database reverse engineering: Models, tech-
niques and strategies,” in Proc. Of the 10 th Int. Conf. on
Entity-Relationship Approach.

[20] S. Helke, T. Neustupny, and T. Santen, “Automating test case
generation from z specifications with isabelle,” in ZUM °97:
Proc. of the 10th Int. Conf. of Z Users on The Z Formal
Specification Notation, (London, UK), pp. 52-71, Springer-
Verlag, 1997.

[21] H. Huang, W.-T. Tsai, S. Bhattacharya, X. Chen, Y. Wang,
and J. Sun, “Business rule extraction techniques for cobol
programs,” vol. 10, (New York, NY, USA), pp. 3-35, John
Wiley & Sons, Inc., 1998.

[22] W. Kent, “A simple guide to five normal forms in relational
database theory,” Commun. ACM, vol. 26, no. 2, pp. 120-125,
1983.

{23] F. N. Kerlinger, Foundations of Behavioral Research. Har-
court Brace Jovanovich, 1986.

[24] M. Ketabchi, S. Mathur, T. Risch, and J. Chen, “Comparative
analysis of rdbms and oodbms: a case study,” in Compcon
Spring '90. Intellectual Leverage. Digest of Papers. Thirty-
Fifth IEEE Comp. Soc. Int. Conf., (New York, NY, USA),
pp. 528-537, IEEE, 1990.

[25] V. V. Kuliamin, “Model based testing of large-scale software:
How can simple models help to test complex system,” in /n
Proc. of 1-st Int. Symp. on Leveraging Applications of Formal
Methods, pp. 311-316, 2004.

[26] H. Mattsson, H. Nilsson, and C. Wikstrom, “Mnesia - a dis-
tributed robust dbms for telecommunications applications,” in
PADL °99: Proc. of the First Int. Workshop on Practical As-
pects of Declarative Languages, (London, UK), pp. 152-163,
Springer-Verlag, 1998.

[27] J. Nielsen and V. L. Phillips, “Estimating the relative usability
of two interfaces: heuristic, formal, and empirical methods
compared,” in CHI ’93: Proc. of the INTERACT '93 and CHI
'93 conf. on Human factors in computing systems, pp. 214~
221, ACM, 1993.

M. Phalippou and R. Castanet, ‘“Relations d’implantation et
hypotheses de test sur des automates a entrees et sorties = im-
plementation relations and test hypotheses on input-output au-
tomata,” in Travaux Universitaires - These nouveau doctorat,
(Universite de Bordeaux 1, Talence, FRANCE), 1994.

[29] W. J. Premerlani and M. R. Blaha, “An approach for reverse
engineering of relational databases,” Commun. ACM, vol. 37,
no. 5, pp. 42—ff., 1994.

[30] G. J. Tretmans and A. F. E. Belinfante, “Automatic testing
with formal methods,” Technical Report TR-CTIT-99-17, En-
schede, December 1999.

[31] J. Tretmans, P. Kars, and E. Brinksma, “Protocol conformance
testing: A formal perspective on iso is-9646,” in Proc. of the
IFIP TC6/WG6.1 Fourth Int. Workshop on Protocol Test Sys-
tems IV, (Amsterdam, The Netherlands), pp. 131-142, 1992,

[28]

81

[32} H. Singh, M. Conrad, and S. Sadeghipour, “Test case de-
sign based on z and the classification-tree method,” in ICFEM
'97: Proc. of the Ist Int. Conf. on Formal Engineering Meth-
ods, (Washington, DC, USA), p. 81, IEEE Computer Society,
1997.

S. De Souza, D. R. S. Maldonado, J. C. Fabbri, S. Camargo,
P. Ferraz, D. Souza, and W. Lopes, “Mutation testing applied
to estelle specifications,” Software Quality Control, vol. 8,
no. 4, pp. 285-301, 1999.

L. O. for Standardization, “Information technology, open sys-
tems interconnection, conformance testing methodology and
framework. international standard is-9646,” (Geneve, CH),
p.290-294, 1SO, 1991.

[35] G. project, “http://projects.gnome.org/dia/,” 2009.
[36] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation

testing: an empirical study,” J. Syst. Softw., vol. 31, no. 3,
pp- 185-196, 1995.

[33]

[34]

Automatic Testing of TCP/IP
Implementations Using Quickcheck

Javier Paris

University of A Coruna. Spain
javierparisQudc.es

Abstract

We describe how to use model based testing for testing a network
stack. We present a framework that together with the property based
testing tool QuickCheck can be used to test the TCP layer of the
Internet protocol stack. TCP is a rather difficult protocol to test,
since it hides a lot of operations for the user that communicates
to the stack via a socket interface. Internally, a lot happens and by
only controlling the interface, full testing is not possible. This is
typical for more complex protocols and we therefore claim that the
presented method can easily be extended to other cases.

We present an automatic test case generator for TCP using
Quickcheck. This tester generates packet flows to test specific fea-
tures of a TCP stack. It then controls the stack under test to run the
test by using the interface provided by it (for example, the socket
interface), and by sending replies to the packets created by the stack
under test. We validated the test framework on the standard Linux
TCP/IP implementation.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing Tools

General Terms Reliability

1. Introduction

One of the problems when developing a TCP/IP stack is testing
it. Test cases are not easy to create because of the nature of the
environment in which the stack operates: it requires the ability to
create a flow of packets that check particular features of TCP/IP,
which often involve timing, where there are two actors involved
(the local and the remote stack, with complex interactions).
Compliance is usually tested using another stack included in
a commercial OS (such as Linux) and a packet sniffer to see the
actual packet exchange and manually check if there is any deviation
from the standard. There are several problems in this approach:

¢ Checking a packet dump by hand takes time and it is easy to
overlook errors.

e It is hard to check special features which only arise under
specific conditions because it is difficult to get the connection
into that state. It is even more difficult to test behaviour under
failure conditions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’09, September 5, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-1-60558-507-9/09/09. .. $10.00

83

Thomas Arts

IT University of Gothenburg and Quvig AB. Sweden
thomas.artsQituniv.se

® Because of the dependency on timing and concurrency, stack
operations may seem to behave non-deterministically, making
it harder to find error cases, but also difficult to reproduce error
cases and re-check the stack when the error is fixed.

We introduce a tool for automatically testing TCP implementa-
tions through the use of the Quickcheck automatic test case genera-
tor. Using Quickcheck we can generate a large number of different
test cases with complex behaviour. Specifically, we will focus on
two scenarios that we can automatically generate as test cases for
the stack. One of them is a simple connection establishment exam-
ple, and will provide a good introduction. The other example is a
complex situation of a simultaneous close which would be difficult
to test a manually executed test case,

The rest of the paper is organized as follows. In Sect. 2 we
introduce TCP/IP and a couple of test cases we want to test. In Sect.
3 we describe the environment in which the tests are performed. In
Sect. 4 we provide a short introduction to Quickcheck, and provide
an small example of a test using it. In Sect. 5 we describe in detail
how a scenario of the test cases described in Sect. 2 would be.
In Sect. 6 we describe some of the problems observed during the
design of the tool. Finally, in section 7 we provide our conclusions
and explain the future work.

2. TCP in a nutshell

The Internet protocol stack is the defacto standard for Internet com-
munication. It specifies several protocols in five different layers.
Each of the lower layers provides services to the upper layer:

e The physical layer specifies the electric and physical compo-
nents of the network: connectors, cables, frequencies (for radio
transmission), etc.

The link layer uses the physical network to send packets be-
tween directly connected computers. Two well known protocols
in this layer are Ethernet or PPP.

The network layer, which uses the link layer to send packets
between indirectly connected computers, that is, between com-
puters which may be in different but interconnected physical
networks. The main protocol in this layer is IP, but there are
several others, like ICMP and IGMP.

e The transport layer, which uses the network layer to control the
packet interchange between the two ends of the communication,
providing multiplexing, rate control, and packet loss recovery.
Typical examples are TCP (Transmission Control Protocol) and
UDP, where TCP is the most complex of the two, since it
guarantees lossless ordered packet delivery.

The application layer that uses TCP or UDP for transport of the
application specific data. Examples are HTTP or IMAP.

T
| CLOSED

Listen/-

Connect/Syn

\
LISTEN

Syn/Syn+Ack

Syn+Ack/Ack

ESTABLISHED |~

Close/Fin

Fin/Ack

CLOSE_WAIT
Fin+Ack/Ack
Ack/- Ack- Close/Fin
3 A
FIN_WAIT_2 TIME_WAIT | LAST _ACKI
Fin/Ack
Timeout Ack/-

Figure 1. TCP Connection States

The TCP protocol ensures reliable connections on top of unreliable
layers. When sending a webpage from one computer to another,
TCP divides the page in packages of a certain size and ensures that
they are transported to a TCP layer on the other side, which puts the
packages together. TCP takes care of resending and assembling,
such that the application layer need not to care about that. This
requires TCP to have state in order to ‘remember’ which packets
have been sent and together with the high dynamic nature of the
protocol, it makes it the most complex one of the four lower layers.
TCP connections require synchronization between the peers. All
TCP packets have a sequence number that identifies the order of the
data that is transmitted. This number is used by the peer to order the
data as it is received, and to identify lost packets. It is important to
nole that because a TCP connection is symmetric there is a different
sequence number for each of the peers.

TCP packets also include an acknowledge number, which re-
ports the last sequence number that the sender of the packet has
seen. This is used by the receiver to control the transmission rate
and to identify lost packets.

On a high abstraction level, TCP can be modelled by a simple
state machine that keeps track of a connection [RFC793 1981]. Of
course, many of these connections are concurrently active at the
same time. Transitions from one state to another are triggered by
timers, the reception of packets or user commands.

At the start of a TCP connection both peers exchange their ini-
tial sequence numbers. This process is the connection establish-
ment, and can be seen at the top of Figure 1. A more detailed
description of the TCP state machine can be found at [RFC793
1981],[Zaghal and Khan].

When both peers have finished the connection establishment
both should be in the ESTABLISHED state, where the actual data
transmission takes place.

After the data exchange is over, the connection is closed. This
allows both peers to free the resources used to keep the state of the

84

Tester Subject

open (control msg)

syn 0, ackl

ack 1

Figure 2. Typical TCP Connection Establishment

connection. A connection which is closing will transit through the
states at the lower part of Figure 1.

Note that the event description in Figure 1 is of the form Re-
ceive/Sent, that is, when the peer in a certain state receives the Re-
ceive event, it will send a Sent to the other peer and transit to the
next state. Also note that the standard interface to TCP, i.e., the
socket interface, only gives access to stimulate the events: Listen,
Connect, Send, Receive, and Close. Our approach aims to also con-
trol all other events in order to perform proper testing.

Testing TCP

In this paper we describe how we can test TCP by using the above
presented state machine as a model for our test cases. We assume
all lower layers of the protocol to be correct and check at the end
points of communication.

For example, we want to test the transitions caused by con-
nection establishment and closing, including obscure cases such
as simultaneous closing'. In other words, we want to generate se-
quences of events that make the TCP implementation move through
all possible states in the state machine in all possible ways. We need
to create different sequences to get to state ESTABLISHED and
different sequences to get to CLOSED again. A typical connection
establishment would follow Figure 2:

1. Both Peers start with the connection in the CLOSED state.

2. A program in Peer B listens for incoming connections and
opens a socket. This puts the connection in the LISTEN state.

3. Peer A wants to start a connection and sends a packet with its
initial sequence number (0 in our example), and moves to the
SYN_SENT state.

4. Peer B receives the packet sent by A, and replies with its own
initial sequence number (also 0), and acknowledges the syn sent
by peer A saying that the next sequence number it expects is 1.
Peer B moves to the SYN_RECEIVED state.

UThis happens when both peers start a connection close at the same time,
instead of doing it sequentially.

ack 2 ack 2

Figure 3. Simultaneous Connection Close

5. Peer A receives the packet sent by B in the previous state, and
acknowledges it by sending an Ack packet. After this Peer A
moves to the ESTABLISHED state.

6. Peer B receives the Ack and moves to the ESTABLISHED state.

This is a simple example, but there are several things that can
be checked when this sequence is traversed. The tested stack must
generate the correct sequence of packets (in both cases, as starter
and as receiver); it must create correct packets (for example, the
checksum check should always pass); it also has to keep the state
correctly (the sequence and acknowledge numbers of the sequence
of packets must be the same).

A rarer scenarijo is the simultaneous closing of a connection,
which happens when both peers try to close the connection at the
same time. Figure 3 shows the packet exchange that would happen.

As it can be seen, both peers send a Fin packet to start the
closing procedure. In this case the connection is simply closed by
acknowledging the Fin sent by the other peer. While the case is
fairly simple to understand, it is difficult to reproduce in a real
environment, because it is necessary to perfectly synchronize the
connection close in both peers. This requires the tester to have full
control over both Peers.

3. Test Setup

TCP connections are usually controlled by the application layer
protocols, the most common being the socket interface. These in-
terfaces abstract most of the complex behaviour of TCP, which is
good for normal connections, but makes it difficult to analyze if the
behaviour of the stack is correct. The tests should not only test the
behaviour seen at the interface level, but go deeper.

We also want the test to be as general as possible, that is, not
geared towards testing a particular TCP/IP stack. It should be easy
to adapt the test specification to check any TCP/IP stack. If no
particular structure can be assumed in the tested stack the only way
to test it is by doing black box tests.

We have decided to test the behaviour by looking at the actual
packets sent over the network. This should provide a reasonable
way of doing an in-depth test and providing a test specification
that may be used to test very different implementations of TCP.
This approach has its limitations. For example, there may be errors
that do not show in the packet trace, or are difficult to spot. As an
example, an incorrect computation of timers would not be seen in
the trace unless it was very serious.

The test setup can be seen in Figure 4, and includes:

1. A computer with the stack under test (from now on Subject).
This stack needs to be controlled and we use a controller pro-
gram for doing so. This controller translates the high level com-
mands to execute during the test, such as opening and closing

85

o
S Subject
Quickcheck TCP TN
TICP Packers Send...
IP Stack
K
L. J L J

Ethemet Frames Echernet Frames
Y v

Figure 4. Test Setup

connections, and sending data, to the specific API of Subject.
The controller has no state, it just translates the commands com-
ing from QuickCheck 2.

2. A computer running QuickCheck (from now on Tester) simu-
lating TCP by means of a QuickCheck specification module and
a special IP stack. The IP stack is used to send the TCP pack-
ets generated by QuickCheck and to receive incoming packets
from the subject. We use a special IP stack, written in Erlang
since we want our TCP model to communicate with an IP layer.
This would require RAW sockets, but the implementation of
them is different for each IP implementation. Thus, using our
own IP stack on the Tester side, provides a portable solution for
testing. It also allows us in future testing to send incorrect IP
packets, which would be hard when using an off-the-shelf IP
implementation.

3. A network connecting both computers. Initially both are sup-
posed to be directly connected by an Ethernet network, but
this test scenario will be expanded when we add test for cases
that require routing. For simplicity we assume that there are no
problems in the Ethernet network, that is, no packet loss or de-
lay. These are very rare anyway and we want to control them,
not having them spontaneously appear.

The IP stack is based on the TCP/IP stack described in [Paris
et al. 2005]. This processes packets from the network, and creates
IP packets to send the TCP packets created by QuickCheck. Be-
cause it is implemented in userspace, it uses a packet sniffer to cap-
ture packets from the network, and to inject packets into it. This
sniffer has been developed using the libpcap library[Jacobson
et al.] and it supports several operating systems including Linux,
Windows, and several BSD variants (such as FreeBSD or Mac OS
X).

4. QuickCheck

‘We base our approach on property-based testing using QuickCheck
[Claessen and Hughes 2000], in a commercial version for Erlang
developed by Quviq AB [Hughes 2007, Arts et al. 2006]. Compared
to the original version of QuickCheck, the commercial version of it
has many supporting libraries for protocols, among which a library
for finite state machine models that we in particular use.
QuickCheck tests universally quantified properties, instead of
single test cases. QuickCheck generates random test cases from
each property, tests whether the property is true in that case, and
reports cases for which the property fails. QuickCheck “shrink”
failing test cases automatically, by searching for similar, but smaller

2 This is a potential weakness of the testing model because Erlang uses TCP
for its distribution protocol and we use Erlang to connect to the controller.

test cases that also fail. The result of shrinking is a “minimal”?
failing case, which often makes the root cause of the problem very
easy to find.

This approach has several advantages. Properties are easier to
understand than normal test cases, and a property can be used to
generate thousands of different test cases. Each test case can also
be more complex than a manually written test case.

As an example of Quickcheck we will present a test for IP
checksum implementations.

4.1 Testing IP Checksum Implementations with Quickcheck

The IP checksum is the 16 bit one’s complement of the one’s com-
plement sum of all 16 bit words in the header. Ones complement is
a way of representing negative numbers.

The TP checksum uses base 16, that is 2 bytes. In 16 bits you can
represent the numbers 0 to 65535. The idea with ones’ complement
is to use half the numbers in this interval for representing negative
numbers. Thus, O up to 32767 are the positive numbers and 65535
is -0, or an alternative representation of zero. The number 65534 is
-1 etc. Until 32768 which is -32767. Hence the interval -32767 up
to 32767 can be represented.

4.1.1 Ones Complement

Given an implementation of the IP checksum, a first function we
want (o tesl is the ones” complement of a word, say that this is im-
plemented as Erlang function ip_checksum: ones_complement/1
and that it takes a binary with one 16 bit word as input,

The QuickCheck property that we use to test this function
should not be a re-implementation of the function under test.
This holds for testing in general and also for QuickCheck proper-
ties. We do not want to implement a function in order to test it. A
way of testing without writing a new version of the ones’ comple-
ment is to follow the definition and say that a number and its ones’
complement sum to -0. Since we want to be general, we specify the
property for any base and check it with argument Base substituted
by 16.

prop_ones_complement (Base) ->
?FORALL (I, choose(0, (1 bsl Base)-1),
begin
CI = ip_checksum:ones_complement(I),
(1 bsl Base)-1 == I+CI
end) .

The QuickCheck macro ?FORALL is the logic quantifier with 3
arguments, the first one, the variable I is bound to a random value
generated by the second argument choose (0, (1 bsl Base)-1).
This generator randomly chooses a number between zero and the
number obtained by shifting a bit Base posilions to the left and
subtracting one, thus between 0 and 259%¢ — 1.

The third argument of the 7FORALL macro is the actual logic
expression implemented as an Erlang expression. First the function
is applied to the randomly chosen value I, which results in CI. The
sum of I and CI should be -0 or 272¢ — 1,

This property is checked by QuickCheck by generating random
values specified by the generator and evaluating the Erlang expres-
sion. If the result is false, then an error is detected and smaller
values are tested until a minimum example is found for which the
property can be falsified.

4.1.2 DPadding

It is not clear from the specification presented above, but if you
need to compute the checksum of a list of bytes in base 16, then

3In the sense that it cannot shrink to a failing test with the shrinking
algorithm used.

86

there should be an even number of bytes. Likewise, if we would
like to do ones’ complement in 32 bits base, we would need to
extend a sequence of bytes such that it is divisible by 4.

Extending a bit string such that it is divisible by the base is
called padding. We assume there is a function that performs the
padding called ip_checksum:padd/1 taking a bit string as argu-
ment and returning a new bit string which is an extended version
with as many zero bits as needed.

We like to present a general example that works for padding
bitstrings with any number of bits. We assume a generator for bit-
strings given in QuickCheck, but for older versions of QuickCheck,
one can define a simplistic version oneself for bitstrings up to 200
bits:

bitstring() ->
7LET(NrBits,choose(0,200),bitstring(NrBits)).

bitstring(NrBits) ->
7LET(Bits,vector (NrBits,choose(0,1)),
to_bitstring(Bits)).

to_bitstring([]) —>
<<>>;
to_bitstrong([Bit|Bits]) ->
Rest = to_bitstring(Bits),
<< Bit:1, Rest/bitstring>>.

After being able to generate arbitrary bitstrings, we can specify
the property for padding arbitrary strings for an arbitrary number
of bytes. In the specific case of IP checksum, we would use 16 as
base.

prop_padding(PadSize) ->
?FORALL(BitString,bitstring(),
begin
Bits = bit_size(BitString),

<<B:Bits/bits, Padded/bits>> =

ip_checksum:padd(BitString),

Zeros = bit_size(Padded),

((Bits+Zeros) rem PadSize) == 0 andalso
B == BitString andalso
<<0:Zeros>> == Padded

end) .

In this property, the function under test is called with an arbitrary
bitstring; it should pad this bitstring for PadSize bits. We match the
result with a bitlist in which the prefix contains exactly the number
of bits that the generated bitstring has and the rest is the padded
suffix. We check that the number of bits in the result is divisible
by the PadSize, that the original bits are unchanged and that the
padded bits are all zeros.

4.1.3 Ones Complement Sum

The ones’ complement sum is computed by adding a number of
words in ones complement. We assume it is implemented by the
function ip_checksum: ones_sum/2 which takes a bitstring as ar-
gument. We assume that padding is done outside the ones_sum
function and only test that the function works for bitstrings of
which the length is divisible by the given base.

We do not assume that the ones_sum/2 function returns the
ones’ complement of the sum, it just returns the sum. We can
compute the sum, add its ones’ complement to the exiting list,
compute the sum once more and expect to get zero (or actually -
0) out of the result. We present a general property and can call it
with base 16 in the specific case.

prop_ones_sum(Base) ->
7FORALL(I, choose (0,1024),
?FORALL(Bin,bitstring(I*Base),
begin

Sum = ip_checksum:sum(Bin),
CSum = ip_checksum:ones_complement (Sum),
ip_checksum: sum(<<CSum/bits, Bin/bits>>) ==
<<((1 bsl Base)-1):Base>>
end)).

4.1.4 Checksum

After computing ones’ complement sum, one has to take the ones’
complement of the result to compute the checksum, as we already
did in the above property. For checking the checksum function,
we use the same trick as we used for checking the sum function,
knowing that if we extend the binary with the checksum and we
compute the ones’ complement sum we get -0. Alternatively, we
could also compute the checksum and do a logical and with the
ones’ complement sum or so.

prop_checksum(Base) ->
?FORALL (Bin,bitstring(),
begin
CheckSum = ip_checksum:checksum(Bin),
ip_checksum:sum(<<CheckSum/bits, Bin/bits>>) ==
<<((1 bsl Base)-1):Base>>
end) .

In this way, simple side-effect free functions can be checked by
QuickCheck. One uses a, possibly user defined, data generator to
create random values in a certain domain. These values are used in
a test that reflects a property of the function more than a concrete
case.

However, in most Erlang Software, side-effects play an impor-
tant role and we want to be able to test functions that have side-
effects as well. Quviq QuickCheck supports this by libraries that
help to specify properties for such software. One of them is the
library for finite state machines.

4.2 Quickcheck Finite State Machine Specifications

The TCP protocol is a so called stateful protocol, i.e., specific
events may have different effects depending in which state the TCP
connection is. If we would perform traditional testing, we would
create sequences of events to get TCP into a certain state and
consecutive sequences to test certain specifics. With QuickCheck
we follow a similar approach, but then quantifying over all possible
sequences of events.

Similar to the above described side-effect free case we define a
property which in this case states that for all sequences of events
the TCP protocol respects the postconditions of these events. The
property is rather simple, defining the postconditions and the gen-
erator that generates all possible valid sequences is where the work
is.

We use the finite state machine library named eqc_£sm Lo spec-
ify the state machine given in Sect. 2. That state machine is then
used to generate test cases from. Specifying such a state machine
is a bit like writing a state machine in gen_£sm, but the transitions
are non-deterministic and chosen by QuickCheck when generating
possible sequences.

In order to specify a state machine, one has to specify for each
state which next states it has and which actions or events should be
generated fo get from one state to the next. Like in gen_fsm the
state transitions are given as callback functions. One starts by spec-
ifying the initial state and initial state data and from there, functions
are provided for each state. In addition to this more operational part
from the state machine, one also specifies preconditions for events;
a precondition is a logic expression specifying whether or not a cer-
tain event can take place in a certain state with certain state data.
Likewise, one specifies postconditions. A postcondition is a logic
expression that specifies whether the return value of a given action
or event in a certain state could occur.

87

In the next section we describe our state machine model in
detail.

5. State Machine Model

Our approach is to test the behaviour of a TCP connection with
a state machine model. This state machine is modelled using the
eqc_fsm module of Quickcheck described above.

A generated test simulates the behaviour of a real TCP connec-
tion. The current state of the finite state machine models the state
in which the connection in the subject should be.

Given the state machine model that we describe in this section,
QuickCheck generates a sequence of commands. Either the con-
troller forwards these commands to Subject, which in its turn can
result in a TCP packet being sent from the Subject to Tester; or
the command provokes the Tester to send a TCP packet to Subject.
The result are packages that arrive on the QuickCheck side and the
postconditions in the model check that the expected packets have
arrived. Replies are generated in advance, based on the expected
behaviour.

Note that we test connections, we randomly choose a port, but
do all operations on that port during one test. Concurrent connec-
tions should be tested differently with a more elaborated state ma-
chine model in which we have free and used ports and in which
preconditions are used to select free ports when starting a connec-
tion.

5.1 Checking Connection Establishment

As an example, we will see how the tester checks that the subject
correctly cstablishes a connection (see TFigure 2). There are three
relevant TCP states:

5.1.1 CLOSED

CLOSED is the state in which the connection should be before it is
started. This state corresponds to an Erlang function closed in the
state machine model and from this state, two other states can be
reached, the syn_sent state and the syn_rcvd state.

closed(8) ->
[{syn_sent,
{call, 7MODULE, open,
[S#state.ip, S#state.port, {var, listener},
{var, sut}]}},
{syn_rcvd,
{call, ?MODULE, listen,
[S#state.sut_ip, S#state.sut_port, S#state.ip,
S#state.port, {var, listener}, {var, sut}]}}

This describes the possible transitions from the CLOSED state.
The state machine may either proceed to the syn_sent state (by
calling the function open), or to the syn_receive state (by calling
listen). Both calls take several parameters from the state of the
test (8), such as the IP addresses and ports. It also uses two pa-
rameter of the test (1istener and sut), which are the symbolic
representation of the Erlang process identifiers of the IP stack and
the subject controller respectively.

Note that there is no specific state for the LISTEN state. One
can view the transition between CLOSED to LISTEN as a silent
transition, or a 7 step in process algebraic terms. The transition
does not transmit any packet on the network.

The LISTEN state provides a way of receiving multiple incom-
ing connections to a local port, it is only a way of telling apart ports
on which a process is waiting for incoming connections, and ports
where no one is listening. A connection is created by either accept-
ing an incoming message on a listen call to a CLOSED port or by
starting a connection from a CLOSED port. Our QuickCheck model

controls the Subject to either do the one or the other in a random
way.

In our example, where the subject is starting the connection, the
state would proceed to syn_sent. Quickcheck would call the open
function, which would:

1. Tell the controller to open a connection.
2. Ask the IP stack to receive a TCP packet from the subject.

This should move the subject state to SYN_SENT. Quickcheck
now calls the postcondition function to check if the received
TCP packet is correct (a timeout in the listener will raise an excep-
tion if no packet is received at all).

postcondition(closed, syn_sent, S,
{call, ?MODULE, open, [Ip, Port, _, _1}, Syn) —->
check_flags(Syn, [synl) and
(Syn#tcp.dst_ip==Ip) and
(Syn#tcp.dst_port==Port) and
(Syn#tcp.data == <<>>);

The postcondition is valid for a transition from CLOSED to
SYN_SENT, caused by a call to open(Ip, Port, Listener,
Sut), if the message was a Syn message, i.e., the correspond-
ing flag in the header is set (see Fig. 1). It is also checked that the
IP address and Port match and that the data part of the message is
empty.

When the postcondition is valid, Quickcheck will now update
the state. In addition, the state machine model supports state data,
i.e., a data parameter that carries from one state to the other. We use
the state data to store the last message that we have sent, in order
to be able to read sequence numbers and other data in consecutive
states.

next_state_data(closed, syn_sent, S, Syn,
{call,_,_,_.}) —>
S#state{last_msg = Syn};

Now the peer Subject is in the SYN_SENT state and the peer
Tester is in the SYN_RECEIVED state where a Syrn message has been
received.

5.1.2 SYN_SENT

SYN_SENT is the state in which the subject will be after sending its
Syn packet (Figure 1). In this state the subject will be awaiting a
Syn+Ack packet from the tester. The possible transitions from this
state are represented as follows in our state machine model:

syn_sent(S) ->
[{established,
{call, ?MODULE, syn_ack,
[{var, listener}, S#state.last_msgll}}
1.

That is, from this state the Subject stack only has one transition to
ESTABLISHED by calling syn_ack:

syn_ack(Listener, Syn) ->

Syn_ack = #tcp{dst_port = Syn#tcp.src_port,

src_port = Syn#tcp.dst_port,

dst_ip = Syn#tcp.src_ip,

src_ip = Syn#tcp.dst_ip,

seq =0,

ack = seq:add(Syn#tcp.seq, 1),
is_ack =1,

is_syn =1,

window = ?7DEFAULT_WINDOW

}’

Bin_Packet = packet:tcp_to_binary_chksum(Syn_ack),
tcp_listener:send_packet{(Listener,
Bin_Packet,
Syn#tcp.src_ip),
get_parsed_tcp_packet(Listener).

88

This function shows how the tester generates replies by using
the values from the previous packet received (Syn). The newly
created packet has the ack and syn flags set, and will acknowledge
the syn by adding 1 to its sequence number.

The Erlang record representation of a packet is then converted
into a binary and this packet is sent over the network. After the
peer receives the packet we expect it to acknowledge it, so the last
step is to get a new inbound TCP packet. Here we benefit from
our refined model. The TCP interface would just allow us to listen
on one site and open on the other side and we would have got a
return after that both sides are in established. Now we create and
inspect internal states and can check responses. We could inject
faults, cause a timeout or whatever at this point, but we cannot
communicate to the open connection of Subject via the API before
getting it in the state ESTABLISHED.

The postcondition for this transition validates that the received
message is indeed an Ack.

postcondition(syn_sent, established, S,

{call, 7MODULE, syn_ack,[_, Synl},Ack) —>
check_flags(Ack, [ack]l) and
(Ack#tcp.seq==nxt_seq(Syn)) and
(Ack#tcp.ack==1) and
(Acki#ttcp.data==<<>>);

In this case we validate that the only flag set is the ack flag. This
is just an ack for the Syn sent by the tester, that the acknowledge
sequence number is is increased by one (we sent zero), and that
the sequence number should be one more than the syn packet it
previously sent, to account the Syn flag of that packet. Additionally
the data part should be empty.

The state data is once more updated by just storing the last
message received, i.e., the Ack.

next_state_data(syn_sent, established, S, Ack,
{call, _, _, 1) —>
S#tstate{last_msg = Ack};

Now the Subject stack is in the state ESTABLISHED and the
tester is in the ESTABLISHED state, since it has received an Ack.
Therewith we have modeled the connection establishment of Figure
2 from one side. The opening where we instruct the Subject to go
to the LISTEN state and where the tester sends the first Syn message
is added to the same model in a similar way.

5.2 Testing Simultaneous Connection Closing

Now we add to the model the possibilities for connection closing
and we show how one of the generated test cases corresponds to
the simultaneous closing of two connections as shown in Figure 3.
This is an interesting test case because it is difficult to simulate in a
real network, but it is easy to generate from our model.

Usually, testing would be done by using an operating system
stack as peer. Doing a simultaneous closing for testing would re-
quire calling the close system call at almost the same time in both
peers of the connections. As there are some time issues that fall out
of control of the socket interface (for example, the exact time at
which the fin packet is generated by the kernel cannot be exactly
controlled), it is very difficult to reliably generate a situation like
this.

However, we will see how the state machine generates a test
case that checks this behaviour in a similar way to the connection
establishment.

In a simultaneous closing, both stacks would pass through the
FIN_WAIT-1 state, they proceed to the CLOSING state, and finally to
the TIME_WAIT state (see Figure 1). The CLOSING state is specific
to the simultaneous closing, no other close situation passes through
it.

We start with a connection for which both peers are in the
ESTABLISHED state.

5.2.1 ESTABLISHED

There are two possible transitions from ESTABLISHED, one initial-
ized via a close in the TCP interface and one initialized by the other
peer:

established(S) ->
[{fin_wait_1,
{call, ?MODULE, active_close,
[{var, listener}, {var, sut}]1}},
{close_wait,
{call, 7MODULE, passive_close,
[{var, listener},S#state.last_msgl}}].

A peer may go to the state FIN_WAIT_1 by an active close (the
TCP stack got a close via the API), or to the CLOSE_WAIT state by
doing a passive close (the stack receives a Fin from the other peer).
It is important to recall that the current state reflects the state in
which Subject should be, so a simultaneous close arises when the
subject stack starts the close before receiving a Fin packet from the
tester.

In a test that checks the simultaneous closing, Quickcheck
would generate an active close, i.e. have the controller send a close
to Subject, which corresponds to the first alternative in the state
transitions above.

active_close(Listener, Sut) ->
simple_sender:close(Sut),
get_parsed_tcp_packet{(Listener).

After the Subject is told to close the connection, a Fin packet
is expected to be received in the IP stack of the tester. First, the
postcondition for this transition is validated:

postcondition(established, fin_wait_1, S,

{call,?MODULE, active_close,
Fin) ->

Ack = S#state.last_msg,

check_flags(Fin, [ack, fin]) and

(Fin#tcp.ack==1) and %% Acks our Syn

(Fin#tcp.seq==nxt_seq(Ack)) and

(Fin#ttcp.data== <<>>);

., 13,

The check is fairly similar to the previous ones. The fin flag
should be set as well as the ack flag®. Sequence numbers should
increase and the data part is empty. The state data is updated as in
the previous cases, storing the received message:

next_state_data(established, fin_wait_1, S, Fin,
{call, _, _, .} —>
S#state{last_msg = Fin};

Now the Subject is in the state FIN_WAIT-1, but the Tester peer
is still in the state ESTABLISHED. We can choose which action we
want the tester to perform. Either it acknowledges the received
Fin, or it also sends a Fin, because we close the connection (the
simultaneous close case).

5.2.2 FIN_WAIT-1

Thus, we expect two possible state transitions from the state
FIN WAIT_1. However, as can be seen in Figure 1, there are three
possible transitions from this state. The third one is the tester send-
ing a Fin+Ack to Subject. Here the specification of Figure 1 is hard
to understand and additional knowledge is necessary. From addi-
tional text in the specification we learn that it is possible that the

4 Apart from the first message, where the sequence number is unknown,
all messages have the ack flag set and contain the sequence number of the
previous message.

89

peer Tester in state ESTABLISHED receives Fin and then responds
by sending a combined acknowledge on that Fin with its own Fin.
This is then resulting in a state transition from Tester to LAST_ACK,
thereby taking away the need to send an explicit Close from the in-
terface. In Figure 1 it is shown that normally one would wait from
a close from the interface before sending the last Fin in order to
completely close the connection.

fin_wait_1(8) ->
[{time_wait,
{call, ?MODULE, fin_ack,

[{var, listener}, S#state.last_msg]}},

{fin_wait_2, {call, ?MODULE, ack_received_fin,
[{var, listemer}, S#state.last_msgl}},

{closing, {call, ?MODULE, simultaneous_close,
[{var, listener}, S#state.last_msg]}}

].

The test generated to check simultaneous closing would cause
Subject to perform a state transition to CLGSING by calling the
simultaneous_close function:

simultaneous_close(Listener, Fin) ->
Local_Fin = #tcp{dst_port = Fin#tcp.src_port,
src_port = Fin#tcp.dst_port,

dst_ip = Fin#tcp.src_ip,
src_ip = Fin#tcp.dst_ip,
seq = 1,

ack = Fin#tcp.seq,
is_ack = 1,
is_fin =1,
window= ?DEFAULT_WINDQOW
3,
Bin_Packet = packet:tcp_to_binary_chksum(Local_Fin),
tcp_listener:send_packet(Listener,
Bin_Packet,
Fin#tcp.src_ip),
get_parsed_tcp_packet (Listener).

In the Fin packet we are creating the acknowledge number
is taken directly from the sequence number of the subject’s Fin,
instead of increasing it by 1 to acknowledge the packet. This is
correct, since we actually simulate to have not seen that message
yet. After receiving the constructed packet the subject stack will
‘see’ a simultaneous close.

The postcondition that needs to be validated is that Tester re-
ceived an Ack:

postcondition(fin_wait_1, closing,S,{call, ?MODULE,
simultaneous_close,
[_, _1}, Ack) —>
Fin = S#state.last_msg,
check_flags(Ack, [ack]) and
(Ack#tcp.ack==2) and
(Ack#tcp.seq==nxt_seq(Fin)) and
(Ack#tcp.data== <<>>);

The next state data is similar to previous cases, we only save the
last received message:

next_state_data(fin_wait_1, closing, S, Ack,
{call, _, _, _}) —>
S#state{last_msg = Ack};

Now Subject has moved to state CLOSING whereas Tester is in
the state FIN_WAIT_2, since it has already received the Ack from
Subject.

5.2.3 CLOSING

In the state CLOSING Subject waits to receive an Ack packet that
acknowledges the Fin it sent before.

closing(8) ->
[{time_wait,
{call, 7?MODULE, send_ack,
[{var, listener}, S#state.last_msgll}}].

Thus in this state, QuickCheck generates an acknowledge to the
Fin we ignored in the previous state:

send_ack(Listener, Fin) ->
Ack = #tcp{dst_port = Fin#tcp.src_port,

src_port = Fin#tcp.dst_port,
dst_ip = Fin#tcp.src_ip,
src_ip = Fin#tcp.dst_ip,
seq =2,

ack = nxt_seq(Fin),
is_ack =1,

window = 7DEFAULT_WINDOW
},

Bin_Packet = packet:tcp_to_binary_chksum(Ack),
tcp_listener:send_packet(Listener,
Bin_Packet,
Fin#tcp.src_ip).

Notice that now the ack is computed using nxt_fin, which
increases the sequence number by 1. After this packet is received
by the subject, the connection would move to TIME_WAIT, which
is similar to a closed connection. There is nothing to check in this
state:

postcondition(closing, time_wait, _S,
{call, 7MODULE, send_ack,
) >

[_, _Ackl},

true;

There are a few states left, that need to be modeled in the same
way. After that, a large number of random tests can be generated
that open a connection in one of the two ways and closes them in
any of the possible ways. We can create tests that open and close
the same port in different ways quickly after each other by making
silent transitions from TIME_WAIT and LAST_ACK to CLOSED.

We have in the examples always started the sequence numbers
by zero, but one could actually pick a random number and increase
from there as yet one more thing to test.

However, we only test one connection at a time and no concur-
rent connections, which may not trigger certain errors in the subject
stack. We also have concentrated on positive testing only, that is, it
is not checked that the subject reacts correctly to malformed or un-
expected packets.

6. Testing a reference stack

We developed our specification by testing against the Linux kernel
TCP stack, assuming that that one is fairly well tested already.
Thus, if problems arise, they are likely a fault in our specification.
This assumption proved to be correct as all the problems found
were in the specification. Two tricky issues one needs to be aware
of.

Occupied Ports

We tested one connection at a time and read all TCP communica-
tion on the network. Thus, when the listener reads a Fin message, it
assumed it to be part of the test. However, for a specific Fin message
the sequence number and Port were wrong, as the postcondition re-
vealed. This could have been an error in the Subject TCP stack,
but was not. Out generators did not require the tests to end with
the connection closed, so at times a connection was left in some
intermediate state. After some time, the subject TCP/IP stack tried
to close the connection and sent packets to the tester which were
confused as packets related to the test run at that time.

90

An easy solution to this problem would be to make the listener
specification ignore any packet with a wrong destination port. How-
ever, we did not want to do that because the tester would not be able
to detect if Subject is sending incorrect port numbers. We needed
to make the packet listener more intelligent and context aware. Of
course, we would have serious problems when we extend the spec-
ification to test concurrent connections because this filtering will
be unavoidable. However, if we have thoroughly tested the case of
one connection and port numbers are always correct, we may prob-
ably assume that we can use the port as connection identifier for the
concurrent case. This is not that tricky, since if the concurrent case
would contain an error causing a changed port number in the return
message, then something unexpected would happen and a test will
fail.

Reusing Ports

Checking the behaviour in the TIME_WAIT state is also difficult.
When the stack arrives at this state, it must wait for a time in case
the last ack packet has been lost. This time is fairly long (several
minutes). While the stack is in this state, trying to open a new
connection using the same port number will result in a reset. This
is the correct behaviour according to the standard, but it also makes
tests much longer. We have added a configurable time for this state,
with the idea that the developer of a TCP/IP stack has control over
the time waited, and it can be changed to run the tests. However,
this has to be considered when testing an out of the box stack, like
we did with Linux.

Testing other Stacks

After we corrected several errors in the specification and the Linux
stack passed the tests, we tried with a less well tested stack in order
to try to actually find errors in the stack. We selected the stack
described in [Paris et al. 2005] because we are very familiar with it,
it is likely to have some bugs not yet discovered, and being written
in Erlang it was very easy to adapt for the tests.

After running several tests we actually found an error in the
LAST_ACK state, which caused sequential connections using the
same port number to fail at times. The bug was due to a lag in
cleaning up the list of currently opened connections, which caused
the stack to react to the incoming syn for the new connections as if
it belonged to the old one.

This did not always happen, so the ability of Quickcheck to gen-
erate hundreds of test cases was very useful to detect the problem.

7. Conclusions

We have developed a QuickCheck specification for automatic
checking of TCP implementations. By generating sequences of
TCP packets using quickcheck we are able to generate test cases
which are not easy to reproduce in a real environment, like simul-
taneously closing the connnection from both sides.

This QuickCheck specification differs from earlier QuickCheck
specifications for protocols in the use of two interfaces to com-
municate with the subject under test. Previously we have seen
QuickCheck specifications that triggered the subject under test by
communicating via the protocol API (e.g. [Arts et al. 2006]). For
TCP this is insufficient, we also need to interact via the other end
of the protocol, the IP level of the stack.

The use of a very simple controller for the subject makes it easy
to adapt the tester to any stack. Ideally, if the stack uses the socket
interface it should be able to use the provided controller without
changes. Our goal is that the tester can easily be used by anyone
developing a TCP/IP stack.

As future work we consider the extension of the model to
cover operation of a connection in the ESTABLISHED state, such

as sending and receiving data, reordering of data, flow control,
retransmissions, efc.

Another interesting extension is to add negative testing, which
is fairly difficult to do in a real environment because it requires
an incorrect implementation of TCP. Negative testing is useful to
check the robustness of the subject stack. The idea is that the tester
can generate illegal packets as part of a legal sequence and see
whether the subject correctly handles these illegal packets.

Negative testing is especially interesting for a TCP/IP stack
whose normal environment is the Internet. Any error detected is
a potential security problem in a TCP/IP stack. It is also interesting
because negative testing cannot be done by using a normal stack as
a peer.

We also want to test the behaviour of TCP with many concurrent
connections. This is interesting because network stacks are by
design highly concurrent, and concurrency is usually a source of
errors, so testing their behaviour under those conditions is very
desirable.

Acknowledgments
Partially supported by Xunta de Galicia PGIDITO7TIC005105PR.

References

Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing Tele-
coms Software with Quviq QuickCheck. In ERLANG'06:Proceedings
of the 2006 ACM SIGPLAN workshop on Erlang, New York, NY, USA,
2006. ACM Press.

91

Koen Claessen and John Hughes. QuickCheck: a lightweight tool for ran-
dom testing of Haskell programs. In ICFP '00: Proceedings of the fifth
ACM SIGPLAN international conference on Functional programming,
pages 268-279, New York, NY, USA, 2000. ACM.

John Hughes. Quickcheck Testing for Fun and Profit. In Michael Hanus,
editor, 9th International Symposium on Practical Aspects of Declarative
Languages. Springer, 2007.

Information Sciences Institute. RFC 793: Transmission control protocol,
1981. URL http://rfc.sunsite.dk/rfc/rfc793.html. Edited
by Jon Postel. Available at http://rfc.sunsite.dk/rfc/rfc793.html.

Van Jacobson, Craig Leres, and Steven McCanne. libpcap: Packet capture
library. URL http://www.tcpdump. org.

Javier Paris, Victor Gulias, and Alberto Valderruten. A high per-
formance erlang TCP/IP stack. In ERLANG '05: Proceedings
of the 2005 ACM SIGPLAN workshop on Erlang, pages 52-61,
New York, NY, USA, 2005. ACM. ISBN 1-59593-066-3. doi:
http://doi.acm.org/10.1145/1088361.1088372.

Raid Zaghal and Javed Khan. EFSM/SDL modeling
of the original TCP standard (RFC793) and the Con-
gestion Control Mechanism of TCP Reno. URL

http://wwv.medianet.kent.edu/technicalreports.html.

Recent Improvements to the McErlang Model Checker *

Clara Benac Earle and Lars-Ake Fredlund

Grupo Babel, Facultad de Informdtica, Universidad Politécnica de Madrid
{cbenac, Ifredlund} @fi.upm.es

Abstract

In this paper we describe a number of recent improvements to the
McErlang model checker, including a new source to source trans-
lation to enable more Erlang programs to work under McErlang, a
methodology for writing properties that can be verified by McEr-
lang, and a combination of simulation and model checking. The
latter two features are illustrated by means of the messenger exam-
ple found in the documentation of the Erlang/OTP distribution.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Reliability

1. Introduction

With the emergence of multicore technology, virtually all soft-
ware will become concurrent. However, concurrent programming
is difficult: parallel algorithms are often poorly understood, result-
ing in implementations with subtle bugs and high development
costs. To combat this complexity, the software industry is starting
to adopt rigorous development methods (hitherto mostly used in
safety-critical systems and hardware design). One of such methods
is model checking, a complementary technique to testing for veri-
fying concurrent systems. Model checking provides the possibility
to, in theory, fully verify a system by exploring all its possible exe-
cutions.

McErlang [2, 10, 13], our model checker for Erlang programs,
provides support for virtually the full, rather complex, program-
ming language. The model checker has full Erlang data type sup-
port, support for general process communication, node semantics
(inter-process communication behaves in a subtly different way
from intra-process communication), fault detection and fault toler-
ance, and crucially can verify programs written using the high-level
OTP Erlang component library used by most Erlang programs.

Figure 1 illustrates the differences between a normal Erlang
workflow (left) and one using the McErlang model checker (right).
The model is the Erlang program to be analyzed, which undergoes a

* This work has been partially supported by the FP7-ICT-2007-1 Objec-
tive 1.2, IST number 215868 ProTest project from the European Commis-
sion, the DESAFIOS (TIN2006-15660-C02-02) project from the Spanish
Ministerio de Educacién y Ciencia, and the S-0505/TIC/0407 PROMESAS
project from Comunidad Auténoma de Madrid.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’09, September S, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-1-60558-507-9/09/09. .. $5.00

93

source-to-source translation to prepare the program for running un-
der the model checker. Then the normal Erlang compiler translates
the program to either Beam byte code (an Erlang byte code lan-
guage) or directly to native machine code. Finally the program is
run under the McErlang run time system, under the control of a ver-
ification algorithm, by the normal Erlang bytecode interpreter. The
pure computation part of the code, i.e, code with no side effects,
including garbage collection, is executed by the normal Erlang run
time system. However, the side effect part is executed under the
McErlang run time system which is a complete rewrite in Erlang of
the basic process creating, scheduling, communication and fault-
handling machinery of Erlang, comprising a significant portion of
the code of the model checker.

Naturally, the new run time system offers easy check point-
ing (capturing the state of all nodes and processes, of the mes-
sage queues of all processes, and all messages in transit between
processes), of the whole program state as a feature (impossible to
achieve in the normal Erlang run time system due to the physical
distribution of processes).

Normal Erlang Workflow: McErlang Workflow:

Program
(a collection of modules)

Program
(a collection of modules)

McErlang source—to—

Erlang compiler)
source translation

Modified Program

Compiled modules
(collection of modules)

(beam or native)

. Program execution
'
Erlang Concurrency &

Erlang compiler

Compiled modules
(beam or native)

Erlang Data Handling &
Sequential Execution

Program execution

1

McErlang Concurrency &
Distribution Support

Erlang Runtime System

Erlang Data Handling &
Sequential Execution

McErlang Runtime System

Figure 1. Usage of McErlang

McErlang has been successfully applied in a number of case
studies, for example: a resource manager, a Video—on—demand
server [12], leader election protocols [13], and RoboCup teams [6].

In this paper we describe a number of new features of McEr-
lang version 1.0, not previously documented in any article. McEr-
lang 1.0 is the first open source version of McErlang; source
code licensed under a BSD license can be downloaded from
http://babel.ls.fi.upm.es/trac/McErlang/.

The new features include: a new source to source translation
needed to enable more Erlang programs to be run under the control
of McErlang, a methodology for writing properties that can be
verified by McErlang, and a combination of simulation and model
checking. The latter two features are illustrated by means of the
messenger example found in the Erlang documentation. The use of
this case-study is motivated by several reasons: the code is rather
familiar for Erlang programmers, it is an example of distributed
code, and the example is not overly complex.

The rest of the paper is organized as follows. Related work is
presented in Sect. 2. In Sect. 3 we informally describe the source-
to-source translation needed for running Erlang code inside McEr-
lang. The messenger case-study is explained in Sect. 4, and Sect. 5
describes the methodology used to write properties and model
check them against the case-study. The combination of simulation
and model checking is discussed in Sect. 6. Finally Sect. 7 draws
some conclusions.

2. Related Work

Software model checking is a very active research field. Thus, we
will here only mention a few of the most important related works,
and the ones which have provided inspiration for McErlang.

For Erlang the etomcrl toolset [4] already provides a model
checking capability. In comparison, however, the etomcrl toolset
supports only a smaller subset of Erlang, for instance lacking the
concept of direct process communication, distribution and fault tol-
erance (i.e. nodes, processes, links, monitors, ...). Other verifica-
tion tools for Erlang include Huch’s abstract interpretation model
checker [17] which uses abstract interpretations to reduce the size
of the state space. Another work addressing the verification of Er-
lang programs is the “Verification of Erlang Programs” project [11]
which uses theorem proving technology. Furthermore there is the
QuickCheck tool for Erlang [18, 5], which however primarily fo-
cuses on testing software rather than formal verification.

Much of the inspiration for McErlang naturally comes from
the work on the SPIN tool [15] and the CADP toolset [9], as
they both constitute very capable language based platforms for the
verification of software, and for testing new verification algorithms.

The VeriSoft tool by [14] is one of the earlier examples of pro-
viding a verification functionality to a real, complex, programming
language (such as C or C++) instead of a simpler specification lan-
guage. Another successful example of such a verification project is
the Modex tool [16] which is closely connected to SPIN. A recent
work on the verification of complex concurrent program code is the
work on model checking file system implementations by [21]. An-
other recent work is the Zing model checker by [3] which aims at
checking concurrent systems. Other interesting tools are Bogor [8]
and Java Pathfinder [20]. A key difference between these tools and
McErlang is the programming language they analyse, e.g. Java and
Erlang. By using Erlang we have all the advantages (and disadvan-
tages) of using a functional programing language for specification
and programming (access to higher-order functions, no shared vari-
ables, etc.).

In contrast to e.g. the Java Pathfinder tool we do not implement a
new byte code interpreter (for Beam, the Erlang byte code format).
The chief reason for this is that the Erlang byte code format is much
less standardised than Java’s; indeed there is no documentation
available apart from the source code. In McErlang, rather, programs
are run by the normal Erlang byte code interpreter, but have been
modified to return control to the model checker after a side effect
has occurred.

94

3. Compiling Erlang Code Using McErlang

To execute Erlang code under the McErlang model checker a trans-
lation step is necessary, whereby Erlang code is translated into
modified Erlang code suitable for running under the control of the
McErlang model checker (which has its proper runtime system for
managing processes, communication and nodes). Thereafter, the
normal Erlang compiler translates the modified source code into
beam (or native) object files.

Recently we have developed a new translator, which in contrast
to the earlier translator handles the full Erlang language.'

3.1 Translation Phase

The new transformation is implemented on the HiPE Core Erlang
format [7]. We let the standard Erlang compiler generate Core
Erlang code, which is subjected to a number of transformations,
and finally the standard Erlang compiler is again used to generate
beam (or native) code from the resulting transformed HiPE Core
Erlang code. The input to the McErlang compiler is a list of all
the modules that comprise the source code for the project to model
check (including, in principle, the source code for OTP behaviours
such as genserver, supervisor, ...).

Below we describe, in order, the different transformations and
analyses implemented by the transformation tool:

e Erlang translated to HiPE Core Erlang: the Erlang modules
that comprise the project are translated into the HiPE Core
Erlang format using the standard Erlang compiler.

e Normalize HiPE Core Erlang code:

In McErlang most transformations work on a reduced HiPE
Core Erlang language, which is more regular than standard
HiPE Core Erlang. As a first step the McErlang translator trans-
forms an arbitrary HiPE Core Erlang module into a normalized
HiPE Core Erlang module.

Simplified, the normalized HiPE Core Expressions e are shown
in Fig. 2, where vars denotes a sequence of variables, patterns
a sequence of patterns, ¢ a natural number, and a an atom.

In essence, the normalized format stratifies expression con-
struction and removes ambiguity. For example, the mixing of
let expressions (the variable binding construct) and other ex-
pressions is forbidden (so let expressions grow only in the body
part). Moreover arguments to function calls may not contain
complex expressions.

Guard expressions are changed:

Since the representation of process identifiers, node identifiers
and references differ from the standard representation in Erlang
we must replace calls to some standard built-in functions (e.g.,
is_pid) with calls to new functions (e.g. mcerlang:is_pid).
Unfortunately it is not possible to call these new functions in
guards.

Instead, as an example, in a guard we replace a call to is_pid
with pattern matching against the new process identifier for-
mat {pid,nodename::atom(),number::integer 0 } That is, a
call is_pid(Pid) is translated into the guard fragment:

is_tuple (Pid),

size (Pid)=:=3,

element (1 ,Pid)=:=pid,
is_integer (element(3,Pid))

IThe earlier translator for instance lacked support for the
try ... of ... catch ... end construct, it could not handle bit strings nor
binaries, nor could it translate correctly most higher-order or anonymous
functions.

e-n | let wvars=en ine

try eof wvars ->e
catch vars ->e
case e_s of clause ... clause
receive clause ... clause
afteres->e
call e_s:e_s(e.s,...,e_8)
primop a(es, ..., e-8)
apply e_s(e.s, ..., e_s)
fun (vars) ->e
letrec

a/i = fun (vars) -> e,

a/i = fun (vars) ->e
ine
clause 1= patterns guard ->e

containing data constructors,
variables and constants

€e.s =

Figure 2. Normalized Core Format

Calls to the functions erlang: self/0, erlang:node/0,
erlang : is_port /1, erlang: is_reference /1, erlang:node/l in
guards are translated in a similar fashion.

® Function calls are remapped:

Programs running under the McErlang model checker need to
invoke the McErlang application programming interface (e.g.,
the module mcerlang) instead of the normal Erlang API (e.g.,
the module erlang). Thus the transformation transforms the
code so that e.g. instead of calling the function erlang :send/2
the modified program calls mcerlang:send/2.

The mapping of function calls, and information regarding
which functions in binary modules (for which no source code
is available) have side effects, is defined in a configuration file
(which may be modified for each McErlang project).

We will describe the semantics of the transformation configura-
tion file by explaining the excerpt in Fig. 3.

{gen_server,

[{translated_to ,mce_erl_gen._server}]},
{supervisor,

[{translated_.to ,mce_erl_supervisor}]},
{gen_fsm,

[{translated_to ,mce_erl_gen_fsm}]},
{erlang ,

[{rev, false}l},
{{erlang ,spawn,4},

[rcv,{translated_to ,{mcerlang ,spawn}}1},
{{erlang , open_port,2},

[blacklisted]},

Figure 3. Remapping function calls

The configuration information is represented as a normal Er-
lang term, and contains a number of commands, on two basic
formats:

{module, [attributel ,..., attributeN]}

or

{{module, functionname , arity},
[attributel ,... , attributeN1]}

As an example, consider the first line in the above specification:

{gen_server,
[{translated_to ,mce_erl_gen_server}]}

This command maps any call to a function in the
gen_server module to a corresponding call in the module
mce_erl_gen_server. The command {erlang,[{rcv, false }1}
expresses that by default no function in the erlang module will
ever execute a receive statement. In the next line we override
this default by specifying that indeed erlang :spawn/4 (which
spawns a function on a specified node) can actually cause a re-
ceive statement to be executed, and secondly that any call to it
should be mapped to a call to mcerlang:spawn/4 instead.

Finally the erlang : open_port/2 function is blacklisted, i.e., any
occurrence of that function is compiled code will cause the
translator to emit an error message. The reason for blacklisting
a function might be that we want to apply a model checking
algorithm to the translated program?. Since the order of actions
in the model checked programs may not be preserved (the
model checker interleaves the execution of many alternative
execution threads), API calls that cause effects external to the
McErlang runtime system (e.g., file I/O) that cannot be easily
undone, should not be allowed.

Depending on the particular application requirements, it may be
a good idea to use the OTP version of a particular module, or use
a (simplified) module that we provide. Ideally, of course, one
would in most circumstances like to reuse the real Erlang/OTP
module that the program uses.

However there are cases when this is not desirable. An Er-
lang/OTP module may for instance have a more deterministic
behaviour than its documentation permits. Since the module
code may later change, we might want to test the code under
the more “liberal” behaviour allowed by its documentation (i.e.,
use an alternative less deterministic module implementation).

Another reason to rewrite a module is to reduce memory usage
or improve execution speed for model checking runs. Since
one of the factors limiting the efficacy of model checking is
memory usage, it may be a good idea to use a module requiring
less memory (potentially at the cost of worse performance)
when applying a model checking algorithm to a program. For
instance, using the orddict module instead of the dict module.

Dynamic calls to apply are made safe:

In practice it is not possible to, at translation time, find all
call sites where a function call should be remapped, if the
module and function name arguments to HiPE Core Erlang call
expressions are computed at runtime. Thus McErlang inserts
code to dynamically remap such function calls at runtime.

Global analysis to detect side effects:

To translate receive expressions, and all the call sites of func-
tions that contain receive expression, a global analysis is per-
formed over all the modules in a project to discover which

2 McErlang is also capable of simply executing the code, but of course
with substantially different process scheduling behaviour compared to the
normal Erlang runtime system.

functions directly contain a receive statement (or may possi-
bly invoke another function that cause a receive statement to be
executed, recursively).

Receive statements are replaced by special return values:

Receive statements cannot be executed directly in McErlang,
as internally in McErlang communication between (simulated)
processes does not use message passing. In fact, McErlang nor-
mally runs in a single process, regardless of how many pro-
cesses are spawned by the simulated code. During translation
receive statements are transformed into an expression which re-
turns a special value (a kind of continuation), signaling the in-
tention to execute a receive statement. To ensure that such spe-
cial return values are not captured by the environment in which
they reside, the transformation must also modify the environ-
ment. An example:

echo() —>
receive
{msg,Pid ,Msg} —> ok
end ,
Pid!{echo ,Msg}.

If we just transform the receive statement we would lose its
special return value:

echo() —>
[[receive
{msg,Pid ,Msg} —> ok
end]],
Pid!{echo ,Msg}.

(where [[...]] performs the translation of a receive statement).
Instead we (conceptually) embed the translated receive state-
ment in a new let construct:

echo() —>
let X =
[[receive
{msg,Pid ,Msg} —> ok
end]]
in Pid!{echo ,Msg}.

with the semantics that the argument part of the let construct is
executed immediately, and if that part returns a special value,
then a special value with the body part as continuation is re-
turned. If the argument part returns a normal expression, then
the body part is exccuted directly.

HiPE Core Erlang modules translated to Beam files: the transla-
tion produces one beam file for each Erlang module translated,
by applying the standard Erlang compiler to the resulting HiPE
Core Erlang code.

As an conclusion of the translation effort, using the HiPE Core
Erlang language as the basis for the translation has proven useful,
but not without problems. A significant advantage is the fact that
the intermediate language has much fewer constructs compared to
normal Erlang. Moreover the handling of variables is far cleaner in
HiPE Core Erlang: variable binding and variable scope is explicit.

On the negative side the Erlang compiler (up to at least R13B)
still contains a few bugs with respect to the compiling of HiPE Core
Erlang code. In addition the restriction to use only normal Erlang
guard functions also in HiPE Core Erlang is limiting; it would be
nice to have support for more expressive guard expressions.

96

server_node

%ﬁe nger

[{pido,clara}i
>

e

{pidD,logon,clara}

-

/,{m‘n enger,logged_on}

Node1_,/ |

mess_client
pido

Node2

O

4 spawn
$ m@er:logon(dar 4]

Figure 4. User clara sends a logon message to the messenger
server

4. The Messenger Case Study

To illustrate the use of McErlang we consider the messenger ex-
ample from the “Getting started with Erlang” document in the Er-
1ang/OTP R12B documentation®.

The messenger is a program which allows users to log in on
different nodes and send simple messages to each other. Clients
connect to a central server, specifying their identities and locations
that are then stored in the state of the server. Thus a user won’t need
to know the name of the Erlang node where a user is located to send
a message to that user, only his identity.

Let us consider the example with three nodes depicted in Fig. 4,
the node server_node where the messenger server is already running
and two other nodes, Nodel and Node2. If a process in Node1 calls
the messenger:logon(clara) command the result of this call is the
spawning of a process registered as mess_client that will send a
message to the messenger server containing the name of the user
and the pid of mess_client. The server will then look into its state,
concretely into the list where the identities and locations of users
that are already registered are stored, and if the user clara does not
occur in this list it will be added to it and a confirmation message
will be sent to the mess_client.

Lets now assume that both a user clara and a user fred in Fig. 5
are logged on and clara wants to send a message to fred. Again the
message will be sent from the mess_client running in Nodel to the
messenger server which, after checking that both clara and fred are
logged on, will forward the message to the mess_client running in
Nodel.

Upon a logoff, the mess_client will send a message to the mes-
senger server that will produce the deletion of the user that wanted
to log off from the list of users maintained by the messenger server.

4.1 Executing the Messenger Example Inside McErlang

To run the messenger example inside McErlang we need to imple-
ment the start up of the system, and simulate the actions of the (sim-
ulated) users of the messenger service. This test-case for using the
messenger service is what we call a scenario. There are different
ways of generating scenarios. Random scenarios can for instance
be generated by using the QuickCheck tool [18, 5].

3 Section 3.5 in [1].

server_node
liclarapido}, (essa ngar
{ired,pid1]]

{pido,message_1o,fred" h-l/

/{nﬁnger message_sent}

Nodel .= - Nodez
(/mess_cli;?\ mess.,chen\
P pido j pidt

e

{{message td fred,"hi"} (_\)
Smes! engefmessage(frath,"hi") —

Figure 5. User clara sends a message to user fred

5. Model Checking the Case Study

MCcErlang is a model checker for programs written in Erlang. The
idea is to replace the part of the standard Erlang runtime system
that concerns distribution, concurrency and communication with a
new runtime system which simulates processes inside the model
checker, and which offers easy access to the program state. The la-
beled transition system generated by the model checker comprises
two elements:

e system states which record the state of all nodes, all processes,
all message queues, etc of the program to model check. Such
states are stable in the sense that all processes in a state are
either waiting in a receive statement to receive a message, or
have just been spawned.

* transitions or computation steps between a source state and a
destination state. A transition is labeled by a sequence of actions
that represent selecting one process in the source state which is
ready to run, and letling it execute until it is again waiting in
a receive statement (or has terminated). The actions that label
the transition are the side effects caused by the execution of the
process (i.c., sending a message to another process, linking to
another process, ...).

Thus the model checker uses an interleaving semantics to execute
Erlang programs.

McErlang provides a number of different ways to formulate cor-
rectness properties for checking on a given program. The alterna-
tive we will consider here is to express the desired property in Lin-
eal Temporal Logic (LTL), and to use the LTL2Buchi tool [19] de-
veloped by Hans Svensson and distributed with McErlang to auto-
matically translate an LTL formula into a Biichi automaton. Given
a program and such an automaton, McErlang will run them in lock-
step letting the automaton investigate each new program state gen-
erated. If the property does not hold, a counterexample (an execu-
tion trace) is generated.

We have model checked several interesting safety and liveness
properties of the simple messenger case-study. One such property
can be informally expressed as follows: if a user who is logged on
sends a message to another user who is also logged on then the
recipient of the message will eventually receive the message. As
mentioned before, McErlang allows access to the program states
and the actions between states. We explain in the following sections
how this information can be used to write properties.

5.1 Using Probe Actions

After several attempts, one possible and more precise description
of the aforesaid property is the following:

{message_from,clara,"hi")

97

if userl does not send a message m to user2 until user2 is
logged on, then if userl does send a message m to user2
then eventually user2 receives the message m.

The formalization in LTL of the above formula has the following
shape:

—-p Until ¢ = (Buventually p = Eventually r) (1)
where the predicates p, q and r are the following:
e p: userl sends message m to user2
e g:user2 is logged on
e r: user2 receives the message m from userl

Linear Temporal Logic is defined over program runs: p Until ¢
holds for a program run if at every state of the run the p predicate
holds, until a state in the program run is encountered where the
g predicate holds (and ¢ must hold for some state on the run).
Eventually r holds for a program run if the predicate » holds
at some program state in the run. Normal logical implication is
denoted by the “=" symbol.

For simplicity and modularity the property and the predicates
present in the property are considered separately. To write the
predicates or basic facts in the formula (userl sends a message
m to user2, etc.) McErlang allows access to the program states
and the sequence of actions labelling transitions between states.
These predicates can be written directly in Erlang, using all the
expressiveness of the language. For example, a predicate stating
that a user is logged on can be implemented as a function “logon”
that returns true when an action corresponding to the user being
logged on is found labelling a transition. The process of searching
for the desired action is simplified if we annotate the program with
what we call “probe actions”, which serve to make the internal state
of a program visible to the model checker in a simple fashion.

In the messenger case-study we have annotated the program
code with probe actions that are referred to in the predicates. For
example, the following probe action has been added to the client
function for expressing that a user is logged on:

client (Server_Node , Name) —>
{messenger , Server_Node}!{self (),logon ,Name},
await_result (),
mce_erl:probe(logon ,Name),
client (Server_Node).

From the example we can see that a probe action, as created us-
ing the mce_erl: probe function, has two arguments, corresponding
to a label naming the particular probe, and an arbitrary Erlang term
as probe argument,

Below we finally define the “logon” predicate which provided a
user name as argument, defines an anonymous function that returns
true if its second argument is a sequence of actions containing a
logon probe action corresponding to a logon by the named user:

logon (Name) —>
fun (_, Actions,.) —>
lists :any
(fun (Action) —
try
logon =
mce_erl.actions:
get_probe_label (Action),
Name =
mce_erl_actions:
get_probe_-term (Action),
true

catch _:_ —> false end

end, Actions)
end .

Similarly, probe actions and predicates have been written for the
other predicates appearing in property (1).

The first property was checked against a several scenarios, for
example, a scenario consisting of a user clara that first sends a lo-
gon message to the messenger server, then sends the message “hi”
to the user fred and finally sends a logoff message, and a user fred
that sends a logon message end a logoff message. McErlang imme-
diately reported that a counterexample had been found. Examining
the error trace showed that the property did not hold because fred
could logoff before receiving the message.

One option to address the problem found is to generate only
test cases where fred never logs out. However, we prefer to instead
rewrite the property to handle the situation when fred logs out.

Thus we modify the property (1) as follows:

if userl does not send a message m to user2 until user2 is
logged on, then if userl does send a message m to user2
then eventually user2 receives the message m from userl, or
user? is logged off.

The resulting LTL formula is the following:

-p Until ¢ =
(Bventually p = Ewventually (r V s)) (2)
where s represents the predicate “fred is logged off”.
The property (2) has been checked against several scenarios,
returning always a positive result.

5.2 Using Probe States

Working with probe actions in LTL formulas can sometimes be dif-
ficult, as we have manually “remember” the occurrence of impor-
tant actions in the formula. In formulas (1) and (2) above, this was
accomplished using the until formula.

Instead of using probe actions we can use so called “probe
states”. In contrast to probe actions, which are enabled in a single
transition step only, such probes are persistent from the point in
the execution of the program when they are enabled, until they are
explicitly deleted.

As an example we instrument the login code of the server to
record, using the function mce_erl: probe_state , the fact that a user
has logged in:

9% Server adds a new user to the user list
server_logon (From, Name, User_List) —>
9% check if logged on anywhere else
case lists:keymember(Name, 2, User_List) of
true —>
From!{messenger , stop,
user_exists_at_other_node},
User_List;
false —>
From!{messenger, logged_on},
mce_erl:probe_state ({logged_on ,Name}),
[{From, Name}|User_List]
end.

Similarly we delete the probe state using the function
mce_erl: del_probe_state when a user logs out:

Y% Server deletes a user from the user list
server_logoff (From, User_List) —
case lists:keysearch(From,1,User_List) of
{value , {From,Name}} —>
mce_erl:del_probe_state
({logged_on ,Name});

98

false —
ok
end,
lists : keydelete (From,1, User_List).

We can test for the existence of a probe state using the function
mce_erl: has_probe_state as exemplified in the function logged_on
below which checks if a user is logged on:

logged_on (Name) —>
fun (State,_,.) —>
mce_erl:has_probe_state
({logged_-on ,Name}, State)
end

This predicate will be abbreviated as “t” below.
We can now reformulate the second property above, removing
the until operator:

Always ((p ANt) = Ewventually (r VvV —t)) (3)

Note that since ¢ is a state predicate we can safely negate it to
compute its logical negation (“the user is not logged on”) whereas
the negation of the action predicate —¢ in properties (1) and (2)
only expresses that the “logon action is not present in the current
transition” (but it may have occurred earlier in the execution of the
program).

5.2.1 A Comparison of Using Probe Actions Versus Probe
States

In a comparison between formulas (2) and (3), clearly formula
(3) is easier to understand. In (2) we are forced to search for a
desirable situation “—p Until ¢” (a message was sent to a logged-
in recipient) which is expressed directly in (3): “p A ¢”. Moreover
the state predicate ¢ can be reused in negated form in formula (3),
whereas it cannot in (2) where we instead have to formulate the
additional predicate “the recipient logged off” (s). So, it would
seem that we gain in clarity by having such probe states.

However, using probe states in a program may incur a cost.
That is, the size of the program state graph may increase, since
probe states are actually components of the program state (and so
the introduction of probe states may cause fewer states to compare
equal, leading to larger state spaces).

On the other hand, if we are able to write more compact for-
mulas (which correspond to Biichi automatons with fewer states)
by utilising probe states, then the state space explored using model
checking may become smaller, since such an “exploration state” is
the combination of a program state and a Biichi automaton state.

To provide initial data for a comparison, we have compared the
explored state spaces for formulas (2) and (3), on an example with 3
users, and annotating the program with probe states when checking
property (3).

The explored state space for formula (2) was 103288 states,
whereas for formula (3) it was 179422 states. Clearly a substantial
difference; however it can be argued that the formulas express
different correctness properties. Supposing we prefix (2) with an
“always” operator obtaining:

Always
(-p Until ¢ =) ()
(Pventually p = Eventually (r V s))

The resulting formula (4) has 184120 states, i.e., a slight increase
in the number of states compared to formula (3).

5.3 Verification methodology

A schema of the verification methodology used in this example is
shown in Fig. 6. To summarize, the steps we have followed to check
that a program verifies a property are the following:

T

— g PropenL?
TS — "h\'-—'.\-f‘
o

Annotate

! T~ -
_l — - Basic
predicates.er|

Program'.erl

® — | Monitor.erl

Result

Program.erl |

~ e

Express

Figure 6. verification schema

® Express the property in a suitable formalism, in this case, an
LTL formula with some predicates. This is done by hand.

e Use the LTL2Buchi tool to translate the LTL property to a Biichi
automaton implemented as a monitor

® Annotate, by hand, the program with probe actions and/or probe
4
states

e Invoke the McErlang model checker with the annotated pro-
gram, the predicates, and the monitor.

The result provided by the model checker will be either a posi-
tive result if the property holds or a counterexample (an execution
trace) if the property does not hold.

6. Combining Model Checking and Simulation

McErlang gives the possibility of combining simulation and model
checking algorithms during a verification. The typical usage is to
begin by simulating (following only a single program run) the
system under test, and then, when an interesting state is seen,
seamlessly switching to model checking (considering all program
runs).

One reason for combining simulation and model checking is
to avoid a state space blow-up during model checking when more
complex OTP behaviours are used. An example is the supervisor
pattern, which is frequently used for describing the hierarchic pro-
cess structure of a system. Clearly we wish to be able to verify pro-
grams making use of the supervisor behaviour, however, in practice
the use of the behaviour can greatly increase the state space neces-
sary to traverse during model checking.

One possible solution to the problem is to use a combination
of simulation and model checking to shrink the state space: we
simulate the system, forbidding (using a custom scheduler) any
actions not corresponding to the booting of the system (setting up
the hierarchical process structure), until no more booting steps can
be taken, at which point we switch to model checking mode. Thus
we commence model checking only in a stable system state after
the booting-up phase has terminated, potentially greatly reducing

4 Strictly speaking it is not necessary to annotate a program using probe
actions or probe states. McErlang can in principle compute the information
directly from inspecting the system state. However, this is often not easy as
the value of a variable cannot be conveniently computed (variable names
are not preserved by the compilation process).

LTL formula

99

the resulting state space, while still allowing the supervisor design
pattern to be used.

Although the simple messenger example does not use the su-
pervisor behaviour, we can still benefit from combining simulation
and model checking. Concretely we simulate the messenger pro-
gram up to the point where the only enabled program action is for
a user to send a command to a messenger server (thus we are not
model checking the start-up of the server_node and the messenger
server), and switch to model checking from then on. The resulting
reduction in state space is shown in the table below.

We have conducted two experiments, one with two users and
one with three users. The property checked is (3), e.g.:

Always (p At) = Eventually (rV ~t)) (3)

The column “states (mc)” gives the number of states in the experi-
ment where only the model checking algorithm was used, whereas
the column “states (sim+mc)” gives the number of states in the ex-
periment combining simulation and model checking.

number of users | states (mc) | states (sim+mc)
2 3324 912
3 179422 56938

As can be seen in the table, the savings in the size of the state
graph obtained from combining simulation and model checking,
are quite significant.

7. Conclusions

In this paper we have introduced three new features of McErlang:
(a) a source to source translation by means of several transforma-
tions on the HiPE Core Erlang format, necessary for an Erlang
program to be executed inside McErlang, (b) a methodology for
writing properties that can be verified using McErlang, and (c) a
combination of simulation and model checking.

Previously we had implemented the source-to-source transla-
tion directly on Erlang abstract syntax trees (using the erl_syntax
library). The experience with using HiPE Core Erlang for the trans-
formation is much more positive: the format is much more regular
and compact, and in particular the problem of variable bindings oc-
curring deep in a subexpression has been addressed. Unfortunately
the transformation we have developed is not fool-proof; the funda-
mental problem is that the transformation must potentially modify
all the source code of an Erlang system. Since source code is not
available for all modules, either because some functions have been
implemented in C (e.g., the lists module), or because the mod-
ule is a part of a commercial software for which no source code
is available (e.g., QuickCheck), this presents a problem. Currently
we are re-working the compilation scheme of modules, to be able
to identify such problems at model checking time (i.e., at runtime).

In this paper we have also described a methodology for writing
properties that can be input to the McErlang model checker. A
property can be expressed as an LTL formula where the predicates
are basic facts occurring in the program itself. Writing predicates
in Erlang is aided by annotating the program to analyze. Besides
this, the fact that McErlang gives full access to the program states
and the actions that occur between states, is used when writing
properties. This verification methodology is illustrated by means of
the well-know messenger example, where several properties have
been checked.

Finally, we have mentioned the possibility of combining simu-
lation and mode] checking, and presented some preliminary figures
from the messenger case study. The figures indicate that for this ex-
ample, the size of the state graph when using pure model checking
is significantly larger than the state graph corresponding to using
an approach combining simulation and model checking. It will be

interesting to compare the state space reduction achieved using this
slightly “ad-hoc” method with the state space reductions that can be
achieved using a more general partial-order based state generation
algorithm.

Acknowledgment

Thanks are due to Hans Svensson for many valuable discussions on
matters related to model checking and Erlang semantics in general,
and for writing and integrating the Lt12Buchi tool in McErlang. We
also would like to thank the anonymous referees for their valuable
comments on a preliminary version of this article.

References
[11 hutp:/ferlang.org/doc/getting_started/part_frame.html.
[2] https://babel.ls.fi.upm.es/trac/McErlang/.

[3] T. Andrews, S. Qadeer, S. Rajamani, J. Rehof, and Y. Xie. Zing: A
model checker for concurrent software. In Lecture Notes in Computer
Science, volume Vol. 3114, pages 484 — 487, Jan 2004.

[4] T. Arts, C. Benac Earle, and J. Sanchez Penas. Translating Erlang to
mucrl. In Proceedings of the International Conference on Application
of Concurrency to System Design (ACSD2004). IEEE Computer
Society Press, June 2004.

[5]1 T. Arts, J. Hughes, J. Johansson, and U. Wiger. Testing telecoms
software with Quvig QuickCheck. In ACM Sigplan International
Erlang Workshop. ACM Press., 2006.

[6] C. Benac Earle, L. Fredlund, J. Iglesias, and A. Ledezma. Verifying
robocup teams. Electronic Notes in Theoretical Computer Science,
5348/2009:34-8, 2008.

[7] R. Carlsson. An introduction to Core Erlang. In Proceedings of the
2001 ACM SIGPLAN Erlang Workshop, 2001.

[8] M. B. Dwyer, I. Hatcliff, M. Hoosier, and Robby. Building your own
software model checker using the Bogor extensible model checking
framework. In K. Etessami and S. K. Rajamani, editors, CAV, volume
3576 of Lecture Notes in Computer Science, pages 148-152. Springer,
2005.

100

[9] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R, Mateescu,
and M. Sighireanu. CADP: A protocol validation and verification
toolbox. In Proceedings of the 8th Conference on Computer-Aided
Verification, volume 1102 of Lecture Notes in Computer Science,
pages 437-440. Springer, 1996.

[10] L. Fredlund and C. Benac Earle. Model checking Erlang programs:
The functional approach. In ACM Sigplan International Erlang
Workshop, Portland, USA, 2006.

[11] L. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G. Chugunov. A
verification tool for Erlang. International Journal on Software Tools
for Technology Transfer (STTT), 4(4):405 — 420, Aug 2003.

[12] L. Fredlund and J. Séanchez Penas. Model checking a VoD server
using McErlang. In In proceedings of the 2007 Eurocast conference,
Feb 2007.

[13] L. Fredlund and H. Svensson. McErlang: a model checker for a
distributed functional programming language. In Proceedings of
the 12th ACM SIGPLAN International conference on functional
programming (ICFP 2007), Oct. 2007.

[14] P. Godefroid. Verisoft: A tool for the automatic analysis of concurrent
reactive software. In Computer Aided Verification, pages 476479,
1997.

[15] G. Holzmann. Design and Validation of Computer Protocols.
Prentice-Hall, 1991.

[16] G.J. Holzmann and M. H. Smith. An automated verification method
for distributed systems software based on model extraction. JEEE
Trans. Softw. Eng., 28(4):364-377, 2002.

[17] F. Huch. Verification of Erlang programs using abstract interpretation
and model checking. In Proceedings of the 1999 ACM SIGPLAN
International Conference on Functional Programming, 1999.

[18] J. Hughes. Quickcheck testing for fun and profit. In 9th International
Symposium on Practical Aspects of Declarative Languages. Springer,
2007.

[19] H. Svensson. Implementing an LTL-to-Biichi translator in Erlang. In
Proceedings of the 2009 ACM SIGPLAN Erlang Workshop, 2009.

[20] W. Visser, K. Havelund, G. Brat, and S. Park. Java pathfinder - second
generation of a Java model checker, 2000.

[21] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model
checking to find serious file system errors. In Sixth Symposium
on Operating Systems Design and Implementation, pages 273-288.
USENIX, 2004.

Author Index

Arts, ThOmasc.ccceevieierreecrvreseeressererannss 71, 83
Avgerinos, Thanassisc.ccoveomnnivsinisesssinn. 1
Békés, Andras G.covvevuereivieeiireeircen e e 51
Benac Earle, Claracccoceevvvvieevnesreresneernnnnnn 93
Cortés, HUZO .oovvvrirriiiriinieenierernecnesneeneenee s 41
Fehér, GADOTccocvvvevvrinrinrrssiseessesssreossersneen 31
Fredlund, Lars-AKeoovvvieeeeeioeeeeecsiiseenns 93
Garcia, MONICAcocccevviieciriiiiiiseciieeeesienenen 41
Griner, SNccciveiivicireeiiieiissrsiriessriseerenens 33
Heméandez, JOIgeccoovevvrerireerernnrvresesssessenes 41
Hemandez, Manuelocoeveiriicieeiersneesnan 41
Lorentsen, Thomascccccervieriveivvisssuessonsninns 33
Lovei, LAszI0 it 11
Nystrom, Jan Henrycccocevciniininininiiiinnnnn 23
Paladi, NiCOla€ccceveeereeerrrereresreressesssseenns 71
Paris, JAVIET ..cccevveeiiiiecsiiesesssssesseessesseseessonnsees 83
Pérez-Cordoba, Esperanzaccoevvivcnninnnrans 41
Ramos, EriK iiissmmsisssssssisissisesississaiiis 41
Sagonas, Konstantinosccccececeeeversinresennnnn 1

Svensson, Hansccccecevecnviiiiciviinicsiieisniesnnn 63

101

