Victoria, British Columbia, Canada

September 27, 2008

Association for
Computing Machinery

Advancing Computing as a Science & Profession ~ 4 '

Erlang’08

Proceedings of the 2008

SIGPLAN Erlang Workshop

Sponsored by:

ACM SIGPLAN

Co-located with:

ICFP’08

Victoria, British Columbia, Canada

September 27, 2008

Association for
Computing Machinery

Advancing Computing as a Science & Profession

Erlang’08

Proceedings of the 2008

SIGPLAN Erlang Workshop

Sponsored by:

ACM SIGPLAN

Co-located with:

ICFP’08

Association for
Computing Machinery

Advancing Computing as a Science & Profession

The Association for Computing Machinery
2 Penn Plaza, Suite 701
New York, New York 10121-0701

Copyright © 2008 by the Association for Computing Machinery, Inc. (ACM). Permission to make digital
or hard copies of portions of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyright for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or <permissions@acm.org>.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923,

Notice to Past Authors of ACM-Published Articles

ACM intends to create a complete electronic archive of all articles and/or other material previously
published by ACM. If you have written a work that has been previously published by ACM in any journal
or conference proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT want this
work to appear in the ACM Digital Library, please inform permissions@acm.org, stating the title of the
work, the author(s), and where and when published.

ISBN: 978-1-60558-065-4

Additional copies may be ordered prepaid from:

ACM Order Department
PO Box 11405
New York, NY 10286-1405

Phone: 1-800-342-6626
(US and Canada)
+1-212-626-0500

(all other countries)

Fax: +1-212-944-1318
E-mail: acmhelp@acm.org

ACM Order Number 555087

Printed in the USA

if

Foreword

It is our great pleasure to welcome you to the 7th ACM SIGPLAN Erlang Workshop, Erlang'08. This
years workshop continues the tradition of being co-located with the annual International Conference
on Functional Programming (ICFP), and being a forum for the presentation of research theory,
implementation and applications of the Erlang programming language.

The program committee accepted 10 papers that cover a variety of topics, including language
aspects, typing, refactoring, testing, high-performance computing and applications. The program
committee also invited a keynote presentation on the future of Erlang.

We are very grateful to the program committee members, the reviewers, the authors and to the
invited speaker, for the time and effort they devoted to provide such a high quality program. The
papers were each carefully checked by two reviewers selected from among the most qualified
available and then revised once more by the authors.

We would also like to thank Michael Sperber, this year's ICFP Workshop Chair for his support, and
the ICFP local organizers for their hard work on local arrangements. Special thanks go to Bjarne
Dicker for maintaining the Erlang'08 website, advertising the workshop and sharing experiences of
previous Workshops. Finally we would like to thank ACM SIGPLAN for their continued support.

The workshop continues the tradition to include into the program a five minutes talks session to
provide opportunities for all participants to introduce themselves and their Erlang interests.

We hope you find this program interesting and that the workshop will provide you with a valuable
opportunity to share ideas with other researchers and Erlang practitioners from industry and
academic institutions.

Tee Teoh Zoltan Horvath
Erlang'08 General Chair Erlang'08 Program Chair
Canadian Bank Note, Ottawa, Edétvis Lordnd University,

Canada Budapest, Hungary

iii

Erlang 2008 Workshop Organization...............iissssssssssmsssssne:

Table of Contents

Session 1: Testing

vi

Testing Erlang Data Types with Quviq QuickCheck............ccccooviiirens 1

Thomas Arts (IT University of Gothenburg and Quviq AB),
Laura M. Castro (MADS Group - University of A Corufia),
John Hughes (Chalmers Sweden / Quvig AB)

Early Fault Detection with Model-Based TeSting...............ccourviiiciniiniiiinsn s 9

Jonas Boberg (Erlang Training and Consulting Ltd.)
Erlang Testing and Tools Survey.... TP T

Tamaés Nagy, Aniko Nagyné Vig (Erlang T rammg and Consultmg Ltd)

Session 2: Applications

A Comparative Evaluation of Imperative and Functional

Implementations of the IMAP Protocol...........ocoimimeiicimiei i st es

Francesco Cesarini (Erlang Training and Consulting),
Viviana Pappalardo, Corrado Santoro (University of Catania)

Scalaris: Reliable Transactional P2P Key/Value Store...
Thorsten Schiitt, Florian Schintke, Alexander Reinefeld (Zuse Instttute Berlm and onScale solutzons)

29

41

High-Performance Technical Computing with Erlang............ccc.ccoiiimne

Alceste Scalas, Giovanni Casu, Piero Pili
(Center for Advanced Studies, Research and Development in Sardinia)

Session 3: Typing and Refactoring

Author Index

Refactoring with Wrangler, updated Data and process

refactorings, and integration with Eclipse............c.cocovvviiiie,

Huiqing Li, Simon Thompson (University of Kent),
Gyorgy Orosz, Melinda Téth (Edtvds Lordnd University)

Gradual Typing of Erlang Programs: A Wrangler Experience...

Konstantinos Sagonas (National Technical University of Athens), Daniel Luna (Uppsala University)

Refactoring Module Structure ..

49

61

73

.83

Laszl6 Lovei, Csaba Hoch, Hanna Kollo Tamas Nagy Anlko Nagyne Vlg,

Déniel Horpacsi, Robert Kitlei, Roland Kirdly (Edtvds Lordnd University)

Erlang 2008 Workshop Organization

General Chair:

Program Chair:

Steering Committee Chair:

Program Committee:

Additional reviewers:

Sponsor:

Tee Teoh (Canadian Bank Note, Ottawa, Canada)
Zoltan Horvéth (E6tvds Lordnd University, Budapest, Hungary)
Bjarne Dicker (Erlang Training and Consulting, UK)

Thomas Arts (IT University, Géteborg, Sweden)

Francesco Cesarini (Erlang Training and Consulting, London, UK)
Clara Benac Earle (University Carlos IIl, Madrid, Spain)

John Hughes (Chalmers University of Technology, Géteborg, Sweden)
Erik Stenman (Kreditor, Stockholm, Sweden)

Zoltan Theisz (Ericsson, Ireland)

Simon Thompson (University of Kent, Canterbury, UK)

Rex Page (University of Oklahoma, USA)

Laszl6 Lovei (Eotvas Lordnd University, Budapest, Hungary)
Csaba Hoch (E6tvds Lordnd University, Budapest, Hungary)

© SIGPLAN

vi

Testing Erlang Data Types with Quviq QuickCheck

Thomas Arts

IT University of Gothenburg (Sweden) /
Quvig AB

thomas.artsQituniv.se

Abstract

When creating software, data types are the basic bricks. Most
of the time a programmer will use datd types defined in library
modules, therefore being tested by many users over many years.
But sometimes, the appropriate data type is unavailable in the
libraries and has to be constructed from scratch. In this way, new
basic bricks are created, and potentially used in many products in
the future. It pays off to test such data types thoroughly.

This paper presents a structured methodology to follow when
testing data types using Quviq QuickCheck, a tool for random test-
ing against specifications. The validation process will be explained
carefully, from the convenience of defining a model for the datatype
to be tested, to a strategy for better shrinking of failing test cases,
and including the benefits of working with symbolic representa-
tions.

The leading example in this paper is a data type implemented
for a risk management information system, a commercial product
developed in Erlang, that has been used on a daily basis for several
years.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms verification

Keywords erlang, quickcheck, datatypes

1. Introduction

Software testing is an as necessary as delicate matter. In particular,
designing good test sets is a non-trivial task. Unconscious assump-
tions about the functionality of the subject under test may leave
important scenarios or possibilities out of the testing range/scope.
That is why automatic test generation tools that provide random
input can be helpful products.

As a successful example, Quviq QuickCheck has proven itself
as useful tool for testing Erlang programs (Thomas Arts et al. 2006;
Quviq). The first QuickCheck tool was invented by Claessen and
Hughes (Koen Claessen and John Hughes 2000). The version of
Quviq is implemented in Erlang and adapted to better fit industrial
needs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’08, September 27, 2008, Victoria, BC, Canada.

Copyright © 2008 ACM 978-1-60558-065-4/08/09. .. $5.00

Laura M. Castro

MADS Group - University of A Corufia
(Spain)
Icastro@udc.es

John Hughes

Chalmers (Sweden) / Quviq AB
john.hughes@chalmers.se

In this paper we present a method for validating user-defined
Erlang data types using Quviq QuickCheck'. As a case study, we
use the risk management information system ARMISTICE (AR-
MISTICE). We selected one data type from this risk management
information system as our leading example for this paper: the dec-
imal data type, a data type for fractional numbers without writing
a numerator and denominator. We found a surprising error in the
implementation of this data type, of which symptoms had occurred
before, but whose scarce bug reports were not well understood. Er-
rors in a data type may occur in a very unexpected way at the user
level. The data type was fixed and thoroughly tested with the de-
scribed method, increasing the confidence that the present imple-
mentation is correct.

2. Motivation

ARMISTICE (Victor M. Gulias et al. 2006, 2005) is an information
system whose business logic has been developed using Erlang/OTP.
Using a functional language such as Erlang was a key factor for
success not only in implementing a software application to deal
with such a complex business domain as insurance management
(David Cabrero et al. 2003), but also in reaching an abstraction
level at the definition of the system which makes it applicable to
different business fields. This innovative risk management system
(RMIS) is meant to be a tool for both the expert and the daily non-
expert users. An advanced profile will use ARMISTICE to specify
a set of resources and their relevant properties of interest, as well
as the insurance policies contracted to protect those resources from
the consequences of potentially harmful events, whichever these
might be for each particular case. On the other hand, the system
is of assistance also to the kind of user that, without any expert
knowledge regarding coverages and warranties, has to deal with
incident reports, accident claims, and file trackings. In this case,
ARMISTICE helps by retrieving and isolating just the relevant
information for each scenario, according to the provided contextual
data, and thus, giving valuable support to actions and decisions.

This software system has been in production for a few years
now, after being tested by regular users during the last stages of
development. Such testing process is common in software develop-
ment cycles, but it is hardly ever complete and exhaustive. The fact
that an application has been running daily without major problems
is just a weak empirical proof of correciness.

In order to provide a greater degree of confidence, and taking
advantage of the application’s core being implemented in Erlang,
we decided to use QuickCheck to automatically generate random
tests. As a good starting point, we chose ARMISTICE data types.
Data types are the smallest logic element that can be tested in
most software applications, and the components on which all other
business objects are built upon.

!'In this paper, QuickCheck refers to Quviq QuickCheck version 1.13.

)_ new \)
?ngle—value ‘ __:_.Ie-va!ue .
AN\ e
\teger-part = mal-part
/N L\

{}nt Iiﬁoat ‘i\.@trin.q.l l}i‘-\im ét!mq (int Q}n‘nqﬁ

Figure 1. Decimal data type creation options

3. Testing Data Types

There are a number of data types implemented in ARMISTICE and
some of them, such as logico for booleans and entero for integers,
are very similar to the basic data types in Erlang. Other data types
are built upon these basic types, for example a data type currency
for representing amounts in different currencies.

In order to be able to have a uniform way of marshalling and un-
marshalling values within the system, all ARMISTICE data types
have the same structure: a value is represented by a record with the
name of the value and wrapped in a tuple with ok as the first param-
eter, In case a data type operation results in an error, the value of
the data type is represented by a tuple with first argument error and
sccond argument an atom describing the cause of the crror. Thus,
instead of representing booleans by atoms true and false, they are
represented by {ok,#logico{value = true}} and similar for false.
A division by zero error with two entero values will not result in a
crash, but in areturn value {erron,division_by_zero}. This way, even
failing operations on the server side are detectable at the client side.

Communication between the ARMISTICE client, written in
Java, and the ARMISTICE server, written in Erlang, uses an XML-
RPC based protocol. The server first takes care of unmarshalling
the messages to obtain Erlang terms, then invoking the correspond-
ing business core service, and finally marshalling the results before
replying to the client. For that reason, all data types have construc-
tors to create a value from a string and similarly they all implement
a function to_string to convert a value to a string. Furthermore, such
operations are the basis of all communications with the client, so
they are performed very frequently. This means that such conver-
sions need to be fast.

All data types have been tested with the method? presented,
motivated, and evaluated in this paper.

3.1 Decimal Data Type

We present the method for testing data types with QuickCheck by
a leading example in the form of ARMISTICE’s decimal data type.
A decimal is used to represent values with some digits before and
some after the decimal separator. It need not have the same range
as floats, since it is used to represent sums of money. This data
type is defined in a module called decimal.erl which exports a
creator named new in four flavours. As displayed in Fig. 1, input
to the function is either a single value or a two-element tuple (first
component for the integer part, second for the decimal part). Values
are either an integer, a float, or a string representation of one of the
two. When providing a single string value, it can contain commas
(thousands separator) and/or dot (decimal separator). The decimal
separator cannot be used if the two-element tuple notation is used.

2The method has been developed by the company and has been fine tuned
during this case study.

Other data type constructors provided include mathematical
operators: sum, substraction, product, division, negation, absolute
value, maximum and minimum; and relational operators, such as
‘greater than’, and ‘less than or equal’.

Now, for testing the decimal data type, one needs a generator for
this data type, creating random instances of it, and a property that
represents what one likes the data type to fulfil. A relatively naive
approach to generate a decimal would be to define the following
QuickCheck generator in which the function new’ is applied to an
arbitrary integer and an arbitrary positive integer.

decimal() ->
7LET(Tuple, {int(), nat()}, new(Tuple)).

Note that a decimal can be constructed in many ways, as ex-
plained by the different inputs new can take, but the temptation fol-
lowed here is to keep the code for the generator small, since all
possible decimals seem to be producible in this way. We will show
later that giving in to this temptation results in a missed opportunity
to catch an error.

One of the properties that one may like to check is that the sum
operator is actually commutative,

prop_sum_comm() ->
?FORALL({D1, D2}, {decimal{(), decimal()},
sum(D1, D2) == sum(D2, D1)).

QuickCheck is used to check this property with successful re-
sult, meaning that the specified property holds for tens of thousands
of randomly generated test cascs. So, sum scems indeed commuta-
tive. We now are faced with the questions: which other properties
do we add? and when do we have sufficiently many properties to
cover testing of this data type?

3.2 Model for data type

We know from the field of mathematics and formal methods (Floyd
1967; Hoare 1972) that creating a model of our data type could help
in deciding whether we have created enough properties for the data
type. We would like to show that each operation on decimals can be
simulated by our model operations. Thus, we want an injection [o]
from the decimal data type into our model, such that VD, D, €
decimal

[sum(Dy,D:)1 = [Di11+1[D:]

[SUbS(Dl , D2)] = [Di1]-1[D1]

[mult(D1,D:2)1 = [Dil+*[D:]

[divs(D1,D2)] = [D:11/1ID1] D
(D1, D2)1, = [D1]<[D:]

In general, we may need to implement a model with all these
operations. In this case, though, as our model we can use the stan-
dard Erlang implementation of floating point numbers (in itself
built upon the C implementation that implements the IEEE 754-
1985 standard (IEEE 1985)). We are lucky here, since this choice
perfectly fits our decimals regardless some rounding issues we will
discuss later on (see page 3), but in many situations one can imple-
ment a model that is simpler than the data type itself, for example
by not caring about efficiency and leaving out optimisations.

We choose a simple injection, viz, mapping decimals to Erlang
floating point numbers. In fact, this injection function was already
present in the code under test:

3To enhance reading we simplified the operations in this paper. For in-
stance, the function new is a local function that calls decimal :new and
removes the ok tag from its result, and similarly for sum, mult, etc.

model (Decimal) ->
decimal:get_value(Decimal).

Note that in the last equation shown above we use a differ-
ent model, viz [o]l; for interpreting the result of the function
1t (D1,D2), since that result is a logico, not a decimal. The model
for logico simply maps to Erlang booleans and the injection that
we use is also already present in the corresponding module.

logico_model(Logico) ->
logico:get_value(Logico).

QuickCheck properties to check whether our implementation is
equivalent to the Erlang floating point implementation look like:

prop_sum() ->
?FORALL ({D1, D2}, {decimal(), decimal()},
model (sum(D1, D2))
== model(D1) + model(D2)).

prop_1t() —->
?FORALL ({D1, D2}, {decimal(), decimal()},
logico_model(1t(D1, D2))
== (model(D1) < model(D2))).

If we now create one such property for each operation defined
in the data type, then by checking each of them for a large number
of random inputs, we would gain confidence that we tested the data
type operations sufficiently.

We start by checking the first property with QuickCheck, which
immediately results in a failure.

> eqc:quickcheck(decimal_eqc:prop_sum()).
....Failed! After 5 tests.
{[{decimal, 1000000000000000}],
[{decimal, 11000000000000000}+]1}
false

After five tests, QuickCheck finds a counterexample against
the equivalence between adding two decimal values and adding
the corresponding two floats. However, the counterexample values
reported back by QuickCheck are in their internal representation,
which is hard to understand by anyone who is not familiar with the
decimal data type implementation. This would be even worse for
more complex data types. For a trained QuickCheck user, the values
are at least surprising, since one expects rather small integer values
and not values with 15 or more zeros. The fact that we actually
failed in this test with values 1 and 1.1 is only directly obvious to
the developer of the decimal data type.

We do not want to rely on the internal representation of a data
type, for one reason because it may be hard for others than the
developer of the module to understand, for another reason, because
implementations of data types may change and we want tests to
depend on them as little as we want implementations to depend
on them. Moreover, the internal representation is only the final
result of a computation constructing the data structure. We like
to know which steps were performed in this construction, since
they may reveal information about an observed failure. Therefore,
we work with symbolic values instead of real values. This means
that QuickCheck generates a symbolic representation of a decimal,
which will be evaluated when needed (i.e., during testing). So, our
generator is rewritten to:

decimal() ->
?LET(Tuple, {int(), nat()},
{call, decimal, new, [Tuple]l}).

Thus generating a symbolic call to decimal :new(Tuple),i.c.,
creating a tuple with tag call, module, function name, and argu-
ments, instead of actually performing the call.

Of course, we change properties accordingly and introduce in
their definition the evaluation of such symbolic values, a standard
QuickCheck function.

prop_sum() ~->
?FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),

model (sum(D1, D2))
== model(D1) + model(D2)
end) .

With these modifications, a similar failure is reported back by
QuickCheck as:

> eqc:quickcheck(decimal_eqc:prop_sum()).
........ Fajled! After 9 tests.
{{call,decimal,new, [{2,1}]},
{call,decimal,new, [{2,2}1}}
Shrinking. . (2 times)

{{call,decimal,new, [{0,1}]},
{call,decimal,new, [{0,2}1}}

false

Now it is much easier to see that the problem can be reproduced
by using values 0.1 and 0.2.

Conform to the IEEE 754-1985 standard, Erlang float values
present an unavoidable rounding error , demonstrated by typing the
values in the shell:

> (0.140.2) == 0.3.
false

> (0.1+0.2) - 0.3.
5.55112e-17

In other words, since floats are represented as a list of bits, there
is not always an exact representation of each decimal. Since our
computations are performed on the decimals and the conversion
to floats is only necessary to compare the results, we are satisfied
with an approximate equality. Therefore, we define the equivalence
relation == with respect to two maximum tolerance levels: an ab-
solute error value (ABS_ERROR), which measures how different two
floats are; and a relative error value (REL_ERROR), which takes into
account not only the values themselves, but also their magnitudes
(Dawson 2008). Note that we divide by the maximum of the ab-
solute values of the two floats, ensuring that the maximum never
is zero (unless they both are zero, in which case the absolute error
value is used).

—-define (ABS_ERROR, 1.0e-16).
-define (REL_ERROR, 1.0e-10).

equiv(F1,F2) ->
if (abs(F1-F2) < ?ABS_ERROR) -> true;
(abs(F1) > abs(F2)) ->
abs((F1-F2)/F1) < 7REL_ERROR;
(abs(F1) < abs(F2)) ->
abs((F1-F2)/F2) < 7REL_ERROR
end.

To set the reference error values, we use the knowledge that the
decimal data type in ARMISTICE has 16 digits precision (hence,
the value of ABS_ERROR) and agree to a 99.9999999999% accu-
racy (hence, the value of REL_ERROR). Just a minor change in the

QuickCheck specification is necessary to introduce the new equiv-
alence function.

prop_sum() ->
?FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),

equiv(model(sum(D1, D2)),
model(D1) + model(D2))
end) .

Finally, the property passes thousands of randomly generated
test cases.

3.3 Generator to cover data structure

Now we need to introduce one such property for each operation
on our abstract data type. Even though it might then seem that
we completely tested the decimal data type, we recognise that this
is not true. In the first place, and a simple code coverage can
demonstrate this, we applied the function new to only one of its
many types of input (cf. Fig. 1). In the second place, we may
have missed to test part of the data structure. Operations on the
data structure may actually invalidate an invariant. For example,
imagine a data type set in which elements are stored in a sorted
list, but a set obtained from the union of two sets may invalidate
that invariant. Hence, not testing to delete an element from a set
obtained form the union of two other sets is a missed opportunity
to find an error. Note that code coverage will most likely not reveal
that we misscd testing to delete an element ffom a set cieated by
the union of two sets, because we have one property testing all code
involved in a deletion and one property testing all code involved
in computing the union. Together, they cover all code involved in
both, which is not the same as covering combinations of creating
unions and deleting elements from the union.

Similarly, in our case study, we want to test, for example, multi-
plication of two decimals where each decimal itself is obtained by
operations that may invalidate an invariant, e.g.

mult(new("12,837.12"),
sum(new(12), new({13,4}))).

To do s0, we create a recursive generator to obtain arbitrary
nesting of decimals as arguments of constructors for decimals.
The depth of the recursion is determined by QuickCheck such that
small values are tried first, slowly growing as long as no errors are
detected. QuickCheck gives access to the parameter that controls
the structural size of the generated test case via the ?SIZED macro.

decimal() ->
?SIZED(Size, decimal(Size)).

decimal(Q) ->
{call, decimal, new,
[oneof ([int (),
real(),
separator(decimal_string(),digits()),
{oneof ([int (), decimal_string()]),
oneof ([nat(), digits()])}
D
1x;
decimal (Size) ->
Smaller = decimal(Size div 2),
oneof ([
decimal(0),
{call, decimal, sum, [Smaller, Smaller]},
{call, decimal, mult, [Smaller, Smallerl}

.

Note that so far we only consider the sum and mult operators
to create data structures. We will soon see how to add the other
operators. Note also that we use Size div 2 for smaller decimals.
This is based on the fact that the smaller decimals have (at most)
two subtrees and we want to keep the number of nodes in the tree
roughly determined by the size parameter.

Additional code is necessary to specify how the strings in the
input may look like. The generator for an arbitrary number of digits
is again recursively defined.

digits() ->
?8IZED(Size, digits(Size)).

digits(0) ->
[digitO)1;
digits(Size) ->
Smaller = digits(Size-1),
oneof ([digits(0), [digit()!Smaller]]).

digit() ->
choose($0, $9).

We can use these digits to generate string representations of
decimals, either as a long list of digits, or as such a list grouped
by 3 digits at a time and commas inbetween.

decimal_string() ->
signed(oneof ([digits(), groups(3)])).

signed(G) ->
PLET(S, G, oneof ([S, "+"++S, "-"++8]))

separator(G1, G2) ->
oneof ([G1,
7LET({S1, S2}, {G1, G2}, S1++"."++32)1).

%h groups of N digits
groups (N) ->
7SIZED(Size, groups(N, Size div N)).

groups (G, 0) ->
digits(N-1);
groups (G, Size) ->
Smaller = groups(N, Size-1),
oneof ([
groups(N, 0),
PLET([S1, 82],
[Smaller, vector(N, digit())],
S1++" s II++S2)
D.

With this recursive generator, symbolic calls can be generated
that cover, in principle, the whole data structure. For example, in a
QuickCheck sample, the following value was generated:

{call,decimal,sum,
[{call,decimal,sum,
[{call,decimal ,mult,
[{call,decimal,new, [{11,"4003351"}]},
{call,decimal,new, ["-930764"1}]},
{call,decimal,new, [-2.359861}]},
{call,decimal,new, [1.64783]1}]1}

Of course, we need to add the other operators as well, but first
we use QuickCheck to check our previously defined property for
the sum operator, which successfully passes thousands of tests.

Now we add a similar property for multiplication, which fails after
only a few generated tests.

6> eqc:quickcheck(decimal_eqc:prop_mult()).
............... Failed! After 16 tests.
{{call,decimal_eqc,sumn,

[{call,decimal_eqc,sumn,
[{call,decimal_eqc,new, ["+1"]},
{call,decimal_eqc,new, [2.36314e+4]1}1},

{call,decimal_eqc,mult,
[{call,decimal_eqc,new, [-5]},
{call,decimal_eqc,new, [-9.61993e+5]}]}1},

{call,decimal_eqc,sum,

[{call,decimal_eqc,mult,
[{call,decimal_eqc,new, ["74.4"]},
{call,decimal_eqc,new, [{"-6,179","40"}]1}]1},

{call,decimal_eqc,mult,
[{call,decimal_eqc,new, ["47"]},
{call,decimal_eqc,new, ["-467,725.079"]1}]1}1}}

Shrinking......ovvviiiiiniineneininonn, (31 times)
{{call,decimal_eqc,sum,

[{call,decimal_eqc,sum,
[{call,decimal_eqc,new, ["+0"]1},
{call,decimal_eqc,new, [0.00000e+0]1}]},

{call,decimal_eqc,mult,
[{call,decimal_eqc,new, [1]},
{call,decimal_eqc,new, [10.1400]}]}]},

{call,decimal_eqc,sum,

[{call,decimal_eqc,mult,
[{call,decimal_eqc,new, ["00.4"1},
{call,decimal_eqc,new, [{"~0,000","40"}]1]},

{call,decimal_eqc,mult,
[{call,decimal_eqc,new, ["40"]1},
{call,decimal_eqc,new, ["-000,000.078"]}]1}1}}

false

As we can see from this example, the failing test case contains
a fairly large expression. The shrinking procedure reduces the test
case quite a lot, but there are still a number of terms in there that
a human tester would reduce further. For example the sign could
be removed from {call,decimal,new, ["+0"]}, but even better
one could try to remove the whole term. Another reduction could
be used for the string "-000,000.078", where six zeros could be
reduced to one, at least if the value is important and not the actual
structure of the string.

3.4 Improved shrinking of recursive data types

The reason why the previous terms are not shrunk up to the ex-
tent we would like they were, lays in the definition of our gener-
ators. When we nest LET macros, QuickCheck first shrinks on the
outermost level and when that is no longer possible, the generator
defined inside the LET is shrunk®.

QuickCheck offers a macro SHRINK with which one can define
one’s own shrinking rules. The macro has two arguments, the first
being a generator, the second a list of generators. The generators in
that list are added as shrinking alternatives to the generator in the
first argument. These shrinking alternatives are applied before the
built-in shrinking. For example, SHRINK could be used to ensure
that the signed generator always tries to shrink to a representation
without a plus or minus symbol.

signed(G) ->

4The choose generator built-in shrinking strategy always defaults to the
first element in the argument list, while shrinking of int, real or nat tends
towards zero.

?LET(S, G,
?SHRINK (oneof ([S, "+"++S, "-"++3]1), [S1)).

Thus, whenever a test case fails, QuickCheck will first re-test
by removing the sign. The original signed generator would not do
s0, since it would only shrink within the alternative chosen by the
oneof generator.

Note that the order in which we mix LET and SHRINK above is
important. Should we have written

signed(G) ->
?SHRINK(
TLET(S, G,
oneof ([S, "+"++8, "-"++5])), [G])).

then shrinking would choose a sequence of digits without a sign,
but the sequence would have nothing in common with the original
sequence. That is not what we want in this case.

In fact, we often want to know the generated value in order
to decide which shrinking steps to add, thus, often having first
a LET and then a SHRINK macro. Therefore, Quviq has added a
LETSHRINK macro to QuickCheck which combines the two earlier
mentioned macros. As arguments we provide a list of bindings and
a list of generators, resulting in adding those bindings as shrink-
ing alternatives. In that way, the above signed generator can be
simplified to:

signed(G) ->
?LETSHRINK([S], [G],
oneof ([S, "+"++§, "-"++S])).

where S is automatically added as a shrinking alternative.

The PLETSHRINK macro can also be used to reduce the number
of groups present in the failing test case "-467,725.079", for ex-
ample, which shrinks to "-000,000.078" instead of also remov-
ing the group of three zeros. We define that each smaller generator
in the recursively defined generator is automatically added to the
shrinking alternatives®.

groups (G, Size) ->
Smaller = groups(N, Size-1),
oneof ([
groups(N, 0),
?LETSHRINK([S1, S2],
[Smaller, vector(N, digit(})],
Si++ll s l|++s2)
.

With this shrinking rule added the string "-000,000.078" will
shrink to "-000.078". Of course, we would still like to shrink
that further, which means that we need to look at the generator for
digits.

digits(Size) ->
Smaller = digits(Size-1),
oneof ([digits(0),
?LETSHRINK([Digits], [Smaller],
[digit O |Digits])
n.

Which will now enable to shrink to "-0.078" as we can see
from re-checking the property on the same example with all above
shrinking alternatives added.

3 Strictly speaking, a group should start with a number of digits less than or
equal to three. However, we add the possibility to have a group with exactly
three digits. We add this as our second shrinking alternative, whereas the
first is a flexible number of digits.

Shrinking....................... (35 times)
{{call,decimal _eqc,sum,
[{call,decimal_eqc,sum,
[{call,decimal_eqc,new, ["0"]},
{call,decimal_eqc,new, [0.00000e+0]1}1},
{call,decimal_eqc,mult,
[{call,decimal_eqc,new, [1]},
{call,decimal_eqc,new, [10.14001}1}1},
{call,decimal_eqc,sum,
[{call,decimal_eqc,mult,
[{call,decimal_eqc,new, ["0.4"]},
{call,decimal_eqc,new, [{"-0","40"}]1}1},
{call,decimal_eqc,mult,
[{call,decimal_eqc,new, ["40"]},
{call,decimal_eqc,new, ["-0.078"1}1}]1}}
false

With these rules for shrinking added, we increase the simplic-
ity of our failing test case. However, the term structure is still un-
changed, although we know that adding zero to a number would
result in that same number. We can shrink the structure by once
more using the LETSHRINK macro, now in the definition of the re-
cursive generator for decimals.

decimal (Size) ->
Smaller = decimal(Size div 2),
oneof ([
decimal(0),
7LETSHRINK([D1, D2], [Smaller, Smaller],
{call, deciwal, sum, [D1, D2]11}),
7LETSHRINK([D1, D2], [Smaller, Smaller],
{call, decimal, mult, [D1, D21})
n.

In addition to simplifying the actual term, we also want to
be able to see the difference between the value created by the
implementation and the value computed in our model. We can do so
by adding a WHENFAIL macro to the property, which only evaluates
its first argument if the second argument is false.

prop_mult() ->
7FORALL({SD1, SD2}, {decimal(), decimal()},

begin
D1 = eval(SD1),
D2 = eval(SD2),

Model = model(D1) * model(D2),
Real = model(mult(Di, D2)),
PWHENFAIL(
io:format ("Real “p\nModel “p\n",
[Real, Modell),
equiv(Real, Model))
end) .

Checking this re-defined property on the same example, shows
a difference in outcome by a factor 10. Running QuickCheck a few
additional times always shows the same factor 10 difference.

Shrinking..................... (51 times)
{{call,decimal_eqc,new, [10.1400]},
{call,decimal_eqc,sunm,
[{call,decimal_eqc,new, ["0.4"]},
{call,decimal_eqc,mult,
[{call,decimal_eqc,new, ["47"]},
{call,decimal_eqc,new, ["-0.078"]1}1}1}}
Real -331.172
Model -33.1172
false

The difference was rather quickly identified as an error in the
decimal module implementation: the carrier was incorrectly prop-
agated. The problem arose when values were rounded to ignore
the least significant digits, which are not to be stored, as previously
said. In such cases, a rounding operation was considered for the last
decimal digit to be stored, but no carrier was taken into account to
be propagated to the left. Instead of that, if the last decimal was to
be modified (rounded) and this digit turned out to be a 9, then the
9 was erroneously replaced by a 10. For instance, when rounding a
large number like 123.456789987654 on six significant digits, we
should obtain 123.456790. But, instead, the erroneous code was
replacing it by 123.4567810. Since the internal representation of
decimals is a sequence of digits with a fixed number of decimals
(six in this example), this longer sequence is then interpreted as:
1234.567810.

Strangely enough, this rounding error had been in the code for sev-
eral years without being found a problem. However, after detecting
it, the developer could actually relate it to some unsolved, obscure
error reports from the customer.

After correcting the code, the properties for addition and multi-
plication operators passed thousands of generated test cases.

3.5 Well defined generators

We now add the additional operations substraction and division
to the generator and create properties for them similar to those
for addition and multiplication. This takes hardly any effort after
having the framework in placc.

decimal (Size) ->
Smaller = decimal(Size-1),
oneof ([
decimal(0),
PLETSHRINK (
[sD1, SD2], [Smaller, Smaller],
{call, decimal, sum, [SD1, SD21}),
PLETSHRINK(
[sD1, SD2], [Smaller, Smaller],
{call, decimal, mult, [SD1, SD21}),
PLETSHRINK (
[sp1, SD21, [Smaller, Smaller],
{call, decimal, subs, [SD1, SD21}),
PLETSHRINK (
[SD1, SD2], [Smaller, Smaller],
{call, decimal, divs, [SD1, SD2]})
.

We check the properties with QuickCheck and now the property
for the addition fails again! It does because it crashes in the evalua-
tion of a generated value. In other words, we generated a symbolic
value that does not correspond to a real value.

> eqc:quickcheck(decimal_eqc:prop_sum()).
............ Failed!
After 13 tests.
Shrinking....(4 times)
Reason:
{’EXIT’,,{{not_ok,{error,decimal_error}},
[{common_lib,ok,1},
{decimal_eqc, ’-prop_subs/0-fun-0-’,1},
{eqc,’-forall/2-fun-4-’,2%},
I
{{call,decimal,divs,
[{call,decimal,new, [{0, [1}]},
{call,decimal,new, ["0"]1}]},

{call,decimal,new, [0]}}
false

Indeed, shrinking helps us in determining the problem: we di-
vide by zero when we create our decimal. Evaluating this symbolic
value returns a different wrapper than ok, viz, not_ok and hence
the function taking the wrapper away creates a badmatch exception.

Actually, we do want to test that division by zero gives us an
expected error value. That is, precisely, done in the property for
division, since there we test for each decimal value that a division
in the model results in the same value as a division of decimal
values. Division by zero in the model should equally well generate
an exception.

prop_divs() ->
?FORALL({SD1, SD2}, {decimal(), decimal()},
begin
D1 = eval(SD1),
D2 = eval(SD2),
case model(D2) == 0.0 of
true ->
{’EXIT’, _} =
(catch model(D1)/model(D2)),
is_error(divs(D1, D2));
false ->
equiv(model(divs(D1, D2)),
model (D1) / model(D2))

end
end) .

With such a property, we already check that division by zero is
an exception case. What we want is to avoid generating these ex-
ception cases, instead we only want to generate well defined sym-
bolic values, meaning that such symbolic value does not raise an
exception when evaluated. We use a simple, generally applicable
concept for doing so. We define a generator defined which evalu-
ates the symbolic value and catches a potential exception; the sym-
bolic value is only defined if no exception occurs. We count on
the fact that the majority of the symbolic values will not raise an
exception when we evaluate them and we introduce a generator
well_defined to keep generating values until we find a defined
orne.

defined(E) ->
case catch {ok, eval(E)} of
{ok, _} -> true;
{’EXIT’, _} -> false
end.

well_defined(G) ->
?SUCHTHAT(E, G, defined(E)).

We use these generators in our QuickCheck specification for
decimals by replacing the generator for decimal by

decimal() ->
?SIZED(Size, well_defined(decimal(Size))).

One may consider this to be cheating. After all, we could have
an error in our code that makes an operation crash, even though
we do not want that to happen. If we filter the generators and
never produce such faulty value, how well do we test? Here it is
important to remember that we check each operation in a property.
Thus, if there is any value for which the addition fails, then that
value is checked in the property for addition. The only case we
never check is whether the new operation crashes on a specific
input. Therefore, we add one additional property, checking that

generating base values always succeeds. In addition we also check
that applying the model function to an obtained decimal does not
raise an exception.

prop_new() ->
?FORALL(SD,decimal(0),
is_float (model(eval(SD)))).

Finally we succeed in passing hundred thousand tests for each
property in our specification. Therewith we have thoroughly tested
the decimal data type.

A last property remained untested, which is the actual motiva-
tion for introducing the decimal data type in the software. The data
type is used to ease marshalling from and to strings to enable com-
munication via a web-service-like interface. We want to verify that,
for each and every decimal data structure we generate in any pos-
sible way, converting it to a string and then performing the reverse
operation (call decimal :new with that same string) is idempotent.

prop_decimal_string() ->
?FORALL(SD, decimal(),

begin
D = eval(SD),
decimal:new(decimal:to_string(D)) == D
end).

With this last property also successfully checked, we conclude
the testing of the decimal implementation.

4. Conclusions

The contribution of this paper is the introduction of a methodology
to test data types, consisting in four steps:

1. Define a model for the data type: the goal is checking whether
the data type implementation is equivalent to the model, thus
holding equivalent properties.

2. Create as many model-equivalence checking properties as op-
erations in the data type. Work with symbolic values instead of
real values, to keep independent of internal representation of
the data type.

3. Write data type generators. Make sure they cover all the data
structure, i.e., define recursive generators that include all oper-
ations producing values of the data type as a result. Mind that
generated values are well-defined, placing exception cases test-
ing just at relevant properties.

4. If needed, define your own shrinking preferences to help reach-
ing the least significant counterexample.

With this methodology, QuickCheck can be used in a more
structured way, giving more confidence in the result of all Quick-
Check tests. The methodology has been applied to Erlang data
types, but the approach should as well be applicable to data types
defined in another language, such as C and Java, provided we can
interface Erlang with such language. We plan on investigating that
as part of our continued research.

Even though one may expect data types to be rather simple
pieces of software, we have shown that failures can be detected
in software considered very stable and used for several years. We
have applied the developed methodology to other data type imple-
mentations as well, for example, the entero and logico data types in
the same risk management information system, and the queue data
type in the Erlang standard library. This showed that the method is
generally applicable and basically a recipe to follow.

Using either QuickCheck or another test case generation tool
is not a trivial step, though. A too naive approach can convice

ourselves we have tested enough when we are actually missing a
lot or even not really proving anything relevant. In this paper we
have explained, step by step, an exhaustive procedure that can be
easily followed. By describing the process thoroughly we have tried
to justify each stage of the process and illustrate possible problems
(wrong approaches, obscurity of dealing with real values and their
internals, failure to test all possibilities, unsatisfactory shrinking)
and how to overcome them (model definition, symbolic values,
recursive generators, self-defined shrinking rules).

As said before, we plan to extend this methodology to non-
Erlang data types in the near future, taking advantage of already
existing intercommunication alternatives between Erlang and other
technologies such as C or Java. We are also working on a broader
methodology that will consider how to check not just a relatively
simple issue as data types, but a whole application business logic.
We aim to do so focusing on layered client/server applications, and
independently from the user interface and persistent storage.

Acknowledgments

We thank Victor M. Gulfas from the University of A Corufia for
his support and for creating the possibility for this collaboration.
This research was partly sponsored by two grants; FARMHANDS
(MEyC TIN2005-08986 and XUGA PGIDIT06PXIC105164PN)
and EU FP7 Collaborative project ProTest, grant number 215868.

References
ARMISTICE. Armistice. http://www.madsgroup.org/armistice/, 2002.

David Cabrero, Carlos Abalde, Carlos Varela, and Laura M. Castro.
Armistice: An experience developing management software with
erlang. In Principles, Logics, and Implementations of High-Level
Programming Languages, Uppsala, Sweden, August 2003.

Bruce Dawson. Comparing floating point numbers. http://www.cygnus-
software.com/papers/comparingfloats/comparingfloats.htm,
2008.

R.W. Floyd. Assigning meaning to programs. In Proc. of Symposia in
Appl. Math. American Mathematical Society, 1967.

C. A, R. Hoare. Proof of correctness of data representations. Acta
Informatica, 1:271-281, 1972.

IEEE. Standard for binary floating-point arithmetic.
http://grouper.ieee.org/groups/754/, 1985.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. In JCFP, pages 268-279, 2000.

Quviq. Quviq. http://www.quviq.com, 2008,

Thomas Arts, John Hughes, Joakim Johansson, and UIf Wiger. Testing
telecoms software with quviq quickcheck. In ERLANG 06
Proceedings of the 2006 ACM SIGPLAN workshop on Erlang, New
York, NY, USA, 2006. ACM Press.

Victor M. Gulias, Carlos Abalde, Laura M. Castro, and Carlos Varela. A
new risk management approach deployed over a client/server
distributed functional architecture. In 18th International Conference on
Systems Engineering, pages 370-375, University of Nevada, Las Vegas
(USA), August 2005. IEEE Computer Society. http://www.icseng.info.

Victor M. Gulfas, Carios Abalde, Laura M. Castro, and Carlos Varela.
Formalisation of a functional risk management system. In 8th
International Conference on Enterprise Information Systems, pages
516-519, Paphos (Cyprus), May 2006. INSTICC Press.
http://www.iceis.org.

Early Fault Detection with Model-Based Testing

Jonas Boberg

Erlang Training and Consulting Ltd.
29 London Fruit & Wool Exchange
Brushfield Street
London, E1 6EU, UK

jonas@erlang-consulting.com

Abstract

Current and future trends for software include increasingly com-
plex requirements on interaction between systems. As a result, the
difficulty of system testing increases. Model-based testing is a test
technique where test cases are generated from a model of the sys-
tem. In this study we explore model-based testing on the system-
level, starting from early development. We apply model-based test-
ing to a subsystem of a message gateway product in order to im-
prove early fault detection. The results are compared to another
subsystem that is tested with hand-crafted test cases.

Based on our experiences, we present a set of challenges and
recommendations for system-level, model-based testing. Our re-
sults indicate that model-based testing, starting from early develop-
ment, significantly increases the number of faults detected during
system testing.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging

General Terms Verification

Keywords Model-based testing, system testing

1. Introduction

The cost of finding and fixing faults in software typically rises as
the development project progresses into a new phase. Faults that
are found after the system has been delivered to the customer are
many times more expensive to track down and correct than if found
during an earlier phase [1]. Current and future trends for software
include increasingly complex requirements on interaction between
systems [2]. The increased complexity means that a system may
have potentially infinite combinations of inputs and resulting out-
puts. It is difficult to get satisfactory coverage of such a system with
hand-crafted manual or automatic test cases [3].

Model-based testing is a test technique where test cases are gen-
erated from a model of the system. There are model-based testing
tools that can automate the generation of test cases from a behav-
ioral model, including test oracles that can determine whether the
system under test behaved correctly at the execution of the test case
[4]. Test cases generated from a model have been shown to give a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’08, September 27, 2008, Victoria, BC, Canada.

Copyright (©) 2008 ACM 978-1-60558-065-4/08/09. ., $5.00

high coverage of system interaction points, given that the genera-
tion is carefully guided [5].

Intensive research on model-based testing has been conducted,
and the feasibility of the approach has been demonstrated. Still,
few conducted studies focus on early-fault detection and the appli-
cation of the technique on specific test levels. Industrial adoption
of model-based testing remains low [6]. Although this is partially
due to technical limitations, process-related issues remain a large
concern. The model-based testing practice must be integrated into
current software processes [6]. Limited understanding of the ben-
efits model-based testing delivers at different levels of testing, and
the associated challenges of its application in real world projects,
is therefore an obstacle to adoption of the technique.

Finding problems faced in industrial software development, and
finding solutions that developers will embrace, is an often listed ba-
sis for successful technology transfer [7]. We have conducted a pre-
study of an ongoing system development project at Erlang Train-
ing and Consulting (ETC). The project develops a message gate-
way product with two subsystems, an E-mail gateway and an In-
stant Messaging (IM) gateway. The gateway is implemented using
the Erlang/OTP platform. Both subsystems essentially interconnect
networks that use different communication protocols, by perform-
ing the required mapping of protocol messages. The E-mail gate-
way allows a client to access multiple types of e-mail servers using
a single communication protocol. The IM gateway provides mobile
devices an interface to multiple instant messaging protocols.

The pre-study indicates that faults which should have been
found during system testing of the IM gateway subsystem, have
repeatedly been left undetected until customer acceptance testing.
Several negative consequences as a result of this fault-slip through
have been observed:

e Reproducing and locating the source of the fault requires more
effort as the customer anomaly reports often are on a high level.

e The developing organization and customers’ confidence in the
system passing the acceptance test exit criteria is reduced.

o Additional effort has to be spent on building and deploying new
release candidates as faults are found and fixed.

In this study, we show that applying model-based testing to the
E-mail gateway system, starting from early development, signifi-
cantly increased the number of faults found during system testing.

1.1 Purpose

The purpose of this mixed methods study is to better understand
how model-based testing can be used as a system-level test tech-
nigue, starting from early development. This will be done by con-
verging both quantitative and qualitative data. Faults-slip-through
will be used to measure the relationship between using model-

based testing as a system-level test technique from early develop-
ment, and the number of faults that should have been detected dur-
ing system testing but are left undetected until customer acceptance
testing.

As described above, the message gateway, developed at ETC
(the research site), has two subsystems. In this study, model-based
testing will be used for system-level testing of the E-mail gateway
subsystem. The fauli-slip-through measurements for this subsystem
will be compared to the measurements of the baseline subsystem —
the IM gateway. The IM gateway is tested with a combination of
manual and automated test cases that are hand-crafted without the
support of a model. There are many different kinds of testing. This
study will focus on black box functionality testing (both positive
and negative). At the same time, the managers’ and developers’ per-
ception of the impact of the model-based testing will be explored
using observations and qualitative interviews.

1.2 Approach

Studies of software process improvement suggest that regardless of
whether a quality initiative is technical or organizational, the hu-
man factor should be considered, because of the potential barriers
to change [8]. ETC has not used model-based testing as a system-
level test technique before. Model-based testing is not just a matter
of generating tests, and executing them to detect defects. It involves
several other activities, such as creation of the system model, an-
alyzing the output, reporting defects and generating reports. An-
other important activity is regression testing, which is often cited as
the most important benefit of test automation [9]. The model-based
testing practice must therefore be integrated into the project’s test
process [6]. This integration can meet resistance as existing local
practices may directly conflict with the model-based testing tech-
nique [10]. In view of this, this study will be conducted in the form
of a software process improvement initiative.

1.3 Overview

The rest of this paper is organized as follows. Section 2 gives
an overview of relevant concepts, summarizes related studies and
presents our research questions and hypothesis. Section 3 describes
the method used in the study, including how we collected and
analysed our data. Section 4 describes the two subsystems under
study. Section 5 gives examples of how the system under test
was modeled, describes encountered challenges and presents a set
of recommendations for model-based testing on the system-level.
Section 6 describes the actual results, in terms of changes in fault-
slip-through. Section 7 discusses the results and presents issues
in the conducted comparisons. Finally, we conclude and suggest
questions for further research in section 8.

2. Related Research

This section has four parts. The first part gives an overview of
model-based testing. The second part presents an overview of stud-
ies that relate directly to this one — model-based testing as a fault-
detection practice in industry, and its impact on the development
process. The third part presents selected measurements of early
fault detection. Finally, the fourth part specifies the research ques-
tions and hypothesis of this study.

2.1 Model-based testing

The term model-based testing is commonly used for a wide variety
of test generation techniques. In this article, model-based testing is
a test technique, by which test cases are generated from a behavior
model of the system under test [10]. Furthermore, we constrain
ourselves (o the generation of test cases that include a test oracle
[10], which can assign a pass/fail verdict to each executed test.

10

Model-based testing typically involves the following steps: [4,
10, 11]

1. Building an abstract model of the behavior of the system under
test. The model captures a subset of the system requirements.

2. Definition of test selection criteria. The criteria defines what test
cases to generate from the model.

3. Validating the model. This is typically done by sampling ab-
stract test cases from the model and analyzing them. This step
is performed to detect major errors in the model that may even
hinder generation of test cases.

4. Generating abstract tests from the model, using the defined test
selection criteria. At this stage, the generated test cases are
expressed in terms of the abstractions used by the model.

5. Transforming (concretize) the abstract test cases into executable
test cases.

6. Executing the test cases. At execution time, an adaptor compo-
nent transforms the output of the system to the abstraction of
the model.

7. Assigning of a pass/fail verdict to executed test case.
8. Analyzing the the execution result.

The remainder of this section gives an overview of the variations
within the model-based testing practice.

2.1.1 Model types

The behavior of a system can be described using a variety of dif-
ferent model types. Common model-types, such as finite state ma-
chines, extended finite state machines, state charts, markov chains
and temporal logic are widely described in literature.

2.1.2 Model abstraction

The model must be validated against the system requirements,
which may be specified at any level of formality. This implies
that the model must be more abstract than the system under test.
If it were not, validating the model would require as much effort
as validating the system. At the same time, details of the system
that are not modeled, cannot be verified using the model [12]. An
overview of abstractions that can be applied in the creation of the
model is provided in [13] and [12].

2.1.3 Model notation

In principle, all notations with formal semantics can be used as
a basis for model-based testing. Examples of commonly used no-
tations are formal specification languages (such as Z), tool ven-
dor specific languages, general-purpose programming languages,
the Unified Modeling Language (UML) and domain specific lan-
guages. [4]

2.1.4 Concretizing abstract test cases

The approach to concretization of the test cases depends on the
nature of the model abstraction. When only the system input data is
abstracted by the model, an adaptor component (sometimes called
driver [12]) is typically used. The adaptor adapts the input part of
the test case to the format accepted by the system under test [11].
This adaption may also be delayed to test execution time. If the test
case is on a higher level of abstraction a template is used to derive a
concrete test case. The template adds additional semantics making
the test case executable [4].

2.1.5 Online and offline testing

The online testing technique generates the steps of a test case
from the model in lock-step with executing them. This generation

technique handles the non-determinism that arises in the testing of
reactive and concurrent systems [14]. With off-line test generation,
a complete test case is generated before execution. This has other
practical advantages, for example the test case can be executed
repeatedly (regression testing). It also allows for analyzing and
simplification of the test case before it is executed.

2.1.6 Available tools

Generating test cases from high-level specifications is not a recent
idea. In 1986 Hayes [15] showed how to systematically derive tests
of abstract data structures from a formal specification. At that time,
however, the generation and execution of test cases was performed
manually. Today, there is a growing number of tools available that
automate many of the steps involved in model-based testing. Utting
and Legeard [4] provides a comprehensive overview of model-
based testing tools.

2.1.7 Quviq QuickCheck

QuickCheck, developed by Quvig AB, is a testing tool for guided
random and model-based testing. QuickCheck can simplify a failed
test case to a minimal failing test case [16], thereby reducing the
problem of deducing the cause of failure for complex test cases. A
minimal test case is a test case where every part of the system input
is significant in reproducing the failure.

QuickCheck provides a framework for modelling the system un-
der test using an Abstract State Machine. A madel is built using Er-
lang, a general-purpose programming language [17), with support
of the library provided with QuickCheck.

Applicability A case study, where Ericsson’s Media Proxy was
tested using QuickCheck, indicates that the tool can be applied
to testing communication protocols. The study also found that
QuickCheck potentially reduces the required investment compared
to hand-crafted test cases [16). The system that was tested with
QuickCheck in the study had already been pre-release tested by
the development team. There are no studies on using QuickCheck
earlier in the development.

2.2 Model-based testing in industry

This section outlines and evaluates prior studies on model-based
testing as a fault detection practice in industrial projects. Only
studies where the test case generation and execution steps were
automated are included.

AGEDIS (Automated Generation and Execution of Test Suites
in Distributed Component-based Software) was a three-year re-
search project on the automation of software testing funded by the
European Union. Five case studies were conducted. These stud-
ies focused on applying model-based testing methods and tools to
test problems in industrial settings. The studies were conducted at
France Telecom, Intrasoft and IBM. The findings were that model-
ing increased the understanding of the system under test and was
found to be an effective way to analyze complex requirements.
It was also found that when a requirement changed, adapting the
model and regenerating the test cases required less effort compared
to updating manually constructed test cases. [18]

Artho et al. [19] presents a case study that applied model-based
testing to the controller component of NASAs K9 planetary rover.
The modeling language and test framework used was based on a
discrete temporal logic. The technique was found promising and
located a fault in the controller. The model was developed, and
the testing conducted after implementation of the full system was
finished.

Dalal et al. [10] reports on obstacles of introducing model-based
testing into test organizations. Four case-studies of four large-scale
projects are presented. One finding was that model-based tests were

11

sometimes seen as mysterious. This was because the objectives of
each test case are not as clearly defined as in a typical manually
crafted test case. The study suggests that the projects’ test pro-
cess, including test strategies and planning must be adapted, so that
the model-based testing is well integrated. Establishing the infras-
tructure for running and logging the massive amount of generated
test cases requires effort. Also, modeling was found to improve the
specification and the understanding of the system, which is in line
with the findings of the AGEDIS studies [18].

Dalal et al. suggests that defects in the model can be mini-
mized by ensuring traceability from the requirements to parts of
the model. This allows fault analysis to faster determine whether
the requirements or the implementation is incorrect. The sugges-
tion originates in that more than half of the failed tests related to
defects in the model, rather than the system under test. Other stud-
ies indicate similar model defect ratios (see Pretschner et al. [12],
Blackburn et al. [3]). The following limitations in the case stud-
ies can be identified: Only individual components were tested. Test
oracles were nol generated from the model, but added manually.

Dalal et al. also identifies the following questions for future
work:

¢ What are the challenges of applying model-based testing during
different phases of testing?

e What benefits will model-based testing deliver at different
phases of testing? [10]

Pretschner et al. [12] investigates whether the model-based test-
ing approach pays off in terms of quality and cost. Quality of
model-based test cases are compared to traditional, hand-crafted
test cases. The system under test is a network controller for a au-
tomotive infotainment system. The findings of the study were that
model-based testing did not detect more faults in the implemen-
tation than hand-crafted test cases. Also, no comrelation between
severity of errors and types of tests were found. On the other hand,
the model-based tests resulted in the detection of significantly more
requirement defects. The study indicates that tests were executed
after the system was completely implemented. Therefore, the ben-
efit of test case re-generation were not seen in the study. Also, the
length of the test cases was restricted, as a failing test case was
inspected manually, and the execution time was long due to hard-
ware limitations. The study acknowledges these deficiencies and
points out that the economics of using model-based testing based
on behavioral models is not yet understood, in particular whether
the life-cycle spanning updating of the model is efficient.

Blackburn et al. [3] discusses the specific skills and practices
that are needed to incorporate model-based testing into an organi-
zation’s test process. The presented material is based on learnings
from working with model-based testing in companies and projects
during multiple years. The article suggests that an incrementally
developed model detects inconsistencies and missing details in re-
quirements early in the development process. Also, objective mea-
surements are pointed out as important to make the effects of the
model-based testing visible.

Evaluation Summary Based on evaluation above, it can be con-
cluded that existing research on model-based testing for early-fault
detection is lacking. In conducted studies, model-based testing has
typically not been an integrated part of the development process.
Also, most studies apply model-based testing on the component
level, or to a limited part of the system. Few studies focus on the
the application of the technique on the system-test level.

2.3 Measuring early fault detection

The central concept underlying this study is that the cost of find-
ing and fixing faults in software rises as the development of the

software progress into a new phase [9]. Reducing the number of
defects that are left undetected until customer acceptance testing is
a type of improvement work — improvement of the test process. In
improvement work, measurements are important in order to know
whether you are actually improving. A common test process met-
ric is the number of defects found on different test levels[9]. An
important criteria for selecting a performance measure is that it re-
lates closely to the issue under study. As shown by Damm, most
measurements cannot acknowledge that not all faults are effectively
found on the test level that they were introduced on. Instead, Damm
proposes the use of a method called Faults-Slip-Through (FST) [9].

2.3.1 Faults-Slip-Through

When applying the FST method, faults are classified according to
the phase in which they should have been found. The method has
the following steps [9]:

1. Determine which defects should be found on which test level.
This is part of the test strategy. It is not already documented by
the organization, that has to be done first.

2. For each reported fault, find the test level the defect was found
on, and which test level it should have been found on, according
to the documented test strategy (see 1)

3. For each test level, summarize the number of faults that should
have been found earlier, per test level.

Phase Input Quality Phase Input Quality — the fault-slip-through
ratio, can be calculated from the absolute FST data as follows [9]:

Phase Input Quality(PIQ) = % - 100
where SF is the number of faults found on test level X that slipped
from earlier test levels and PF the total number of faults found on
test level X.

This formula calculates the percent of faults found at a test
level that should have been found earlier. Damm et al. observed a
relationship between the number of faults found and the PIQ; if the
PIQ for the test level is high, and many faults are found on that test
level, this indicates that the test strategy compliance of the earlier
test level is low [9]. It is important to analyze the PIQ in the context
of the absolute number of found faults. For example, the PIQ of a
test level could be high, although only a few faults were found on
that test level. Few faults found typically indicates that none or little
improvement is needed.

2.3.2 ODC trigger analysis

One way to classify faults is by software triggers. A triggeris a type
of stimulus that activates a fault into a failure. A method of such
classification is ODC trigger analysis[20]. In ODC trigger analysis,
each fault is assigned to an activator category. For example, faults
that go into the Test Sequencing category are such thal require
execution of a sequence of functions for the fault to surface. On the
other hand, faults that go into the Interaction category require the
execution of a sequence of functions with varying parameters [20].
ODC trigger analysis can be used to evaluate the test process by
identifying what types of faults are found on a specific test level. In
combination with the fault-slip-through, it can be used to evaluate
whalt activities in the test process are in need of improvement, and
the success of such improvements [9].

2.4 Research Questions and Hypothesis
The central question asked in this study is:

How can model-based testing be applied at the system-
level to enable early fault-detection and increased confi-
dence in the system?

12

Based on the evaluation of related work in section 2.2, and the
challenges identified, the following sub-questions will be addressed
by this study:

Q1. How can model-based testing be used to reduce the number of
faults that are left undetected until customer acceptance testing?

Q2. What are the challenges of applying model-based testing at the
system-level?

The introduction of automated system tests with a high level of
interaction coverage should decrease the number of faults that are
left undetected until customer acceptance testing. This expectation
constitutes the hypothesis for this study:

H1. Applying model-based testing on the system level will decrease
the fault-slip-through from system testing to customer accep-
tance testing.

3. Methods

The study was conducted using the action research method [21].
This was motivated by the practice oriented nature of the study,
and the author’s involvement in both practice and research. Action
research is cyclic. Each cycle typically includes planning, acting,
observing, and reflecting.[21]

The studied development project used a development process
based upon the DSDM framework (The DSDM framework is fur-
ther discussed in DSDM, Business Focused Development [22]).
The length of each time-box was approximately four weeks. The
customer conducted an acceptance test on each system release.

The study covers two releases of the messaging gateway. Figure
1 shows the timeline of the study. Due to confidentiality reasons, we
cannot state the actual release names. We denote these releases as
Release X and Release X+1, respectively. The second release of the
E-mail gateway subsystem was developed during two shorter time-
boxes, with an interim release, which we call Release X+0.5. No
acceptance test was conducted on the interim release. We present
the results for this release separately.

Acceptance
1 Test
Release X

EMGW Release X
IMGW Release X
Acceptance

Test
Release X+1

EMGW Release X+0.5 | EMGW Release X+1

IMGW Release X+1

Figure 1. Study timeline

3.1 Research cycles

Each action-research cycle corresponded to a time-box in the E-
mail gateway project. The following actions were conducted during
each of the three time-boxes:

Planning A set of functional requirements to add to the system
model was selected. The selection was based on the given priority
of requirements for the current time-box. In addition the develop-
ers were asked to prioritize the modeling of the requirements. The
latter was done to allow for early testing of features that the de-
velopers delivered for system testing (the features due for system
testing in the time-box were not all delivered at the same time).

Acting The selected functionality was modeled. A set of abstrac-
tions was applied in the process of modeling the system. The ab-
stractions selected were based upon the project’s test strategy (what
aspects to test on the system level) and trade-offs including diffi-
culty of modeling and ease of validation of the model.

As soon as features were released by the developers for system
testing, the model was used for test generation and execution.
Detected anomalies were reported in the projects issue tracking
system. After analyzing an anomaly, a fault was typically found
to be present in either the model or in the system, As faulls were
corrected, the tests were re-executed.

Observing After completion of the time-box, the results of the
testing were observed and analyzed.

Reflecting The developers and test manager were involved in
reflecting on the results of the model-based testing and suggesting
improvements for the next time-box.

3.2 Site of study

The site of study was Erlang Training and Consulting (ETC).
Part of ETC’s core business is to develop distributed fault toler-
ant systems utilizing the Erlang/OTP platform, most of which are
network-intensive. Erlang/OTP includes the general purpose pro-
gramming language Erlang, which has built-in support for concur-
rency, fault-tolerance, and a set of libraries for application develop-
ment [17].

3.2.1 Experience of model-based testing

Prior to this study, model-based testing was used by some develop-
ers for testing on the unit level. The tool used was QuickCheck (see
section 2.1.7). The majority of the developers of ETC had under-
gone training in use of the tool.

3.3 Researcher’s role

The author’s role in this study, except from data collection and
analysis, was to introduce model-based testing as a technique for
system testing in the project. The author also constructed the model
of the system, and executed the tests generated from the model.
The risk of bias inherent due to the author's involvement and
interventions is acknowledged.

3.4 Data collection and analysis

This section presents the applied data collection and analysis pro-
cedures. Both quantitative and qualitative data was collected in this
study. Found faults were analyzed and the fault-slip-through to ac-
ceptance testing measured. The impact of the model-based testing
was verified through qualitative interviews with the test manager
and developers. In addition, the experiences of system-level mod-
eling, test execution were logged,

3.4.1 Fault Analysis

Faults found during system testing and acceptance testing were
measured at the end of each time-box for each of the two sub-
systems. Data on found faults was collected from the organization
issue tracking system. Both the internal organization and the cus-
tomer reports detected anomalies into this system. The reports in-
clude the details of the anomaly, the reporter and the date of the
report. This data was sufficient for the FST measurement. Each
anomaly report was analyzed according to the following criteria;

1. The anomaly has been confirmed to have been caused by a fault
in one of the two subsystems

2. The fault related to a functional aspect of the system

Note that (1) also implies that faults in a shared companent of the
two subsystems were filtered out. Reports that fulfilled these two
criteria were used as input for the fault-slip-through measurement
(see section 3.4.2) and classified through ODC fault analysis (see
section 3.4.3).

13

The detected faults for the E-mail gateway system were further
analyzed according to whether they were found due to execution
of a manually crafted test case, or a (est case generated from the
model. This distinction was useful to evaluate the model-based test-
ing at the end of each time-box. For example, what faults did the
manually crafted test-cases detect, that the ones generated from the
model did not? The evaluation was used as input to the improve-
ment of the model for the next time-box.

In case of duplicate anomaly reports for a fault in the system,
both reports were used to classify the fault, but only one fault was
counted. No faults had an anomaly report from both a manually
crafted and a generated test case.

3.4.2 Fault-slip-through

The fault-slip-through to system testing and acceptance testing
was measured at the end of each time-box, for each of the two
subsystems. The Phase Input Quality for the two test levels was
then derived from the fault-slip-through data.

Definition of test levels The FST measurement requires a def-
inition of what defects should be found on which test level (see
section 2.3.1). This definition was created by means of open-ended
interviews with the test manager, and four developers. In the inter-
view, the subject was first asked to identify the test levels of the test
process. For each identified test level, the subject was then asked
to describe the type of defects that should be found on that level.
Al the end of the interview, the subject was presented ten anomaly
reports, selected from the issue tracking system. The anomaly re-
ports were randomly selected from both development projects, with
the constraint that they were all reported during the last two time-
boxes, and that the reported anomaly had been found to be caused
by a fault in the system. For each report, the subject was asked to
classify on which test level the fault should have been found. This
second step was performed to validate the answers in the interview,

Defined test strategy We formalized the test strategy based on
analysis of the interview results. The test strategy defined the fol-
lowing test levels: unit testing, integration testing, external integra-
tion lesting, system testing and acceptance testing. The definition
of the test strategy was verified with the interview subjects.

3.4.3 ODC trigger analysis

Faults were classified using ODC trigger anal ysis. For about 80%
of the reported anomalies, the information present in the anomal y
report was sufficient for classification. In the rest of the case, the
involved project members were consulted. As recommended by
Damm et al [9], we iteratively developed the classification scheme
during fault analysis. The scheme used is shown in table 1.

Category ‘ Description

Coverage Execution of a single function

Sequencing Execution of a sequence of functions

Interaction Execution of a sequence of functions and
multiple parameters interacting with each
other

Variation As Interaction, but including invalid param-

eters (negative testing)
Recovering from faults and fail-over scenar-
ios

Fault tolerance

Concurrency Faults that only occur due to concurrent in-
teraction with the system
Configuration | Faults related to specific configurations
Table 1. ODC Trigger Classification Scheme

The E-mail gateway and IM-gateway requires the client to con-
nect and login before any other function can be used. Faults that
were triggered by the execution of a single function, after connec-
tion and login, were therefore classified to the Coverage category.
An exception was made for faults where the parameters Lo the login
function affected whether the fault was triggered or not.

3.4.4 Qualitative interviews

We conducted qualitative interviews with the test manager and
four developers. The purpose of the interviews was to explore
the perceived impact of the model-based system testing. The test
manager was involved in the testing of both subsystems, while two
of the developers worked primarily on the IM gateway and two on
the E-mail gateway.

Time and location The subjects were planned to be interviewed
at two instances. Once after the end of the second research cycle,
with the intent to get detailed in-process feedback on the improve-
ment initiative. In addition, once before the acceptance test of the
last studied system release (Release X+1). Due to time constraints,
we conducted only the first set of interviews. The interviews were
conducted at the research site.

Interview outline The interviews were conducted using the inter-
view guide approach and had two parts. In the first part, the subjects
were asked about their confidence in the testing of the respective
subsystem and their confidence that the acceptance test exit crite-
ria would be fulfilled without extending the acceptance test phase
due to detected faults. Second, they were asked to elaborate on the
factors involved in their level of confidence. In the second part, the
subjects were directly asked about their perceived impact of the
model-based system testing.

3.4.5 Observations

Observations of team and customer meetings, and e-mail corre-
spondence between the customer and the developing organization
provided additional data on the confidence in the system and feed-
back on the improvement initiative.

To assist in the data collection, a field log was used to record
observations. The field log was also used to document experiences
on the system modeling, test execution, and reporting of the test
results.

3.5 Model-based testing tool

The tool used in this study was Quviq QuickCheck (see section
2.1.7). QuickCheck uses Erlang as a specification language. This
means that there was in-house competence in the specification
language used to model the system under test. Also, the tool had
been used and proven at the site of study (see section 3.2). It was
not within the scope of this study to compare different tools for
model-based testing, Therefore, the selection of a tool that has seen
successful use in the development environment allowed the study
to stay within its focus area.

3.6 Verification

The concurrent triangulation strategy[23] was used to verify the
findings of the study. The fault-slip-through measurements were
compared to the impact of the model-based testing, as perceived by
the interview subjects.

4. System under study

The E-mail gateway (EMGW) provides e-mail clients a uniform in-
terface (o message store servers that use a variety of access proto-
cols. Supported servers include those that use the Post Office Proto-
col version 3 (POP3), the Internet Message Access Protocol version

14

4revl (IMAP4rev1) and the Mobile Services Protocol (MSP), The
client access a message store, through the gateway, using a subset
of the IMAP4rev] protocol. The gateway also supports the IMAP
IDLE extension. The extension enables the client to be notified as
messages arrive to a mailbox, without having to poll the server.

The Instant Messaging Gateway (IMGW) uses the Wireless
Village Client-Server protocol to provide mobile clients access to
multiple instant messaging protocols.

Both of these subsystems were developed using the Erlang/OTP
platform. They share large parts of the architecture, and a set of core
components, originally developed for the IMGW. Most of the im-
plementation was conducted in Erlang, while some parts were done
in C. All development was conducted in a GNU Linux/OpenSuse
environment. The project team consisted of 9 persons on full time.
Some of the developers worked solely on one of the subsystem,
while some were involved in both systems.

4.1 The IMAP4 protocol

The IMAP4revl is specified by a Request For Comments (RFC)
and is ratified as an internet standard by the Internet Engineering
Task Force (IETF) [24]. The 108 page long specification defines a
set of commands that the client can send to the server, how each
command is to be interpreted by the server and the responses that
may be returned. The IMAP4rev1 protocol builds on the Multipur-
pose Internet Mail Extensions (MIME), defined by a range of RFCs
[25] which specifies the format of e-mails.

An important part of the protocol is that the connection can be
in different states (see figure 2).

?

Non
Authenticated

Authenlicated

.

Figure 2. IMAP connection states

Only a subset of the commands are valid in each state. The con-
nection starts in the Non Authenticated State. A successful login
command results in a transition to the Authenticated state. The
client can now select a mailbox to work with. In this state, com-
mands that affect the messages in the mailbox can be executed. In
addition, the client can issue an idle command, causing a transition
to the Idle state, in which the client is notified about changes to
the mailbox. The connection can be terminated from any state, ei-
ther by the client sending a logout command, or by the connection
being closed (due to a client or server error),

Although only a subset of the IMAP4 protocol is implemented
by the EMGW, there is still a wide range of variations that the sys-
tem must be able to handle. The subset of the protocol that the sys-
termn must handle is defined by the internal ETC system requirement
specification document. This document and the relevant RFFCs were
the main sources of information when developing the model of the
system.

4.2 The Wireless Village protocol

The Wireless Village Client-Server protocol is part of a set of
specifications for mobile instant messaging. The protocol uses the
HTTPL.1 protocol as a bearer and operates over TCP/IP. The Ex-
tensible Markup Language (XML) is used to exchange data be-
tween the client and server. [26] The core of the protocol is speci-
fied by a set of five documents, in total 220 pages, not including the
HTTPI1.1 and XML specifications.

5. Modeling and Testing Challenges

We constructed a QuickCheck Abstract State Machine (ASM)
model of the EMGW system, which was subsequently used to gen-
erate and execute test cases. This section gives examples of how
the system was modeled, and describes encountered challenges in
the modeling and test execution.

5.1 QuickCheck Abstract State Machines

A QuickCheck ASM is specified by a state, a callback module and a
set of command generators which are used by the callback module,
The ASM is normally used in a QuickCheck property which is
then tested. QuickCheck properties are further discussed in Testing
Telecoms Software with Quviq QuickCheck [16].

A generated test case is a list of symbolic commands, on the
form:

{set,{var,1},{call,Module ,Function, Arguments}}

each of which represents the execution of an external Sunction.
ASM external functions allow the modeling of non-determinism in
the system environment, sce Sequential Abstract-State Machines
Capture Sequential Algorithms [27] for more information on this
topic. During test case generation, QuickCheck represents the re-
sults of a symbolic command by a symbolic variable ({var 1} in
the example above), that can be used as part of subsequent com-
mands. During test case execution the symbolic variables are re-
placed by the actual value provided by the environment.

QuickCheck implements a subset of the ASM execution theory
(described by Gurevich [28]). A limitation is that there is no built
in support for separating parts of the model. That is, separating
different concerns of the system, in order to avoid a monolithic
model that is difficult to validate and maintain. At the same time,
it is relatively easy for the modeler to create nested state machines,
as the model is specified using a general purpose programming
language. This is a technique that was used extensively for the
EMGW model.

5.2 The EMGW state

Only a subset of the IMAP commands are valid in each protocol
state. The state of each client connection must be modeled to be
able to constrain the test case generation to mostly positive test
cases. In addition, the state of each mailbox must be modeled, to be
able to generate valid commands that affect the messages.,

The EMGW state was modeled by an Erlang record:

-record(state, {clients=[], accounts}.

where clients is a list of client connections, and accounts a list
of e-mail accounts. The following Erlang record models each client
connection:

-record(client, {connection, user_id, imap_state,
selected=undefined, idle=false}).

connection is a reference to the client connection in the adaptor
component, user_id an abstraction of the login credentials, that is
also used to identify the account. imap_state is the current state
of the IMAP connection, selected is the name of the selected

15

mailbox and idle specifies whether the connection is in the idle
state.

5.3 Adaptor

One of the first tasks was to develop the adapror (see section 2.1 4).
The adaptor is an abstract concept. In practice, the adaptor may
be split into multiple components. For the EMGW, we used two
adaptor components:

* Adaptor for the IMAP protocol

e Adaptor for sending e-mail messages to an account, to be able
to test the message related IMAP commands.

We recognized that the IMAP protocol abstractions would have
to change as additional system features were incrementally added
to the model. With the design principle “encapsulate what varies”,
the IMAP protocol adaptor was constructed in two parts:

¢ An IMAP client that enables communication with the EMGW
using a functional Erlang interface. The client formats the
IMAP commands and parses the server response into an Er-
lang term representation.

* Aninterface to the aforementioned client that maps from and to
the abstraction of the model

In this way, changes to the model abstractions led to isolated
changes in the second part of the adaptor. Also, the IMAP client
was not specific to the model abstractions, and could later be re-
used by the project team for system load testing.

5.4 Generating IMAP commands

IMAP commands were generated in the form of calls to the adaptor.
As a running example, this and the following section will use the
IMAP select command.

select_cmd(Client, State) ->
{call, imap_adaptor, select,
[Client#client.connection,
mailbox_name(Client,State)]}.

Here, a select command is generated, given a client and the
current state. A random mailbox name is generated by the
mailbox_name generator, which is specified as follows:

mailbox_name(Client, State) ->
?LET (Mailbox,
oneof (account (Client#client .user_id, State))
#account.mailboxes),
Mailbox#mailbox.name) .

The clients account is looked up from the state, and a random
mailbox is picked, whose name is returned by the generator,

5.5 ASM callback functions

A QuickCheck ASM callback module specifies a precondition,
next_state and postcondition function. The callback func-
tions for the select command were specified as follows.

The precondition determines whether to include a symbolic
command in a test case, given the current state,

precondition(State, {call, _, select, [CPid,_1}) ->
min_state(client(CPid,State), ?AUTH)

Here, min_state ensures that the client is at least in the
Authenticated state for the command to be included in the test
sequence.

The next_state function updates the state, given the executed
command, its result, and the state the command was executed in.

next_state(State, _Result,
{call, _, select,
[CPid, MailboxName]}) ->
Client = client(CPid, State),
update(Client#client{imap_state=7SELECTED,
selected=MailboxName},
State);

The next_state function specifies that the client connection tran-
sitions to the Selected state, and the selected mailbox name is
updated when the select command is executed.

The postcondition evaluates the result of a command, given
the state the command was executed in. A test case is assigned a
failed verdict if a postcondition fails.

postcondition(State , {call, _, select,
[cPid,_]}, Result) ->
is_status(Result, ?70K_RESP);

Here, is_status checks that the server responds to the select
command with the OK response.

5.6 Challenges and lessons learned

This section presents a set of encountered challenges and recom-
mendations for system-level modeling and test execution.

Develop the model iteratively Iteratively developing the model is
seen as crucial, There is a high investment in creating the model.
Using it from early development is seen to give higher returns as the
partial model can be used to rest the system in early development.
Early modeling also allowed the modeler to gradually build up the
high level of domain knowledge required. In addition, we found
that the modeling practice contributed to the understanding of the
system requirements, as validation of the model and the analysis of
detected faults led to the discovery of unspecified behavior.

Finding abstractions Finding abstractions that allow the model
to be more abstract than the system under test can be difficult.
We found that this can be remedied by using multiple layers of
abstraction, and a combination of multiple model types. We used
a Backus-Naur form (BNF) grammar to generate a parser for the
IMAP protocol, which was used in the IMAP client part of the
adaptor. The parser threw an exception for any malformed system
output. In practice this means that part of the verification was
performed by the adaptor, but allowed for a simpler ASM model.

Test techniques are complementary Manually crafted test cases
can test samples of complex behavior, without having to create a
complete model of the behavior, We found that the techniques of
model-based testing and manually crafling test cases are comple-
mentary. For example, the system fail-over scenarios, that make
sure that service is maintained in the event of a failure were seen
as overly complex to model and were instead tested using a set
of hand-crafted test cases. A useful technique, that can be applied
when a system feature is overly complex to model completely, is to
only model the feature partially, and limit the command generators
to test cases that the model is valid under.

Put effort into the adaptor Developing an adaptor for a system-
level model requires considerable effort. On unit and component
level, the interface under ftest is typically less complex. Testing
the IMAP protocol required the development of an IMAP client,
and applying of multiple layers of abstractions. The total effort
involved in developing the adaptor exceeded 40 working hours. On
the other hand, we found that a well designed adaptor can simplify
the modeling, as described above. Parts of a layered adaptor can
also potentially be re-used in other parts of the project.

16

Model validation by testing The complexity of a system-level
model means that the modeling has to start as soon as the require-
ments for the current time-box have been established. On the other
hand, the validation of the model, aside from code review and sam-
pling, cannot start until the system is ready for system testing. We
experienced that validation of the model had to continue throughout
the full system-lest phase. We also found that faults in the system
sometimes not only hid other faults in the system, but also faults in
the model. As faults in the system were repaired, the next test runs
often found faults in the model that were previously undetected.
We recommend that a project uses short time-boxes, with small in-
crements in both the implementation and model. This allows for
shorter feedback-cycles which eases the model validation.

Reliance on external components System level tests rely on a
large number of external components, many of which cannot be be
replaced by a dummy (stubbed). For the EMGW system, the test
environment included a POP3 and IMAP server which was used
through the gateway. During system testing, we found two faults in
this server that hindered further testing, and could not be worked
around. Tracking down the problem and patching the server took
two working days. There is a high risk of failures in external com-
ponents as the model generated test-cases tests intricate scenarios.
We recommend that the suppliers of external components are care-
fully selected, and that good contacts are maintained with the sup-
pliers, in case of failures.

Execution of partial tests When a failure in the system is de-
tected by the model-based testing, testing cannot be continued since
the same failure is likely to occur again. It should be possible to
continue testing, in the presence of minor faults in the system.
QuickCheck does not provide any support for constraining test case
generation or disable parts of the model, in order to allow for this.
Instead we had to perform temporary changes to the model. In
the absence of tool support, we recommend that such changes are
tracked. We used a commenting convention to mark temporarily
changed model parts.

6. Results
6.1 Detected faults

The following sections presents the faults found in the studied re-
leases. We present faults detected during system testing and accep-
tance testing of two releases of the messaging gateway, Release X
and Release X+1. We also present the faults detected in the interim
release, Release X+0.5 that only included changes in the E-mail
gateway.

6.1.1 Release X

Table 2 and 3 shows the fault-slip-through to system testing and
acceptance testing for the two subsystems.

Found/Belonging System Test ~ Acceptance test
Unit Test 10 1
Integration Test 1) 0
External Integration Test 0 (0) 0
System Test 9 (6) 3
Acceptance Test 0 2
Total found/test level 11(7) 6

Table 2. FST Release X — Email Gateway

As can be seen in table 2, 11 faults were found in the E-mail
gateway during system testing. The numbers in parenthesis show

how many of the faults were detected by the model-based tests.
7 of the 11 faults were detected by the model-based tests. Of the
4 faults found with the hand-crafted test cases, 3 could have been
found with the model-based tests (but were found by a hand-crafted
test case before that), one had a trigger classified to the category
Fault tolerance. 6 faults were found during acceptance testing. Of
the 6 faults found during acceptance testing, only two should have
been found on that test level.

Found/Belonging System Test Acceptance test
Unit Test 6 4
Integration Test 0 0
External Integration Test 0 0
System Test 8 10
Acceptance Test 0 4
Total found/test level 14 18

Table 3. FST Release X — IM Gateway

Although more faults were found in the IM Gateway during
system testing (see table 3), significantly more faulis were also
found during acceptance testing. Compared to the E-mail gateway,
a larger percentage of the faults should have been detected already
during unit testing.

m Coverage

B Sequence

O Inleraction

O Varialion

Test level

B Fault tolerance

Concurrecy

m Configuration

Faults found

Figure 3. EMGW Release X, ODC trigger distribution by test
level

ODC Trigger Analysis Figure 3 shows the ODC trigger distri-
bution for the faults found during system and acceptance testing
of Release X of the E-mail gateway. The bar labeled ST-M shows
the distribution of the faults found by the model-based tests, while
the bar labeled ST shows the distribution of the faults found by the
manually-crafted tests. AT shows the distribution of the faults that
slipped through to acceptance testing. A majority of the system test
triggers are in the sequence category.

As can be seen in figure 4, a large proportion of the IM Gateway
fault triggers are in the interaction category, for both test levels. The
number of faults with a sequence trigger are about the same as for
the E-mail gateway. It is also notable that four of the faults found
during acceptance testing have triggers in the coverage category, as
each of these faults could have been found earlier by a test case
invoking only a single function (with a specific set of parameters).

6.1.2 Release X+0.5

The E-mail gateway had an interim delivery halfway to release
X+1. No acceptance testing was conducted on this delivery. Table

17

B Coverage

3 Sequence
5 O Interaction
>
5]
- O Variation
e
fia

| Faull lolerance

Concurrecy

@ Configuration

Faults found

Figure 4. IMGW Release X, ODC trigger distribution by test level

4 shows the number of faults found during system testing. The
numbers in parenthesis show how many of the faults were detected
by the model-based tests. In total, 17 faults were found, of which
11 were found with the model-based tests. The 6 faults found with
the hand-crafted test cases and not by the model-based tests were
further analyzed, with the following findings:

e Four of the faults related to the server sending the wrong error
code in response to an invalid request. Although the error con-
ditions were part of the system model, the specific error code
for invalid requests were not. They were subsequently added to
the model.

e Two of the faults were classified to the trigger category Fault
Tolerance. Such faults were not to be found with the model-
based tests, according to the test strategy.

Found/Belonging System Test
Unit Test 4 (4)
Integration Test 0 O
External Integration Test 0 (0)
System Test 13 (1)
Acceptance Test 0 O
Total found/test level 17(11)

Table 4. FST Release X+0.5 — E-mail Gateway

6.1.3 Release X+1
Table 5 and 6 shows the fault-slip-through for the two subsystems.

Found/Belonging System Test Acceptance test
Unit Test 24(21) 3
Integration Test 1 (1 0
External Integration Test 0 (0 0
System Test 39(26) 4
Acceptance Test 0 (0) 10
Total found/test level 64 (48) 17

Table 5. FST Release X+1 — E-mail Gateway

As can be seen in table 5, 64 faults were detected during system
testing of the E-mail Gateway. 48 of these faults were detected by

the model-based testing. The table indicates that 16 of the faults
were found by manually crafted test cases. In fact, 9 of these
faults were found while manually analysing the system input and
output traces, resulting from the model-based tests. It is notable
that 24 of the faults should have been detected already during unit
testing. Analysis of the anomaly reports show that most of these
are related to parsing of e-mail messages. 17 faults were found
during acceptance testing of this release. Of these 7 should have
been found earlier.

Only 14 faults were detected in the IM Gateway during system
testing (see table 6). The same number of faults were detected
during acceptance testing. A majority of the faults should have been
found earlier.

Found/Belonging System Test Acceptance test
Unit Test 1 4
Integration Test 1 0
External Integration Test 0 1
System Test 12 [
Acceptance Test 0 2
Total found/test level 14 14

Table 6. FST Release X+1 — IM Gateway

ODC Trigger Analysis Figure 5 shows the ODC trigger distribu-
tion for the faults found during system and acceptance testing of
Release X 11 of the E-mail gateway. Most of the triggers are in Ui
sequence category, but a significant number of the faults found by
the model-based testing arc in the coverage category. Most of the
faults with a coverage trigger are those that slipped through from
unit testing, and are related to parsing. The model-based tests de-
tected six faults with interaction triggers.

m Coverage
Sequence
4
= O Inleraction
3
2
e O Varialion
&

W Fault tolerance

Concurrency

m Configuration

0 10 20 30 40 50 60
Faults found

Figure 5. EMGW Release X+1, ODC wrigger distribution by test
level

Figure 6 shows the ODC trigger distribution for the IM gateway.
The trigger distribution is similar to that of Release X of the subsys-
tem. Again, a large proportion of the triggers are in the interaction
category.

6.1.4 Summary - Phase Input Quality

By calculating the Phase Input Quality (PIQ) from the FST mea-
surements (as described in section 2.3.1), we can compare the fault-
slip-through data of the two subsystems. As relatively few faults
were detected for some test levels, the statistical power of the PIQ

18

W Coverage
ST
'| = Sequence
O Interaction

0 Varialion

Test level

B Fault lolerance

AT Concurrency

| @ Configuralion

.

0 2 4 6 8 10 12 14 16
Fauits found

Figure 6. IMGW Release X+1, ODC trigger distribution by test
level

is low. The comparisons should therefore only be reviewed in con-
text of the absolute number of faults.

As can be seen in table 6.1.4, the E-mail gateway system test
PIQ was 18% for Release X, the first studied release, and increased
for subsequent releases. For the IM gateway the system test PIQ has
instead decreased from 79% to 14%, although this latter value has
a very low statistical power due to the few number of faults found
during system testing. Although 17 faults were found during the
acceptance testing of release X+1 of the E-inail galeway, 4 majority
of these faults were not slip-throughs. This gives a acceptance test
PIQ of 41%. This can be compared to the IM gateway, were a
majority of the faults (86%) found during acceptance testing should
have been found earlier.

Release/FST X X+0.5 X+1
EMGW FSTto ST 18% 24% 39 %
EMGW FST to AT 67% - 41%
IMGW FSTto ST 43% - 14%
IMGW FSTto AT 78% - 86%

Table 7. PIQ - Comparison between releases of subsystems

6.2 Perceived impact and feedback

This section summarizes the results of the first set of interviews,
conducted at the end of the second research cycle.

IM gateway The three subjects involved in the development and
testing of the IM gateway generally expressed a low confidence
in release X of this subsystem. The fact that system testing was
not completely finished as the acceptance testing started was stated
as a factor in this low confidence level. Two subjects also stated
that they perceived the system testing as not sufficiently covering
all feature interaction points, with the risk that new features might
cause yet undetected side effects in other parts of the system.

E-mail gateway The three subjects involved in development and
testing of the E-mail gateway expressed a high level of confidence
inrelease X and release X+0.5 of this subsystem. All of the subjects
stated that improved testing on all levels contributed to this level of
confidence. The three subjects (who had also experience with the
development and testing of the IM gateway) pointed out improved
unit testing and the model-based system testing as contributing
activities. One of the subjects thought that the results of the model-
based testing was clear to internal organization. The two other

subjects thought that only the capability of detecting defects was
clear, but that visibility in terms of executed tests and system
coverage needed improvement. All three subjects stated that they
perceived the results as unclear to the external organization.

7. Discussion

A high number of faults were found in both subsystems during the
acceptance test of release X. Over half of these defects should have
been found during system testing. We can thus not measure any
significant difference in fault-slip-through between the two subsys-
tems for this release. A high number of faults were detected by the
model-based tests during system testing of Release X+0.5 and Re-
lease X+1. Of the faults detected in the E-mail gateway during the
acceptance testing of release X+1, most could not have been de-
tected on previous test levels. There is a significant difference com-
pared to the IM gateway, where most of the faults detected during
acceptance testing should have been found earlier. The finding that
our improvement initiative did not see effect until Release X+1 is in
line with prior studies that suggest that successful implementation
of improvements requires multiple iterations [29].

7.1 Complexity of protocol

The difference in complexity of the two subsystems external proto-
cols are likely to have influenced the ODC trigger analysis results.
In release X, the number of detected faults with a interaction trigger
were significantly higher for the IM gateway, while few faults with
the interaction trigger have been found in the E-mail gateway over-
all. The IM Gateway uses the Wireless village protocol (see section
4.2), which we perceive as being more complex than the IMAP pro-
tocol (see section 4.1), in terms of the number of interacting request
and response parameters.

7.2 Stability of IM gateway

Significantly less faults have been found during the system test
of the IM gateway in release X+1. Differences in the types of
features added to the two subsystems is likely to have influenced
these figures. Multiple new components were developed for the E-
mail gateway for this release. The new IM gateway features on the
other hand, were mostly implemented by the extension of existing
components that have been thoroughly tested in previous releases.
Notwithstanding the higher stability of the IM gateway, more faults
in this subsystem slipped through to acceptance testing, compared
to the E-mail gateway.

7.3 Fault-slip-through to system testing

We can see that the fault-slip-thorough to system testing was signif-
icantly lower in the E-mail gateway, compared to the IM-gateway,
in release X. We attribute this to improvements in unit testing, at-
tributed to another improvement initiative (see section 7.4, Internal
validity). In subsequent releases of the E-mail gateway, more faults
have slipped through to system testing. One plausible reason for
this is that as the system testing improves, the developers perform
less unit testing. This has been indicated by two of the developers,
who during development of release X+1 stated that they would like
to start system testing early, due to the model-based tests’ potential
of finding defects.

7.4 Validity Threats

When conducting an empirical study in industry, the subject cannot
be controlied as in a laboratory research experiment. The following
validity threats may therefore be of concern in this study.

Internal validity A possible threat to the internal validity of this
study is another process improvement initiative that was executed at

19

the research site during the duration of this study. The objective of
the other initiative is to increase the quality of the releases delivered
to the customer. It might therefore be of concern as to whether
any observed changes in fault-slip-through can be attributed to
this model-based testing initiative. This threat is mitigated by two
facts. First, this other initiative is project wide (it affects both
subsystems), secondly the fact that the model-based test cases have
found a majority of the faults in the E-mail gateway.

Another validity threat is whether other factors than the model-
based testing have had an impact on an eventual reduction of fault-
slip-through to acceptance testing. The interviews conducted with
the test manager and developers increase the validity, as they show
that the internal organization is in agreement about the impact of
the model-based testing.

External validity In this study, the results are overall not fully
generalizable since they are dependent on the studied project using
certain processes and tools. Nevertheless, the results should be
generalizable within similar contexts.

A threat to the generalizability of the results of this study is
the fact that the tested system is developed in Erlang, which is
also the specification language used with the model-based testing
tool. Concerns that the results are not generalizable to projects
where the implementation and specification languages differ may
therefore be raised. However, the interfaces of the system, that the
system tests interacted with, are internet standard protocols, layered
over TCP/IP. While Erlang mechanisms were taken advantage of to
issue test specific commands (for example to restart components to
ensure a consistent state at the start of each test case), the effort
to implement these test specific interfaces in another environment
is seen as negligible, compared to the total effort required for the
model-based testing.

8. Conclusions and future work

This study set out to contribute to the understanding of system-
level model-based testing as a test technique for early fault detec-
tion. Our experiences of modeling and test execution are generally
in line with those reported by prior studies. We contribute further to
the understanding of system-level model-based testing by present-
ing a set of challenges and recommendations specific to this test
level.

A substantial initial investment is required to integrate the
model-based testing into the test process. As the management and
customers are highly dependent on measurable results and progress
reports from system testing, introducing model-based tests on this
level requires considerable planning and effort.

The test results for the two subsystems shows that, for the sub-
system tested with the model-based tests, significantly less faults
slipped through from system testing to customer acceptance testing.
This supports our hypothesis H1, that model-based testing would
decrease our fault-slip-through from system testing to customer ac-
ceptance testing.

During the study, we observed that the customers’ confidence in
the system is dependent on the availability of test reports. The cus-
tomer (external organization) requires these reports to see that the
system has been sufficiently tested. As identified by prior studies,
it is also important to make the results of the model-based testing
visible within the internal organization, to get commitment to the
technique. We identify the following question for further research:

e How can reports on the coverage and results of model-based
tests be presented to the internal and external organizations?

Acknowledgments

Part of this work has been carried out during my time at the IT
University of Goleborg. The work has been sponsored by Erlang
Training and Consulting Ltd and Quviq AB. I would like to thank
my supervisor Thomas Arts for his help and support during the
project.

References

[1] Barry Boehm and Victor R. Basili. Software defect reduction top 10
list. Computer, 34(1):135-147, January 2001,

[2] Barry Boehm. Some future trends and implications for systems and
software engineering processes. Systems Engineering, 9(1):1-19,
2006.

[3] Mark Blackburn, Robert Busser, and Aaron Nauman. Why model-
based test automation is different and what you should know to get
started. In International Conference on Practical Software Quality.
Software Productivity Consortium, NFP, 2004.

Mark Utting and Bruno Legeard. Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2006.

Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann.
Generating test data from state-based specifications. The Journal of
Software Testing, Verification and Reliability, 13(1):25-53, March
1997.

Antonia Bertolino. Software testing research: Achievements,
challenges, dreams. In FOSE '07: 2007 Future of Software
Engineering, pages 85-103, Washington, DC, USA, 2007. IEEE
Computer Society.

[4

[

—

[5

[6

=

[7

—

Adrian M. Colyer. From research to reward: Challenges in technology
transfer. In ICSE '00: Proceedings of the 22nd international
conference on Software engineering, pages 569-576, New York,
NY, USA, 2000. ACM.

Mahmood Niazi, David Wilson, and Didar Zowghi. A maturity
model for the implementation of software process improvement: an
empirical study. Journal of Systems and Software, 74(2):155-172,
2005.

Lars-Ola Damm. Early and Cost-Effective Software Fault Detection
- Measurement and Implementation in an Industrial Setting. PhD
thesis, Blekinge Institute of Technology, Department of Systems and
Software Engineering, 2007.

S.R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-based testing in practice. In JCSE
'99: Proceedings of the 21st international conference on Software
engineering, pages 285-294, Los Alamitos, CA, USA, 1999. IEEE
Computer Society Press.

[8

=

[

—

[10]

[11] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy
of model-based testing. Working Papers 2006. Department of
Computer Science, The University of Waikato (New Zealand), April

2006.

A. Pretschner, W. Prenninger, S. Wagner, C. Kiihnel, M. Baumgartner,
B. Sostawa, R. Zolch, and T. Stauner. One evaluation of model-based
testing and its automation. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering, pages 392-401,
New York, NY, USA, 2005. ACM.

[12]

20

[13] Wolfgang Prenninger and Alexander Pretschner. Abstractions for
model-based testing, In Electronic Notes in Theoretical Computer
Science. Proceedings of the International Workshop on Test and
Analysis of Component Based Systems (TACoS 2004), volume 116,
pages 59-71, Los Alamitos, CA, USA, January 2005. Elsevier
Science Publishers Ltd.

[14] Colin Campbell, Margus Veanes, Wolfgang Grieskamp, Wolfram
Schulte, Nikolai Tillmann, and Lev Nachmanson. Model-based
testing of object-oriented reactive systems with spec explorer,
technical report MSR-TR-2005-59. Microsoft Research, May 2005.

[15] 1] Hayes. Specification directed module testing. IEEE Transactions
on Software Engineering, 12(1):124-133, 1986.

[16] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger.
Testing telecoms software with Quviq QuickCheck. In ERLANG
'06: Proceedings of the 2006 ACM SIGPLAN workshop on Erlang,
pages 2-10, New York, NY, USA, 2006, ACM.

[17] Joe Armstrong. Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf, July 2007.

[18] Tan Craggs, Manolis Sardis, and Thierry Heuillard. Agedis case
studies: Model-based testing in industry. In st European Conference
on Model Driven Software Engineering. AGEDIS, December 2003.

[19] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund,
Sarfraz Khurshid, Mike Lowry, Corina Pasareanu, Grigore Rosu,
Koushik Sen, Willem Visser, and Rich Washington. Combining
test case generation and runtime verification. Theoretical Computer
Science, 336(2-3):209-234, 2005.

[20] Ram Chillarege and Kathryn A. Bassin. Software (riggers as a
function of time - odc on field faults. DCCA-5: Fifth IFIP Working
Conference on Dependable Computing for Critical Applications,
September 1995.

[21] Wesley Vernon. An introductory guide to putting action research into
practice. PodiatryNow, February 2007.

[22] Jeniffer Stapleton. DSDM, Business Focused Development, Second
Edition. Pearson Education, 2003.

[23] John W. Creswell. Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. Sage Publications Inc., 2003.

[24] Network Working Group. Request for comments 3501 - internet
message access protocol - version 4revl. The Internet Engineering
Task Force, http://www.ietf.org/rfc/rfc3501.txt, March 2003.

Network Working Group. Request for comments 2045 - mul-
tipurpose internet mail extensions (mime) part one: Format of
intemmet message bodies. The Internet Engineering Task Force,
http://www.ietf.org/rfc/rfc2045.ixt, November 1996.

[25]

[26

=

Wireless Village. Wv client-server protocol v1.1. Open Mobile
Alliance Ltd, 2002.

Yori Gurevich. Sequential abstract-state machines capture sequential
algorithms. ACM Transactions on Computational Logic (TOCL),
1(1):77-111, 2000.

Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Specification
and validation methods, pages 9-36. Oxford University Press, Inc.,
New York, NY, USA, 1995.

[29] Anna Borjesson and Lars Mathiassen. Successful process implemen-
tation. JEEE Software, 21(4):36-44, 2004,

[27]

[28]

Erlang Testing and Tools Survey *

Tamds Nagy and Aniké Nagyné Vig

Erlang Training and Consulting Ltd, London, United Kingdom
{aniko, tamas}@erlang-consulting.com

Abstract

As the commercial usage of Erlang increases, so does the need for
mature development and testing tools. This paper aims to evaluate
the available tools with their shortcomings, strengths and commer-
cial usability compared to common practices in other languages.
To identify the needs of Erlang developers in this area we pub-
lished an online survey advertising it in various media. The results
of this survey and additional research in this field is presented.
Through the comparison of tools and the requirements of the de-
velopers the paper identifies paths for future development.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools

General Terms Verification, Management

Keywords Erlang, Test Tools, Market analysis

1. Introduction

The aim of this paper is to conduct research on the tool chains used
in Erlang software development projects.

e To identify the strengths and weaknesses of the existing prac-
tices.

To point out missing components of a healthy workflow.

The focus is on property and model based testing and test driven
development. Furthermore, it aims to create guidelines for further
development by identifying the common patterns in this area.

We published an online survey about Erlang tools. This had
been advertised on mailing lists and separate emails had been sent
out to selected Erlang oriented people. We have got ~200 responses
from developers, managers, testers and research engineers.

The research uses the results of the online survey aimed at
Erlang developers, but takes into account tools which are currently
not used by the Erlang community but have similar functionality
to existing ones. This is to provide a cross reference to common
practices in other communities.

The next section describes the research methods for collecting
information from Erlang users. In Section 3, non-Erlang testing

* Supported by EU FP7 Collaborative project ProTest, grant number
215868

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’08 September 27, 2008, Victoria, BC, Canada.

Copyright © 2008 ACM 978-1-60558-065-4/08/09. . . $5.00

21

tools are explored to provide a basis for comparison and determin-
ing the functionalities we need (gaps) from Erlang tools. Section
4 focuses on tools used by the Erlang community, using the sur-
vey’s results to identify the most widely used tools and applications
which could be used to create an integrated framework for develop-
ment. Section 5 rates the applicability of these tools in developing
commercial products.

2. Research method

We published an online survey in order to gather data about the
usage and spread of Erlang tools and applications in the commu-
nity. We advertised this via the Erlang mailing list [2], which has
around 1000 registered users, and on separate smaller Erlang re-
lated mailing lists. For example the trapexit [1] site’s mailing list,
and the ProTest project’s [3] mailing list. This survey was open for
everyone, and anonymous submission was accepted as well.

There was a separate survey, with the same questions, open to
a selected 200 people who were known to have a background in
Erlang but not necessarily in software development.

Overall, for the two surveys, 200 responses were received. The
submitters were questioned about their role within their organiza-
tion. From the answers it is clearly visible that 40-45% were de-
velopers and the remaining 55-60% almost equally proportioned
between the managers, lesters, researchers and students.

2.1 Structure of the survey

The survey contained 20 questions covering four different topics.
The questions can be found in the Appendix A. The topics covered
were:

1. The development environment of the Erlang users.

2. How widely are the currently available Erlang tools known
and used. The participants had the possibility to raise specific
problems, if any occured, which put off the adoptation of the
tools.

3. The submitters role within the organization and background in
Erlang.

4. Identify common processes which could be helped with tool
support.

3. Testing tools

There is a lot of research focused on automated testing with many
successful industrial case studies justifying these techniques having
a place in a commercial setting.

These tools cater to different purposes. Because of this, it is
difficult to show everything in one paper. The aim is to highlight
the unique features available in these tools, providing a bridge to
Erlang.

3.1 Model based testing

In brief, model based testing means that test cases are derived from
a model that describes some aspects of the system being tested.

The Microsoft Spec Explorer [Silva et al.(2008)] is a model
based testing tool developed in .NET. There are two specification
languages one can use to create the model of a system:

e Spect# - which is an extended version of C# with a possibility to
specify pre- and postconditions

e AsmL [Bamnett et al.(2003)] - which is an abstract state machine
language

One of its features is the possibility to visualise the model of
the system. Because the models of large systems tend to be very
complex, the visualisation makes it possible to merge states of the
system into hyperstates. The idea of hyperstates is merging states
together, creating a layered state space, it is possible to de-clutter
the model. This technique makes it possible to unfold only those
parts of the model that one is interested in.

The tool has a wide range of possibilities to influence the test
runs. For example with parameter selection, method restriction and
state filtering.

It can be used for offline and on-line testing. Offline means
that pregenerated tests are run to test the system. On-line or on-
the-fly testing means that the test is generated dynamically as it
is running. With online test generation the reproducibility might be
lost, but because the test generation can take into account the actual
responscs of the system, timing and performance alsv influence the
result.

The Spec Explorer has excellent features, but from a commer-
cial point of view it is not applicable because it is only available
for non-commercial purposes. There are commercially available
model- based testing tools with similar functionalities. For exam-
ple, Conformiq Qtronic [Huima(2007)] makes it possible to run of-
fline and on-the-fly tests as well.

There are tools which address model based testing through a dif-
ferent approach. They use strictly typed domain specific language
to specily the system under test. One of these tools is HOT Test
[Sinha et al.(2006)]. Using this approach, assuming that all the
domain-specific requirements are available and the model was cre-
ated, it is possible to automatically generate a test oracle. Further-
more, it is possible to extract domain specific invariants to create
additional test cases from the model.

Sinha claims in [Sinha et al.(2006)] that for database sys-
tems this technique was the most effective to capture domain-
specific requirements either explicitly stated in the documenta-
tion/specification or implicit. Implicit requirements are more con-
sidered to the writer of the specification, and as a result they are not
written down but still part of the model.

There is another group of model based testing tools, closely re-
lated to the ones using domain specific languages to specify the
model of a system. These testing tools use the UML specification
of the system as a model to test against. The difference is that the
domain specific languages are, as the name suggests, designed for a
specific problem, whereas UML is a general-purpose modeling lan-
guage. Commercially these tools have wider acceptance, because
usually there is already a UML model available to base the test-
ing on. Both Conformiq Quronic [Huima(2007)], Rhapsody Test-
Conductor and TnT [Hartmann et al.(2000)] support testing against
UML models. These tools usually provide a graphical interface al-
lowing users to create the model of the system. With complex mod-
els however these can become complicated [Sinha et al.(2006)], be-
cause of their number of states. There are limitations in graphical
systems of how many states can be handled effectively.

22

3.2 Automated unit testing

Even though unit testing is less time consuming and less complex
than system testing, automating parts of the process can help im-
prove quality.

JUnit [Riehle(2008)] and ITest together create a framework
for Java which can automatically generate test cases for unit test-
ing. There is functionality to add your own tests to the previously
automatically generated ones. In C/C++/C# NTest provides simi-
lar functionality by providing automated testing of classes. What
makes these tools highly valuable for the developer is that these
tests can be run after every change in the code without major effort.

3.3 Integrated Frameworks

There are directions in the industry/research which aim to create
a common framework that provides a well defined interface for
different kinds of model based testing tools.

One of these is the AGEDIS [Hartman et al.(2004)] framework.
The user has to specify three different things for the testing:

e the behavioral model of the system

o the test execution directives which describe the testing architec-
ture of the system under test (SUT)

e the test generation directives which describe the strategies to be
employed in testing the SUT.

Then the system provides three different API for model testing
tools to hook into the framework. Using these interfaces the test
generation and oracle checks can be specialised without the need
of changing the user input.

4. Erlang Tools

In Erlang there are many tools and applications useful during the
development and testing process. In this chapter we try to give a
short overview with an introduction to the most commonly used
tools. The usage and awareness of each tool can be seen in Figure
1.

4.1 Testing tools

Almost every developer uses some kind of test method, either with
an existing test environment or with “home grown” functions and
applications. From the ratio of the used testing tools it is clear
that there is no freely accessible, widely used, flexible and stable
tool. Most developers use proprietary tools or manually written test
functions.

The available set provides different levels and methods for test-
ing from unit testing to system testing. We will show how well are
they adapted to the general requirements to keep the testing meth-
ods easy and quick for integration into the development cycle.

41.1 EUnit

EUnit [Carlsson and Rémond(2006)] is an open source light weight
test server for Erlang. It tries to transfer the main ideas of the ex-
isting unit testing frameworks from other languages like SmallTalk
(SUnit), Java (JUnit) [Riehle(2008)] applied to Erlang. The main
goal is to provide a system where writing test cases is easy, the test
cycle is fast and the results of the tests are presented tersely.

During unit testing independent parts of the program are tested
separately. The units can be functions, modules, processes or even
applications. EUnit allows the developer not only to test functions
with assertions, but even to write test generator functions with the
support of built-in macros. Test generators provide a representation
of tests to be able to run with EUnit.

An important feature is the ability to disable the testing by
defining special macros during the compilation or by adding them
to the source file.

Wrangler
Tsung
Sinan

RefactorErl
QuickCheck
OTP Test Server
McErlang
Faxien

Eunit

EriVer

Distel

Dialzyer

CEAN

Common Test Env.

Erlang Tools

o
[N
N
3]

Used tools according to the survey

52.5 70.0

B Known tools according to the survey

Figure 1. Popularity of Erlang tools among the community(%)

4.1.2 OTP Test Server and Common Test Environment

The OTP (Open Telecom Platform) developers designed a test suite
execution environment based on Erlang to support regular auto-
mated testing. OTP Test Server [Wiger et al.(2002)] is a portable
test server for application testing. The suites can be run on local or
remote targets, the progress is logged and the result can be viewed
in HTML pages.

Common Test [Blom and Jonsson(2003)] is a framework based
on the OTP Test Server application. It is suitable for both black-
box and white-box testing. Black-box testing can be done on any
type of target system, not just ones implemented in Erlang, as
long as the testing can be executed through standard Operation
and Maintenance (O&M) interfaces. It provides code coverage
analysis by integrating the OTP Cover Tool. According to the
survey, the set up of the test environment is complex, suffers lack
of documentation and its strict regulation about name conventions
makes it hard to use and adopt.

4.2 QuickCheck

QuickCheck [Arts et al.(2006)] is a commercial tool for property
and model based testing. It tests running code against formal speci-
fication. It can be used at different levels of testing from unit testing
to system testing. The test case generation is random but control-
lable. One of the strongest points of the system is that it has a built
in automated test case simplification, called shrinking, to support
and facilitate the error.

The system is really efficient for testing and finding problems
in complex systems at an early stage of development, especially
for testing code against formal specifications. A model can be built
according to the specification, and the system can be tested against
separate aspects of the built model.

The users would like to have supervision with statistics on what
has actually been tested. A dashboard reporting code coverage and
executed test cases would rate it user friendly. Another aspect of

QuickCheck is that it has a steep learning curve, even for an Erlang
developer.

4.3 Tools for supporting the development cycle

In this chapter we collected projects with different functionalities,
which later can be used in an integrated test framework.

4.3.1 Refactoring tools

Refactoring means improving the quality of code
through rewriting without changing its external behaviour. The
most common program transformations in Erlang are:

® renaming variables, functions, records, modules
e converting data structures (tuples to records)

e function argument operations

e detecting and resolving duplicate code parts

The existing tools are already integrated into the most common ed-
itors (in Figure 2). They are based on static analysis of the code and
therefore can safely work on big code basis. They can however not
support all possibilities of the language; OTP specific behaviours
and some of the dynamic function calls are under development, but
will not be available for some time.

Wrangler Wrangler [Liand Thompson(2008)] supports both
Emacs (with Distel) and Eclipse. The refactoring palette contains
seven transformation and two search options.

RefactorErl RefactorErl [Lovei et al.(2007)] has six refactor
steps. It stores the analysed source code in a database and pro-
vides an interface which can be a base for more applications. It’s
installation is easy as an installer is provided for Windows, while
on Unix systems it is distributed as a source package.

4.3.2 Analysis and checking tools

Dialyzer [Lindahl and Sagonas(2004)] is a static analysis tool for
detecting discrepancies in the source or byte code files automati-
cally. Typical errors detected by the tool include

e obvious type errors
e redundant tests
e unsafe virtual machine byte codes

e unreachable code parts

McErlang [Fredlund and Svensson(2007)] is a model checker
for verifying distributed Erlang programs. It has excellent support
for the most difficult characteristic of the language, namely general
process communication, node semantics, OTP component libraries,
fault detection and tolerance through process linking.

4.3.3 Automated build tools and package management

Faxien [6] is a package management which helps to find and install
or publish OTP applications.

Sinan [5] is a build system for OTP projects. It not only com-
piles and builds OTP applications but provides a framework for
building the documentations, runs dialyzer, checks unit tests, pro-
duces output reports and handles all application dependencies.

4.3.4 Load tools

Tsung [4] is an open source multi-protocol distributed load and
stress testing tool. Different kinds of servers can be stressed by us-
ing the loader, stimulating thousands of virtual users concurrently
connecting from several client machines. It is used to test the scal-
ability and performance of the TCP/IP based client-server applica-
tions.

24

Editors

19%

@ Emacs
Vim

@ Eclipse
@ scite

@® NetBeans
O other

Figure 2. Editor usage among Erlang users.

4.4 Usability of the tools

One of the keys to the popularity of a tool or toolset is user friend-
liness. The interface should be easy to use, and if it is possible well
integrated to the development environment. The layer of the inte-
gration can be on the following levels:

1. editors with plugins
2. OS commandline

3. developing software interface (Erlang shell)

It is important to design the interface(s) of the tool, according to the
common development environments. Graphs showing the usage of
operating systems and editors are in Figure 2 and 3.

According to the survey result the most common editors are
platform independent. It is an important result, since the usage of
operating systems is quite balanced between the different distribu-
tions of BSD, Linux, Macintosh and Windows. All tough Linux
distributions are the majority.

The Erlang users’ favourite editor is the Emacs with different
plugins. The most widely used plugins in descending order are:

¢ Erlang mode in emacs: included in the Erlang distribution, sup-
ports syntax highlight, indentations, comments, function header
commands, skeleton templates and compiling. The other Emacs
plugins are extensions of this plugin.

Distel connects to a live Erlang node. It is more than a simple
extension of the erlang mode. It can handle dynamic tags, pro-
vides the advantages of shell options to the editor such as auto
completion of module and function names, process and docu-
mentation viewer, a debugger and profiler frontend.

¢ Eflymake runs a syntax check in the background and highlights
the erroneous codeparts

Operating system

6%

9%

20%

© Linux Mac & Solaris
® windows & other

Figure 3. OS usage among Erlang users.

® Wrangler and RefactorErl (see in Section 4.3. 1) are refactor
plugins built in to the Erlang mode, they can be used with Distel

* Esense or ErlangSense provides features similar to IntelliSense
or CodeSense in other editors: completes module names, ex-
ported functions, record names, record fields, macros, and
shows popup documentation for the above elements.

Most developers use plugins, modes with their editors,

¢ Eclipse with Erlide is widely used, but somé of the program-
mers found it heavy weighted when compared to Emacs and its
Erlang mode. They found it hard to install, and not well tested.

® Vim has syntax highlighting, indentation, and many “home
grown” scripts for different functionalities.

® Most popular editors after Emacs and Eclipse are operating
system specific with different levels of Erlang support, mostly
with syntax highlighting:

= Textmate with Erlang Bundle
= Notepad++

= KDevelop

= Kate

= Gedit

There is a need for more complex development helping func-
tionalities such as function argument pop ups, auto complete, func-
tion description notes, auto formatting, a good build environment
and a debugger.

4.5 Open problems

We asked the survey participiants to name problems which make
the tools cumbersome to use: :

® “Documentation is not enough, and needs some examples”

* “bad documentation”

“Generally most tools lack the documentation to use them prop-
erly without digging into the source code.”

“Generally a lack of tutorials, examples of usage and best prat-
ices”

“Haven’t used them enough to comment but cursory opinion
seems to indicate that test suites need better management facil-
ities™

* “[any application] is not complete”

“It is difficult to stub my other modules that are being tested”

“Unstable and not complete”

“Most of them are not very thought through. Most of them are
badly layered are not extensible in other ways. Most of them
organically grown quick hacks without structure”

“Too much work to set them up”

® “Some of them need a lot of configurations to run, and you need
to do it manually”

“I tried to use dialyzer but it isn’t easy to use”

® “It would be great if eclipse plug-ins worked so that I could
get the same benefits I get in Java: function argument pop
ups, auto complete, function description notes, auto formatti ng,
good build environment and debugger”

The missing applications/functionalities are, identified by the sub-
mitters:

® “Specialized Traffic Generators”
e “Create and Interactive protocol tester”

® “It would be nice to be able to somehow generate, at least
partially, mock modules to isolate modules under unit test.”

¢ “Continuous integration and hooks for svn, cvs and git”
* “Improve [various (esting applications]”

® “A standard harness that runs: a compile check, EUnit tests,
Common Tests, the Dializer

According (o these survey results, we would like to highlight
the general shortcomings and weaknesses of almost every Erlang
tool and project:

. lack of documentation
. missing examples and tutorials

- not completed, tested when published

. doubts about sustainability

1
2
3
4. not well designed: badly layered, not extensible, no structure
5
6. hard to install and use especially for non Erlang users

7

- sometimes too much configuration is needed and has to be done
manually

Even if there are useful tools widely used by the Erlang com-
munity, the survey reports that it is still missing functionality and
integrated frameworks for:

© The ability to test efficiently on different levels, Stubbing fune-
tions cause big problems and a lot of effort. At the moment there
is no available stubbing tool. No tool can “generate at least par-
tially mock modules to isolate modules under unit test”.

® The missing aspect of the testing tools is a high quality display
of the results from different interfaces with statistics and graphs.

¢ Even though there are available load testers for different pro-
tocols there is no freely available interactive protocol tester,

25

framework for testing web applications through http or special-
ized traffic generators.

e A missing area is continuous integration; hook towards version
control systems (svn, cvs and git), integrated into a general
framework.

e Existing frameworks do not contain enough functionality. There
is a need for a standard harness that runs compile check, unit
tests, system tests, xref, dialyzer and tsung performance tests.

5. Applicability of tools in developing commercial
products

According to the survey results the testing phases of Erlang projects
are poorly supported. Most of the developers use proprietary or
manual solutions for unit and system level testing.

From a commercial point of view, the feature set of one tool is
less important than other factors namely:

e case of use

e support

e good documentation
o examples

e ease of comprehending the results

5.1 Ease of use

This covers the ease of initial configuration to non-cryptic error
muessages related to user interaction. Again the survey showed that
the initial configuration is considered hard, manual and error prone
work. A lot of test systems tend to return cryptic error messages.
Most of these problems could be solved by integrating the tools into
one framework, an Integrated Development Environment (IDE).
Since this would cut down the configuration needed, the tools
would work in the same environment providing similar behaviour.

5.2 Support

Problems with the toolset being used for testing can result in a
major loss of development lime. It is important to be able to resolve
the issue efficiently as soon as possible. This was clearly visible
from the survey, because 30% of users would pay for support and
training.

5.3 Good documentation

If there is little documentation for a tool the possibility of commer-
cial adoption is low. This was also evident in the survey. Missing or
bad documentation was the top problem which came to light with
the existing tools.

26

54 Examples

It helps the early adopters if there are available hands on exercises,
use cases and examples. If the early impressions are positive the
acceptance rate of the tools will be higher. From the survey it is
clearly visible that there is a need for training courses.

5.5 Ease of comprehending the results

If it is really hard to interpret the results of a tool it will never
pass the evaluation phase. From the survey it seems there is a need
for online and offline solutions where more is better. The online
means an immediate result as the testing progresses. Offline means
a configurable report generation functionality, including browsable
webpages, a dashboard or pdf reports.

6. Conclusion

Our research clearly indicates that the tools available for Erlang,
commercially or otherwise, have shortcomings in many fields, al-
though they address relevant issues.

One of these shortcomings, for most of the tools in the sur-
vey, is the lack of tutorials and examples alongside vague docu-
mentation. Even if these tools are useful, addressing existing prob-
lems should be a priority of the community. This is clearly visible
from the fact that 30% of the survey participants are willing to pay
for consultancy on some tools together with a wide adaptation of
QuickCheck.

The other field that limits widespread use is lack of automated
build and test of software. Even though there are tools solving this
problem, they are not integrated with each other, and their output
is very diverse, The survey shows that most people yearn after an
IDE where building, testing and reporting the results are integrated
in the overall workflow.

Although it has already been mentioned, the need for a report-
ing functionality cannot be emphasised enough. One of the most
important functionality is the ability to report. The more structured
information available, the better. For example in the model-based
testing case (see in Section 4.2) it is really hard to get information
about coverage and what has been actually tested.

Many of the mentioned test tools can be used in the development
of non-Erlang projects. They are however, rarely used by compa-
nies who do not have a history of using Erlang. As Erlang gets
wider acceptance and is used to test non-Erlang projects, it is im-
portant to tackle issues concerning user interaction, as they will
affect the evaluation and adoption of Erlang.

A. Appendix: The questions of the survey
1. Which editor do you use for Erlang development?

(a) Eclipse

(b) Emacs

(c) NetBeans

(d) SciTe

(e) Vim

(f) Other

lide,ErlyBird,Distel, Emacs mode, ete.)?
3. On what platform is the development done?

(a) Linux/Unix: Debian, Radhat, Suse, Ubuntu, Other

(b) Macintosh: Tiger, Leopard, Other
(c) Solaris

(d) Windows: XP, ME, Vista, Other
(e) Other

4. Have you ever heard of the following Erlang tools?
(a) CommonTest Environment
(b) CEAN
(c) Dialyzer
(d) Distel
(e) ErlVer
(f) Etomerl
(g) EUnit
(h) Faxien
(i) McErlang
(j) OTP Test Server
(k) Quickcheck
(1) RefactorErl
(m) Sinan
(n) Tsung
(o) Wrangler
(p) None of the above
(q) Other
5. Have you used the following Erlang tools?

The option list is the same as in the previous question.

(a) CouchDB
(b) Ejabberd
(c) Erlinda
(d) ErlSDB
(e) ErlSoap
(f) Erlsom
(g) Erlyweb
(h) OSERL
(i) Yaws

(j) Mochiweb

- Do you use special Erlang plugin/mode with your editor (Er-

. What Erlang open source applications have you used?

27

10.

11.

12.

14.
15.

16.
17.

18.

19.

20.
21.

(k) Tsung

- Would it help if we generate automated tests for these open

source applications?

- Do the tools you are using have any shortcomings which make

them harder to use?

- Are there any other tools you tried but decided not to proceed

with? What were their shortcomings?(Unstable, Not completed,
Not resolving my problem, etc).

Do you have automated builds and test suites in place? If so,
what system are you using?

What methods are you using to test your system?
(a) Test driven development

(b) Develop-test iteration

(¢) Black box testing

(d) Gray box testing

(e) White box testing

What testing tools are you using?
(a) Common Test

(b) EUnit

(¢) Manually written functions
(d) OTP Test Server

(e) QuickCheck

(f) Other

- Would you be interested in trying out the test tools which will

result from the protest project?
Do you have time and resources to try new tools?

Would you prefer training courses - with hands on exercises -
for these new tools?

Would you consider short term consultancies?

Would you be willing to pay for these courses and consultan-
cies?

Imagine that you have three wishes, what Erlang testing appli-
cations would you like to: create or improve already existing
ones?

Thank you for filling out our survey! If we have managed to
pique your interest please choose from the following options

(a) Do you want a summary of this survey when completed?
(b) Do you want to join the protest project announcement list?

(c) Do you want us to contact you when the first tools are
released?

Please give us your contact details
What is your role in the organisation?
(a) Manager

(b) Project manager

(¢) Software developer

(d) Tester

(e) Researcher

(f) Other

References

[Arts et al.(2006)] Thomas Ars, John Hughes, Joakim Johansson, and
UIf Wiger. Testing telecoms software with quviq quickcheck. In
ERIANG '06: Proceedings of the 2006 ACM SIGPLAN workshop
on Erlang, pages 2-10, New York, NY, USA, 2006. ACM. ISBN
1-59593-490-1. doi: http://doi.acm.org/10.1145/1159789.1159792.

[Barnett et al.(2003)] Mike Barnett, Wolfgang Grieskamp, Lev Nach-
manson, Wolfram Schulte, Nikolai Tillmann, and Margus Veanes.
Model-based testing with asml.net. In Ist European Conference on
Model-Driven Software Engineering, December 2003.

[Blom and Jonsson(2003)] Johan Blom and Bengt Jonsson. Automated
test generation for industrial erlang applications. In ERLANG '03:
Proceedings of the 2003 ACM SIGPLAN workshop on Erlang, pages
8-14, New York, NY, USA, 2003. ACM. 1SBN 1-58113-772-9. doi:
http://doi.acm.org/10.1145/940880.940882.

[Carlsson and Rémond(2006)] Richard Carlsson and Mickagl Rémond.
Eunit: a lightweight unit testing framework for erlang. In ERLANG
"06: Proceedings of the 2006 ACM SIGPLAN workshop on Erlang,
pages 1-1, New York, NY, USA, 2006, ACM. ISBN 1-59593-490-1.
doi: hip://doi.acm.org/10.1145/1159789.1159791.

[Fredlund and Svensson(2007)] Lars-AAke Fredlund and Hans Svensson.
Meerlang: a model checker for a distributed functional programming
language. In ICFP '07: Proceedings of the 2007 ACM SIGPLAN
international conference on Functional programming, pages 125-
136, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-815-2.
doi: http://doi.acm.org/10.1145/1291151.1291171.

[Hartman et al.(2004)] A. Hartman and K. Nagin, The agedis tools for
model based testing. SIGSOFT Softw. Eng. Notes, 29(4):129-132,
2004. ISSN 0163-5948. doi: http:/doi.acm.org/10.1145/1013886.1007529.

[Hartmann et al.(2000)] Jean Hartmann, Claudio Imoberdorf, and
Michael Meisinger. Uml-based integration testing., In ISSTA
"00: Proceedings of the 2000 ACM SIGSOFT international sym-
posium on Software testing and analysis, pages 60-70, New
York, NY, USA, 2000. ACM. ISBN 1-58113-266-2. doi:
http://doi.acm.org/10.1145/347324.348872.

[Huima(2007)] Antti Huima. Implementing conformiq qtronic. In
TestCom/FATES, pages 1-12, 2007.

[Li and Thompson(2008)] Huiging Li and Simon Thompson. Tool support
for refactoring functional programs. In PEPM '08: Proceedings
of the 2008 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation, pages 199-203, New
York, NY, USA, 2008, ACM., ISBN 978-1-59593-977-7. doi:
bttp://doi.acm.org/10.1145/1328408.1328437.

[Lindahl and Sagonas(2004)] Tobias Lindahl and Konstantinos Sago-
nas. Detecting software defects in telecom applications through
lightweight static analysis: A war story. In Chin Wei-Ngan, editor,
Programming Languages and Systems: Proceedings of the Second
Asian Symposium (APLAS’04), volume 3302 of LNCS, pages 91-
106. Springer, November 2004.

28

[Lovei et al.(2007)) Lészlé Lovei, Zoltdn Horvdth, Tamds Kozsik, and
Roland Kirdly, Introducing records by refactoring, In Proceedings
of the 2007 SIGPLAN Erlang Workshop, pages 18-28, Freiburg,
Germany, Oct 2007,

[Richle(2008)] Dirk Richle. Junit 3.8 documented using collaborations.
SIGSOFT Softw. Eng. Notes, 33(2):1-28, 2008. ISSN 0163-5948.
doi: http://doi.acm.org/10.1145/1350802.1350812.

[Silva et al.(2008)] José L. Silva, José Creissac Campos, and Ana C. R.
Paiva. Model-based user interface testing with spec explorer and
concurtasktrees. Electron. Notes Theor. Comput. Sci., 208:77-93,
2008.

ISSN 1571-0661.
doi: hitp:/dx.doi.org/10.1016/j.entcs.2008.03.108.

[Sinha et al.(2006)] Avik Sinha and Carol Smidis. Hottest: A model-
based test design technique for enhanced testing of domain-specific
applications. ACM Trans. Softw. Eng. Methadol., 15(3):242-278.
2006. ISSN 1049-331X.
doi: http://doi.acm.org/10.1145/1151695.1151697.

[Wiger et al.(2002)] UIf Wiger. Gosta Ask, and Kent Boortz, World-class
product certification using erlang. In ERLANG ‘02: Proceedings
of the 2002 ACM SIGPLAN workshop on Erlang, pages 24-33,
New York, NY. USA, 2002. ACM. ISBN 1-58113-592-0. doi:
http://doi.acm.org/10.1145/592849.592853.

[1] Trapexit http://www.trapexit.org Jun 2008
[2] Erlang http://www.erlang.org Jun 2008

[3] ProTest, property based testing http://www.protest-project.cu Jun
2008

[4] Tsung http:/tsung.erlang-projects.org Jun 2008
[5] Sinan hup:/code.google.com/p/sinan Jun 2008
[6] Faxien http://code.google.com/p/faxien Jun 2008

A Comparative Evaluation of Imperative and Functional
Implementations of the IMAP Protocol

Francesco Cesarini

Erlang Training and Consulting
416 Fruit & Wool Exchange
Brushfield Street, London E1 6EL,
England

francesco@erlang-consulting.com

Viviana Pappalardo

University of Catania
Dept. of Computer and Telecomm.
Engineering
Viale A. Doria, 6
95125 - Catania, Italy

Corrado Santoro

University of Catania
Dept. of Mathematics and Informatics
Viale A. Doria, 6
95125 - Catania, Italy

santoro@dmi.unict.it

viviana.pappalardo84@alice.it

Abstract

This paper describes a comparative analysis of several implemen-
tations of the IMAP4 client-side protocol, written in Erlang, C#,
Java, Python and Ruby. The aim is basically to understand whether
Erlang is able to fit the requirements of such a kind of applica-
tions, and also to study some parameters to evaluate the suitabil-
ity of a language for the development of certain type of programs,
We analysed five different libraries, comparing their characteristics
through some software metrics: number of source lines of code,
memory consumption, performances (execution time) and function-
ality of primitives. We describe pros and cons of each library and
we conclude on the suitability of Erlang as a language for the im-
plementation of protocol- and string-intensive TCP/IP-based appli-
cations.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages): Language Constructs and Features — abstract data types,
polymorphism, control structures.

General Terms Algorithms, Performance, Design, Standardiza-
tion, Languages.

Keywords Erlang, IMAP, Imperative Languages, Functional Lan-
guages, Comparative Evaluation

1. Introduction

The choice of programming language and platform to be used in
a software system is an issue faced at the start of every project. In
the majority of cases, this choice will be influenced by the skills
of the programmers and the software development policies of the
company. This is quite reasonable from the prospective of the de-
cision makers, but it should not solely rest on these factors alone.
This decision should be based on other aspects such as the evalua-
tion of how a language and platform best fits the problem domain.
However, even if a particular language could be very appropriate
for an application, sensibly reducing the development time while
increasing performance, the lack of programmer knowledge results

Permission 1o make digital or hard copies of all or part of this work for personal or
classroom usc is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or « fee.

Erlang’08, September 27, 2008, Victoria, BC, Canada.

Copyright (©) 2008 ACM 978-1-60558-065-4/08/09. . . $5.00.

29

in an exclusion, advantaging other choices better known to the de-
velopers.

When several choices of programming languages and platforms
are available, debates over the advantages and drawbacks of one
paradigm or language or platform with respect to different ones
arise, compromising between an objective evaluations of features
and personal taste. The issue is that it is not so casy to derive met-
rics that allow programmers to objectively understand the appropri-
ateness of a language for the development of certain types of appli-
cations [13, 15]. When these metrics are available, applying them to
a project-cither not started or completed-is not an casy task. Best
practices often consider an a-posteriori evaluation of an already de-
veloped application, aiming at understanding if certain parts of the
system (or the whole), which have been particularly hard and time
consuming to implement or do not perform could have be realized
better using a different technology. Such an evaluation implies an
analysis of (i) the effort that was needed to develop the application,
(i) the difficulties encountered in the development process (due to
lack of language constructs or library functions), (iii) the complex-
ity of the developed program which leads to a more error-prone
application requiring more effort in debugging and testing, (iv) the
performances of the whole system.

With these aspects in mind, this paper aims at providing a com-
parative evaluation of different implementations of client libraries
for the IMAP email protocol [4]. The starting point was an Erlang
project requiring the implementation of an IMAP client, In order
to understand the appropriateness of Erlang in similar applications,
we performed a series of tests comparing the Erlang solution with
some other implementations written in different programming lan-
guages, ranging from compiled/imperative, such as Java and C#,
to scripting/imperative ones such as Python and Ruby. The aim is
to evaluate some parameters like performances, capability 1o meet
user requirements and effort necded to develop the library using
that language. This is achieved by both using metrics detailed in
the following Sections of the paper and performing a critic analysis
of the code and the characteristics of the provided primitives.

The paper is structured as follows, Section 2 provides an
overview of related work. Section 3 gives a brief description of
the IMAP protocol, showing the basic issues that have to be faced
in the development of a client-side library. Section 4 illustrates the
basic software architecture of an IMAP client library. Section 5
presents the metrics used to perform the analysis. Section 6 illus-
trates the implementations we analysed, highlighting their charac-
teristics, and Section 7 summarises the results of the evaluation of
them. Section 8 completes the paper with our conclusions.

2. Related Work

Any experienced Erlang developer will confirm that Erlang pro-
grams they have written consist of four to ten times less code than
their counterparts in C, C++ and Java. This has been an urban leg-
end among the Erlang programmers at Ericsson long before Erlang
was released as open source. Almost a decade after its release, how-
ever, there still is very little scientific evidence to back up these
claims. Examples such as pivot sort using list comprehensions or
a distributed remote procedure call server example are used to ar-
gue the case. Indeed, they might prove a point when compared to
other languages, but when looking at Erlang, there is a necessity to
benchmark whole systems, not code snippets.

Similar arguments should be made when looking at perfor-
mance. As a result, existing language shootouts of sequential code,
though valid, do not provide the whole picture. This is enforced
by Bogdan Hausman’s just in time C compiler [9], which was part
of the early versions of the beam emulator, and through the com-
pilation of Erlang to native code in the High Performance Erlang
project [11]. In both research projects, a notable increase in the ex-
ecution of sequential code was achieved. But when complete pro-
duction systems were benchmarked, the results were more modest.
Erlang systems consist of more than the sequential computation
of Fibonacci or factorial sequences. They are complex, distributed
massively concurrent systems.

In 1989, an Erlang prototype named ACS/Dunder implemented
10% of the features of the MD110 private automatic branch ex-
change (PABX). Its purpose was to validate Erlang as a language
for programming the next generation of telecom applications, pro-
viding the productivity comparisons between Frlang and PLEX,
the proprietary Ericsson language originally used to develop the
MD110. Though the results of the ACS/Dunder project were never
made public, Joe Armstrong in 2007 revealed that, depending on
the implemented feature, an improvement in design efficiency of
a factor three to twenty-two [3] was achieved. These figures were
hotly debated at the time, and depending on whether you belicved
in Erlang or not, were considered highly controversial. As a result
of this controversy, the final results were downgraded from an av-
erage of eight to three. Quoting Joe Armstrong, “The factor three
was totally arbitrary, chosen to be sufficiently high to be impressive
and sufficiently low to be believable”.

Ulf Wiger, in his 2001 paper “Four-Fold Increase In Produc-
tivity and Quality” [18] states that comparisons of projects within
Ericsson using C, C++, Erlang, Java and PLEX project yield a sim-
ilar line per hour productivity and a similar bug density per line
of code. What differed between the projects was the final source
code volume. Comparisons of C++ projects which were rewritien
in Erlang resulted in four to ten times less code, concluding that
using Erlang equated to a four to ten-fold increase in productiv-
ity and quality. Wiger, however, states that though these numbers
would not hold up to a scientific scrutiny, they provide a consistent
pattern with experiences of non-Ericsson projects.

The first study to provide scientific evidence and back up the
findings by the ACS/Dunder project and Wiger was the comparison
of C++ and Erlang for Telecoms Software. Run as a collaboration
between Herriot Watt University and Motorola Labs, the research
project consisted in refactoring two C++ applications which were
in production at Motorola to Erlang {12]. Comparisons were made
on the Performance, Robustness, Productivity and impact on pro-
gramming language constructs. The conclusions were a 70 — 85%
reduction in code for the Erlang based system. The code reduction
was explained by the fact that 27% of the C++ code consisted of
defensive programming, 11% of memory management and 23% of
high level communication, all features which in Erlang are part of
the semantics of the language or implemented in the OTP libraries.
One of the applications completely rewritten in Erlang resulted in

30

a 300% increase in throughput, but that can be argued was a resuit
of Erlang and its light weight concurrency model being the right
tool for the job. The Dispatch application in question had lots of
concurrency, short messages and little in terms of heavy processing
and number crunching. The C++ version had been written with re-
silience in mind, not performance. Resilience comes almost for free
in Erlang. Other conclusions from the project were that robustness
and scalability were higher in Erlang while maintenance costs were
lower.

3. Overview of the IMAP Protocol

IMAP stands for Internet Message Access Protocol. It allows client
programs to access and handle electronic mails stored on remote
mail servers. It was proposed by Mark Crispin as an alternative
to the POP3 protocol. The current version, IMAP4 revision |
(IMAP4revl), is defined in RFC3501 [4]. Tt supports communi-
cation either over a TCP/IP connection using port 143, or over
a SSL connection using port 993. The most important advantage
of IMAP4 over POP3 is that emails can be stored on the server,
allowing any client to access them from any location.

An IMAP4rev] session is based on reliable client/server net-
work connection over which a request-reply model is run. Clien-
t/server interactions start with an initial greeting message from the
server and consist of a client request, followed by optional data
sent by the server' and terminated by a result response. Client and
server transmit strings terminated by CR+LF character sequence.
Each request sent by a client consists of a Tag, a unique alphanu-
meric prefix for each message used to match client request to server
reply, and a Command. 1f the command from the client does not
require the server to send additional data®, the server replies imme-
diately with a fagged response message, including an indication of
the outcome of the interaction (e.g. success or failure). An exam-
ple of a client/server interaction (a LOGIN command) showing the
tagged response is reported below:

Client: A001 LOGIN username password
Server: A0O1 OK LOGIN Ok

When data needs to be sent before the response message, the
server reply can be split into one or more lines according to the size
of the messages themselves. These responses are called untagged,
they are prefixed not by the fag but with characters " or ™+". Below
is an example of untagged responses returned as the result of the
SELECT command:

Client: A002 SELECT INBOX

Server: * FLAGS (Junk NonJunk ...

Server: * 0K [PERMANENTFLAGS (Junk NonJunk ...
Server: * 4270 EXISTS

Server: * O RECENT

Server: * OK [UIDVALIDITY 1186814135] 0Ok
Server: * 0K [MYRIGHTS "acdilrsw"] ACL

Server: A002 OK [READ-WRITE] Ok

A client/server session is represented by the finite-state machine
depicted in Figure 1. Most commands are available only in certain
states, so if a command is sent by the client when in an inappropri-
ate state, an error message is returned.

The initial state, “server greeting”, is reached after connection.
In this state, the server sends a message containing a welcome text
and, in some cases, the server’s capabilities.

!t depends on the command to be executed.
2 This happens, for example, in LOGIN and LOGOUT commands.

Connection established

(Server gresting)

13)

Mot Authenticated

a1
Authenticated

i 1)

C_ o p

| Bolh side clote connection I

Figure 1. IMAP4revl State Diagram

Following this message, the client enters the Not Authenticated
state (transition 1) unless the connection is pre-authenticated.’. In
the Not Authenticated state, most commands are rejected, because
the client has to supply its credentials in order to start its session.
This is performed by a proper LOGIN command, if successful
(transition 4), the client reaches the Authenticated state and must
use the SELECT command to choose which mailbox to access.
This command contains the name of the mailbox to be manipu-
lated, allowing the client to enter the selected state (transition 5).
When activities are over, the LOGOUT command terminates the
session (transition 7) and closes the connection. In general the /o-
gout state is entered following the LOGOUT command from the
client; however, if a protocol error is detected during the session
or a session timeout elapses, the server is allowed to unilaterally
trigger the logout and close the connection.

A basic IMAP4 session is characterized by the initial sequence
of commands LOGIN and SELECT, followed by commands for
manipulating the messages and the mailboxes such as (but not lim-
ited to) FETCH, LIST, STORE, COPY and finally terminated by a
LOGOUT. FETCH is the important command of the IMAP4 proto-
col, as it is used to retrieve data items such as header fields, text or
attachments of one or more messages. The basic syntax requires the
inclusion of additional parameters, expressed by means of proper
keywords and used to select specific portions of the message(s). As
instance, keyword BODYSTRUCTURE (or simply BODY) allows
a client to get information on the structure of a message and its
various components. Possible component information might cover
attachments, text, their size, encoding character set and the MIME
type, to mention but a few. The keyword BODY [section] retrieves
one or more of the specified sections of the whole body; sections
can be HEADER, HEADER FIELDS, MIME, TEXT, etc.; key-
word ENVELOPE returns the structure of the envelope of an email
message containing the fields date, subject, from, sender, reply-to,
to, cc, bee, in-reply-to, and message-id.

Together with the data to be retrieved, the FETCH command
requires an identifier of the involved message(s). To this aim,
IMAP4revl defines two type of numeric message identifiers: the
message number (or message sequence number), reflects the posi-
tion of the message in the given mailbox, while the unique identifier

3 Pre-authenticated conditions (transition 2) are indicated by a proper capa-
bility in the greeting message. Pre-authentication is in general performed
by a check on the client’s IP address or other peculiar mechanisms.

31

(UID) is a number assigned to the message when it is placed in the
mailbox (delivered from a sender or as a result of the COPY com-
mand). There is a basic difference between these identifiers: while
UID is unigue and its value does not change during the life span
of the message, the sequence number can vary by modifying the
position of the message in the mailbox; this situation can happen
when messages are deleted or inserted.

The response to a FETCH command contains data organized as
LISP-like nested lists and enclosed between round parentheses, “(”
and “)”. At a first glance, this response has a simple structure, but
it can get complex when nesting occurs as a result of the message
forwarding or the inclusion of an RFC822 form [17]. The structure
of a message contains a header, a body section and one or more
attachments, unless it is a MIME-IMB [6] message consisting of
several sections.

The following example* of the FETCH BODYSTRUCTURE is
the typical nested structure of the FETCH reply message, where
each level of nesting is indicated by a pair of parentheses. The
structure of the message reported in this reply is composed of two
parts; the text of the mail, written in both plain ASCII and HTML,
and an attached binary file named “es.rar”, encoded in BASE64.
The “boundary” element is a delimiter between the text and the
attachment.

* 3421 FETCH (BODYSTRUCTURE

«

("TEXT" "PLAIN" ("charset" "iso-8859-1")

NIL NIL "quoted-printable" 22 2)

("TEXT" "HTML" ("charset" "iso-8859-1")

NIL NIL "quoted-printable" 393 19)

"ALTERNATIVE"

("boundary"

"- - _=_NextPart_002_01C72136.F960F3A9")
)

("APPLICATION" "OCTET-STREAM" ("name" "es.rar")
NIL "es.rar" "base64" 261814 NIL
("attachment" ("filename" "es.rar"))

) "MIXED"
("boundary"
"— -_=_NextPart_001_01C72136.F960F349")
)
)

When the reply contains the headers or the text of an email,
complexity increases as the nested structure can encapsulate bare,
unformatted ASCII or binary data such as email headers, text,
attachiments, and other included emails. In this case, the presence of
the octets stream is indicated by enclosing its size in curly brackets.

Another commonly used IMAP command is LIST, allowing a
client to look into a mailbox hierarchy displaying all folders, rela-
tionships and attributes. The syntax of the command requires the
reference and mailbox_name parameters. As mailboxes are hierar-
chically organized, the reference denotes where in the hierarchy
the inspection should be started. The mailbox_name denotes which
mailbox to search in. Its notation allows wild cards, denoted by the
special characters **’ or *%’. The reply to the LIST command re-
turns a set of untagged responses, one for each folder of the hierar-
chy. They contain the folder name, its path, the hierarchy delimiter
and folder attributes®.

41 ine breaks and indentations have been added by authors in order to make
the example clearer; real server’s reply is not formatted as shown, even if it
is contained in several lines.

5 According to [4], atiributes are chosen among the following values:
\Noinferiors, \Noselect, \Marked, \Unmarked, \HasNoChildren,
\HasChildren.

3.1 Implementation Issues

As the reader can observe from the explanation of the IMAP proto-
col, the client/server interactions and the data transport are straight
forward to implement, as data exchange occurs by encoding mes-
sages in ASCII strings terminated by the CRLF character and send-
ing/receiving them through a socket. The problem with IMAP is
in the application layer, as the grammar of the server response is
very articulated and complex, putting a requirement on the client
to be able to parse and interpret all replies. As a result, most of
the implementation effort of an IMAP client is in the parsing of
the IMAP server responses. In particular, as has been illustrated
above, parsing the FETCH response can be challenging because of
the variety of information included in the structure of the message
and included attachments. The response to a “FETCH BODYS-
TRUCTURE” command is one of the most complex to parse, as
it can contain many levels of nesting. The response to a “FETCH
BODY/section]” command can also present some difficulties in the
transcoding activity, as the client has to translate text or attachments
contents from the reply encoding (such as BASE64) to an encoding
handled by a client program (such as UTF-8 or binary). Finally, as
the grammar described in standards [4, 6] also permits user-defined
fields or attribute values, another implementation difficulty is mak-
ing the parser module generic and flexible so as to cater for these
situations.

4. Architecture of an IMAP Client Library

This Section gives a brief overview of the software architecture of
an IMAP client. According to the specifications provided in the
standard [4], we can consider an IMAP client library as composed
of the following software layers:

1. Communication layer, handling socket connectivity.

2. Low-level IMAP protocol handler which is responsible to
manage request/reply communication properly adding the tag
to the request and differentiating tfagged and umtagged re-
sponses.

3. IMAP interpreter, whose task is to parse server replies, trans-
forming them into native types of the target language used in
the client implementation.

4. IMAP FSM, which handles the finite-state machine of the
IMAP protocol (see Figure 1), managing state transitions and
ensuring that sent commands are valid in the current state.

5. IMAP high-level interface, which implements the various
commands of the IMAP protocol by directly using the ser-
vices provided by the low-level IMAP protocol handler and the
IMAP interpreter.

This architecture depicted in Figure 2 is generic and consistent
with all of the client implementations we analyzed. According to
the specific functionality of the library, however, one or more of
the layers could have been omitted depending on the functionality
of the client. As an example, a library which does not parse server
replies, returning them directly to the user will not have an IMAP
Interpreter layer; similarly, if the handling of the FSM protocol is
not support by the client side, the IMAP FSM layer will be not
present.

As will be argued in Section 7.1, the presence (and lack) of
layers will impact the software writing process of the IMAP client
and influence the estimation of the effort involved. Indeed, we
can consider that the lower layers such as the Communication,
Low-level IMAP protocol handier, IMAP interpreter and IMAP
FSM (when present) have to be developed first, requiring a big
initial effort, while implementing the various commands can be
considered quite simple; they can be done incrementally, one at a
time, directly exploiting the services provided by the lower layers.

32

User Program

.....................................

w
m
n
9

IMAP High-Level

IMAP FSM

IMAP interpreter

Low-level Protocal Handler

Communication Layer

Figure 2. Software Architecture of an IMAP Client Library

def fetch(set, attr)
return fetch_internal ("FETCH", set, attr)
end

def fetch_internal{cmd, set, attr)
if attr.instance_of?(String)
attr = RawData.new(attr)
end
synchronize do
@responses.delete("FETCH")
send_command(¢md, MessageSet.new(set), attr)
return @responses.delete ("FETCH")
end
end

def store(set, attr, flags)
return store_internal("STORE", set, attr, flags)
end

def store_internal(cmd, set, attr, flags)
if attr.instance_of?(String)
attr = RawData.new(attr)
end
synchronize do
@responses.delete("FETCH")
send_command(cnd, MessageSet.new(set), attr, flags)
return @responses.delete ("FETCH")
end
end

Figure 3. Code Snippet of the Ruby IMAP Library

The listing in Figure 3, which is the code for the FETCH and
STORE commands of the Ruby IMAP library clarifies this aspect.
Adding another command involves replicating the basic structure
of the code and replacing the command string to handle the new
functionality.

5. Evaluation Criteria

As argued in Section 1, providing objective parameters to measure
software quality is not an easy task. The literature reporls some
indicators [5, 12] and, even if some developers and researchers
still do not agree on their objectiveness, they should be considered
adequate and provide a good degree of confidence [15]. According
to this literature, we selected the following parameters:

® Number of source lines of code (SLOC);
® Functionality of primitives

o Amount of memory required

e Execution time/throughput

5.1 Source Lines of Code

This is obtained by counting the numbers of lines of all the source
files composing the library and removing blank lines and com-
ments. This parameter should provide an indication of the effors
required to develop the application: roughly speaking, the more the
SLOC the more the time required to write the software and to test
it. However, as argued in [10], SLOC is dependent of at least three
factors: programmer’s skills, programming language and program
Junctionality.

Indeed, it is quite simple to understand that sources written
by different programmers, with different programming abilities,
could sensibly differ in the number of SLOC; in general, if all
programs exhibit the same functionalities, the more skilled the
programmer the less the number of lines written. In any case, given
that most of the implementations compared in this paper are part
of the library of the language we tested, we can assume that they
have been written by programmers with a very good knowledge
of the language itself and therefore they can be considered “good
software”; so, as for this point of view, it makes sense to compare
the number of SLOC of these implementations.

Another factor that affects the number of SLOC is the program-
ming language employed. Obviously, the presence of certain lan-
guage constructs has a strong impact on the lines of program used
for a certain functionality. For example, extracting the first element
of a string is obtained in Erlang by means of a simple one-line state-
ment: [H|T] = String. Moreover, if this extraction is performed
in the declaration of a function clause, as is often the case, the code
becomes even more compact, as the line will contain the function
declaration, check a condition (that the string is not empty) and per-
form a double assignment. In Python or Java, the extraction of the
first element requires two lines of code, and additional lines when
we intend to also include the “string not empty” check:

[Python [Java |
H = String(0] H = string.charit(0);

T = String[1:] T = string.substring(1);

if String != "" if (string.length() '= 0) {
H = Stringl0] H = string.charAt(0);
T = Stringl1:] T = string.substring(1);

)

This dependence of SLOC upon the language used is not only
fundamental for our study, but also quite desirable as we want
to understand the effort needed to develop the IMAP client using
different languages. The presence of certain constructs that require
less lines of code implies less time needed to write the software and
to test it.

Another important aspect that influences the number of SLOC
is the functionality the software exhibits; indeed two different im-
plementations of an application which at first glance might appear
the same but in reality differ in functionality, cannot be compared in
terms of SLOC, as the feature rich implementation will presumably
have a higher number of SLOC. This is the reason why, in evalu-
ating the software, the SLOC parameter is weighted by means of
the so-called Function Point Analysis (FPA) [8]; this is a technique
that allows developers to analyze a software implementation and
derive a parameter, called number of function points, providing an
objective evaluation of the functionalities of the analyzed software.
Given this measure, weighting the number of SLOC with respect to
the number of function points should give a more precise estimate
of the required development effort required.

However, performing FPA is not an easy task, above all when
dealing with a library. According to [7], FPA seems more appro-
priate for a complete application or software system rather than a
single component. For this reason, in the analysis of SLOC, we
used a different approach with the aim of obtaining the same ob-

33

jective evaluation. Indeed, as argued in Section 4, by analyzing the
implementations given with their source code (i.e. Python, Ruby,
C# and Erlang), we noted their software architectures were very
similar to one another. In particular, once the blocks for the low-
level protocol, request assembly and reply parsing had been devel-
oped, adding a new functionality (i.e. support for another IMAP
command) only involved writing a function (or method) that used
the primitives provided by these basic blocks. From such a charac-
teristic, we can derive that comparing the number of SLOC of two
implementations, even if they support different sets of commands,
can be performed by simply analyzing the parts of the software
which provide the same functionalities, namely the low-level pro-
tocol, request assembly, reply parsing and the common commands
in the different implementations.

5.2 Functionality of primitives

As argued before, Function Point Analysis is not easy to perform
and also not appropriate for a library. On the other hand, in a
comparative analysis as the one described in this paper, an under-
standing of the specific functionalities of a given library should be
mandatory. The aim should be to try to understand the gualify of
an implementation in terms of its capability to provide a complete,
transparent and flexible support of the IMAP protocol.

Checking the completeness of a solution is quite simple, since
it implies to analyse if the library is able to support all or a sub-
set of the commands and functions of the IMAP4 standard. As
for transparency and flexibility, an analysis of the software archi-
tecture of the solution and the interface of the various primitives
(i.e. signatures of function or methods) is needed, in order to un-
derstand if a good level of abstraction is provided. Indeed, many
commands of the IMAP4 standard require additional parameters
which should be passed to the function (or method) implementing
that functionality. Even if they are then sent as string in the pro-
tocol messages, these parameters may vary in type and semantics,
therefore a well-written library should treat them according to their
real meaning. As an example, a function implementing the FETCH
command could require the additional parameters to be passed as
either different arguments or a complete string. In the latter case,
there is a lack of a proper abstraction level, since the programmer
has to manually create the string to be passed: in other words, to
use the library the programmer has to possess a certain knowledge
of protocol messages, an aspect which is in contrast to the common
rules of software engineering that instead require library/software
modules to hide specific low-level (protocol) details by providing a
high-level flexible and uniform interface.

A similar argumentation can be given for function/method re-
sponse values, which should reflect the outcome and the reply of
the command implemented. If a reply is already interpreted by the
library and provided as a structured data type of the language (prim-
itive or derived), the programmer can directly use it without writing
additional parsing code. Once again, this is an indicator of a proper
encapsulation and abstraction level of the library, characteristics not
featured by e.g. an implementation returning raw protocol replies,
since, in this case, an additional programming effort is required to
properly understand and use them.

5.3 Memory Consumption

Memory consumption is a performance parameter that expresses
the memory usage of an application using the IMAP library be-
longing to a certain language. We developed a simple test program
that logs in and fetches a bunch of messages. During the execution
of the test program on a Linux OS, we collected information about
memory usage by checking the status contained in the “/proc” file
system, in particular, by looking at fotal program size, code size
and data size.

5.4 Execution time/throughput

The second performance parameter we evaluated was the execu-
tion time of certain IMAP commands. As reported in [4], most of
the commands imply the execution of a specific activity and reply
with a simple success/fail response. Replies from commands such
as SELECT, FETCH or LIST, however, are more articulated and
probably require complex parsing of the result. For this reason, in
order to evaluate the interaction throughput featured by each spe-
cific command of the various implementations, we let the client per-
form both simple and complex commands. Simple commands pro-
vide an indication of the performances of the low-level request/re-
ply protocol, while complex commands can be used to measure
the performances of the parser when it is present in the tested im-
plementation. In detail, the commands we used for performance
evaluation are LOGIN, SELECT, FETCH and LIST.

6. Evaluated Solutions

In this Section the IMAP libraries which constitute part of this
study will be described. All of them have been found in the Inter-
net. Some of them are free while others are commercial products.
Furthermore, among the free libraries, some are provided with the
source code while other are available only in compiled format, so
analysis based on SLOC, described in Section 5.1 will not be appli-
cable. The aim of all of the solutions studied is to provide IMAP4
client support to developers. Each library provides only some of the
features described in the IMAP standard [4], but they all include
the most important commands. These libraries represents differ-
ent approaches to the solution of the IMAPA interfacing problem,
therefore, to analyze and study their characteristics provides their
respective advantages and disadvantages. Each library supports de-
velopers in different ways, with varying functionality, different pa-
rameters and return values. The following subsections will provide
an in-depth description of the characteristic of each of analyzed so-
lutions.

6.1 Java

Even if there are many IMAP solutions for Java, we selected the
JavaMail package [2], as it is the library officially released by Sun
Microsystems. This package provides a platform-independent and
multiprotocol framework which can be used to implement email
and messaging applications.

The philosophy behind JavaMail is interesting, as it allows
client programs to download message(s) from the remote IMAP
server and cache them locally, bringing it closer to POP3 than the
other IMAP4 approaches. This package is multiprotocol, in the
sense that it allows a transparent access to both IMAP and POP3
servers. A client program using this library must principally, create
a Session object, useful to retrieve the proper Store; the latter
determines the correct connection mechanism between client and
server depending on the specific protocol required (IMAP, POP3,
SMTP). Indeed the Store object models a message store and
its access protocol. The Store object has a connect method to
establish the connection to the server, and by means of the IMAP
“LOGIN” command, supports a simple authentication mechanism.

Once successfully authenticated, the client can access a mailbox
by obtaining a Folder object from the Store. By means of the
Folder object, the client can open a mailbox in read/write or read-
only mode and retrieve data invoking the getMessages method.
This method returns a vector of Message objects which model an
email message and provide a set of “getXXX” methods® to retrieve
message data, such as text, flags, sender’s and recipient’s addresses,

6Forexample getFrom, getFlags, getAl1Recipients, getReplyTo,
etc.

ete. In detail, from the point of view of the socket streaming,
each time a “getXXX” method is invoked, a proper interaction
with the server is started to obtain the desired data item; such an
information is then cached in the Message object in order to make
it readily available if it is further needed. Such a data retrieving
policy could be considered a drawback, as for performances, since
it causes a new protocol interaction with server each time a not yet
retrieved message attribute is needed. Indeed, this drawback can
be overcome by using a “fetch profile”, i.e. the programmer can
personalize data recovering by preparing a FetchProfile object
and then use the Folder . fetch method; the latter retrieves, using
a single transaction for cach message, all data items requested,
making them available without needing any further interaction with
the server.

The following code is a brief example of what a Java program
using the JavaMail library program has to do to retrieve email
messages.

import javax.mail.*;

// Get a Session object
Session session =

Session.getInstance (properties, null);
// Get a Store object
Store store = session.getStore(protocol);
store.connect(host, port, user, password);
// Open the Folder
Folder folder = store.getDefaultFolder();
folder = folder.getFolder (mailbox_name);
// try to open the folder in read/write mode
folder.open(Folder .READ_WRITE);
Message [] msgs = folder.getMessages();
// Create a fetch profile
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.ENVELOPE);
fp.add(FetchProfile.Item.FLAGS);
// fetch messages using the profile
folder.fetch(msgs, fp);

Even if the policy of JavaMail is not the proper way to fetch
messages with respect to IMAP4 protocol, its performances are
good enough as reported in Section 7.

6.2 C#

The C# solution we analyzed is the “ImapLibrary”, available
athttp://www.codeproject.com/KB/IP/imaplibrary.aspx
and provided with the source code. This library exploits the dotNet
platform, using the framework’s native packages such as the socket
library and the XML data handling packages. This solution has pe-
culiar return values in some object’s methods; in some cases, the
output of the parsing activity is identified by an XML file, where
each node of the XML tree represents a portion or a section of an
email message. The library contains three main source files;

¢ ImapBase.cs; it defines the base class to handle low-level
client/server communication, data transmission and reception
to/from the socket channel.

® Imap.cs; it implements the IMAP4 protocol; it is in charge of
preparing client queries, sending the equivalent IMAP4 com-
mand and parsing server’s response. The Imap class defined in
this source file is derived from the ImapBase class.

° ImapException.cs; it defines some exceptions to manage inter-
nal errors and protocol faults.

The basic entity of the library is the Imap class, which defines
a set of methods, each executing a specific command of the IMAP

protocol. In detail, the Login method allows a client to perform
both a connection with the server and user authentication. This
method verifies if the server is connected and if the client is already
logged in. If so, it does not send another login command and choos-
ing the correct policy to manage this condition, After a login, the
client is requested to select a mailbox through the SelectFolder
method, requiring a string as a mailbox name. Subsequently, to ob-
tain message data, the client can use the following three methods:

e FetchPartHeader. It retrieves the header of the email mes-
sage or an encapsulated part (i.e. an attachment) and, in par-
ticular, implements the IMAP commands “FETCH BODY
[HEADER]” and “FETCH BODY [section.MIME]”. It requires
the UID of the message to be retrieved, the section, and returns
(by reference) an ArrayList object; each element of this ob-
ject is a string containing one of the lines of the header of the
retrieved message.

FetchPartBody. It retrieves the body (i.e. text or attachment
data) of a part of a message by using the IMAP command
“BODY/[section]”. The programmer has to specify the UID of
the message and the section number; the return value is a string
which contains the requested body data.

e FetchMessage. This method retrieves all the parts of a mes-
sage and produces, as output, an XML file, properly formatted,
contained all message data. The method requires the UID of the
message and an Xm1Writer object to be used for output writ-
ing.

The code below illustrates a snippet of a simple client program
that uses the Imap library.

Imap oImap = new Imap();
oImap.Login(host, user, password);
oImap.SelectFolder (mailbox_name) ;

XmlTextWriter oXmlWriter =

new XmlTextWriter (sFileName,

System.Text.Encoding.UTF8);
oXmlWriter.Formatting = Formatting.Indented;
oXmlWriter.WriteStartDocument (true) ;
oXmlWriter.WriteStartElement ("Message");
oXmlWriter.WriteAttributeString ("UID", sUid);
oImap.FetchMessage(1234, oXmlWriter, true);
oXmlWriter.WriteEndElement () ;
oXmlWriter.WriteEndDocument () ;

As the description and the code above highlight, the library per-

forms a partial parsing of the reply as for the methods FetchPartHeader

and FetchPartBody, and a full parsing in the method FetchMessage,

but, in the latter method, the output is not directly usable by a client
program: instead, the programmer is requested to re-interpreter the
XML file in order to obtain the information s/he needs.

6.3 Python

Python [16] offers an IMAP client module delivered with its stan-
dard Iibrary called “imaplib”. As with all modules of the Python
library, imaplib is free and provided with its source code.

The basic component of the library is the IMAP4 class, which
defines methods for all the commands of the IMAP standard, pro-
viding a 1:1 mapping. All of the library methods have similar inter-
faces; all of them require a string which represents the parameter(s)
for the command to be sent to the server, therefore the library cre-
ates the IMAP command by simply appending the string received
as argument and adding the Tag. Similarly, the reply is returned by
the method “as is”, without any parsing, which if required, must be

35

done by the client. Indeed, the return value of all methods is a tuple
with two elements: the first element is the tagged response, repre-
senting the outcome of the command, while the second element is
the untagged response containing the data sent back by the server.

An interesting capability of this library is the authentication
mechanism, which is provided through the “AUTHENTICATE”
command. It does not use clear text, relying on a more flexible and
secure authentication model described in [14].

A python client program which wants to connect to an IMAP4
server must create an IMAP4 object and use it to invoke the login
or authenticate method. Once the connection is established, the
client can select the folder to examine and call the fetch method
to pick up message(s) and associated data. This method requires
two parameters: the first parameter is the message sequence num-
ber, expressed as an integer, or a range of messages, provided as
a string in the form ‘‘first message number:last message
number’ ’; the second parameter is a string representing the com-
plete argument to be appended to the “FETCH” command. The
code below shows a basic client program in python using the
imaplib:

import imaplib

imap = imaplib.IMAP4(host)
result, data = imap.login(username, password)
The default mailbox is ’inbox’
result, data = imap.select()
Let’s get the text and the UID of the
10th message
result, msg_data =

imap.fetch(10, °’(UID BODY[TEXT])’)
Let’s get the ’From’ and ’Subject’ fields of
the messages from 1 to 5
result, msg_data =

imap.fetch(’1:57,

’ (body [header.fields (from subject)])’)

The library provides additional features since offers other com-
mands, such as APPEND, CREATE, DELETE, to modify the se-
lected mailbox, or UID, FLAGS, LIST, to retrieve information
about message or mailbox characteristics.

6.4 Ruby

Ruby [1], like python, is an interpreted (scripting) language. Its ba-
sic library offers an IMAP module called net/imap which comes
as part of the language distribution. This library is free and the code
is accessible to the developers.

The library provides a class Net : : IMAP whose interface is sim-
ilar to the module provided for the Python language. However, un-
like the IMAP Python implementation, the Ruby library performs a
parsing activity and returns the server response to the client pro-
gram by means of proper language types which can be directly
used. The code below illustrates a simple ruby client program:

require "net/imap.rb"

imap = Net::IMAP.new(host)
imap.login(username, password)
imap.select (nailbox_name)
info = imap.fetch(20,

"BODY [HEADER.FIELDS (FROM SUBJECT)]")
message = imap.fetch(10..15, "BODY[HEADER]")

As the example illustrates, the client program must create a
Net: : IMAP object, specifying the server address as parameter, and
then invoke the “login” or “authenticate” method. Subsequently,
the client can select a mailbox (select method) and manipulate it

through the proper commands defined in the library. As for mes-
sage retrieving, the fetch method needs two parameters resem-
bling the fetch primitive of the python implementation, even if the
reply is properly parsed. Indeed, the fetch method returns server’s
reply as a native Ruby type, i.¢. a structured type composed of two
ficlds: seqno and attr, the former is (he message sequence num-
ber while the latter is a hash table in which each item is a couple
{key, value}; here the key is one of the arguments specified with
the “FETCH” command (e.g. “FLAGS”, “BODYSTRUCTURE”,
“UID", ete.) and value is the associated data. This data is generally
returned as is, without any parsing, unless one of the following
arguments are passed: “BODYSTRUCTURE”, “BODY[TEXT]”,
“BODY[section]”, “ENVELOPE". In such cases, the value field
may be one of the following defined types:

® Net::IMAP::BodyTypeBasic, which represents the structure
of the body of a simple message;

® Net::IMAP: :BodyTypeMultipart, which represents a mes-
sage composed of more than one part, that is a text and one or
more attachments;

¢ Net::IMAP: :BodyTypeText, that contains the text of a mes-
sage;

* Net::IMAP: :BodyTypeMessage, which represents a message
of the type MESSAGE/RFC822, i.c. a message encapsulated
in another message, as it happens in the case of fi orwarding an
email.

There structured data types are very useful, as, by properly
navigating their fields, a programmer can directly access all the
information regarding the fetched messages. A proper exception
is finally raised if the command does not succeed due to a protocol
error or a bad parameter.

6.5 Erlang

The client library we implemented in Erlang as part of this study
represents an interface between a front-end and an IMAP4 server.
It handles both TCP and SSL client/server connections. The library
is based on OTP and works as a stand-alone Erlang application.
It manages the most important IMAP4 command such as LOGIN,
SELECT, FETCH, LIST, IDLE performing an analysis of server
responses in order to create an Erlang representation of email data,
Indeed, the library parses server response, verifies it correctness
according to IMAP4 standard, and produces an Erlang-native result
value.

The library is mainly composed by three modules: im_client,
the interface between the front-end and the IMAP4 server, it im-
plements all the IMAP4 commands; scanning, which performs a
lexical analysis of the reply recognizing and carrying out tokens;
parsing, that instead parses the output of the previous module by
generating an Erlang-native term for the server response.

The basic module of the library is im_client, which also pro-
vides the interface functions to exccute IMAP commands. The
module is a gen_server and the process’ status data hold, together
with information such as the socket connection, the state of the
finite-state machine of the protocol (see Section 6.5) in order to
perform correct sending and handling of commands.

The interface provided by im_client is simple and quite sim-
ilar to that of other described libraries. Starting the activities im-
plies to activate the gen_server process managing the protocol
through the start_link function, which takes two parameters,
mail server address and connection type (“tep™ or “ssI”). Subse-
quently, the client can invoke the login function to perform au-
thentication; it uses the basic authentication mechanism is based
on username and password, and, like all other libraries (exclud-
ing the Python implementation) currently does not support the AU-
THENTICATE IMAP4 mechanism. The next step is mailbox se-

36

lection, which is performed through function select; after this,
messages can be retrieved using the fetch function, which re-
quires two parameters, the message or the list of messages to be
retrieved and the additional arguments for the FETCH command.
A flexible way to specify such arguments has been implemented,
indeed messages to retrieve can be specified by providing a list of
their message numbers (or UIDs); morcover, if a range of mes-
sages is required, it is possible to specify, as an element of the
list, a tuple in the form {first,last}. As for the arguments of
the FETCH command, they are provided as a list of strings, such
as [‘“flags’’, ‘‘bodystructure’’, ‘‘size’’], which are
then suitably interpreted by the library in order to prepare the
complete FETCH command. Therefore, these parameters are not
barely concatenated with “FETCH?”, as it happens for example in
Ruby and Python, but they express the precise information that a
programmer wants to obtain from a message; for example, to re-
trieve the sender, the recipient, the subject and the text of an email,
it suffices to pass the term [{‘‘body’’, 1, 1}, ‘‘from’’,
‘‘to’?, ‘‘subject’’]: the library is able to interpret the pro-
vided information, prepare the proper command, which in this case
is “(BODY.PEEK[1] BODY[HEADER.FIELDS (FROM TO SUB-
JECT)])”, and suitably parsing the received response.

All of the IMAP protocol functions of the im_client module
return a tuple containing two elements: {ResultValue, Parsed
Reply}, the former is an atom representing the server response to
the command’, while the latter is the server’s reply data, as pro-
vided by the parser modules. In functions select, fetch and
list, this second element of the return value is a “proplist™®
({key,data}), in which the ey is a symbol with expresses a message
data item and data is the associated value. As an example, the func-
tion call, im.client:fetch ([5,6], [* ‘bodystructure’’,
‘‘date’’]), with generates the IMAP command “FETCH 5:6

(BODYSTRUCTURE BODY[HEADER FIELDS (DATE)])", replies

(on success) the following data:

{ok,
[[{"seq_no",5},

{"bodystructure", "text/plain","7bit","24","834"}

{"date",{{2007,3,6},{23,2,52}}}1,
[{"seq_no",6},

B

{"bodystructure","text/plain","7bit","20","577"} ,

{"date",{{2007,3,6},{17,9,0}}}11}

The piece of code below illustrates the use of this library:

im_client:start_link (Mailserver_name, ssl),
{ok, _} = im_client:login (Username, Password),
{ok, MBoxInfo} = im_client:select ("INBOX"),
{ok, MsgSeti} =
im_client:fetch([{1,3}, 107,
[{"body", 1, 1}, "from",
"tO" , "subject"]) ,
{ok, MsgSet2} =
im_client:fetch([{15, 20}],
["bodystructure"]),

The Erlang library also offers some interesting features. One
of them is the ability to check the connection and re-instantiate
it, if needed; indeed the library avoids some protocol errors such
as the “brutal closure connection”, which occurs when a login is
not performed within a timeout after establishing the connection
or when, due to a long period of inactivity, the server unilaterally

71t can assume the value ’ok’, "not’ or ’bad’.
ﬁnmmamL&HMfemhwmmm¢ﬂmaHmOmeNSWﬂ

decides to abort the connection. To this aim, before sending each
command, the library verifies if the user is just authenticated and
the connection has been set up. Another interesting feature is the
ability to support multiple client commands, since their sequencing
is then handled internally. Finally, since the library is based on OTP
concepts, it can be run as an OTP application embedded in a more
complex Erlang system, running in the same memory space as the
application using it.

7. Results

This Section compares software productivity measures of all IMAP
libraries evaluated in this work. The software metrics used for this
comparison are the followings:

e SLOC, which measures software size and exactly the number of
logical software lines;

e Functionality of primitives, which analyses the functionalities
of primitives provided by the IMAP libraries;

e Amount of memory, which measures the space cost of the li-
brary;

e Execution time, which measures the time required by different
libraries to perform protocol activities.

The following subsections will report all results that have been
collect during this work.

7.1 SLOC

The SLOC is a software metric that provides a measure of the
effort needed to create an IMAP library in a specific programming
language. As discussed in Section 5, libraries analyzed in this
paper present different characteristic as they do not provide the
same number of functionalities, in terms of both IMAP primitives
supported and parsing of server responses. For these reasons, we
decided to consider the pieces of code, of the various libraries,
which implement (more or less) common IMAP primitives.

Language | Lines
Erlang 1,189
Python 472
Ruby 1,612
C# 1,089
Java n/a

Table 1. SLOC

Table 1 summaries the lines of code calculated; the highest
number of SLOC is that of Ruby implementation, while the shortest
library is the Python one. Erlang and C# feature a similar number
of SLOC, while, for JavaMail, this measure cannot be performed
since the source code is not released.

The small SLOC number featured by Python is justified by the
complete absence of any parser. With respect to the architecture
illustrated in Section 4, the Python library only possesses the Com-
munication Layer, the Low-level Protocol Handler and the IMAP
High-Level Layer.

On the other hand, Erlang and Ruby implementations support
a full parsing of servers replies, and as a result present a higher
number of SLOC. The parser in the Ruby library is however more
complex than the Erlang one due to the definition of data types
and an intensive use of complex regular expressions. The lines
devoted in Ruby to reply analysis were 1048 in contrast to the
818 from the Erlang implementation. The reduction in Erlang is a
result of making use of function clause matches in order to directly
identify reply tokens and perform the appropriate data extraction.

37

This aspect not only improves performances (see Subsection 7.4),
but also the comprehension and maintainability of the source code.

Finally, the C# implementation presents a number of SLOC
comparable to that of Erlang. This is quite interesting even if C#
does not provide full parsing of the server replies. It does not parse
the (often complex) result of the SELECT command, something
Erlang does in full. It does not support the LIST command and
only some parts of the FETCH command, both of which Erlang
also fully supports.

7.2 Functionality of primitives

In this Subsection, we will describe the functionalities offered by
the various IMAP libraries comparing and contrasting their char-
acteristics. In particular, we will focus on the primitives “LOGIN”,
“SELECT/EXAMINE”, “FETCH” and “LIST”. Table 2 summa-
rizes and compares the results of this analysis.

7.2.1 Login

The first functionality we deal with is authentication; to this aim,
each library has method or function that performs the IMAP LO-
GIN command. All of the implementations require the “user.name”
and “password” to authenticate client to the server. The Python and
Erlang implementations return a result value indicating the success
or the failure of the login command; other libraries raise an excep-
tion in the case of failed authentication.

7.2.2 Select

The second functionality we analyzed is the selection of the mail-
box. The client program can access the desired mailbox by means
of the SELECT or EXAMINE command: the former opens the
mailbox in read/write mode, the latter in read-only mode. With the
exception of JavaMail, all the libraries feature a proper SELEC-
T/EXAMINE function or method. The Java implementation, how-
ever, uses a different approach as it provides an open method in
the Folder object which represents the mailbox. This method re-
quires a parameter that indicates how to open the specified mailbox
(READ_ONLY or READ_WRITE). Once a folder/mailbox is open,
its mode cannot be changed, e.g. from read-only to read-write or
vice versa: the Folder object must be “closed” and then re-opened
with the new mode. This policy is due to the class hierarchy and
model used by JavaMail and could make the client more complex:
indeed, even if the IMAP4 protocol manages a SELECT command
followed by the EXAMINE command (to change the mode to read-
only), the Java library does not manage this condition and must
close the selected folder and re-open it.

As for the reply to the SELECT/EXAMINE command, C#
does not perform any parsing while Java does it, but manages the
resulting information internally.

Python returns the total number of messages in the mailbox
(which is given by the EXISTS keyword in one of the untagged
responses of the server) while Ruby uses a different approach; in-
deed, the reply to the select method is bare text (with no pars-
ing) of the server response’, but the parsing is internally handled:
the responses attribute of the Net: : IMAP object is a dictionary
whose keys “EXISTS” and “RECENT” are the number of total and
new messages of the mailbox, returned as a result of the SELECT
command.

The Erlang library provides the most complete parsing of the
SELECT command; the provided select/1 function returns the
tuple {result_value, parsed.response}: the former parame-
ter is the outcome of the command (success or failure) and the latter

9In particular, the retum value is the Ruby structure
Net::IMAP::TaggedResponse, which contains other two structs,
Net::IMAP: :ResponseText and Net: : IMAP: :ResponseCode.

Command/Primitive

Erlang Python Ruby C# Java
LOGIN Yes Yes Yes Yes Yes
SELECT Full parsing No parsing Partial parsing No parsing Internal w/full parsing
FETCH Parametric Query Parameters as string Parameters as string Only some queries supported Encapsulated Quenes
Flexible expression of ranges Ranges as string Range or single messages Single messages Single messages
Full parsing No parsing Partial parsing Partial parsing Full parsing
LIST Full parsing No parsing Full parsing n/a Full parsing
Supported in current context

Table 2. Comparison of Functionality of Primitives

element is a “proplist”, i.e. a list of tuples of the form {keyword,
value}. In this proplist, the keyword is an Erlang atom represent-
ing the status information of the mailbox such as flags, exists,
recent etc., while the second tuple element is the related value!®.

7.2.3 Fetch

The FETCH command is treated by Python and Ruby libraries in
a similar way. As introduced in Sections 6.3 and 6.4, the method
provided requires two parameters: a sequence number or a range
and the string command to send to the server. The Ruby imple-
mentation parses the server response and generates a propet result
value by means of Ruby structured type. The Python library, one
the other hand, only parses of the tagged response, interpreting the
outcome of the command, returning the untagged response “as-is”.

The Java library provides a fetch method with the Folder
class that downloads locally remote messages; once fetching is
complete, messages are internally cached so new requests stored
locally will not result in a query to the server. Even if the cache
allows the client to pick up data quickly, it is not able to send a user-
defined fetch command using this method. Moreover, it can retrieve
only the fetch attributes provided defined in the FetchProfile class.

The C# implementation has three fetch methods that retrieve
different section of a message:

® FetchPartBody, which retrieves the body text of a message,
the text is returned to the client as string;

® FetchPartHeader, which picks up the header of a message
and returns its fields within an ArrayList;

® FetchMessage, which generates an XML file containing the
field of header and body structure reply.

Therefore, the type of the reply and the support for parsing depend
on the method called; this is quite unusual because according to
good software design, methods of the same class with similar
functionalities should behave similarly.

The Erlang library interface for the fetch primitive is strongly
based on native data types. As detailed in Section 6.5, the pro-
grammer can specify both single messages and message ranges
within the single query, and the data items to be retrieved by
means of proper list of pre-defined symbols. The reply orga-
nizes parsed data items in a “proplist”, so it is quite easy, for
a programmer, to pick the requested item by means of a simple
proplists:get_value/2 function call.

7.2.4 List

The “LIST” command aims at examining the hierarchy of the
folder/mailboxes. It is similarly supported by all libraries with the
exception of the C# implementation, which does not provide this
functionality.

107t can be either a single value (for instance the value of the EXISTS un-
tagged response is only a number represcnting the total number of message
in the mailbox), or a list of valucs if the untagged response contains many
value, as the FLAGS untagged response.

38

The JavaMail package provides a list method in the Folder
class; therefore a client that has opened a mailbox can investigate
only its context.

The methods/functions provided by Python, Ruby and Erlang
have the same signature of the list function and require two argu-
ments; the reference name, which represents the context in which
to investigate, and the mailbox name, with possible wildcards. The
main difference is in the return value. The Python library does
not perform any parsing and returns the (untagged) response as a
string for further analysis. The Ruby implementation instead parses
the response by returning an array of Net: : IMAP: :MailboxList
structures whose fields represent the attributes of a folder, returned
by the command. The Erlang implementation carries out, as result
of a “LIST” query, the tuple {result value, list};the second
element is a list containing other lists; each inner list represents
a folder that matches the LIST pattern and its items are tuples of
the form {keyword, value}'' carrying the attributes associated
with this folder. An example of the return value 1ist function of
the Erlang implementation is reported below:

{ok, [[{name, "mailbox_name_A"},
{separator,"."},
{noinferiors,false},
{noselect,false},
{marked,false},
{unmarked,false}],
[{name, "mailbox_name_B"},
{separator,"."},
{noinferiors,false},
{noselect,false},
{marked,false},
{unmarked,false}]]}

7.2.5 Discussion

The comparative outcome of the analysis of the functionality of
primitives is reported in Table 2. The Table highlights that the most
featured and transparent implementations are those in Erlang and
Java, while the most feature-poor implementation is the Python
one. Erlang and Java solutions, however, differ in some aspects of
the software architecture because, while the Erlang implementation
provides a direct interface to the IMAP commands, JavaMail is
based on an object hierarchy with abstractions such as Folder and
Message; from this point of view, JavaMail supports a higher level
interface but undoubtedly introduces an overhead.

7.3 Amount of memory required

This metric evaluates the amount of memory required by an ap-
plication using the various IMAP libraries. The results provide the
memory imprint computed for the various IMAP clients at run-time
while they are using these libraries. The second column in Table 3
contains the total memory used by the program, the third one repre-
sents the memory taken up by the text code and the last one contains

1t is a “proplist” again.

the amount of memory used by the stack and heap of the program
to keep its data'?,

Language Total Code | Data/Stack
Erlang 8,056 2,868 4,656
Python 6,748 4,400 1,684
Ruby 14,942 4,332 10,386
C# 18,800 | 11,148 2,748
Java 212,852 | 14,428 190,060

Table 3. Quantity of Memory Space Used (values are in KB)

It should be noted that this measure mainly reflects the usage of
the virtual machine and the library, since all the tested languages are
interpreted. As reader can deduce, the highest amount of memory is
required by the Java client program, which needs 212 MB of main
memory; indeed, since the code is only 14 MB large, the most of the
space is devoted to the class library which is loaded and compiled
(by the JIT) at the startup of the JVM,

The lighter platform, from the point of view of the total size,
is Python: the VM size is only 4 MB and also the library is quite
small,

Erlang provides very interesting performances: its virtual ma-
chine is very small and is the lighter among the tested languages
as it oceupies only 2 MB. The size of data space (4.5 MB) is due
to the Erlang/OTP runtime which is activated at the startup of the
system.

7.4 Execution time/throughput

This Subsection compares the execution times of some primitives
of the IMAP implementations described in this paper. The aim is to
evaluate the performance of each library in order to compare and
contrast the throughput. These results will allow us to get a sense of
which programming languages and which architecture best meets
the productivity requirements and performance of a distributed sys-
tem. In general, performances are determined by communication
and process management, therefore, for each library, we measure
the time of the network interaction. Network interaction is the time
required to send and receive protocol commands together with the
time taken to parse the server result.

All the tests have been conducted using the same mail server and
the same set of email messages. The testing platform (the client)
is a 2 GHz Intel Centrino PC, equipped with 1 GB of RAM and
Ubuntu Linux 7.10 (kemel 2.6.22). Client and server are connected
to the same fast-Ethernet LAN. The runtime systems used for the
languages tested are reported in Table 4.

Language | Platform/Release
Erlang R11B-5 (erts 5.5.5)
Python 2.5

Ruby 1.8

C# Mono JIT 1.2.4
Java Sun’s JDK 1.6

Table 4. Platform/Runtime Systems for the Libraries Tested

Table 5 reports the execution times obtained for each command
on all the IMAP libraries. Unluckily, the Java and C# libraries do
not provide exactly the same functionality offered by other IMAP
libraries; indeed, JavaMail and ImapLibrary have a different policy
to retrieve data when compared with the other implementations.

2Total Size also includes read-only data and other segments of memory
space, this is the reason why this value is greater than the sum of Code and
Data/Stack columns.

39

Furthermare, they present particular primitives which perform a
composite IMAP4 command which cannot be mapped to any of
the other commands generated by other libraries. For instance, the
C# library offers the fetchMessage method to send the IMAP4
“FETCH BODYSTRUCTURE” and “FETCH BODY[HEADER]”
commands, which produces an XML file as the outcome of its
parsing activity. In addition, the high-level interface of the C#
implementation does not offer primitives to directly perform a
basic IMAP4 command; only JavaMail allows developers to send a
user-defined command overriding the doCommand method of the
IMAPFolder class. This last function executes the user-defined
IMAP4 command and returns an array of Response objects which
contain the ASCII server response. As a result, this method does
not perform any parsing activity.

As discussed in the previous Section, the JavaMail package of-
fers a large range of classes and methods to perform IMAP4 pro-
tocol activity. The retrieval of data and handling of the mailbox
are encapsulated within a Java object, hiding the whole mechanism
from the developers. Even if this policy simplifies the client pro-
gram, it made it hard to compute or compare the execution time of
some of the primitive, resulting the “not-available” for some mea-
sures.

Comparing the execution times reported in Table 5, the reader
can notice that the Ruby implementation provides the worst perfor-
mances and also the C# solution does not present good execution
times. At first sight, the Python library seems the best; we should
remind that it does not perform any parsing activity, so the reported
measures are (more or less) the times of the network/socket com-
munication.

As for the Erlang and Java solutions, as the Table shows, they
feature comparable performances for the commands providing the
same functionalities (network transaction + parsing), which are
reported in columns 1, 2, 3, 4, 7 and 8: with the exception of
“FETCH BODY[TEXT]", the Erlang solution executes in less time
with respect to the Java library'. This is an interesting result, since
we should consider that the Java program is executed in native
code (it is compiled by the JIT), while, in Erlang, execution is
mainly interpreted. This result is important as it confirms the ability
of Erlang to fit the requirements of a distributed application, not
only in terms of distribution and fault tolerance (handled by the
native mechanisms of OTP), but also for the performance aspecls
concerned.

8. Conclusions

In this paper, we reported the results of a comparative analysis of
five client-side IMAP protocol libraries implemented in different
programming languages: Python, Ruby, C#, Java and Erlang. The
aim is to evaluate the performances of Erlang in order to get a sense
of the ability of this programming languages and IMAP implemen-
tation architecture to meet requirements of productivity and per-
formance for a distributed system. We selected different parame-
ters to perform our comparison: number of Source Lines of Code
(SLOC), which provides an assessment of effort needed: Sunction-
ality of primitives, which highlights the way in which IMAP proto-
col is supported and the quality of the interface to be then used by
the developer; amount of memory, which measures the space cost of
the application; execution time, which measures the time required
1o perform certain basic and critical IMAP activities.

From the analysis, we can conclude that the Erlang library can
deliver the requirements of functionality and performance for a
distributed system. From the latter point of view, if we consider

13 The Erlang time in row 6 can be compared to the Java time in row 7 since
these two commands are comparable in terms of both network overhead and
reply structure.

| Command/Primitive Erlang | Python | Ruby C# | Java
1 | LOGIN 28.6 45.7* 26.1 | 32.7 | 30.7
2 | SELECT 2.5 2.1*% | 443 | 132 4.5
3 | FETCH BODY[TEXT] 43.0 41.1* | 80.2 | 40.0 | 40.2
4 | FETCH BODY[HEADER] 2.5 02* | 445 53 2.9
5 | FETCH BODY[HEADER.FIELDS] 2.3 0.2% 43.0 n/a | 1.3%
6 | FETCH BODYSTRUCTURE 1.8 0.2* 80.2 n/a | 1.2%
7 | FETCH (ENVELOPE SIZE BODY.PEEK[HEADER.FIELDS]...) n/a n/a n/a n/a 1.9
8 | LIST 0.7 0.9* | 52.1 n/a 6.3

* = command executed without any parsing of the response

Table 5. Execution Times of Tested Commands (values are in milliseconds)

the implementations with similar functionalities (i.e. structured
parsing of the responses), the execution times of the Erlang solution
are high and comparable to those of Java, while the worst results
are featured by the Ruby implementation. And even if the best
results have been calculated for Python, it should be noted that its
library lacks in-depth parsing activity and transparency of function
signature. These results confirm that Erlang has significant benefits
not only for the rapid production of robust distributed system, but
also for the achievement of desired performances without high
memory cost.

9. Acknowledgments

This work was a collaboration between Erlang Training and Con-
sulting, UK, and the University of Catania, Italy.

References

[1] http://www.ruby-lang.org/en/.

[2] http://java.sun.com/products/javamail/downloads/index.html, 220ct.
2007.

[3] J. Armstrong, A History of Erlang. In Proceeding of History Of
Programming Languages, 2007.

[4] M. Crispin. INTERNET MESSAGE ACCESS PROTOCOL -
VERSION 4revl. ARPANET Request for Comment No. 3501, 2003,

[5] T. DeMarco. Yourdon Press, New York, NY, USA, 1982.

[6] N. Freed and N. Borenstcin. MIME (Multipurpose Internet Mail

Extensions) Part One: Format of Internet Message Bodics. ARPANET
Request for Comment No. 2045, 1996.

40

[7] H. D. Gamus D. Function Point Analysis. Measurement practise for
successful software projects. ADDISON WESLEY, Nov. 2000.

[8] F. L. F. P. U. Group. Function Points Counting Practices Manual
(version 4.1.1), http: // www. 1 fpug. org/, WWW. 2000,

[9] B. Hausman. Turbo Erlang: Approaching The Speed of C. In
Proceedings of the Implementations of Logic Programming Systems
Conference, 1993.

[10] D. Hubbard. The IT Measurement Inversion.
Magazine, 1999.

[11] E. Johansson. HiPE: A High Performance Erlang System. In
Proceedings of the ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming, 2000,

[12] D. King, H. Nystrém, and P. Trinder. Comparing C++ and Erlang
for Motorola Telecoms Software. In Proceedings of the International
Erlang User Conference, 2006.

[13] T.J. McCabe. A Complexity Measure. IEEE Transaction on Software
Engineering, 2(4), 1976.

[14] J. Myers. Simple Authentication and Security Layer (SASL).
ARPANET Request jor Comment No. 2222, 1997.

[15] L. Prechelt. An empirical comparison of seven programming
languages. Computer, 33(10):23-29, 2000.

[16] Python Software Foundation. http://www.python.org.

[17] QUALCOMM Incorporated. Internet Message Format. ARPANET
Regquest for Comment No. 2822, 2001,

[18] U. Wiger. Four-fold Increase in Productivity and Quality. In Pro-

ceedings of the FEmSYS, Deployment on Distributed Architectures,
2001.

CIO Enterprise

Scalaris: Reliable Transactional P2P Key/Value Store
Web 2.0 Hosting with Erlang and Java

Thorsten Schiitt

Florian Schintke

Alexander Reinefeld

Zuse Institute Berlin and onScale solutions
schuett@zib.de, schintke@zib.de, reinefeld@zib.de

Abstract

We present Scalaris, an Erlang implementation of a distributed
key/value store. It uses, on top of a structured overlay network,
replication for data availability and majority based distributed
transactions for data consistency. In combination, this implements
the ACID properties on a scalable structured overlay.

By directly mapping the keys to the overlay without hashing, ar-
bitrary key-ranges can be assigned to nodes, thereby allowing a bet-
ter load-balancing than would be possible with traditional DHTs.
Consequently, Scalaris can be tuned for fast data access by taking,
e.g. the nodes’ geographic location or the regional popularity of
certain keys into account. This improves Scalaris’ lookup speed in
datacenter or cloud computing environments.

Scalaris is implemented in Erlang. We describe the Erlang soft-
ware architecture, including the transactional Java interface to ac-
cess Scalaris.

Additionally, we present a generic design pattern to implement
a responsive server in Erlang that serializes update operations on
a common state, while concurrently performing fast asynchronous
read requests on the same state.

As a proof-of-concept we implemented a simplified Wikipedia
frontend and attached it to the Scalaris data store backend. Wiki-
pedia is a challenging application. It requires—besides thousands
of concurrent read requests per seconds—serialized, consistent
write operations. For Wikipedia’s category and backlink pages,
keys must be consistently changed within transactions. We dis-
cuss how these features are implemented in Scalaris and show its
performance.

Categories and Subject Descriptors C.2.4 [Distributed Sys-
tems]: Distributed databases; C.2.4 [Distributed Systems]: Dis-
tributed applications; D.2.11 [Software architectures]: Patterns,;
E.1 [Data structures}: Distributed data structures

General Terms
Reliability

Algorithms, Design, Languages, Management,

Keywords Wikipedia, Peer-to-Peer, transactions, key/value store

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’08, September 27, 2008, Victoria, BC, Canada.
Copyright © 2008 ACM 978-1-60558-065-4/08/09. .. $5.00

41

1. Introduction

Global e-commerce platforms require highly concurrent access to
distributed data. Millions of read operations must be served within
milliseconds even though there are concurrent write accesses. En-
terprises like Amazon, eBay, Myspace, YouTube, or Google solve
this problems by operating tens or hundreds of thousands of servers
in distributed datacenters. At this scale, components fail continu-
ously and it is difficult to maintain a consistent state while hiding
failures from the application.

Peer-to-peer protocols provide self-management among peers,
but they are mostly limited to write-once/read-many data sharing.
To extend them beyond the typical file sharing, the support of con-
sistent replication and fast transactions is an important yet missing
feature.

We present Scalaris, a scalable, distributed key/value store.
Scalaris is built on a structured overlay network and uses a dis-
tributed transaction protocol, both of them implemented in Erlang
with an application interface to Java. To prove our concept, we im-
plemented a simple Wikipedia clone on Scalaris which performs
several thousand transactions per second on just a few servers.

In this paper, we give details on the design and implementation
of Scalaris. We highlight Erlang specific topics and illustrate algo-
rithm details with code samples. Talks on Scalaris were given at
the IEEE International Scalable Computing Challenge 2008', the
Google Scalability Conference 2008 [15] and the Erlang eXchange
2008.

The paper is organized as follows. After a brief review of related
work we describe the overall system architecture and then discuss
implementation aspects in Section 4. In Section 5, we present a
generic design pattern of a responsive, stateful server, which is used
in Scalaris. We then present our example application, a distributed
Wikipedia clone in Section 6 and we end with a conclusion.

2. Related Work

Scalable, transactional data stores are of key interest to the com-
munity and hence there exists a wide variety of related work. Ama-
zon’s key/value store Dynamo [3] and its commercial counterpart
SimpleDB which is used in the S3 service, are similar to our work,
because they are also based on a scalable P2P substrate. But in con-
trast to Scalaris, they implement only eventual consistency rather
than strong consistency. Moreover, Dynamo does not support trans-
actions over multiple items.

The work of Baldoni et al. [2] focuses on algorithms for the
creation of dynamic quorums in P2P overlays—an issue that is of
particular relevance for the transaction layer in Scalaris. They show
that in P2P systems the quorum acquisition time and the message
latency are more important than the quorum size, which has been

1 Scalaris won the 15* price at SCALE 2008, www.ieeetcsc.org/scale2008

Applicaton Layer

crash
recovery

madel Scalaris: Key/Value Store (= simple database)

<3 strong data consistency

Transaction Layor =

Replication La - improves availability

at the cost of consistency
P2P Layer b

unreliable, distributed nodes

implements ACID

crash stop

implements
model

- scalability
- eventual consistency

Figure 1. Scalaris system architecture.

traditionally used as a performance metric in distributed systems.
This is in line with our results showing that an increasing replica-
tion degree » only marginally affects the access time, because the
replicas residing in the [(r + 1)/2] fastest nodes take part in the
CONSensus process.

Masud et al. [10] also discuss database transactions on struc-
tured overlays, but with a focus on the consistent execution of trans-
actions in the presence of failing nodes. They argue that executing
transactions over the acquaintances of peers speeds up the transac-
tion time and success rate. Scalaris has a similar concept, but here
the peer ‘acquaintances’ are realized by the load balancer,

With Cassandra [8] and Megastore [4], Facebook and Google
recently presented two databases based on the P2P paradigm.
Megastore extends Bigtable with support of transactions and multi-
ple indices. Cassandra is more similar to Dynamo as it also provides
eventual consistency.

3. System Architecture

Scalaris is a distributed key/value store based on a structured P2P
overlay that supports consistent writes. The system comprises three
layers (Fig. 1):

e At the bottom, a structured overlay network with logarithmic
routing performance builds the basis for the key/value store. In
contrast to many other DHTS, our overlay stores the keys in lex-
icographical order, hence efficient range queries are possible.

® The middle layer implements replication and ACID proper-
ties (atomicity, concurrency, isolation, durability) for concur-
rent write operations. It uses a Paxos consensus protocol [9]
which is integrated into the overlay protocol to ensure low com-
munication overhead.

® The top layer hosts the application, a distributed key/value
store. This layer can be used as a scalable, fault-tolerant back-
end for online services for shopping, banking, data sharing, on-
line gaming, or social networks.

Fig. 1 illustrates the three layers. The following sections de-
scribe them in more detail.

3.1 P2P Overlay

At the bottom layer, the structured overlay protocol Chord# [13,
14] is used for storing and retrieving key/value pairs in nodes
(peers) that are arranged in a virtual ring. In each of the N nodes,
Chord™ maintains a routing table with O(log V') entries (fingers).
In contrast to Chord [17], Chord? stores the keys in lexicograph-
ical order, thereby allowing range queries. To ensure logarithmic

42

replicated ltems at
Transaction Transaction
Managers Participants
Headss (TMs) (TPs)
'ﬁ
B || 1. Step
‘R‘M o Rel_‘lﬁ"“ﬂp
ae@ﬂ"’ Lit—
7 ;4;;;:____ [Prepare —|
o
s 3 3. Step
- Pmﬂ‘ﬁ“mw‘
/ A
After malority 4. Step
e pok PreparediA0e!
After majortty 5. Step
e | Carnnw,q:,m >
6. Step
\{q. L r\

Figure 2. Adapted Paxos used in Scalaris.

routing performance, the fingers in the routing table are computed
in such a way that successive fingers in the routing table cross an
exponentially increasing number of nodes in the ring.

Chord™ uses the following algorithm for computing the fingers
in the routing table (the infix operator 2 . y retrieves y from the

routing table of a node z):
finger, = { finger,_, . finger,_; 1i#0

Thus, to calculate the " finger, a node asks the remote node
fisted in its (s — 1) finger to which node his (i — 1)™ finger
refers to. In general, the fingers in level i are set to the fingers’
neighbors in the next lower level i — 1. At the lowest level, the
fingers point to the direct successors. The resulting structure is
similar to a skiplist, but the fingers are computed deterministically
without any probabilistic component.

Compared to Chord, Chord” does the routing in the node space
rather than the key space. This finger placement has two advantages
over that of Chord: First, it works with any type of keys as long as
a lotal order over the keys is defined, and second, finger updates
are cheaper, because they require just one hop instead of a full
search (as in Chord). A proof of Chord#'s logarithmic routing
performance can be found in [13].

successor 11=0

3.2 Replication and Transaction Layer

The scheme described so far provides scalable access to distributed
key/value pairs. To additionally tolerate node failures, we replicate
all key/value pairs over 7 nodes using symmetric replication [5].
Read and write operations are performed on a majority of the
replicas, thereby tolerating the unavailability of up to | (r — 1)/2]
nodes.

Each item is assigned a version number. Read operations select
the item with the highest version number from a majority of the
replicas. Thus a single read operation accesses [(r + 1)/2] nodes,
which is done in parallel.

Write operations are done with an adapted Paxos atomic commit
protocol [11]. In contrast to the 3-Phase-Commit protocol (3PC)
used in distributed database systems, the adapted Paxos is non-
blocking, because it employs a group of acceptors rather than a

replica groupy

it -
=
g ot Tde
nl en

Figure 3. Symmetric replication and multi-datacenter scenario. By
assigning the majority of the ‘de’-, ‘nl’-, and ‘se’-replicas to nodes
in Europe, latencies can be reduced.

single transaction manager. We select those nodes as acceptors
that are responsible for symmetric replication of the transaction
manager. The group of acceptors is determined by the transaction
manager just before the prepare request is sent to the transaction
participants (Fig. 2). This gives a pseudo static group of transaction
participants at validation time, which is contacted in parallel.

Write operations and transactions need three phases, including
the phase to determine the nodes that participate in the atomic
commit. For details see [11, 16].

In Scalaris, the adapted Paxos protocol serves two purposes:
First it ensures that all replicas of a single key are updated con-
sistently, and second it is used for implementing transactions over
multiple keys, thereby realizing the ACID properties (atomicity,
concurrency, isolation, durability).

3.3 Deployment in Global Datacenters

While we also tested Scalaris on globally distributed servers using
PlanetLab?, its deployment in globally distributed datacenters is
more relevant for international service providers. In such scenarios,
the latency between the peers is roughly the same and the peers are
in general more reliable.

When deploying Scalaris in multi-datacenter environments, a
single structured overlay will span over all datacenters. The lo-
cation of replicas will influence the access latency and thereby
the response time perceived by the user. As Chord” supports ex-
plicit load-balancing, it can—besides adapting to e.g. heteroge-
neous hardware and item popularity—place the replicas in specific
centers. A majority of replicas of German Wiki pages, for exam-
ple, should be placed in European datacenters to reduce the access
latency for German users.

Scalaris uses symmetric replication [5]. Here, a key ‘de:Main
Page’ is stored in five different locations in the ring (see Fig. 3).
The locations are determined by prefixing the key with ‘0’, ‘1°,
..., ‘5°. So the key of the third replica is ‘2de:Main Page’ and the
third replicas of all German articles will populate a consecutive
part of the ring. By influencing the load-balancing strategy we
can guarantee this segment to be always hosted in a particular
datacenter.

? http://www.planet-lab.org

43

All-for-one
supervision

One-for-one
supervision

Chord# Node Routing Table

i Sutistics Collector Database Load Balancer

Mod. Paxos

—
Transaction
Managers

Figure 4. Supervisor tree of a Scalaris node. Each box represents
one process.

5= KeyHolder

-3 Conflguration

Lp{ Fallure Detector

4. Erlang Implementation

The actor model [7] is a popular model for designing and imple-
menting parallel or distributed algorithms. It is often used in the lit-
erature [6] to describe and to reason about distributed algorithms.
Chord* and the transaction algorithms described above were also
developed according to this model. The basic primitives in this
model are actors and messages. Every actor has a state, can send
messages, act upon messages and spawn new acfors.

These primitives can be easily mapped to Erlang processes and
messages. The close relationship between the theoretical model
and the programming language allows a smooth transition from
the theoretical model to prototypes and eventually to a complete
system.

Our Erlang implementation of Scalaris comprises many compo-
nents. It has a total of 11,000 lines of code: 7,000 for the P2P layer
with replication and basic system infrastructure, 2,700 lines for the
transaction layer, and 1,300 lines for the Wikipedia infrastructure.

4.1 Components and Supervisor Tree

Scalaris is a distributed algorithm. Each peer runs a number of
processes as shown in Fig. 4:

Failure Detector supervises other peers and sends a crash mes-
sage when a node failure is detected.

Configuration provides access to the configuration file and main-
tains parameter changes made at runtime.

Key Holder stores the identifier of the node in the overlay.

Statistics Collector collects statistics and forwards them to central
statistic servers.

Chord* Node performs all important functions of the node. It
maintains, among other things, the successor list and the routing
table.

Database stores the key/value pairs of this node. The current
implementation uses an in-memory dictionary, but disk store
based on DETS or Mnesia could also be used.

The processes are organized in a supervisor tree as illustrated
in Fig. 4. The first four processes are supervised by a one-for-
one supervisor [1]: When a slave crashes, it is restarted by the
supervisor. The right-most processes (Chord* Node and Database)
are supervised by an all-for-one supervisor which restarts all slaves
when a single slave crashed. In Scalaris, when either of the Chord#
Node or the Database process fails, the other is explicitly killed and
both are restarted to ensure consistency.

4.2 Naming Processes

In Erlang, there are two ways of sending messages to processes: by
process id or by addressing the name registered as an atom. This
scheme provides a flat name space. We implemented a hierarchical
name space for processes.

As described in Sec. 4.1, each Chord™ node comprises a group
of processes. Within this group, we address processes by name. For
example, the failure detector can be addressed as failure_detector.

Running several Chord® nodes within one Erlang Virtual Ma-
chine (VM) would lead to name clashes. Hence, we implemented a
hierarchical process name space where each Chord* node forms
a ‘process group’. As a side-effect, we can traverse the naming
hierarchy to provide monitoring information grouped by Chord™
nodes.

For this naming scheme, every process stores its group id in
its own process dictionary. At startup time, processes announce
their name and process identifier to a dictionary inside the VM,
which is handled by a separate process in the VM. It can be queried
to find processes by name or by traversing the process hierarchy.
Additionally, most Chord® processes support the {'$gen_cast’,
{debug_info, Requestor}} message, which allows processes to
provide custom monitoring information to the web interface.

4.3 WAN Deployment

Erlang provides the ‘distributed mode’ for small and medium de-
ployments with limited security requirements. This makes it easy
to port the application from an Erlang VM to a cluster. In large de-
ployments, however, the network traffic caused by the management
tasks within the VM dominates the overall traffic.

In our code, we replaced the “!” operator and the self() function
by cs_send:send() resp. cs_send:this(). At compile time we can
configure the cs._send module to use the Erlang distributed mode or
our own transport layer using TCP/IP, which will be based on the
Erlang SSL library in the future.

This approach also allows us to separate the application logic
from the transport layer. Hence, NAT traversal schemes and firewall-
aware communication can be implemented without the need to
change Chord” code.

4.4 Transaction Interface

Transactions are executed in two phases, the read phase and the
commit phase. The read phase goes through all operations of the
transaction and keeps the result of each operation in the transac-
tion log. During this phase, the state of the system remains un-
changed. In the commit phase, the recorded effects are applied to
the database when the ACID properties are not violated.

Read phase. For the read phase, we use a lambda expression
which describes the individual operations to be performed in the
transaction (see Alg. 4.1). The mentioned transaction log is passed
through all calls to the transaction API and updated accordingly.
Passing a function to the transaction framework allows us to easily
re-execute a transaction after a failure due to concurrency.

Commit phase. The commit phase is started by calling do_trans-
action (see last line in Alg. 4.1). The transaction is executed asyn-
chronously. The function spawns a new process and returns im-
mediately. The ProcessId which is passed will be notified of the
outcome of the transaction. The SuccessFun resp. FailureFun are
applied to the result of the transaction before the result is sent back.
For the Scalaris implementation, we use the two functions to in-
clude transaction numbers into the status messages when a process
has several outstanding transactions.

We use the Jinterface package to enable Java programs to per-
form transactions. The transaction log is managed by the Java pro-
gram. On a commit the complete log is passed to Erlang and the

Algorithm 4.1 Incrementing the key Increment inside a transaction

run_test_increment(State, Source_PID)->
% the transaction
TFun = fun(TransLog) —>
Key = "Increment”,
{Result, TransLogl} = transaction_api:read(Key, TransLog),
{Result2, TransLog2} =
if Result == fail ->

Value = 1, % new key
transaction_api:write(Key, Value, TransLog);
true —>

{value, Val} = Result,
Value = Val + 1,
transaction_api:write(Key, Value, TransLogl)

% existing key

end,
% error handling
if Result2 == ok ->
{{ok, Value}, TransLog2};
true -> {{fail, abort}, TransLog2}
end
end,
SuccessFun = fun(X) -> {success, X} end,
FailureFun =
fun(Reason)~> {failure, "test increment failed”, Reason} end,

% trigger transaction
transaction:do_transaction(State, TFun, SuccessFun,
FailureFun, Source_PID).

Algorithm 4.2 Java Transactions

// new Transaction object

Transaction transaction = new Transaction();
// start new transaction

transaction.start();

//read account A
int accountA =
new Integer(transaction.read(" accountA")).intValue();
//read account B
int accountB =
new Integer(transaction.read(" accountB")).intValue();

//remove 100$ from accountA
transaction.write("” accountA”,

new Integer(accountA - 100).toString());
//add 100% to account B
transaction.write("” accountB”,

new Integer(accountB + 100).toString());

transaction.commit();

do_transaction function. Note that transaction descriptions in Java
are usually more compact because error handling is done using ex-
ceptions (see Alg. 4.2) while in Erlang, the error handling is done
in the actual code.

5. Responsive, Stateful Server in Erlang

In distributed server software, slow write operations often block
faster reads. Alg. 5.1 shows a generic server architecture (design
pattern) that manages reads and writes on a shared state separately.
This is done in such a way that read requests can be immediately
answered even though a concurrent write operation still blocks the
process. Two processes manage the shared state: a public asyn-

Algorithm 5.1 Responsive, stateful server

-module{account).
-export([start/0,syncloop/2,slowbalance/2]).

newAccount() —> 0.
start() > spawn(fun() —>
Account = newAccount(),
SyncLoopPid = spawn{account, syncloop, [self(), Account]),
asyncloop(SyncLoopPid, Account)
end).

% all requests have to be send to the asyncloop
% read from State via spawns, if its a slow read
% forward writes to the syncloop
asyncloop(SyncLoopPid, State) ->
receive
{updatestate, StateNew} ->
% for better consistency make a join for all spawned
% slow reads here
% for better security, only allow the syncloop
% process to update the state
asyncloop(SyncLoopPid, StateNew);
{balance, Pid} ->
Pid ! State,
asyncloop(SyncLoopPid, State);
{slowbalance, Pid} ->
spawn{account, slowbalance, [State, Pid]),
asyncloop(SyncLoopPid, State);
% all other messages go to the synchronous loop
Message —>
SyncLoopPid | Message,
asyncloop(SyncLoopPid, State)
end.

% internally use a syncloop to serialize all State changes
syncloop(AsyncLoopPid, State) ->
receive
{credit, Amount} ->
NewState = State + Amount,
AsyncLoopPid ! {updatestate, NewState},
syncloop(AsyncLoopPid, NewState);
{draw, Amount} ->
NewState = State - draw(Amount),
AsyncLoopPid ! {updatestate, NewState},
syncloop(AsyncLoopPid, NewState);
- >
syncloop(AsyncLoopPid, State)
end.

% functions, that take some time to be executed
slowbalance(State, Pid) ->
receive
after 60000 ->
Pid ! State
end.

draw(Amount) ->
receive
% the bank still works with your money for 10 seconds
after 10000 ->
Amount
end.

chronous receive loop asyncloop that performs the reads and for-
wards the write requests to a private synchronous receive loop syn-
cloop. By this means, write requests are serialized and there is a
local atomic point in time when the state changes.

45

Slow reads may still deliver outdated state. This can be over-
come by waiting for all outstanding reads to be completed before
changing the state in the asyncloop (not depicted in the algorithm).

Example. Alg. 5.1 shows the processing of states for a bank ac-
count. The server provides two read requests (balance and slow-
balance) and two write requests (credit and draw) for managing an
account. Clients send all their requests to the asyncloop. The server
is started by calling account:start(). This spawns a process, which
first initializes the account with zero, spawns the syncloop with a
reference to itself, and finally executes the asyncloop.

On a balance or slowbalance request to the asyncloop, the ac-
count balance is returned to the requesting process from the current
state. In case of slowbalance the state is given to a spawned process,
which is then executed concurrently in the background. In practice,
this spawning should be used when some calculations or other time
consuming tasks must be executed on the state before the request
can be answered. This way, other requests can be performed by the
server concurrently. Here, the corresponding function slowbalance
just waits 60 seconds before delivering the result.

In addition, the asyncloop handles updatestate requests as
discussed below. All other messages are forwarded to the syncloop.

The syncloop handles the write requests credit and draw. All
other messages are ignored and dropped. The syncloop must not
spawn processes to calculate state changes, as all state manipulation
must be serial to ensure consistency. Here, the draw takes 10
seconds to be performed (the bank uses this time to work with your
money). This time has to be consumed synchronously. In practice
this could be a time consuming calculation which is necessary to
determine the new state. After having calculated the new state,
syncloop sends the state with an updatestate request to the async-
loop and works on the new state by itself.

When the asyncloop receives an updatestate message from the
syncloop it takes over the new state from the message. This is the
atomic point in time when the write request becomes active, as all
future requests will operate on this new state.

This leads to a relaxed consistency in the server that is sufficient
for updating the routing tables and successor lists. Here, relaxed
consistency does not harm, because these tables are subject to churn
and will be periodically updated with unreliable link information
anyway. If a stronger consistency model is needed, the transaction
mechanism of the Erlang Mnesia database package could be used.

6. Use Case: Wikipedia

To demonstrate Scalaris’ performance, we chose Wikipedia, the
‘free encyclopedia, that anyone can edit’, as a challenging test
application. In contrast to the public Wikipedia, which is operated
on three clusters in Tampa, Amsterdam, and Seoul, our Erlang
implementation can be deployed on worldwide distributed servers.
We ran it in two installations, one on PlanetLab and one on a Jocal
cluster.

The public Wikipedia uses PHP to render the Wikitext to HTML
and stores the content and page history in MySQL databases. In-
stead of using a relational database, we map the Wikipedia content
to our Scalaris key/value store [12]. We use the following map-
pings, using prefixes in the keys to avoid name clashes:

key value
page content | title list of Wikitext for
all versions
backlinks title list of titles
categories category name list of titles

A Oiniiie
ikl Bt htadtin waibdn - darsioneniutommn
fa
" Hauptseitn B
e
WAKIPEDIA GrlaB Gott In da baarischn Wikipedial ' Wikinedia is a Projekt filtn Aufbiau vb dnia frain Enalopadie, in maht v 200 Sprdchn. D Version mGEs |
e freix Eucryblpieie Is in 48 Bodnsthn Sprach gschriebm. Alle, d6 an Dialekt redn, der db dazudghert (In Aldbayan, Ostareick und Sutirel), derfm mitschrelbm, Egal,
navigation

a tlauptseita
w Zuefalls-Ackikt
= Inhoitsvazeichnis

« Eine kurze Beschreil:ung dieses Projekts in anderen Sprachen,
« A short description about this project In other languages

mitarbelt

{{NUMBERGFARTICLES }} Artikl: & bis Z und Neie Artiki
'g Geogrifie

= Wikisets-Feaal
» Fehlende Artikl

obs auf Nord-, Mitth oda Sudboarisch is. Als, ws d' scnrelbst, derf frel koplac und weltagenm wem. Da Afdng Is ghnz Atdch!

» Letzte Andeningen

Lischtngtd « Belgien « Sildtleo

. Glaubm

Afrika - Amerika - Asien - Australien - Europa: Bayan * Dsitsckddnd » Frinkreich
Grofbritannizn « Gstareich « Islénd ¢ itaiien Européische Union + Slowénier

-, Gschleht

Vur- undl Fridgschicht » Altatums o Mithaita + Friarare Neizeit + I periaitsmus and
Woldkiiage « Zvadta Waidkr ity

L

7 Gséischaft

; Sport

Buddhiemus » Hinduismus « Judatum » Kristntuim « Isidm + Mythalogie + Esaterik
Neiche Raligionen
-

I
Politik » wirtscivdft « Recht » ik

| wenkzebgiiitn
= Links aul de Seilst

€ (Blarzasuilaffa) + Schafkapr o Kraxin
» Valnkts prafn

= Naufladn

« spezial:eitn Kunst und Kultur

= Saitn zum ; ,

| ausdruckn Fuim ung Fernsehin ¢ Theata ¢ Blidende Kuost « Boidhauarel « Musi « Kabarett «

()
| renderer
= Slandard
» Xos Renderer
| = Erlang Ausdnick :
| Kategorie: Wikinedsa

Dhane Saite winde suletar am 20 August 2007 um 14:30 Uhr gelindert.

Eishockey * FLiRba » HIndbE] « Leichtithletik » Ténns « BiakEstnlayfm

at: 215 an: ast: be: hy: br: ca: cdo: €5 cu: oy da: pdc: de: e en: eo; es: at: e |i: fr:
ati pl: pt ame ro: ru: ru-sib: scn: sh: simple: sk; sl: sa: sr: sv; th: 1 b: yke zay 2 Zi-classical: 2-min-nan: zlvyie:

Dia innalt 15 verfughar unta da GHU Fres Decunmndatian License

(fg Technik

Vakehr » Archilektsy » Liektratechnik « Computer = Folografie

i Wissnschaft

Guisteswissnschdft ¢ Filsolie » Theolegie » Astronamie » Biologie « Kemie ¢

2 » Fyzik & die « P&G il « Sozidlwizsnse
Biacha * Brauchtum « Spréch » Ruckinusi « Swand » Musl vom Bodtlschn Spréchvaum Mathamatik « Fycik « Edinoingie « Pacagnqik « Sozibiwissnschift «

Rechtswissenschaft

=gk hts e 1 B o 18: 3t jar Ko Ko kshe kwe las 1 it Iv: mike s Aap: nas: Nk nn: na;

Datensthuss Uba Wikiped:a Ispressum LT it

Figure 6. Screenshot of the Bavarian Wikipedia on Scalars. Images are not included in the dump.

| Client
1 3

I =
'}

d Balancer

Request for page A
HTTP

HTTP Loa

-

Chord#,
replication,

and transactions
written in Erlang

Webserver O

Replica of page A

Figure 5. Wikipedia on Scalaris.

The page rendering of the Wikitext is done in Java in the web
servers (see Fig. 5) running jetty. Here, we modified the Wikitext
renderer of the plog4u project for our purposes.

Using this data layout, users may view pages by typing the
URL, they can navigate Lo other pages via hyperlinks, they can edit
pages and view the history of changes, and create new pages (see

46

the screenshot in Fig. 7). Since the Wikipedia dumps do not include
images, we render a proxy image at the corresponding positions
instead. Moreover, we do not maintain a full text index and there-
fore full text search is not supported by our implementation. This
could easily be performed by external crawling and search indexing
mechanisms.

When modifying a page, a transaction over all replicas of the
responsible keys is created and executed. The transaction includes
the page itself, all backlink pages for inserted and deleted links, and
all category pages for inserted and deleted categories.

Performance. Our Erlang implementation serves 2,500 transac-
tions per second with just 16 servers. This is better than the pub-
lic Wikipedia, which serves a total of 45,000 requests per second,
of which only 2,000 hit the backend of approx. 200 servers. For
the experiments, we used a HTTP load balancer (haproxy) to dis-
tribute the requests over all participating servers. The load gener-

ator (siege) requested randomly selected pages from the load bal-
ancer.

7. Conclusion

We presented Scalaris, a distributed key/value store based on the
Chord# structured overlay with symmetric data replication and a
transaction layer implementing ACID properties. With Wikipedia
as a demonstrator application we showed that Scalaris provides the
desired scalability and efficiency.

Our implementation greatly benefited from the use of Er-
lang/OTP. Tt provides a set of useful libraries and operating pro-
cedures for building reliable distributed applications. As a result,
the code is more concise than C or Java code.

Additionally, we presented an Erlang pattern that implements
responsive, stateful services by overlapping fast reads with concur-

rent synchronous (slower) write operations. This framework did not
only prove useful in our key/value store, but it can be used in many
other Erlang implementations.

We believe that Scalaris could be of great value for suppliers
of online services such as Amazon, eBay, Myspace, YouTube,
or Google. Today, global service providers face the challenge of
ensuring consistent data access for millions of customers in a 24/7
mode. In such environments, system crashes, software faults and
heavy load imbalances are the norm rather than exceptions. Here,
it is a challenging task to maintain a consistent view on data and
services while hiding failures from the application.

Our P2P approach with replication and ACID provides a de-
pendable and scalable alternative to standard database technology,
albeit with a reduced data model. Each additional peer contributes
additional main memory to the system, hence the combined mem-
ory capacity resembles that of current (large) SAN storage systems.
If this is not sufficient, Scalaris can be easily modified to write its
data onto disk. For backup purposes, our ACID implementation al-
lows to take consistent snapshots of all data items during runtime.

Apart from distributed transactional data management, Scalaris
can also be used for building scalable, hierarchical pub/sub ser-
vices, reliable resource selection in dynamic systems, or internet
chat services.

Acknowledgments

Many thanks to Joe Armstrong for commenting on our responsive
server code and to Nico Kruber for implementing the Java transac-
tion interface and adapting the Wiki renderer. This work was partly
funded by the EU project Selfman under grant IST-34084 and the
EU project XtreemOS under grant IST-33576.

References

[1] 1. Armstrong. Programming Erlang: Software for a Concurrent World.
Pragmatic Programmers, ISBN: 978-1-9343560-0-5, July 2007

[2] R. Baldoni, L. Querzoni, A. Virgillito, R. Jiménez-Peris, and M. Patifio-
Martinez. Dynamic Quorums for DHT-based P2P Networks. NCA,
pp. 91-100, 2005.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s Highly Available Key-Value Store Proceedings of the 21st
ACM Symposium on Operating Systems Principles, Oct. 2007,

47

[4] J) Furman, J. S. Karlsson, J. Leon, A. Lloyd, S. Newman, and
P. Zeyliger. Megastore: A Scalable Data System for User Facing
Applications. SIGMOD 2008, Jun. 2008.

[5] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric Replication for
Structured Peer-to-Peer Systems. 3rd Intl. Workshop on Databases,
Information Systems and P2P Computing, 2005.

[6] R. Guerraoui and L. Rodrigues. Introduction to Reliable Distributed
Programming. Springer-Verlag 2006.

[7] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. IICAI, 1973.

[8] A.Lakshman, P. Malik, and K. Ranganathan. Cassandra: A Structured
Storage System on a P2P Network. SIGMOD 2008, Jun. 2008.

[9] L. Lamport. Fast Paxos. Distributed Computing 19(2):79-103, 2006.

[10] M. M. Masud and 1. Kiringa. Maintaining consistency in a
failure-prone P2P database network during transaction processing.
Proceedings of the 2008 International Workshop on Data management
in peer-to-peer systems, pp. 27-34, 2008.

M. Moser and S. Haridi. Atomic Commitment in Transactional DHTs.
1st CoreGRID Symposium, Aug. 2007.

S. Plantikow, A. Reinefeld, and F. Schintke. Transactions for
Distributed Wikis on Structured Overlays. 18th IFIP/IEEE Distributed
Systems: Operations and Management (DSOM 2007), Oct. 2007.

T. Schiitt, F. Schintke, and A. Reinefeld. Structured Overlay without
Consistent Hashing: Empirical Results. GP2PC’06, May 2006.

T. Schiitt, F. Schintke, and A. Reinefeld. A Structured Overlay for
Mutlti-Dimensional Range Queries. Europar, Aug. 2007.

T. Schiitt, F. Schintke, and A. Reinefeld. Scalable Wikipedia with
Erlang. Google Scalability Conference, Jun. 2008.

T.M. Shafaat, M, Moser, A. Ghodsi, S. Haridi, T. Schiitt, and A.
Reinefeld. Key-Based Consistency and Availability in Structured
Overlay Networks. Third Intl. ICST Conference on Scalable
Information Systems, June 2008.

1. Stoica, R. Morris, M.F. Kaashoek D. Karger, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for Internet application.
ACM SIGCOMM 2001, Aug. 2001.

[11]

[12]

[13]

(14]

[15]

L16]

[17]

High-performance Technical Computing with Erlang

Alceste Scalas

Giovanni Casu

CRS4

Piero Pili

Center for Advanced Studies, Research and Development in Sardinia
Polaris Scientific and Technological Park, Building 1, Pula (Cagliari — Italy)

{alceste,giocasu,piero}@crs4.it

Abstract

High-performance Technical Computing (HPTC) is a branch of
HPC (High-performance Computing) that deals with scientific ap-
plications, such as physics simulations. Due to its numerical nature,
it has been traditionally based on low-level or mathematically-
oriented languages (C, C++, Fortran), extended with libraries that
implement remote execution and inter-process communication
(like MPI and PVM).

But those libraries just provide what Erlang does out-of-the-
box: networking, process distribution, concurrency, interprocess
communication and fault tolerance. So, is it possible to use Erlang
as a foundation for developing HPTC applications?

This paper shows our experiences in using Erlang for distributed
number-crunching systems. We introduce two extensions: a simple
and efficient foreign function interface (FFI), and an Erlang binding
for numerical libraries. We use them as a basis for developing
a simple mathematically-oriented programming language (in the
style of Matlab™) compiled into Core Erlang. These tools are later
used for creating a HPTC framework (based on message-passing)
and an IDE for distributed applications.

The results of this research and development show that Er-
lang/OTP can be used as a platform for developing large and scal-
able numerical applications.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Distributed programming; G.4 [Mathematical Soft-
ware]: Efficiency

General Terms Design, Languages, Measurement, Performance

Keywords Erlang, HPC, numerical applications

1. Introduction

With High-performance Technical Computing (HPTC) we refer to
the use of parallel machines, or clusters of interconnected com-
puters, for executing massive scientific and numerical applications
(like physical simulations), possibly under real-time requirements.
Today, clusters assembled with PC-class hardware are the most
common HPTC solution, due to their low cost and increasing com-
puting power.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’08, September 27, 2008, Victoria, BC, Canada.

Copyright ©) 2008 ACM 978-1-60558-065-4/08/09. .. $5.00

49

Distributed scientific applications are usually developed with
low-level or numerically-oriented languages (such as C, C++, For-
tran, etc.) that have no native concept of parallel execution and
interprocess communication. These languages are thus extended
with libraries like MPI (Message Passing Interface) [20, 21] or
PVM (Parallel Virtual Machine) [26] that implement communica-
tion primitives and allow to spawn and monitor remote processes.

In the context of a CRS4 research project, we have been re-
quested to build a framework for real-time HPTC, that should be
used by physicists and engineers. Our idea was to use Erlang/OTP
as a foundation for building distributed numerical applications, thus
exploiting its parallel nature and networking capabilities. In other
words, we wanted to replace the most common HPTC structural
“building blocks” (MPI, PVM, etc) with Erlang/OTP, in order to:

1. rely on what Erlang/OTP does natively (parallelism, fault toler-
ance, etc.);

2. use a high-level and concurrency-oriented programming lan-
guage and platform for creating and extending our HPTC
framework, instead of building it on a lower-level ground using
C/C++/Fortran.

We also had to take into account that our target users do not
know Erlang, but are accustomed to numerical programming lan-
guages like Matlab™[27].

The choice of the Erlang path led us to implement several novel
extensions and applications:

e a Foreign Function Interface for Erlang/OTP (section 3). We
include benchmarks and code samples showing its advantages
over the traditional Erlang linked-in driver interface;

a BLAS (Basic Linear Algebra Subprograms) binding for Er-
lang/OTP (section 4), that guarantees native-speed numerical
computation, and allows numerical data (i.e. matrices and vec-
tors) to be easily managed using standard Erlang constructs;

bTM

an imperative, Matlab ™ -style language for numerical compu-
tation, called Matlang (section 5), compiled into Core Erlang. It
reduces the amount of code needed for numerical applications,
and allows Erlang-unaware physicists and engineers to exploit
the features of our Erlang-based HPTC platform;

a model for distributed numerical applications in Erlang, and a
framework (called FLOW) based on that model (section 6);

an IDE, called ClusterL, for building applications based on
the FLOW framework (section 7). It offers a visual approach
(reflecting tools like Simulink™ [28] or LabVIEW™ [22]) for
assembling distributed numerical applications, and its design
allows to handle large projects.

We also made some benchmarks in order to measure the per-
formance of our HPTC architecture in respect to the “classical”
C/MPI/BLAS combination, obtaining very good results (section 8).

2. Real-time HPTC

The development of HPTC applications with real-time require-
ments must face four main issues related to the distribution of com-
putation over a network of computers:

cluster assembly the clustering solution chosen for HPTC should
implement some sort of distributed virtual machine, that allows
processes to communicate in a network-transparent way. In-
terprocess communication may be implemented with message
passing or (network-transparent) shared memory, with all the is-
sues related to the “share-nothing vs. share-all” (i.e. “processes
vs. threads”) approaches;

data copying the amount of data being copied in memory at run-
time should be minimized, thus reducing latencies and re-
sources usage. When adopting the message passing IPC ab-
straction, messages should be preferably sent as references to
shared memory buffers — but it also means that side effects
of each process/thread must be strictly controlled, in order to
avoid memory corruptions;

process migration when dealing with variable workloads and
long-running applications, processes may need to be migrated
from one cluster node to another: it allows both to balance
the computing load of the cluster and ensure that processes
exchanging high volumes of data are exccuted on the samc
machine (without wasting network bandwidth);

fault tolerance long-running distributed applications may have to
deal with hardware failures or software bugs that, starting from
one or more components, may influence the whole system. If a
complete failure is not allowed, then errors should be identified,
reported and handled in run-time.

A HPTC framework should help solving all these issues. Fur-
thermore, it must deal with existing numerical code: it is quite un-
common that low-level routines are developed from scratch, since
an enormous amount of well-tested mathematical functions is avail-
able. In particular, linear algebra packages such as BLAS [9, 10]
and LAPACK [2] are the foundation of almost all numerical ap-
plications; they also have several highly optimized implementa-
tions, either provided by hardware vendors (such as Intel™ [16]
or AMD™ [1]) or available on the Web as open source soft-
ware (such as ATLAS (Automatically Tuned Linear Algebra Sub-
programs) [30]). In addition, research centers and universities usu-
ally have relevant collections of home brewed numerical code. Any
good HPTC solution must allow to reuse existing software as easily
as possible.

3. A Foreign Function Interface for Erlang/OTP

As a direct consequence of the previous paragraph, one of the pri-
mary requirements of our Erlang-based HPTC solution is that ex-
isting numerical code could be reused without excessive complica-
tions. By solving this issue, it also becomes easier to (re)implement
performance-critical portions of an application in C, and call the
optimized routines from Erlang.

Unfortunately, the traditional Erlang/OTP solution for inter-
facing external code (i.e. developing a linked-in driver) shows
several shortcomings. It gives power and flexibility (like the ca-
pability to handle asynchronous execution) — but the resulting
API is complex even for developers who just need to perform
some synchronous native function calls. This is the case with

50

numerical libraries: they are usually composed by tens or hun-
dreds of functions, and binding all of them with an Erlang linked-
in driver requires a relevant amount of boilerplate code for data
(de)serialization and type conversions. This code inflation, of
course, increases the possibility of introducing bugs. This issue
has been addressed with tools like EDTK (Erlang Driver Toolkit)
[13] and DryvERL [18] that autogenerate most of the glue code —
but the procedure is still not straightforward. Furthermore, the glue
code itself may introduce latencies in native function calls.

For all these reasons, we developed an Erlang FFI (Foreign
Function Interface) that simplifies the creation of Erlang bindings
to native libraries. It does not offer the full potential of linked-in
drivers: it just performs synchronous calls with Erlang-to-C and C-
to-Erlang type translations — but it is done in a simple, automatic
and efficient way.

In order to use our FFI, it is necessary to load an existing shared
library, and obtain a port that will work as a handle for further C
function calls:

ok = erl_ddll:load_library("/lib", 1libc),
Portl = open_port("libc").

It is now possible to perform direct C calls through that port:

Pointerl = ffi:raw_call(Porti,
{malloc, 1024},
{pointer, size_t}),
ok = ffi:raw_call(Portil,
{free, Pointeri},
{void, pointer}).

The first tuple provided to raw_call/3 contains the C function
name and arguments, while the second one is the function signa-
ture — i.e. a tuple with the function return type followed by the
arguments types.

This FFI API is very easy to use, but introduces noticeable
overhead: each call must perform a C function symbol lookup and
build dynamic C call structures. In order to reduce such delays,
our FFI allows to preload functions and compile call structures in
advance:

ok = erl_ddll:load_library("/lib", libc,

[{preload,
[{puts, {sint, nonnulll}},
{putchar, {sint, sint}},
{malloc, {nonnull, size_t}},
{free, {void, nonnull}}1}1),
Port2 = open_port("libc").

The preloading mechanism allows to call C functions without spec-
ifying function signatures again:

Pointer2 = ffi:raw_call(Port, {3, 1024}),
ffi:raw_call(Port, {4, Pointer2}).

The “3” and “4” occurrences above represent the positions of
malloc() and free() in the preload list given as argument to
erl_ddll:load_library/3. Even if this API is less developer-
friendly, it can be used in the inner parts of an Erlang library
binding, possibly with the help of tools like SWIG [4].

Since we are working on numerical applications, we have per-
formed a benchmarks on our FFI by executing a sequence of 5 ma-
trix multiplications. We called the BLAS function sgemm() (see
section 4) from ATLAS 3.6.0 in different ways:

e natively: C code with cblas_sgemm () invocations;

5 BLAS multiplications (matrix type: single precision, 10x10)

o o
S}
o
o
= —_—
(<]
o

g 8 -
= o e
3
[
2
3 o

[{=]

o o

IS

o =] e f—
° o
g —y=
S . . ===
o _— ———— [
e — _
T T I T T T T T
cblas bif pffi eblas ffi matlab octave numpy

BLAS interface type

Figure 1. Box plot with benchmarking results of a sequence of 5 matrix multiplications (BLAS function sgemm()) performed in different
ways: cblas (direct call in C through the CBLAS interface), bif (dedicated Erlang BIF, developed for testing pourposes), pffi (Erlang FFI with
symbol preloading), eblas (higher-level BLAS interface based on pffi), ffi (Erlang FFI, without symbol preloading). The last three columns
show the timings of the same multiplications on Matlab™ R14, GNU Octave 3.0.0 and NumPy 1.0.4 with Python 2.5. All the measurements
have been done by linking against the same BLAS implementation (ATLAS 3.6.0, optimized for SSE2) on the same platform (Ubuntu™
7.10, Intel™ Pentium™ 4, 2800 Mhz). The box plot summarizes 20 repetitions of the benchmark.

e in Erlang, with different strategies:
= using a dedicated BIF, developed for testing purposes;
= using our FFI, without function preloading;
® using our FFL, with function preloading;

e Matlab™ R14 (by setting its environment variables to make it
load the required ATLAS version);

® GNU Octave [11] (linked against ATLAS);
® NumPy [23] (linked against ATLAS).

The timings are summarized in fig. 1. We have chosen box
plots [29] for visualization, because they allow us to emphasize the
median value (bold line in each column) as well as the presence of
Jitter and outliers (shown as isolated points above/below each pair
of “box and whiskers”) among the repetitions of the benchmark.

The plots show that the FFl/preloading combination offers a
very good tradeoff: it introduces a small overhead compared to
native calls or dedicated BIFs, and its latency is still less than
Matlab™ . Furthermore, BLAS routines have been interfaced in
Erlang with just a few lines of code (mostly necessary for function
preloading): developing a linked-in driver for achieving the same
result would have required a greater effort (without guaranteeing
comparable performances).

Our Erlang FFI has been implemented as a series of patches
for OTP R11B-5 [25], and published as an Erlang Enhancement
Proposal [24].

51

4. A BLAS binding for Erlang/OTP

BLAS [9, 10] is the de facto standard for numerical computing.
It is a set of Fortran routines, also available for the C language
{under the name of CBLAS). Its functions are organized in lev-
els: level 1 (vector-vector operations), level 2 (matrix-vector) and
level 3 (matrix-matrix). All routines work on memory buffers con-
taining matrix or vector data, and support different numerical types
distinguished by the prefix of the function name: single precision
(s), double precision (d), and complex numbers with single (c) or
double (z) precision. This prefix will be indicated with <X> in the
examples below.

The peculiar form of the BLAS API causes some issues when
designing language bindings and integrating existing code. The
following paragraphs summarize the problems, and, after listing
some additional requirements, present our solution.

Memory layout BLAS operations may access memory buffers in
different ways: when dealing with matrices, for example, function
parameters allow to use column-major (Fortran-style) or row-major
(C-style) modes, with or without transposition; furthermore, each
row/column may be separated from the others by any number
of unused values: a 10x10 row-major untransposed matrix, for
example, could be accessed within a 10x20 one simply by passing
10 as row length, and 20 as the so-called leading dimension (i.e.
the distance between the first elements of two consecutive rows).
These access patterns must be made available through the library
binding: they allow to integrate existing numerical routines even if
they follow different memory layouts for numerical data.

rows=8, cols=8, offset=0, ld=8
| L}

e]

= 4/8/16 bytes

=g |
1
|
1

Figure 2. Example of matrix slicing: a 4x5 matrix is indexed
within a binary containing the rows and columns of an 8x8 matrix.
Each cell contains a numeric value, sized between 4 and 16 bytes
depending on the matrix type.

Destructive API Most BLAS functions overwrite one of the argu-
ments with the result of their operations. Furthermore, basic oper-
ators may not be directly available — but they may be obtained by
calling more complex functions. For example, the contents of two
memory buffers A and B could be multiplied and stored in a buffer
C by calling the <X>gemm() function — which, given the floating
point arguments « and 3, performs the following operation:

C — aAB+ 8C
Thus, by passing o = 1.0 and 8 = 0.0, we obtain C « AB as we
needed.

As another example, there are no BLAS functions that imple-
ment matrix addition, and thus it is necessary to implement loops
of vector additions (one per row or column). But vector addition, in
turn, is only implemented with a function, called <X>axpy (), that
performs the following operations:

Y—aX+Y

Since one of the operands is overwritten after the addition, we need
to make a copy if we want its value to be preserved.

API requirements An easy-to-use BLAS-based API for handling
vectors and matrices in Erlang must satisfy several requirements:

1. matrices and vectors should be represented with standard Er-
lang terms, that could be sent between local or remote processes
using standard message passing. In-memory copies should be
avoided whenever possible;

2. new matrices and vectors are often created by slicing (for ex-
ample, a vector may be extracted from a column of a matrix).
This operation should be as efficient as possible, minimizing
data copying and memory usage (and thus maximizing perfor-
mance);

3. there should be a functional, side-effect-free and Erlang-style
API for matrix/vector operations, that could be used without
caveats;

52

blas:init (),

%% Create a 3x3 identity matrix

I = blas:eye(s, % Precision: ’s’ingle or ’d’ouble
3), % Rows and columns

V = blas:vector(s, 3, [1.0, 2.0, 3.0]),

hh
V2
VL
YA
Wobo

Functional API example: blas:mul/2
= blas:mul(blas:mul(2.0, I), V),

= blas:to_list(blas:transpose(V2)),
VL is:

[[2.00000,4.00000,6.00000]]

%% Procedural API example: blas:mul/3

VTarget = blas:vector(s, 3), % Random data
blas:mul(blas:mul(2.0, I), V, VTarget),

VL = blas:to_list(blas:transpose(VTarget)).

%% VTarget has been overwritten, thus matching VL

Figure 3. Usage example of the Erlang BLAS binding.

4. there should also be a procedural interface, easier to use than the
underlying BLAS library, allowing to overwrite existing mem-
ory buffers — thus reducing memory allocations and garbage
collections;

5. lastly, there should be a one-to-one mapping between BLAS
routines and Erlang functions, in order to achieve the maximum
performance when necessary.

Implementation Facing all the requirements above, matrices
have been implemented with Erlang records:

-record(matrix, {

type, % Atom: s, d, ¢, z

rows, % Number of rows

cols, % Number of columns

14, % Leading dimension

trans, Y% Transposition indicator

offset,) Offset from beginning of binary data
data % Refcounted binary with matrix data
b.

The same for vectors:

-record(vector, {

type, % Atom: s, d, ¢, z

length, % Number of elements

inc, % Distance between elements

trans, % Transposition indicator

offset, % Offset from beginning of binary data
data % Refcounted binary with vector data
bH.

These representations allow vector and matrices to be treated as
regular Erlang terms. The BLAS library binding ensures that bina-
ries assigned to the data field are always reference-counted, even
for small matrices or vectors: this is necessary in order to make the
procedural BLAS API work as expected (when small binaries are
copied instead of referenced, destructive updates may be “lost”).
For this purpose, the binding always creates data binaries bigger
than the heap binary size limit (64 bytes on OTP R11B and R12B
[12)).

Matrix and vector slicing is obtained by adjusting the rows,
cols, 1d, length, inc and offset fields of the matrix/vector
records: they allow to use the same data binary to represent dif-
ferent matrices or vectors (see figure 2).

%% Create a 3x3 identity matrix

I = eye(3);

%% The following expression is equivalent to:
%%V = blas:transpose(

YA blas:vector(s, 3,
V=1[1.0, 2.0, 3.0]17%;

[1.0, 2.0, 3.01))

%k The following expression is equivalent to:
%% V2 = blas:mul(blas:mul(2.0, I), V)

V2 =2x%1=%*YV;

%% Result:

%%h V2 = [2.00000, 4.00000, 6.00000]°

%% Function definition

function y = fn(x, t, data)
y=-x=*3;

end;

%% Function integration (4th-order Runge-Kutta)

Y = rk4(fn, % Function to integrate
3.0, % Initial value
[0.0, 0.1, 0.21, % Integration points
[1; % Data (unused)

%% Integration result (on final point):
%h Y = 1.64652

Figure 4. Usage example of the Matlang language.

The resulting BLAS API for can be used as shown in fig. 3.
The benchmark resuits in fig. 1, in the eblas column, show that
the overhead introduced by the Erlang binding is moderate, and its
run-time checks do not eliminate the performance advantage given
by our FFI over Matlab™ or GNU Octave.

5. A Matlab™.style language

At this point, Erlang and our BLAS binding are the basic elements
for assembling HPTC applications. But there are relevant draw-
backs:

1. the numerical code is verbose, expecially compared to equiv-
alent routines developed with mathematically-oriented lan-
guages like Matlab™ or GNU Octave;

2. even if the BLAS binding provides a procedural API with side
effects, it may be difficult to use efficiently: all the optimiza-
tions (and the risks of destructive updates on shared data) are
left in the hands of the developer;

3. engineers and physicists (who, as we said in the introduction,
are the main target of our work) are not usually accustomed to
Erlang and functional programming: they expect to use some
procedural language, possibly with Matlab™-like data types
and syntax.

For all these reasons, we decided to develop a procedural,
Matlab™-like programming language that compiles into Core Er-
lang [5, 6] by translating matrix and vector operations into BLAS
function calls (performed through our Erlang BLAS binding).

We called such language Matlang. A code sample is shown on
figure 4.

The main difference between Matlang and Matlab™ is our
treatment of functions as first-class objects: in the code sample we
see how the £n variable (created when defining the homonym func-
tion) is passed to the integration routine rk4(). Since Matlab™
does not support higher-order functions, the same behaviour could
be simulated by passing the *£n° string to rk4 () — which, in turn,
would need to call eval() on its argument.

53

There are also other minor differences, mostly due to unsup-
ported syntactic quirks (for an in-depth overview of the problems
in implementing a complete Matlab™ language parser, see [17]).

The main mismatch between Matlang (or any imperative lan-
guage in general) and Core Erlang is the single-assignment seman-
tics. Since multiple assignments cannot be translated directly, we
followed a two-step strategy:

1. the Matlang parse tree is converted to SSA (Static Single As-
signment) form [8];

2. the SSA form is compiled in Core Erlang: Matlang if state-
ments are converted into Core Erlang case switches, while for
and while loops are turned into letrecs.

In the second phase, ¢-functions inserted during the first step
are used to decide which variables must be returned by each Core
Erlang statement.

In its current incarnation, Matlang is a dynamically typed lan-
guage, and the compiler generates relevant amounts of run-time
checks that ensure correct typing of expressions. We are, however,
enhancing to the compiler in order to obtain a statically typed lan-
guage: more details are available in the conclusions (section 9.

6. An Erlang framework for HPTC

In section 2 we have seen four main issues that an HPTC framework
must solve: cluster assembly, process migration, minimization of
in-memory copies, fault tolerance.

In order to solve them, we defined a simple model that abstracts
a generic HPTC application:

A distributed numerical application is a set of looping nu-
merical processes connected by predefined communication
channels (called buses)

We implemented this model in a framework, called FLOW, that
provides an API for building, running, monitoring and controlling
distributed applications, The developer only needs to define the bus
topology and the functions being looped by each process, while
FLOW takes care of distributing the computation load on a cluster
of computers, dispatch communications and monitor the system
behaviour.

More in detail, a FLOW process is defined by:

® an unique identifier;
® 0ne or more input ports;
@ one or more output ports,

® a core function, with arguments and return values mapped re-
spectively to input and output ports.

Ports are characterized by an unique identifier and a signature
that specifies which data types it handles. For example, an output
port may be called Dutputi and produce three floating-point val-
ues, called @, y and z.

Buses can connect one output port to one or more input ports,
provided that they have compatible type signatures (the Outputi
port may, thus, be connected to an input port that expects three
floating-point values as well).

As an example of FLOW application, we illustrate the simula-
tion of a mechanical system: a single-degree-of-freedom compound
pendulum (fig. 5), composed by a rod RS with length [that oscil-
lates around point S constrained to O (the reference system origin).

The pendulum motion can be described with the following or-
dinary differential equation (ODE):

5 —3gsind
f=—u

Figure 5. Schema of compound pendulum simulation: the rod RS
falls subject to gravity g, but is constrained to O by artificial forces
fz and £, applied (o its barycenter B.

By integrating such equation, we can obtain the pendulum angle 6
and its angular velocity € at any time instant.
But we could also follow a different approach:

o the rod is simulated as unconstrained and free-falling under
gravity g. Its position is indicated with barycenter B (with
coordinates (By, B,))and angle #, while its horizontal, vertical
and angular velocities are indicated respectively with B., By
and 6;

e the pendulum constraint is simulated by two artificial forces (fz
and f,) applied to B. They are periodically recomputed so that,
every instant, the rod is moved to a position that makes point .5
coincide with point O. In other words, f5 and f, simulate the
pendulum constraint reactions.

The artificial forces are computed using well-known control the-
ory techniques: in a feedback-based loop, their intensity changes
depending on the current position, velocity and angle of the pendu-
lum. More details on this simulation scheme are available in [7]: it
allows to model complex constrained mechanical systems, achiev-
ing parallelization and numerical stability (even if its benefits may
not be apparent from our simple compound pendulum example).

This kind of pendulum simulation can be modeled with two
processes:

e a process called Constraint that, given the rod state vector

(Be, Ba, By, By, a, 9) as input, computes the constraint forces
fz and fy;

e aprocess called Rod that, given the current constraint forces and
the rod state vector, computes an updated state vector.

These processes should, thus, exchange the current state vector
and constraint forces. They should remain idle until new inputs are
available. This model can be represented with a diagram, as seen in
fig. 6 (on the left).

This kind of diagram can be translated directly into a list of
FlowChildSpecs, i.. a data structure that describes a FLOW ap-
plication in terms of processes and buses (fig. 6 on the right).

The FLOWChildSpecs in the example define two processes
and two buses. As anticipated above, the processes are character-
ized by an unique identifier (Rod and Constraint), input/output
ports and a core function that is executed in an infinite loop
(core_Constraint/3 and core_Rod/3). When new data is avail-

54

able on the input ports, it is passed as argument to the core function;
after its execution, the return values are written on the output ports.
The core functions must respect the following signature:

core_fn(State, Params, Inputs) ->

{Statel, Outputs}.

where State is a term representing the current internal state,
Params contains constant parameters, and Inputs is a list contain-
ing all the values coming from the process input ports. The return
tuple contains an updated internal state (State1) and a list of val-
ues that will be sent through the process output ports. When the
core function is called for the first time, the State parameter takes
the value of the stateO field from the process FLOWChildSpec.
The Params parameter, instead, comes from the params field.

Returning to our pendulum, we have two buses, B_state and
B_fxfy, which carry respectively the rod state and constraint
forces. The input_process and output_processes fields spec-
ify which I/O ports get connected by each bus.

Since the pendulum simulation has a circular structure, both Rod
and Constraint have to wait until the other process writes some
values on its output port. In order to start the computational loop,
the Rod process has a field, output0, with an initial value (i.e. the
initial rod state) that FLOW writes directly on the State port.

Lastly, the node field, found in both processes and buses, is
a hint that FLOW uses for load balancing: objects with the same
node value will be spawned on the same Erlang VM, while differ-
ent values will cause processes and buses to be distributed among
different VMs.

6.1 Run-time services

At run-time, the FLOW framework works like the Erlang/OTP
supervisor behaviour: it spawns, monitors and eventually restarts
FLOW processes when they die because of errors. The same hap-
pens for buses.

FLOW also provides several functions for the run-time manage-
ment of an HPTC application, allowing to:

¢ obtain the FLOWChildSpec of a running application, in order
to reconstruct its topology;

e stop/resume processes or data dispatching over a bus;
e add, remove or replace processes;
e add, remove or replace bus connections;

o replace the core function of a process, or change its internal
state and parameters;

e migrate processes from one cluster node to another, without
halting the execution.

These functions allow, for example, to connect to a running
FLOW application, attach a monitoring process to a bus and ob-
serve the values being dispatched. The monitoring process can be
detached when needed. Returning to the pendulum example, we
developed an ESDL-based [14] real-time visualization tool that can
be attached to the B_state bus (fig. 7) with the following sequence
of Erlang statements:

Pid = spawn(pendulum_monitor, start, [1),
ok = flow_bus:add_output_process(
{pendulum, ’B_state’}, Pid).

where pendulum is the identifier of the running FLOW application,
and the {pendulum, ’B_state’} tuple identifies the bus.

(B:EyB:caBya Bya67é)

[%% FLOW process specs
[

{type, process},

{id, ’Constraint’},

{core, fun core_Constraint/3},
{node, ni},

{params, {1.0, 36.0,
{state0, 0},
{input_ports, [{’State’, {vector}}1},
{output_ports, [{’Forces’, {float, float}}1}

...}}, % Constraint coefficients

{type, process},

{id, ’Rod’},

{core, fun core_Rod/3},

{node, n2},

{params, {9.80665, 1.0, ...}}, % Gravity, rod length...
{state0, {blas:vector(...)}},

{output0, [{’State’, blas:vector(...)}]},

{input_ports, [{’Forces’, {float, float}}1},
{output_ports, [{’State’, {vector}}]}

%% FLOW bus specs

[

{type, bus},

{id, ’B_state’},

{node, n2},

{input_process, {’Rod’, ’State’}},
{output_processes, [{’Constraint’, ’State’}]}
[

{type, bus},

{id, ’B_fxfy’},

{node, ni},

{input_process, {’Constraint’, ’Forces’}},
{output_processes, [{’Rod’, ’Forces’}]}

Figure 6. Example of FLOW diagram with corresponding list of FLOWChildSpecs. The communication channels are modeled with the

B_state and B_fxfy buses.

———vmcecan
= e |

moritor

/l|' |

I

— =g

[
|

4

Figure 7. Real-time visualization tool for the compound pendulum
simulator. The barycenter is emphasized in the middle of the rod.
Since the screenshot was taken when the simulation was still con-
verging, we can see that the constraint is not completely satisfied:
the rod extremity is not centered in the reference system origin.

55

‘When the monitor is not useful anymore, it can be detached by
executing:

ok = flow_bus:remove_output_process(
{pendulum, ’B_state’}, Pid).

Running processes can also be migrated with a simple function
call:

{ok, NewPid} = flow_supervisor:migrate_process(
{pendulum, ’Rod’}, ’vm@host.com’).

It causes the Rod process to be moved from its current cluster node
to vm@host . com, keeping its internal state. Its input and output
buses are automatically redirected, without halting the execution of
the whole pendulum application.

7. An IDE for HPTC applications

Even if the FLOW framework takes care of the low-level details,
modeling an large HPTC application could be a very long task: in
particular, specifying a list of FLOWChildSpecs by hand is tedious
and error-prone. And we, as we wrote from the beginning, cannot
expect that our target users become proficient enough with Erlang
to handle it.

For these reasons, we developed an Integrated Development En-
vironment (IDE), called ClusterL, that allows to autogenerate and
run a FLOW application with a visual, point-and-click approach.

Figure 8. ClusterL IDE workspace, with compound pendulum simulation diagram.

In its current form, it provides a workspace for placing FLOW pro-
cesses and buses, and a toolbar for editing them.

A screenshot of the interface can be seen in fig. 8: the simi-
larities between the contents of the workspace and the pendulum
diagram in fig. 6 are apparent.

ClusterL allows to program FLOW processes either using Er-
lang or Matlang. Code editing is performed with an editing dialog
shown in fig. 10. The GUI allows to define all the process fields
seen in the FLOWChildSpec (section 6): I/O ports names and types,
initial process state, initial outputs, clustering hints, etc. Processes
can be connected by adding buses — and, as one may expect, the
IDE checks whether the selected input and output ports have com-
patible type signatures.

ClusterL also introduces some metaphors for representing par-
ticular types of processes:

® source processes, i.e. processes without input ports that only
generate output data. They can abstract external components
like read-only files or interfaces to hardware sensors;

® sink processes, i.e. processes that have input ports but no output
ports. They can be used to represent monitoring or logging rou-
tines, or interfaces to hardware devices that provide no input;

® nested processes, i.e. processes composed by several sub-
processes. This abstraction can represent reusable sub-systems,
and allows to assemble large distributed applications without
cluttering the GUI with tens or hundreds of objects.

When editing is done, the buttons on the toolbar allow to check
the consistency of the process graph, and autogenerate a FLOW-
based application — that could be run either from the toolbar, or
independently as a stand-alone product. The toolbar also allows to
configure a cluster of Erlang VMs, and decide how the application
will be distributed on the available nodes.

56

Figure 9. Schema of parallel benchmarking application: the Head
process sends two matrices, A and B, to four worker processes,
which perform a sequence of BLAS operations (20 for each
worker) and dispatch results (matrix C'), to Tail. When Tail col-
lects all four copies of C, it sends one of them to Head, which in
turn wakes up and sends A and B again.

frod_erl pub version

Comment:
Timeout: [lnﬂnny Delay: |0

P s S A w5215 4 Lt {1 e e

Parameters: 1{5.00665, 1.0, 36.0,00, 0001);

tnitial state: [{[n.s, 0.0], [0.0, 0.0, [0.0, 0.0%;

Input ports def: ![[‘Fon’.m',[&,ﬂoaﬂ,{fy,ﬂual}]}]

Output ports def: iH‘SInla',[{x,vector_s},(y,veclnr_s),[lheta,vsctov_s]m

3? = Parametara(l];
/L » Paramotars{2}:
m = Paramstars{3});
= Parametersid);
= Paraneters(S),

el = State(l):

vl = State(Z):

[thetal = State{3);

#® = thkd(fnx, x0, [0.0, h], (fx =m});

'y = rkd(fny, yD, [0.0, k), (Ey, =, g}):

NevState = (x, y, theta);

thota = rkd (fntheta. thetal, [0.0, h]. {fx, fy. m, L b));

Initial outputs

X |sqri(20) /40,00

y [leaizo) 740, 00f 1
theta [[pi /4.0, 0.0] !

[

(]

Definitions

|1 Function result « frx(v, t. Data)
x = 9(2);
y = Data{l)/Data(2};

| result = (x, y];

land;

|function result = fny(v, t, Data)
| x = uw(2);

y = (Dnka(1l} + (Data(2) * Data(3))) / Data(2);
result = (x, y);

-1

| jend. ;
| function resuit = fntheta(v, t. Data) |
x= v(@);

| y o= ((12.0 / (Dota(3)*Data(4)*Datai4})*((Data(l)*(Data{4}/2 0)+sin |
|(e(1))) = (Data(2}*(Datai4)/2 0)*cos (v(1))))~ (Data(S)=v(2)))); (

| result = [x |, |

f'end, I~

[F ¥-

I.

Cancel | Update | Check code| Ok J

Figure 10. ClusterL IDE process editing dialog. The application is still in alpha stage, and some Erlang code snippets appear where a GUI
has not yet been defined (for example, in the text entries for defining I/O ports).

Our experience so far shows that the ClusterL visual approach
helps Erlang-unaware physicists and engineers to develop dis-
tributed systems.

8. Parallel benchmark

In order to measure the performance of the FLOW framework and
our Erlang BLAS binding in respect to “classical” HPTC solutions,
we developed a simple parallel benchmark (shown in fig. 9): four
worker processes wait for two matrices A and B from a coordinator
process (“head”), perform a sequence of 20 BLAS operations each,
and send their result C' to another process (“tail”) — which, in
turn, sends C' to “head”. The timing runs in the *“head” process,
and measures the number of milliseconds elapsed between A and
B are sent, and C is received.
We implemented this parallel benchmark in two ways:

e in Erlang, using ClusterL to generate an application based on
FLOW and our BLAS binding;

e in C, with an ad hoc program based on BLAS and MPI, us-
ing blocking functions for sending and receiving messages
(MPI_Send() and MPI_Recv()).

We deployed the benchmark on two hardware configurations:
a single dual-core workstation, and a small cluster with two dual-

57

core PCs connected over a dedicated 1-Gigabit Ethernet LAN. In
the latter case, each node ran three processes (two workers together
with either “head” or “tail””).

Given this setup, we tried two different solutions for the Erlang-
based measurements:

1. we launched one SMP-enabled Erlang VM on each cluster
node;

2. later, we tried with two non-SMP Erlang VMs on each clus-
ter node. The VMs were bound to different CPU cores using
the Linux™ taskset utility [19], and each VM ran a single
worker process.

For the MPI tests, we used MPICH2 [3] with its default config-
uration, except for the --ncpus option of mpd (which we used to
indicate the number of CPU cores in each node).

The benchmark results are summarized in fig. 11 and 12. The
plots show that, at least for this benchmark, our Erlang-based
HPTC solution can reach the same performance of an ad hoc ap-
plication written using C, BLAS and MPI (and thus lacking the
run-time services provided by the FLOW framework). Launching
several Erlang virtual machines per node (with taskset) instead
of a single SMP-enabled VM can reduce jitter and increase perfor-
mance predictability — but multiple VMs also increase the amount

Parallel benchmark (matrix type: single precision, 100x100)

o

o |

<+

o |

m
8
€ 5
3
Q
2
g o
zZ 5 § [

& 8 8 -

=——— a 0 o
—_—
o |
o
-
iy S
E———
T T T T 1 T
flow-smp flow-taskset mpich2 flow-smp-dist flow—taskset—dist mpich2-dist

HPTC framework and environment

Figure 11. Box plot with the results of the parallel benchmark in fig. 9, repeated 40 times with 100x100 matrix size. The first three
columns show the timings obtained on a single workstation (dual-core AMD™ Athlon™ 64 4200+ with 2GB RAM, Ubuntu 8.04 and
MPICH2 1.0.6p1); the latter three columns (with the -dist suffix in their label) show the results after distributing the benchmark on two
workstations (with the same hw/sw configuration above) connected over a dedicated 1-Gigabit Ethernet LAN. The FLOW benchmarks have
been performed both by running a single SMP Erlang VM on each cluster node (columns with -smp), and by launching a non-SMP Erlang

VM for each CPU core (with the taskset utility).

of data serialized and sent through sockets, possibly degrading per-
formance (as we can see in fig. 12).

There are, however, some ‘“cheats” that guarantee the efficiency
of the FLOW benchmarks: the Erlang VM always tries to handle
and send binaries by reference instead of copying them (while
MPICH2 uses highly optimized in-memory copying, as required
by the MPI standard); furthermore, FLOW buses can automatically
detect if two or more target processes are running on a remote node:
if it happens, then data is sent only once to a remote dispatcher
process, which in turn handles multiple delivery to its local targets.
MPI does not implement these capabilities — but our “cheats”
are just some advantages that derive from the choice of using a
very high-level language (Erlang) and framework (FLOW) that can
automatically perform such optimizations.

9. Conclusions and future developments

This paper illustrated how we extended Erlang/OTP, and then used
it, as a foundation for building High-performance Technical Com-
puting applications:

1. our Foreign Function Interface allows to interface native code
in a simple and efficient way;

2. our BLAS binding represents an use case of the FFI, and allows
Erlang to achieve native-speed number crunching capabilities;

3. the Matlang language allows to write Erlang-based numeri-
cal code with a concise and mathematically-oriented syntax,

58

familiar to physicists and engineers accustomed to tools like
Matlab™,;

4. the FLOW framework allows to define and control distributed
numerical applications in Erlang, freeing the developer from
low-level tasks;

5. the ClusterL. IDE can be used for the rapid development of
FLOW-based applications, even by users that know nothing
about Erlang.

With these solutions, we were able to satisfy the four HPTC
framework requirements outlined in section 2. The parallel bench-
marks we’ve performed also show that the overall performance is
very good, and comparable to classical solutions based on lower-
level libraries.

The most important aspect from our point of view of frame-
work developers, however, is that the resulting HPTC toolkit has
been built, and can be extended, using an high-level, concurrency-
oriented and fault-tolerant language and platform — i.e. Er-
lang/OTP. It is an enormous advantage in terms of productivity,
that our final users can notice in terms of rapid development and
quick response to customization requests. We were prepared fo
pay this advantage by losing some performance over “traditional”
HPTC solutions -— but so far the price appears to be moderate.

Even if the results we’ve obtained are positive and encouraging,
there are still several enhancements we are working on. More in
detail:

Parallel benchmark (matrix type: single precision, 500x500)

———

Milliseconds
2500 3000 3500 4000
1 1

2000
|

1500
1

= R

1000

T T T
flow—smp flow-taskset mpich2

T T T
flow-smp-dist flow-taskset-dist mpich2-dist

HPTC framework and environment

Figure 12. Box plot with the results of the parallel benchmark in fig. 9, repeated 40 times with 500x500 matrix size. When the amount of

data exchanged among processes increases, the SMP-enabled Erlan

g VM guarantees better performances, reaching the numbers of MPICH?2.

Separate non-SMP Erlang VMs, on the other hand, are slowed down by the need to serialize and transmit huge memory buffers, instead of

simply sharing them among processes.

1. FLOW should be extended with the concept of nested processes
(that, as reported in section 7, are currently implemented by
the ClusterL. IDE). We should, in other words, add support for
entities similar to Simulink™ “systems™;

2. the FLOW run-time control functions should be made avail-
able through an user-friendly graphical tool, allowing to con-
nect to a running FLOW-based application and manage it. Users
should be able to infer the connection graph of buses and pro-
cesses, instantiate and connect monitoring tools, migrate a pro-
cess around cluster nodes, ete. — all without touching the Er-
lang shell;

3. the ClusterL. GUI should be improved, possibly by using wxEr-
lang [15] or some other modern widget toolkit;

4. since port signatures in FLOW processes are statically typed,
Matlang could be treated as a statically typed language, too.
This would allow to remove most of the run-time checks and
increase execution speed. Static type checks could also reduce
the amount of bugs, expecially in large projects;

5. static typing could also allow to optimize matrices and vectors
handling in Matlang, that (in its current form) never uses the
procedural API provided by the BLAS binding, The compiler
should perform more static analysis, and decide whether certain
optimizations (like overwriting an unused matrix with the par-
tial results of a computation) are legal within some code block.

References

(11 Advanced Micro Devices™, Inc. AMD Core Math Library (ACML).
http://developer.amd.com/cpu/Libraries/acml.

59

[2] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du
Croz, S. Hammarling, J. Demmel, C. Bischof, and D. Sorensen. LA-
PACK: a portable linear algebra library for high-performance com-
puters. In Supercomputing *90: Proceedings of the 1990 ACMAEEE
conference on Supercomputing, pages 2-11, Washington, DC, USA,
1990. IEEE Computer Society,

Argonne National Laboratory, MPICH2: an high-performance,
portable implementation of the MPI standard. http://wuw.mcs.
anl.gov/research/projects/mpich?2,

[3

=

[4

—

David M. Beazley, SWIG: an easy to use tool for integrating scripting
languages with C and C++. In TCLTK'96: Proceedings of the 4th
conference on USENIX Tel/Tk Workshop, Berkeley, CA, USA, 1996.
USENIX Association.

[5] R. Carlsson. An introduction to Core Erlang. In Proceedings of the
PLI'O1 Erlang Workshop, September 2001,

[6] Richard Carlsson, Bjisrn Gustavsson, Erik Johansson, Thomas Lind-
gren, Sven-Olof Nystrom, Mikael Petterson, and Robert Virding. Core
Erlang 1.0.3 language specification, 2004, http://www.it.uu.se/
resea:ch/group/hipe/cerl/doc/cora_erla,ng-1 .0.3.pdf.

[7] M. D. Compere and R. G. Longoria. Combined DAE and sliding mode
control methods for simulation of constrained mechanical sysiems,
Journal of dynamic systems, measurement and control, 122:69 1-697,
December 2000.

{81 Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 13(4):451-490, 1991.

[9] Jack Dongarra. Preface: Basic Linear Algebra Subprograms Technical
(Blast) Forum Standard 1. International Journal of High Performance
Applications and Supercompuring, 16(1):1-111, Spring 2002,

[10] Jack Dongarra. Preface: Basic Linear Algebra Subprograms Technical
(Blast) Forum Standard 1L International Jowrnal of High Performance
Applications and Supercomputing, 16(2):115-199, Summer 2002.

[11} John W. Eaton. GNU Octave numerical computation language. http:
//vwu.gnu.org/software/octave/.

[12] Ericsson AB™. Erlang efficiency guide: Constructing and matching
binaries, 2008.

[13] Scott Lystig Fritchie. The evolution of Erlang drivers and the Erlang
driver toolkit. In ERLANG ’02: Proceedings of the 2002 ACM SIG-
PLAN workshop on Erlang, pages 34—44, New York, NY, USA, 2002.
ACM.

[14] Dan Gudmundsson. ESDL, a SDL and OpenGL™ driver for Er-
lang/OTP. http://esdl.sourceforge.net.

[15] Dan Gudmundsson. wxErlang, an Erlang binding to wxWidgets.
http://wuw.erlang.org/-dgud/wxerlang/.

[16] Intel™ Corporation. Intel™ Math kernel library. http:
//wuw.intel.com/cd/software/products/asmo-na/eng/
266858.htm.

Pramiod G. Joisha, Abhay Kanhere, Prithviraj Banerjee, U. Nagaraj
Shenoy, and Alok Choudhary. The design and implementation of
a parser and scanner for the MATLAB language in the MATCH
compiler. Technical Report CPDCTR9909017, Center for Parallel
and Distributed Computing, Electrical and Computer Engineering De-
partment, Technological Institute, 2145 Sheridan Road, Northwestern
University, IL 602083118, September 1999.

Romain Lenglet and Shigeru Chiba. Dryverl: a flexible Erlang/C
binding compiler. In ERLANG '06: Proceedings of the 2006 ACM
SIGPLAN workshop on Erlang, pages 21-31, New York, NY, USA,
2006. ACM.

Robert M. Love. The taskset on-linc manpage from the
Linux™ User manual. http://www.linuxcommand.org/man_
pages/taskset1.html.

[17]

{18]

[19]

60

[20] Message Passing Interface Forum (MPIF). MPL: A message-passing
interface standard. Technical Report UT-CS-94-230, University of
Tennessee, 1994.

[21] Message Passing Interface Forum (MPIF). MPI-2: Extensions to the
message-passing interface. Technical report, University of Tennessee,
1996.

[22] National Instruments™., The LabVIEW™ Development environ-
ment. http://www.ni.com/labview/.

[23] NumPy development team. NumPy, numerical package for python.
http://numpy.scipy.org/.

[24] Alceste Scalas, Erlang enhancement proposal 7: Foreign function in-
terface, September 2007. http://erlang.org/eeps/eep-0007.
html.

[25] Alceste Scalas. Home page of the foreign function interface (FFI) for
Erlang/OTP, 2008. http://muvara.org/crs4/erlang/ffi/.

[26] V.S.Sunderam. PVM: a framework for parallel distributed computing.
Concurrency, Practice and Experience, 2(4):315-340, 1990,

[27] The Mathworks™, Matlab™: the language of technical computing.
http://www.nmathworks.com/products/matlab/.

[28] The Mathworks™. Simulink™ : Simulation and model-based design.
http://www.mathworks.com/products/simulink/.

[29] John W. Tukey. Exploratory data analysis. Behavioral Science: Quan-
titative Methods. Addison-Wesley, Reading, Massachusetts, 1977.

[301 R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear

algebra software. Technical Report UT-CS-97-366, University of
Tennessee, 1997.

Refactoring with Wrangler, updated

Data and process refactorings, and integration with Eclipse

Huiqing Li and Simon Thompson

Computing Laboratory, Universi ty of Kent
{H.Li,S.J. Thompson}@kent.ac.uk

Abstract

Wrangler is a refactoring tool for Erlang, implemented in Erlang.
This paper reports the latest developments in Wrangler, which in-
clude improved user experience, the introduction of a number of
data- and process-related refactorings, and also the implementation
of an Eclipse plug-in which, together with Erlide, provides refac-
toring support for Erlang in Eclipse.

Categories and Subject Descriptors 1D.2.3 [SOFTWARE ENGJ-
NEERING]: Coding Tools and Techniques; D.2.6 []: Program-
ming Environments; D.2.7 []: Distribution, Maintenance, and En-
hancement; D.3.2 [PROGRAMMING LANGUAGES): Language
Classifications—Applicative (functional) | anguages; Concurrent,
distributed, and parallel languages; D.3.4 []: Processors

General lerms Languagces, Design

Keywords Erlang, Wrangler, Eclipse, Erlide, refactoring, tuple,
record, process, slicing

1. Introduction

Refactoring [10] is the process of improving the design of a pro-
gram without changing its external behaviour, Behaviour preser-
vation guarantees that refactoring does not introduce (or remove)
any bugs. While it is possible to refactor a program by hand, tool
support is considered invaluable as it is more reliable and allows
refactorings to be done (and undone) easily, Refactoring tools [24]
can ensure the validity of refactoring steps by automati ng both the
checking of the conditions for the refactoring and the application of
the refactoring itself, thus making refactoring less painful and less
error-prone.

Whilst the bulk of refactoring tools that have been developed
have supported object-oriented programming, there is an increas-
ing interest in refactoring tools for functional and concurrent lan-
guages. For Haskell there is HaRe [20, 14, 15], which is embedded
in both the Emacs [3] and Vim [4] editors. A prototype of a refac-
toring tool for Clean is also available [28).

We have recently developed the Wrangler tool for refactoring
Erlang [6, 5] programs [19, 16, 17, 18], and in [21] we and the team
from Edtvos Lorand University, Budapest jointly reported work

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that capies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’08, September 27, 2008, Victoria, BC, Canada.

Copyright © 2008 ACM 978-1-60558-065-4/08/09. .. $5.00

61

Gyorgy Orosz and Melinda Toth

E6tvos Lordnd University, Budapest,
Computing Laboratory, University of Kent

{G.Orosz,M.Toth}@kent.ac.uk

on our system and their RefactorEr] taol [23, 25]. In this paper
we describe the latest developments in Wrangler, which include
the introduction of a number of new refactorings, and also the
implementation of an Eclipse plug-in which, together with Erlide,
provides refactoring support for Erlang in Eclipse.

The rest of the paper is organized as follows. Section 2 gives
a short overview of the Wrangler tool for refactori ng Erlang pro-
grams. Section 3 reports several improvements to the Wrangler user
experience. The next two sections describe the data-related refac-
torings: Section 4 the tupling of function arguments, and Section §
the introduction of records. We move to discussing process-related
refactorings in Section 6. The integration of Wrangler with Eclipse
and Erlide is the subject of Section 7. Finally, we draw some con-
clusions and point to further work in Scetion 8.

2. Wrangler

Wrangler is a refactoring tool which supports interactive refactor-
ing for Erlang programs. It is integrated with Emacs [3] and now
also with Eclipse [1]. Snapshots of Wrangler embedded in Emacs
and Eclipse are shown in Figure 1 and Figure 11. It uses Distel [12]
to manage the communication between the refactoring ool and
Emacs, and on the other hand the Eclipse integration uses RPC
(Remote Procedure Call) to manage the communication.

Wrangler supports more than a dozen refactorings: Rename
variable/moduleffunction, Generalise Junction definition, Move
function definition to another module, Function extraction, Fold
expression against function, Tuple function parameters, From tuple
10 record, Rename a process, Register a process, Add a tag to mes-
sages, and From function to process. There are two functionalities
for duplicated code detection: expression search within a single
maodule and duplicated code detection across multiple modules,

2.1 Tool Structure

Every refactoring has two main parts: side-condition checking and
transformation. In most cases the side-condition checking is more
complex than the transformation itself, because it requires a lot of
syntactic and semantic information to be collected and analysed,
in order, for example, to ensure that the binding structure of the
program is unaffected, or the way in which messages are passed
between processes is unchanged. Figure 2 gives an overview the
refactoring workflow in Wrangler.

Wrangler uses the standard Erlang parser, slightly modified to
include more layout information, to parse an Erlang program into
"parse trees”, and the SyntaxTools [8] library to build the Abstract
Syntax Tree (AST) representation of the program from the parse
trees. The AST generated is then annotated with various kinds of
syntactic and semantic information including locations, comments,
syntax category information, binding structure information, hence
becoming the term Annotated Abstract Syntax Tree (AAST). Both

XA emacs@HLLT

o 5

[File Edit Options Butfers Tools [ENang| Help

‘.D cEx B8 S

-modaie (Lest) .

Indent
Edit
Syntax Hightighting

. . . TAGS
-import (refac_util, [get_ra

Skeletons
-export (add_range/2).

Shefl

Compile

|| 2dd_zange
{ak, Tswz} = refac_epp
- 33:2 " #
refac_utili:full buTP(f Distet
do_sadd range {nieye, T) -
{2, 0} refac_syntax:
cese Yefac sSyntax:Lype
case_expr ->

| Refactor

Version

= refac_s‘;n:ax:case_expr_args\menc(;1
L = glasc("c=T== o° 13 ~ |- i g

kex

El} = get_range (&},

MR = q::_:mge(;c) b
excend_forwards (T
extend_ba ckwards{

SRS

{
{

3 ok g .
xefac_syncax:add_amuxange, {388,
cond_expr ->

ghead(RS |

giast (" 2 g

.3 = get_zange(Zd),
yet _rangs {%a jis

ext nd___bac}mardst
rafac syntax! add_anzn({range,

|=={Onix) =" test.erl
| Wew functicn name!

A1l (21,50)

> E—————

= xefac_syntax: corsd_expr_alaizses [t

Tefac_syntax: case_expr_clause

Ya
Ya
4)

(Exiang 1

extend_backwaxds/3, extend_forwards/3}).

13
IkE)

Rename Variable Name
Rename Functicn Narme

Rename Module Name

Generalise Function Definitien
Meove Function to Another Module
Function Extraction

Fold Expression Against Function

Fram Tuple To Record

Tupte Function Arguments I

Rename a Process |
Add e Tag to Messages
Register @ Process

Frem Function to Process ‘

Duplicated Code in Current Module

Duplicated Code in Directories

Exptession Search

Unde (C-u) hd |!

Custemize

Figure 1. A snapshot of Wrangler in Emacs

Program
source
code

Standard
parser

AST
annotation

‘-rﬂefactorer

Program
renderer

Figure 2. The Wrangler workflow

side-condition checking and program transformation operate over
the AAST: during condition checking the conditions typically col-
late information gathered by walking the tree, and the transforma-
tions themselves are also typically accomplished by a tree-walking
algorithm.

To perform a refactoring, the refactoring engine first gathers the
necessary data and checks that all the side-conditions are satisfied,
and then performs the necessary transformation if the previous
check succeeds. Most of the refactorings need some user interaction
when the refactoring is initiated (typically, a prompt for a new
name), and/or during the refactoring process to allow the user to
guide the refactoring process. All the refactorings supported by
Wrangler are module-aware, supporting the refactoring of multiple-
module projects.

62

Wrangler preserves the original layout of the program as much
as possible, and functions/attributes that are not affected by a refac-
toring have the layout/comments unchanged after a refactoring.
More about layout preservation is given in next section.

In order for users to be able to undertake refactoring in a specu-
lative way as a part of their software development process, it is im-
portant to be able to undo any transformation. This can be done in
Emacs, but if any edits have been performed after the last refactor-
ing these will be lost; in the Eclipse embedding, the undo streams
for edits and refactorings are fully integrated.

3. Improved User Experience

To better meet ils users' expectations, the infrastructure of Wran-
gler has been modified in several ways, including improved pro-
gram appearance preservation, support for refactoring code with
syntax errors, and enhanced efficiency in the refactoring process.
More details follow in the reminder of this section.

3.1 Program Appearance Preservation

By program appearance preservation, we mean that the refactored
program should preserve the original program’s layout and com-
ment information as much as possible. Programmers would be re-
luctant to use a refactoring tool which reformats their code and
makes it unrecognisable to them. Comment information is valuable
for program understanding and long-term maintenance, therefore
should never be discarded by the refactorer. Wrangler was designed
Lo preserve comments, but not layout, from the very beginning.

Originally, we decided 1o use a pretty-printer to format the
transformed program hoping that the layout produced would be
acceptable by Erlang programmers; however, we soon discovered
that this was not ideal. Our own refactoring experience suggested
that sometimes the new layout produced could be so different from
the original one that we would rather not to do the refactoring,
hence we needed a better way to render the transformed program.

With the current implementation of Wrangler, program appear-
ance preservation is achieved by making use of both token stream
and AST. Erlang’s standard token scanner discards both whites-
pace and comments from the source, however we have extended
it to keep both. Location information, which is kept in both token
stream and AST, is used to map the AST representation of an syn-
tax phrase — such as a function, an attribute and so forth — to its
token stream representation. After a refactoring, only those func-
tions/attributes that are affected by the refactoring process are for-
matted by a pretty-printer, and all the other function/attributes are
rendered by extracting the source from the token stream, therefore
have their layout completely unchanged. The pretty-printer used by
Wrangler respects the original layout, such as line width, of each
function/attribute to be printed, and in most cases produces a layout
very similar to the original layout of the function/attribute,

3.2 Refactoring Code with Syntax Errors

Wrangler has also been extended to accept Erlang programs that
contain syntax errors or macro definitions that cannot be parsed
by SyntaxTools. When the program under consideration has syntax
errors or unparsable macros, functions/attributes to which these
errors/macros belong are not refactored by the refactoring process,
however warnings asking for manual inspection of those parts of
the program will be given by Wrangler,

This feature was made possible in Wrangler by two facts.
Firstly, the Erlang parser is self-recoverable, i.e., a function/attribute
that does not parse does not stop the parser from parsing the code
following it; secondly, location information kept in the AST and
token stream allows us to extract the source code for those syn-
tactically erroneous functions/attributes from the token stream, and
put them back into the program during the program rendering pro-
Cess,

3.3 Efficiency Enhancement

While the program analysis and transformation needed by each
refactoring may be different, all refactorings need to parse the
program under consideration and annotate the AST produced, as
shown in Figure 2. When refactoring a large project, a considerable
amount of time could be spent on program parsing and annotation,
and this could slow down the refactoring process. Therefore, it
would be preferable if we could avoid the parsing and annotation

63

process when it is possible, or parse and annotate the program when
the refactoring engine is idle.

With Erlang as the implementation language of Wrangler,
reusing of AAST is naturally achievable using Erlang processes,
and indeed that is the approach we have adopted. With the lat-
est implementation of Wrangler, a gen_server process, called
AST_server, is dedicated to AST management. If an AAST is
needed, the refactorer engine will ask AST server for it. With
AST_server, an Erlang module is parsed only when its AAST does
not exist or is out-of-date. The refactoring engine also informs the
AST _server when a module has been refactored, which will then
update its AAST repository in the background. In a similar way,
there is also a process in charge of maintaining the function/module
callgraph in the background,

4. Tuple Function Parameters

The refactoring Tuple Function Parameters groups a number of
consecutive arguments of a function into a tuple. This refactoring
also modifies the arguments to the call sites of the function, and
affects multiple modules if the function is exported, therefore has a
global effect.

To apply this refactoring in Wrangler, the user first points the
cursor Lo a function parameter or an application argument in the
editor, then selects Tuple Function Arguments from the Refactor
menu, after that the refactorer will prompt for the number of ele-
ments that are to form the new tuple.

Tuple Function Arguments has the following side-conditions:

® The indicated position in the editor must be a formal argument
of a function definition or an application argument.

® The desired length of the tuple (m, say) must be valid. If the
chosen parameter is the n-th element of the function arguments,
and then m+n-1 should not be larger than the arity of the
function.

® The new function produced with a reduced arity should not
conflict with existing functions.

@ The function must not be an OTP callback function.

® As a design decision, we ask the user to initiate the refactoring
from the module where the function is defined.

The example in Figure 3 illustrates an application of this refac-
toring which groups the first two paramelers of function £/3 into
4 tuple. Function £/3 is exported by its defining module and used
by another module, and in this case both the definition of £/3 and
its application in the other module tup2 are changed. The export
attribution is also affected by the refactoring,

Create tuple Result
~module (tupl) . -module(tupl) .
-export ([£/3]). -export ([£/2]).

|£¢a, B, ¢) -> f({a, B}, ©) -
A+B+C. A+B+C.
—
—module (tup2) . -module (tup2) .
-export ([g/3]). —export([g/3]).

g(x: Y: Z) ->
tupl:f(X, Y, 2).

gX, Y, Z) >
tupl:f({X,Y},Z).

Figure 3. Tupling the first two arguments of the function f.

In the case that the function under consideration is used in an
implicit fin application or a meta-function application, Wrangler
will issue a warning message asking the user to check and modify
manually if necessary.

5. Introduce Records

Erlang’s principal data structuring mechanism is the tuple, which
corresponds to the C structure, or indeed to tuples in other func-
tional programming languages. The Erlang record allows tuple
fields to be named, allowing programmers more flexibility in im-
plementation by hiding some of the data representation. One ex-
ample of this would be to allow a programmer to add a field to an
existing record.

Thus, the process of turning a tuple into a record is a natural
refactoring, which we call From Tuple to Record. This has been
explored by the RefactorErl team [22], but o date remains a proto-
type in that system. We have chosen to take a bottom-up approach
to implementing it in the work reported here.

Specifically we have chosen to implement the refactoring which
transforms a tuple function parameter into a record expression.
This refactoring modifies both the definition of the function and
its application sites across the program. If the given record name
does not exist, a new record definition is created by the refactorer.

In the remainder of this section we report the design and im-
plementation of From Tuple 1o Record, and then explore ways in
which this should be extended.

5.1 From Tuple to Record

To apply this refactoring in Wrangler, first mark a tuple in the ed-
itor, which should be a function parameter or an application argu-
ment, then select From Tuple to Record from the Refactor menu,
and after that the refactorer will prompt for the record name and
the record field names. As a design decision, the user should initi-
ate the refactoring from the module where the function is defined.

A number of side-conditions are necessitated by this refactor-
ing, and they are:

e The starting and ending positions of the selected text should
delimit a tuple, which is a function parameter or an application
argument.

e The given record name and field names should be atoms, and
the record name should not have been used as a record name.

e The number of the field names given must be equal to the
selected tuple size and must be distinct.

The example in Figure 4 shows the application of F7om Tuple to
Record (o the first argument of function £/2. A new record, named
rec, with two fields has been created, and both the definition of
£/3 and its application in g/1 have been changed. Since £/2 is not
exported by its defining module, this refactoring has a local effect;
whereas the example in Figure 5 illustrates an application of this
refactoring which affects multiple modules. In the latter example,
both the definition of £/3 and its application in the other module,
record2, are affected. A record definition is created in both mod-
ule recordl and module record2. The resulting program could be
further refactored by lifting the record definition into a . hrl file.

5.2 Types and the refactoring

The example in 6 illustrates refactoring a function which has
more the one function clause, and can be applied to both tuples
and lists. In this case the refactoring needs to analyze the function
calls to the transformed function to decide whether an argument is
a tuple (which will become a record) or not. In general this is not
decidable, and so it will be necessary to add some run-time type
checking (using case for example) to decide whether the argument

64

. Create record expression
-module (record) .
-export([g/11).

f({4, B}, O >
A+B+C.

g(X) ->
£({X, 2*X},3*X).

Result

-module(record) .
-export ([g/11).
-record(rec,{first,second}).

f (#rec{first=A, second=B},C) ->
A+B+C.

gX) ->
£ (#rec{first=X,second=2*X},3*X).

Figure 4. An example of From Tuple to Record affecting a single
module

Type example

£({A, B}, C) >
A+B+C;
£([1,0-> 9.

h(X) ->
Y = {X, x};
£(Y, 5),
s=10
£(S, 3*X),
Z = mod:app(X),
£z, X). |

Figure 6. Function with multiple clauses

is a record or not. This will clutter up the code, but serves as a
warning to the possible user of a refactoring like this.

5.3 Replace tuple with record

In order to inform the next steps of our work, we have undertaken
a case study of the Erlang Standard Library in order to discover
the most used patterns of record usage. The three that we have
discovered are

Replace tuple with record in a function body. Instead of access-
ing a tuple literally, we can name the record in the function
argument and access it directly.

Using record update. If a tuple expression is a variant of another
tuple expression, the former can be defined from the latter using
record update syntax.

Record access. Access to components of a record can be given
by an access expression, rather than by a pattern match of the
whole record.

Used in combination, these transformations allow a user to hide
the representation of a data type, thus giving a more abstract, and
thus more fexible, interface to the data. It remains a research
challenge to provide the appropriate interface to this collection of
refactorings, so that a ‘batch’ application of them to a whole set of

Create record expression —

-module(recordl),
-export ([£/2]).

f£({A, B}, C) -
A+B+C.

-module(record?2).
-export([g/31).

gX, Y, 2) ->
recordl:f({X, Y}, 2).

Result

-module(recordl).
—export ([£/2]).
-record(rec, {first, second}).

f(#rec{first=A, second=B},C) ->
-module(record?) .
-export([g/3]).

-record(rec,{first,second}).

gX, v, 2) -

A+B+C.

recordl:f (#reci{first=X,
second=Y}, Z).

Figure 5. An example of application of From Tuple to Record affecting multiple modules

functions which operate over a
devised.

given (conceptual) data type can be

6. Process-related Refactorings

Built-in support for lightweight processes is one of the strengths
that distinguish Erlang from other programming languages. Erlang
programs are made of lots of processes. These processes can com-
municate with each other by sending messages. In Erlang, pro-
gramming with processes is easy, needs only three new primitives:
spawn, send (!) and receive; however, undisciplined use of pro-
cesses could make the program hard to understand and maintain.
For example, some typical process-related bad code smells include

e Code for implementing a single process spans across multiple
modules, or code for more than one kind of process exist in the
same module,

® Use process and message passing when a function call can be
used, or use sequential function calls to model parallel activity.

* Name of a registered process does not reflect its role or func-
tionality.

* Send/receive untagged messages.
® Non tail-recursive functions, especially non tail-recursive servers.

® Register a process that only lives a short time, or not register a
process that lives a long time

* Notuse generic OTP libraries, such as the generic server, when
doing so is more appropriate.

Most of the above bad code smells can be detected, and refac-
tored out step by step manually. However, after havi ng examined a
few basic refactorings, such as register a process, add a tag to mes-
sages, we realised that the dynamic nature of the language and the
implicitness of process and communication structure of an Erlang
program present a challenge for tool support of automated process-
related refactorings, or at least some of them.

For example, the refactoring register a process registers a pro-
cess with a name provided by the user, and replaces the receiving
process identifier in a send expression with the process name if the
process identifier refers to, and only refers to, the selected process.
An example application of this refactoring is shown in Figure 7.
For this refactoring 1o be behaviour preserving, the following side-
conditions are necessary:

65

© The process name provided by the user should be an atom, and
should not have been used as a process name in the program
under consideration.

* The selected process should not have been registered.

e Should multiple instances of the process exist during run time,
they should not co-exist at the same time.

() (®
f (Fun)-~>
Pid = spawn(Fun), f(FuP; z
Pid). Pid = spawn(Fun),
& — register(pname,Pid),
g(Pid)-> g(Pid).
X g(Pid)->
Pid!message.
pname !message.

Figure 7. Register a process

If all the side-conditions are met, we are then able to proceed
with the transformation, However, when replacing a process iden-
tifier in a send expression with the process name, we must make
sure that the process identifier only refers to the process selected.
For instance, in the example shown in Figure 8, the Pid in expres-
sion Pid!message should not be replaced by pname because this
Pid is associated with multiple process instances.

(a) (®)
f(Fun)-> £ (Fun)->
Pid = spawn(Fun), Pid = spawn(Fun),
g(Pid), register(pname,Pid),
Pidl = spawn(Fun), g(Pid),
g(Pidl). Pidl = spawn(Fun),
g(Pid1).
g(Pid)-> g(Pid)->
Pid!message. Pid!message.

Figure 8. Register a process

Even though this refactoring is very basic, neither its side-
condition analysis or its transformation is straightforward to carry
out due to the dynamic feature of Erlang and the design of Erlang's
process system. Next, we summarise the major challenges that we
have encountered when process-oriented refactori ng is concerned.

® Processes in an Erlang program are syntactically implicit. Un-
like some other concurrency-oriented programming languages,

such as Pict [27] in which processes and channels are syntac-
tically marked out, Erlang does not have a synlax category de-
signed especially to identify processes. In an Erlang program, a
process is created by the application of spawn/1 or its variants.
spawn/1 itself is just an Erlang built-in function. For example,
the expression

Pid = spawn(Fun)

creates a new concurrent process that evaluates Fun, and returns
a Pid whose value identifies the process.

Implicit connection between a process identifier and the process
identified. The spawn expression above also reveals the fact that
what identifies a process is not the name of the process identi-
fier, but the actual value. Since a variable can take part in com-
putation, or pass its value to other variables, it is possible that
two or more process identifiers have the same value, therefore
refer to the same process. Deciding whether two or more pro-
cess identifiers refer to the same process statically needs data-
flow analysis. Furthermore, as the Erlang type system only pro-
vides run-time rather than static type checking, even whether a
variable stands for a process identifier or not is not always clear
from the static view of the program.

While it is possible to name a process using the function
register/2 provided by Erlang, it is not always desirable
to do so especially if a process only lives a short time, and
sometimes it is not possible to do so as pointed out by the side-
conditions of Register a process.

The process communication structure is implicit. Processes in
an Erlang program communicate with each other by message
passing. Pid!Message sends Message to the process identi-
fied by Pid, and returns the message itself; receive...end
receives a message that has been sent to a process. Because
of the indirect connection between a process identifier and the
send/receive expressions of the identified process, trying
to establish a connection between a send expression in one
process and the corresponding receive expression in another
process is difficult, not even to mention the mapping between
particular messages sent/received. This is particularly obvious
when the refactoring Add a tag to messages is concerned. This
refactoring tries to add a tag to all the messages received (or
sent) by a particular process, and obviously it needs to find out
where these messages are sent from.

Unlike functions or modules, a process in Erlang does not have
a clear syntactically specified body or scope. Statically a pro-
cess consists of the collection of functions that are reachable
from the entry function/expression of this process. Bu, it is pos-
sible for multiple processes to share code, even send/receive
expressions. Sharing of send/receive expressions makes it
difficult to refactor messages sent/received, since it potentially
affect all those processes sharing the code, as well as those pro-
cesses that communicate with them.

Process context dependent evaluations. Erlang is a language
with side-effects. Some of the built-in functions provided by
Erlang depend on the context of the current calling process.
A particular example is the function self/1, which returns
the process identifier of the calling process. Hence, care has
to be taken if a refactoring changes the execution context of
an expression. Examples of this kind of refactorings include
From fimetion to process, From process to function, Spawn a
new process to execute an expression etc.

As mentioned before, Wrangler uses annotated abstract syntax
tree (AAST) as the internal representation of Erlang programs. The

66

annotation information includes binding information of variables
and functions, syntax category, location, comment information,
tokens, etc. Together with some fundamental functionalities for
function call graph construction, module graph construction, side-
effect analysis, etc, the existing infrastructure provides enough
information to proceed with most refactorings regarding to the pure
functional part of the language, but not with most process-related
refactorings because of the challenges presented above.

To support process-related refactorings, we have extended our
work in two aspects. Firstly, we have extended the existing AAST
representation of Erlang programs with process information; sec-
ondly, we have exploited the use of slicing techniques to help the
refactoring process. As a design strategy, Wrangler always (ry to
extract as much necessary information as possible by static analy-
sis, and minimise the amount of information needed from the user.

The remaining of this section is organised as follows. We first
describe the annotation of AAST with process information, then
discuss program slicing and its uses within the refactoring context.
Finally, a summary of the process-related refactorings supported by
the current implementation of Wrangler is given.

6.1 Annotate AST with Process Information

In an Erlang program, the only way to create a process is via the
application of spawn, which creates a new concurrent process and
returns a process identifier. But because process identifiers can be
passed to other functions as parameters or returned values, or even
passed to other processes by messages, sometimes it is not clear
which process an identifier refers to, With this analysis, we aim
10 establish a stalic connection between a process identifier occur-
rence and the process identified. Due to the syntactic implicitness
of Erlang processes, we use the spawn expression Lo represent the
process created. In Wrangler, a particular spawn expression isiden-
tified by the combination of the spawn expression itself, the enclos-
ing function of the spawn expression and the relative location of the
spawn expression within the function. Location is needed to resolve
the cases when two or more lexically the same spawn expressions
occur in the same function.

As an example, given the sample code (a) in Figure 8, this
analysis will annotate each occurrence of Pid in function £ /0 with

{pid, [{spawn(Fun), {mod, £, 1}, 1}}1,

in which pid means the variable represents a process identifier,
spawn(Fun) is the spawn expression that creates this identifier,
{mod,£,1} refers to the enclosing function of the spawn expres-
sion, and the last integer 1 means that the spawn expression is
the first spawn expression in this function. Here we assume that
the name of the module to which the sample code belongs is mod.
However, the occurrences of Pid in function g/1 will be annotated
with the following information because of the multiple application
sites of this function:

{pid, [{spawn(Fun), {mod, f, 1}, 1},
{spawn(Fun), {med, f, 1}, 2}1}.

With this kind of annotation, we are able to check whether two
process identifiers refer to the same process or not by looking at
the spawn expressions associated with them. The basic annotation
algorithm used by Wrangler works as follows:

1. Construct the call graph for functions, and sort it topologically
based on the dependencies between functions.

2. Within each function definition, annotate every occurrence of
spawn application expression with process identifier informa-
tion as illustrated above.

3. Analyze the call graph in a bottom-up order to propagate pro-
cess information within each function definition through func-
tion application (when a function returns a process identifier),
pattern matching and the binding structure of variables when-
ever it is possible. In the case that a function returns a process
identifier, the return type of this function is also recorded.

4. Analyze the call graph in a top-down order to propagate process
information from the call-sites to local function definitions.

5. Repeat from step 3 until a fix-point has been reached.

Apart from spawn expressions, process identifiers returned by other
built-in functions, such as self/1, could also be annotated in a
similar way.

So far, this algorithm does not handle complex pattern matching
and message passing, therefore only partial process information is
annotated into the AAST. However, methods have been taken to
indicate whether the information annotated to a process identifier
is complete or not.

User input is still needed when an undicidable situation occurs,
but we try to reduce this kind of situations by the use of slicing
techniques when it is possible.

6.2 Program Slicing

Apart from annotating AAST with process information, we have
also exploited the use of program slicing techniques to reduce the
number of uncertainties encountered by the refactoring engine by
marking out the scope of the program that needs to be anal ysed or
transformed,

The concept of program slicing was first introduced by Weiser.
In [30], Weiser defines a program slice S as a reduced executable
program obtained from a program P by removing statements, such
that S replicates part of the behaviour of P. The slicing process
generally starts for a slicing criterion, which represents the point
in the code whose impact is to be observed with respect to the en-
tire program, A backward slice contains all parts of a program that
may have an effect on the criterion in question; by contrast, for-
ward slices contain all parts of a program that may be affected by
the selected criterion. Program slicing has its applications in many
areas, such as debugging, code understanding, reverse engineering,
program testing, etc. Program slicing itself could also be refactor-
ings. For example, a function returning a tuple could be sliced into
two functions, each of which returns an element of the tuple.

Within the context of refactoring Erlang programs, we have
mainly exploiled the use of static program slicing to reduce the
scope of the program to be analysed, with the hope to reduce those
undicidable cases for which Wrangler needs to ask for user’s input
or issue warning messages in order to proceed with the refactor-
ing process. Both forward and backward inter-function slicing of
Erlang programs have been implemented. In this paper we are not
going into the details of the implementation, instead we focus on
benefits of slicing during the refactoring process.

6.2.1 Forward slicing

Given an expression or a subset of the arguments of an Erlang
function, Wrangler's forward slicer returns all parts of the program
that may be affected by the value of the selected expression or
arguments by employing data dependency analysis. The slicing
algorithm operates cross function borders if the returned value of
the function depends on the slicing criterion or any expression
that depends on the slicing criterion is passed as a parameter 1o
a function defined within the application in question. For instance,
the example code (b) in Figure 9 shows the slicing result for the
first spawn (Fun) expression in function £/1.

The major benefit of forward slicing is that it gives a clear scope
of the program which might be dependent on the selected criterion,

67

(a)

(v)

f(Fun)->

Pid = spawn(Fun), f (Fun)->

g(Pid), Pid = spawn(Fun),

Pidl = spawn(Fun), — g(Pid).

g(Pid1).
g(Pid)—> g(Pid) —>

Msg = "Hello world!" Pid ! Msg.

Pid ! Msg.

Figure 9. Forward slicing

therefore a confined scope for program analysis if only the parts
of the program that depend on the slicing criterion is necessary to
be analysed. For example, to check whether a spawned process
has been registered by other processes, we only need to check
those registration expressions that belong to the slice produced
by taking the spawn expression as slicing criterion. Reducing the
analysis scope also reduces the number of undicidable situations
encountered.

6.2.2 Backward slicing

In contrast to forward slicing, backward slicing uses a backward
traversal of the data dependency flow from the point of interest
given in the slicing criterion, and returns the parts of the program
that could potentially affect the value of the selected expression.
Depending on the applications of the computed slices, some will
require that the returned slice is executable, while others only need
the relevant expressions to be returned without checking whether
those expressions form a syntactically well-formed program or not.
With Wrangler, backward slicing has been used mainly with two
scenarios. More details follow.

* Slice in order to evaluate. In some situations, it would help
the refactoring process if Wrangler could know the possible
values of a specific variable or expression, One approach is
to use the functionalities provided by the module erl_eval,
which defines an Erlang meta interpreter for expressions. For
example, the function erl_eval:exprs/2, or its variants, can
be used to evaluate a sequence of expressions in an abstract
syntax representation. First slice then evaluate could ensure
that only those expressions which could affect the value of
the selected expression will be evaluated. More than that, in
the case that the expression sequence to be evaluated depends
on some formal parameters of the enclosing function, inter-
function slicing provides more chances for the evaluation to be
successful.

For instance, with refactorings such as rename a registered pro-
cess, register a process, Wrangler needs to know the process
names that have already been used by the program, however
this is not always straightforward when a process name can
be dynamically composed as shown in the example code (a) in
Figure 10. Taking the variable ProcessName from the expres-
sion register (ProcessName, Pid) as the slicing criterion,
Wrangler’s backward slicer will return the expression shown
in part (b) in Figure 10. If there are multiple applications of
the enclosing function of the slicing criterion, or functions that
call this function either directly or indirectly, the slicer will re-
turn a list of expressions, each of which corresponds to a non-
recursive call chain that leads to the function containing the
slicing criterion. Note that it is not always the case that the pro-
duced slices can be evaluated, because of the lack of bindings
for some functions for example, but again one strategy of Wran-
gler is to extract as much as information needed as possible.

(a)

start() —>
Prefix = "chil",
State = [1,2]

start (Prefix, State).

start (Prefix, State) ->
ProcessName=list_to_atom(Prefix++"_proc"),
Pid=spawn(chl, init, [ProcessName, Statel),
register (ProcessName, Pid).

(®)

fun(Prefix) ->
ProcessName = list_to_atom(Prefix++"_proc"),
ProcessName

end (begin Prefix =

"chi", Prefix end).

Figure 10. Backward slicing

e Like forward slicing, backward slicing can also be used to refine
the scope of analysis. For example, taking a process identifier
as the slicing criterion, backward could help to locate where the
process is spawned, and even the initial function of the process
identified.

The current slicing algorithms implemented in Wrangler do not
handle process communication, and this aspect will be further in-
vestigated in the future.

6.3 Process-related refactorings supported by Wrangler

A number of process-related refactorings have been implemented
using the enhanced infrastructure of Wrangler, and they are:

e Register a process, which register a process identifier with a
user-provided name, and replaces the use of the process iden-
tifier in a send expression with the use of the process name
whenever this is safe. Registering a process with a name al-
lows any process in the system to communicate with the process
without knowing its Pid.

o From function to process, which turns a function definition into
a process, and all the calls to this function into communica-
tion with the new process. This refactoring provides potential
for memorisation of the computed results and adding new func-
tionalities.

® Rename a registered process, which renames a process’ regis-
tered name to a user-provided new name. The main challenge
of this refactoring is to detect whether an atom with the same
name in the program presents a process name or not.

e Add a tag to the messages sent/received by a process, which
adds a tag to all the messages received (or sent) by a process.
This refactoring affects not only the process where the refac-
toring is initiated, but also the other processes which commu-
tate with it. The refactoring does not distinguish individual mes-
sages received (or sent) by a process, therefore all the messages
belonging to the processes involved will be added the same tag.
The tags added can then be renamed manually by the user to
distinguish different kinds of messages. While not ideal, this
refactoring still help to mark out a clear scope that needs in-
spection.

7. Eclipse integration

There are some imitations to the way in which Wrangler is inte-
grated into the Emacs editor, and so we have investigated inte-
grating Wrangler in Integrated Development Environment (IDE).

68

In doing this we aimed to make as few changes to Wrangler as
necessary, and to use it as a ‘black box’ to provide services to the
IDE. On the other hand, this integration work provides a perspec-
tive on the design of Wrangler (and indeed Eclipse and its refactor-
ing model) and we discuss this at the end of the section. Before that
we describe the background to the work, and then give an overview
of the integration work; full details of this work are given in the
project report, [26].

7.1 Emacs

Emacs [3] is an highly configurable text editor with syntax high-
light tool, debugger interface among many other features, but — as
its name says Editor MACroS — it is just an editor with additional
functionalities. What is more the fundamentals of the current ver-
sion were originally written in 1984, when the developers of the
tool, in a very understandable way, did not address refactoring sup-
port.

So the support provided by Emacs for various code transforma-
tion scenarios is not as good as it might be. To be more specific

e A typical refactoring will affect a complete project, rather than
a single file. When integrating a refactoring tool with Emacs it
therefore becomes necessary to define a notion of project, by,
for instance, specifying a set of search paths.

e A number of refactorings — such as those which move a def-
inition from one module to another, or those which rename a
module — affect the way in which a project is built using ‘make’
or other systems. Changes made within the editor-embedded
refactorer will not by default be reflected in the build infras-
tructure of the system.

e Emacs has a notion of ‘undo’, related to the editing operations;
a refactoring tool will also provide a separate ‘undo’ operation;
it is not at all clear how the two separate ‘undo’ operations can
be put together.

Taken together these arguments against editor-embedded refactor-
ing systems prompted us to investigate ways in which Wrangler
could be integrated with an IDE.

7.2 Eclipse

The best developed open source IDE is Eclipse [1, 13], which is
an open source community whose projects are focused on building
an extensible development platform, ... for building, deploying
and managing software across the entire software lifecycle. Many
people know us ... as a Java IDE but Eclipse is much more
than [that] [1]. In particular Eclipse has a plug-in architecture [9]
which supports the integration of new functionality for Java and
other languages. Plug-in distribution and update is provided by the
Eclipse organisation.

For us, the most important thing is the refactoring support of
Eclipse. It provides a very well documented refactoring API, the
Eclipse Langnage Toolkit (LTK) [11], with fully support for inte-
gralion into various aspects of the infrastructure of Eclipse, includ-
ing

o the refactoring menu,
e refactoring previews, and,

e ‘undo’ and ‘redo’ support.

The LTK is described in more detail in Section 7.4 below, when
we describe how Wrangler refactorings are integrated into Eclipse.
Integration of this sort has already been developed for the Ruby
language [29].

Eclipse is designed to be a universal tool platform and provides
several extension points and APIs to extend it. The basis of Eclipse

L l.rl.mr.- tahlenukre/otiitleei] - fofl e SO%

Fie Ede DEURT Mavigss Search Project Bam. Windk Help
. Rename function.,,

[LH'E

4

ARIShIt4R, F e -~
i >
Rename varlshis,., Al+SHELIR, ¥ | (Hertng 5" deva
HEWE Move function, . LIE I il Stetel - wrtase = obre
Fedd expression, ., | - v modde: Wiittes
s L Funclion extraction, ., 2 import: lists
| Generss hncion... boz fizse of limce, # export
Tuple t d. | & memberfd
o tecord...
. L L,
Tupls function parameters, ., slat=in, v o ; :L:;:;g ;F‘f)ﬂ)
- {ucilities, Lista:, i, k), o
MRS heiiisacs, Satgeali b B eqllstsOfLsts/2 (L,R)
& tanns of & ktfradouctianiz (Ls,Rs)
B o (B2 (VM)
%‘ B testlfo
M testzf0
listProductdain (L, T o test3fo
B test4fd

“ Eripg corgole T4 Process st view 1% Problems :{ & Live Expressions L) Console
evlide [evide iitermal node) erhe_a595c2simnthompsdbd? -

WrRable Smart Insert 55: 11

Figure 11. Wrangler in Erlide

is the kernel (or runtime), which loads plug-ins as needed. On top
of this are four components

Workspace. The Workspace component handles the resources, in-
cluding files, directories, projects, connections. Every modifi-
cation of a resource is handled by the Workspace component; it
also stores the history of each resource, letting the user undo or
redo changes.

Workbench. The Workbench is the graphical interface next to the
kemnel. It is implemented in Eclipse’s own Standard Widget
Toolkit (SWT), giving OS native look-and-feel. It manages all
the views, editors, and user actions as well. Of course it is also
extensible using its extension points.

Team. This provides support for working with CVS / SVN reposi-
tories among other version management systems.

Help. This supports the definition and contribution of many kind
of documentation.

Plug-ins can declare extension points, which can be used by others
to extend its functionality in a controlled way. The Wrangler plug-
in uses the following extension points:

org.cclipse.ui.editorActions: This allows plug-ins to add menus
and toolbars to the workbench, when the selected editor type
becomes active. In our case this was used to add the Refactor
menu.

org.cclipse.ui.bindings: A binding is used to define relations be-
tween sets of conditions, commands and keybindings, and is
used to create shortcuts for refactorings.

org.eclipse.ui.commands: This is used to create commands and
command categories. A command is an abstract representation
of a semantic behaviour; in our case it makes the connection
between actions and bindings.

7.3 Erlide

The Erlide [2] plug-in provides an Eclipse-based development en-
vironment for Erlang, with features including a built-in console,
automated build tool, syntax highlighting, code completion and de-

bugging support, outline and running processes view and live ex-
pression evaluation; see Figure 11, The Erlide backend is a Java
interface for an Erlang node [7]. It provides thread safe RPCs (Re-
mote Procedure Call) 1o each node, and each project is linked to a
backend. This backend starts and stops when the project is opened
or closed.

74 Integrating Refactorings using the LTK

The LTK provides a toolkit for integrating refactorings into Eclipse.
This has a number of advantages, such as integrating them with
the preview mechanism and the undofredo mechanism, but it does
provide a somewhat different workflow for refactorings than that
assumed by Wrangler. An initial problem was that Wrangler is
designed to modify source files, and we needed first to maodify it
so that it returns a new copy of the file. More fundamentally, the
LTK workflow follows this pattern

1. The user initiates the refactoring.

2. An initial check is made of some of the preconditions.
3. User interactions (e.g. getting a new variable name).
4

- According to the user input, another check is called; if no error
occurs, the changes are calculated.,

5. A preview dialog appears (optionally), then the calculated
changes are applied if required.

while the Wrangler workflow is thus:
1. The user initiates the refactoring.

2. User interactions.

3. Applying the refactoring (within the Wrangler system)
(a) checking conditions
(b) calculating modifications
(¢) applying them to the AAST
(d) writing them back to a new source file

Clearly, the Wrangler workflow will not allow the initial check
(LTK 2) and so this stage becomes trivial, with user interactions

69

(LTK 3) preceding the call to Wrangler (LTK 4). This call will gen-
erate a new source file, from which a set of differences, calculated
using an open source ‘diff” tool, can be generated, as required by
LTK 4. This ‘diff’ set forms the input for the final stage (LTK 5).

This correspondence gives a high-level overview of the way that
a number of refactorings, such as renaming functions and variables,
and rupling of arguments, can be integrated into Erlide and Eclipse.
We next turn to some of the difficulties presented by the integration
exercise.

7.5 Integration challenges

The model presented in the last section allows information to be
gathered prior to any further processing, and this supports certain
kinds of refactoring as discussed above. However, others require
a more fine grained interaction. This includes function generaliza-
tion and folding expressions against function definitions, which we
discuss now.

In function generalization, a user selects a sub-expression of the
function body, provides a new parameter name, and once this is
done the user will be prompted by Wrangler for further confirma-
tion in the case that the expression contains free variables or poten-
tially causes a side-effect. This extra interaction is accommodated
in the plug-in by means of Eclipse pop-up windows.

Folding instances of a function body into a call to that function
will in general result in multiple instances of that body, and so
multiple requests o the user for confirmation. In order to integrate
this, it was necessary to change the Wrangler workflow for this
refactoring, to return all the candidates in a single step, then to be
iterated through within Erlide.

In both those cases, it was necessary to modify the refactoring
to fit the LTK model of a refactoring. Some refactorings appear to
2o beyond the LTK model entirely. Any refactoring which modifies
the files used by a system — such as renaming a module, or creating
a new module by moving a definition to a non-existent module —
cannot be accommodated in the LTK model.'

Other ‘refactorings’ — like clone detection — are not quite refac-
torings, and it would be artificial to include them in the LTK in-
terface: we are currently investigating including them in a general
‘search’ interface.

7.6 Reflections on Wrangler

The LTK workflow presented in Section 7.4 suggests that the ar-
chitecture of Wrangler might be modified to fit more tightly into
Eclipse. In particular, it would be possible to refactor the pre-
conditions of refactorings into two parts.

e The first part could be checked independently of the user input:
in the example of ‘rename function’ this might include checking
that the current position of the cursor is on a function identifier.

¢ The second part will use the user input — in our example the new
name for the function — and check that, for instance, this name
is not already used in the module, or imported from another
module.

As we have noted earlier, the output of Wrangler after a refactoring
is a new file, from which we calculate a ‘diff’ set; it would be
possible to modify Wrangler to produce a ‘diff’ set directly. We
aim Lo investigate these modifications in the months to come, and
to continue our overall project to integrate Wrangler as tightly as
possible into Eclipse and Erlide.

I The Eclipse Java refactoring systems allows these file changes, but note
that it was implemented prior to the definition of the LTK.

70

8. Conclusions and future work

It is clear that as we look at more advanced refactorings — such as
those involving wholesale transformation of data representations,
or others which address inter-process communication — then more
complicated analyses are required. Indeed, we would contend that
for these more advanced transformations it is impossible to make
them automatic, and that the role of the refactoring tool becomes
one of a refactoring assistant, which can provide support for var-
jous aspects of the refactoring process, rather than a completely
automated process. Perhaps this should be no surprise, as this is
the case in machine proof, where theorem-provers and proof as-
sistants co-exist, and there is more than a little in common between
meaning-preserving refactoring and proof. We therefore expect that
our work will take us towards more complex, user-driven, interac-
tions.

We also see in the work that we report there is a substantial
investment in infrastructure in any tool building of this sort. While
it may not be evident from the high-level report of the Eclipse
integration that we provided, the project report [26] shows this was
not a trivial, or even a straightforward exercise, and considerable
work remains to be done. Nevertheless we expect to contribute our
refactoring tools to the general Erlide project, which shows great
promise.

On the same theme we and the team from Eotvos Lordnd Uni-
versity hope to evolve a common infrastructure between our two
systems, so that user can take advantage of the two in a seamless
way, This common infrastructure will also allow us to test the two
systems against each other,

The Kent team would like to acknowledge the support of the UK
EPSRC in funding work on Wrangler, as well as support provided
by Vlad Dumitrescu for his work on Erlide, the members of the
Erlide development mailing list, and the members of the Eclipse
IDT development mailing list for support provided in the port of
Wrangler to Eclipse.

References

[11 Eclipse - an open development platform. http://www.eclipse.
org/.

[2] Erlide - the Erlang IDE. http://erlide.sourceforge .net/.
(3] The Emacs Editor. http://www.gnu. org/software/emacs/.
[4] The Vim Editor. http://www.vim. org/.

[5] J. Armstrong. Programming Erlang. Pragmatic Bookshelf, 2007.

[6] J. Armstrong, R.Virding, C. Wikstrém, and M. Williams. Concurrent
Programming in Erlang. Prentice-Hall, second edition, 1996.

[7] D.Byrme. Integrating Java and Erlang. http://wwv.theserverside.
com/tt/articles/article.tss?l=IntegratingJavaandErlang.

[8] R. Carlsson. Erlang Syntax Tools. http://www. erlang.org/doc/
doc-5.4.12/1ib/syntax_tools-1.4.3, 2004.

[9] E. Clayberg and D. Rubel. Eclipse: Building Commercial-Quality
Plug-ins. Addison Wesley, 2006.

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[11] L. Frenzel. The Language Toolkit: An API for Automated
Refactorings in Eclipse-based IDEs. 2006.

[12] L. Gorrie. Distel: Distributed Emacs Lisp (for Erlang). In The
Proceedings of Eighth International Erlang/OTP User onference,
Stockholm, Sweden, November 2002.

[13] S. Holzner. Eclipse Cookbook. O’Reilly, 2004.

[14] H. Li. Refactoring Haskell Programs. PhD thesis, Computing
Laboratory, University of Kent, Kent. UK, September 2006.

[15] H. Li, C. Reinke, and S. Thompson. Tool Support for Refactoring
Functional Programs. In Johan leuring, editor, ACM SIGPLAN
Haskell Workshop, Uppsala, Sweden, August 2003,

[16] H.Liand S. Thompson. A Comparative Study of Refactoring Haskell
and Erlang Programs. In M. Di Penta and L. Moonen, editors,
SCAM2006, 2006.

[17] H. Li and S. Thompson, Testing Erlang Refactorings with
QuickCheck. In Drafr Proceedings of the 19th International Sympo-
sium on Implementation and Application of Funerional Languages,
IFL 2007, Freiburg, Germany, September 2007,

[18] H. Li and S, Thompson. Clone Detection and Removal for
Erlang/OTP within a Refactoring Environment. In P. Achten,
P. Koopman, and M, T. Morazn, editors, Draft Proceedings of the
Ninth Symposium on Trends in Functional Programming(TFP), The
Netherlands, May 2008,

[19] H. Li and S. Thempson. Tool Support for Refactoring Functional
Programs. In Partial Evaluation and Program Manipulation, San
Francisco, California, USA, January 2008,

[20] H. Li, S. Thompson, and C. Reinke. The Haskell Refactorer, HaRe,
and its APL Electr: Notes Theor: Comput. Sci., 141(4):29-34, 2005.

[21] Huiqing Li, Simon Thompsen, Laszl6 Lévei, Zoltin Horvith,
Tamés Kozsik, Aniké Vig, and Tamds Nagy. Refactoring Erlang
Programs. In The Proceedings of 12th International Erlang/OTP
User Conference, Stockholm, Sweden, November 2006.

[22] Ldszl6é Livei, Zoltan Horvéth, Tamds Kozsik, and Roland Kirdly,
Introducing Records by Refactoring. In Evlang '07: Proceedings of
the 2007 SIGPLAN workshop on Erlang Workshop, pages 18-28,
New York, NY, USA, 2007. ACM.

71

[23] Lasz16 Lévei, Zoltdn Horvath, Tamds Kozsik, Anikd Vig, and Tamds
Nagy. Refactoring Erlang Programs. Periodica Polyrechnica —
Electrical Engineering (10 appear), 2007,

[24] T. Mens and T. Tourwé. A Survey of Software Refactoring. JEEE
Trans. Software Eng., 30(2): 126-139, 2004.

[25] Tamids Nagy and Aniké Vig. Erlang Refactor Tool. Master’s thesis,
ELTE, Budapest, Hungary, 2007,

[26] G. Orosz. The Eclipse Integration of the Wrangler Erlang Refactor
Tool. Technical report, Computing Laboratory, University of Kent,
UK, 2008.

[27] B. C. Pierce and D. N. Tumner. Pict: A Programming Language Based
on the Pi-Calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors,
Proof, Language and Interaction: Essays in Honour of Robin Milner.,
MIT Press, 2000.

[28] P. Dividnszky R. Szab6-Nacsa and Z. Horvith, Prototype Environ-
ment for Refactoring Clean Programs. In The Fourth Conference of
PhD Students in Computer Science, Szeged, Hungary, 2004,

[29] L. Felber T. Corbat and M. Stocker. Refactoring Support for the
Eclipse Ruby Development tools. Master's thesis, University of
Applied Sciences, Rapperswil, Switzerland, 2006,

[30] M. Weiser. Program Slicing. In ICSE '81: Proceedings of the 5th
International Conference on Software engineering, pages 439-449,
Piscataway, NJ, USA, 1981, IEEE Press,

Gradual Typing of Erlang Programs: A Wrangler Experience

Konstantinos Sagonas

School of Electrical and Computer Engineering,
Department of Information Techn

kostis@cs.ntua.gr

Abstract

Currently most Erlang programs contain no or very little type in-
formation. This sometimes makes them unreliable, hard to use, and
difficult to understand and maintain, In this paper we describe our
experiences from using static analysis tools to gradually add type
information to a medium sized Erlang application that we did not
write ourselves: the code base of Wrangler. We carefully document
the approach we followed, the exact steps we took, and discuss
possible difficulties that one is expecled to deal with and the effort
which is required in the process. We also show the type of soft-
ware defects that are typically brought forward, the opportunities
for code refactoring and improvement, and the expected benefits
from embarking in such a project. We have chosen Wrangler for
our experiment because the process is better explained on a code
base which is small enough so that the interested reader can retrace
its steps, yet large enough to make the experiment quite challeng-
ing and the experiences worth writing about, However, we have
also done something similar on large parts of Erlang/OTP. The re-
sult can partly be seen in the source code of Erlang/OTP R12B-3.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Programming by contract;
F.3.3 [Logics and Meanings of Programs): Specifying and Veri-
fying and Reasoning about Programs

General Terms Documentation, Languages, Reliability

Keywords Erlang, software defect detection, contracts, Dialyzer

1. Introduction

Almost all Erlang applications have so far been written without
type information being explicitly present in their code. Of course,
this is hardly surprising. After all, Erlang is a dynamically typed
language where type information is only implicit during program
development. Program testing typically uncovers many typos and
type errors and these are corrected in the process. In many cases,
type information in the form of (Edoc) comments is added in pro-
grams in order to document the intended interfaces of key functions
and modules which are part of the API.

In our experience, this mode of developing Erlang programs
is far from ideal. Even afier extensive testing, many typos and

Permission 1o make digital or hard copies of all or part of this work for personal or
classtoom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, 10 Post on servers or to redistribute
1o lists, requires prior specific permission and/or a fee.

Eriang'08, September 27, 2008, Vietoria, BC, Canada.
Copyright (©) 2008 ACM 978-1-60558-063-4/08/09. .. $5.00.

73

Daniel Luna

National Technical University of Athens, Greece
ology, Uppsala University, Sweden

daniel.luna®it.uu.se

type errors remain in the code. Often these errors appear in the
not so commonly executed paths such as those handling serious
error situations. Also, type information in the form of comments is
often unreliable as it is not checked regularly by the compiler. Such
documentation sooner or later is bound to suffer from code rot.

For a number of years now we have been trying to amelio-
rate this situation by developing and releasing tools that support
and promote a different mode of program development in Erlang.
Namely, one where most typos, type errors, interface abuses and
other software defects are identified automatically using whole pro-
gram static analysis rather than testing, and where type information
is automatically added in the program code, becomes a part of the
code, is perhaps manually refined by the programmer and is sub-
sequently automatically checked for validity after program mod-
ifications, What's interesting in our approach is that all these are
achieved without imposing any (restrictive) static type system in
the language. Instead, programs can be typed as gradually as de-
sited and the programmer has total control of the amount of type
information that she wishes to expose and publicly document,

During the last year, we have been practicing this approach
on a considerably large part of the Erlang/OTP system. Indeed,
nowadays the entire code of the Dialyzer and Typer tools, a large
part of the code of the High Performance native code compiler
for Erlang (HiPE), and many modules of the standard libraries of
Erlang/OTP R12B-3 come with explicit type information. The pro-
cess has uncovered many software defects, identified some dubi-
ous interfaces and a significant number of discrepancies between
the published documentation and the actual behavior of key func-
tions of the standard libraries. In the code of Erlang/OTP, the whole
process has often been slow and painful, partly because one has to
worry about maintaining backwards compatibility and partly be-
cause it involves a considerable amount of communication with the
Erlang/OTP developers. Nevertheless, overall it has been very re-
wording and clearly worth its while. The resulting code is cleaner,
easier to understand and maintain, more robust, and much better
documented.

This paper aims to document in detail the steps of the pro-
gram development mode we advocate and have been practicing
all this time; both on code produced by our group and on code
of Erlang/OTP. By doing so, others who are possibly interested
in gradually typing existing Erlang applications can explicitly see
what’s involved in the process. In particular, they can see both the
benefits and costs of using our tools as well as many pitfalls that
the more “traditional” mode of Erlang code development involves.

We decided to start with a handicap: we do this experiment on
code that we did not write ourselves and for that reason possibly not
fully grasp. Also, for the experiment to be interesting, we wanted
that the code should be of significant size and publicly available so
that others can retrace our steps. After looking around at a handful
of open source Erlang projects, we opted for the code of Wrangler,
a refactoring tool for Erlang [3].

v

refac_atom_info.erl:715: Guard test length(M::atom()) can never succeed

refac_batch_rename_mod.erl:161: The call erlang:exit(’erroxr’
since it differs in argument position 1 from the success typing arguments: (pia
Call to missing or unexported function refac_syntax:class_body/1

refac_util.erl:921:

.[1..255,...]) will fail
| port(),any())

refac_util.erl:1322: The call arlang:’md’(boo}.{).[integer()]) will fail

since it differs in argument position 2 from the success typing arguments:

(bool() ,bool())

Figure 1. The main defects of Wrangler 0.1 as identified by Dialyzer

The code of Wrangler has various interesting characteristics
with respect to what we want to do. First, it has been developed
by researchers who are experts in typed functional programming.
For this reason, we expected that Wrangler's code base would
be written in a type disciplined manner and would not contain
(m)any type errors. Second, we expected that its code base would
contain an interesting set of uses of higher order functions —
possibly more than in most Erlang code bases out there — and
this would be challenging for our tools and approach. Third, the
authors of Wrangler have been heavily involved ina project related
to testing Erlang programs and have used Wrangler in conjunction
with sophisticated testing technology such as QuviQ’s QuickCheck
tool for Erlang [2]. Finally, the authors of Wrangler are aware of the
tools of our group: as they acknowledge in Wrangler’s homepage
they ‘make use some of the ideas from Dialyzer’. In short, we
expected that this would be a relatively easy task. Let’s see what
we found.

2. Using Dialyzer on Wrangler

We started our experiment with the first action we recommend to
any Erlang project: use Dialyzer [4]. Dialyzer is a static program
analyzer that is really easy to use and is particularly good in identi-
fying software defects which may be hidden in Erlang code, espe-
cially in program paths which are not exercised by testing. Indeed,
as we will see below, it is quite common that these defects remain
unnoticed for a long period of time.

2.1 The first experiment: Dialyzer on Wrangler 0.1

To learn something about Wrangler’s evolution, we started by ob-
{aining the first version of Wrangler, which was publicly released
on the 25th of January 2007. We executed the following commands;

> wget http://www.cs.kent.ac.uk/projects/forse/wrangler/
distelB.3—wrangier/distel—wrangler-o.1.tar.gz
> tar zxvi distel-wrangler—0.l.tar.gz
> cd distel-wrangler—0.1/wrangler
> we *.erl
2229 7947 73088 refac_atom_info.erl
... 24 more lines suppressed ...
34784 137281 1198955 total

As we can see from the output of the last command, the main
body of the code of Wrangler 0.1 contains a total of 25 mod-
ules comprising of about 35,000 lines of code. Out of these mod-
ules, many are modified versions of Erlang/OTP modules (of the
syntax._tools application, the compiler, and two supporting
modules of dialyzer).

We postponed making the Wrangler system because we wanted
to shake its code first, Instead, we run Dialyzer v1.8.1 as follows:

> dialyzer --src -—c *.erl

This analyzed all Wrangler modules and generated 67 warnings
in less than 2 minutes. About 50 of these warnings concerned the
refac_epp module and were wamings of the form ‘Function
F/A will never be called’.Such warnings are typically side-
effects of some failing or contract-violating function calls earlier in

74

the same module which in turn makes calls to these functions un-
reachable. Indeed, these warnings were produced because Dialyzer
also identified two calls to the £ile:open/2 function which vi-
olate both its published documentation at www.erlang.org and
the explicit type information which exists for this function in the
source code of the file module of Erlang/OTP R12B-3. We man-
ually modified the two offending calls to this function by changing
them from the old-fashioned one:

file:open(Name, read)

which is still allowed for backwards compatibility to the more
kosher and documentation-conforming one:

file:open(Name, [readl)

In the process, we performed a similar change to two calls to
function file:path.open/3. Doing these changes took about
two minutes of our time and reduced the number of Dialyzer
warnings to 15. About half of these warnings concern modules
refac_compile, ref ac.sys._core_fold and refac._v3.core
which are clones of the corresponding modules of Erlang/OTP
with only minor modifications. These warnings arc genuine errors
that have been fixed in Erlang/OTP R12B. We concentrate on four
of the remaining warnings that are specific to the code of Wrangler.
These warnings are shown in Figure 1.

The first of them concerns a guard that will never succeed. This
typically signifies a genuine bug or is a sign of severe programmer
confusion. Indeed, very few Erlang programmers fancy writing
guards that always fail. In this case the Dialyzer warning identifics
a programming error. The corresponding code is shown in Figure 2.
As can be seen, M is an atom and the call to length/1 will always
fail in this case. However, since this call oceurs in a guard context
its failure is silenced and can easily remain undetected by testing.

handle_call(Call, DefinedVars, State) ->

case is_c_atom(Mod) andalso is_c_atom(Fun) of
true ->
M = atom_val(Mod),

case {M_Loc, Call_Loc} of
({Lt, ci}, {L2, c2}} -
if (L1 < L2) or
((L1==L2) and ((C2-C1) > length(M)))

e

Figure 2. Portion of the code of refac_atom_info.erl

The second warning identifies a call to the exit function with
the wrong arity. The corresponding code checks for an error condi-
tion and if the condition is met it wants to exit the Wrangler process
most probably with a tagged two tuple where the first element is the
atom error. Instead, it constructs the call:

exit(error,"Can not infer new module names,

D)

This is a particularly nasty bug that is very hard to detect by testing.
The problem is that this code will abort execution alright, but will
do so with a significantly different message than the programmer

expand_files([File|Left], Ext, Acc) ->
case filelib:is_dir(File) of
true ->
false ->
case filelib:is_regular(File) and
filename:extension(File) == Ext of

true ~> expand_files(Left, Ext, [File|Accl);
false -> expand_files(Left, Ext, [Filel)

end
end;

Figure 3. Portion of the code of refac_util.erl

intended. (The erlang:exit/2 function throws an exceptions and
exits a process in Erlang but expects a different type of term in the
first argument and will throw a different exception if called with an
atom in the first argument.)

The third warning is simple but quite common in Erlang. The
code contains a call to a non-existing function (of an existing
module). One does not need Dial yzer to detect this error; the xref
tool would also have detected i,

The last warning is the most interesting one. The corresponding
code is shown in Figure 3. To somebody not very familiar with the
idiocyncrancies of the Erlang parser this code looks correct. The
problem is that and binds stronger than == in Erlang and so the
case expression in the code is parsed as:

case (filelib:is_regular(File) and
filename:extension(File)) == Ext of

that is, the code in Figure 3 effectively tries to test a boolean value
with the value of Ext, instead of being parsed the way that the
programmer intended:

case filelib:is_regular(File) and
(filename:extension(File) == Ext) of

This bug can be fixed either by adding explicit parentheses as above
or by using the andalso operator instead of and.

Overall, we spent about half and hour understanding and fixing
the software defects of Wrangler 0.1 that were identified by Dia-
lyzer. We started from this version of Wrangler because we wanted
to see which of Wrangler’s defects are long-lived and managed to
survive from the first to the current release.

2.2 The second experiment: Dialyzer on Wrangler 0.3

At the time of writing this section (early June 2008), version 0.3
was the most recent snapshot of Wrangler. It was released on the
7th of January 2008, almost a year after version 0.1. The structure
of Wrangler's source code has changed a bit and some of the
modules of Wrangler 0.1 that were from Erlang/OTP are no longer
present. However, many modules of the syntax_tools application
are still present and some new modules have been added. Including
those modules, Wrangler’s code consists of 25 modules and about
27,000 lines of code. We run Dialyzer as follows:

> cd distel-wrangler-0.3/vrangler/erl
> dialyzer --src¢ -I ../hrl -c *.erl

After about 50 seconds, Dialyzer produced warnings many of
which were in file refac.epp and were due to using an atom
rather than a list for the options argument of calls to functions of
the £ile module. After manually fixing this issue, about 20 warn-
ings remained.

Some of these warnings were due to confusing one library func-
tion with another one and abusing its interface. The 1lists mod-

75

%% concat(L) concatenate the list representation of
%% the elements in L - the elements in L can be atoms,
%% numbers or strings. Returns a list of characters.

~type concat_thing()
atom() | integer() | float() | string(),
-spec concat([concat_thing()]) -> string().

concat(List) ->
flatmap(fun thing to_list/1, List).

thing_to_list(X) when is_integer(X) ->

Figure 4. lists:concat/1 function annotated with a contract

ule provides a concat/1 function. Its published documentation at
www.erlang.org reads:

concat(Things) -> string()

Types:
Things = [Thing]
Thing = atom() | integer() | float() | string()

Concatenates the text representation of the elements
of Things. The elements of Things can be atoms,
integers, floats or strings.

However, the current implementation of the concat/1 function is
more liberal than its documentation claims it is. For example, its
implementation in Erlang/OTP R12B-3 allows calls where each
Thing is a tuple:

Eshell V5.6.3 (abort with ~G)
1> lists:concat([[{a,1},{b,2}1, [{c,3}11).
({a,1},{b,2},{c,3}1

Note that the result in this case is not a string, The code of Wrangler
is relying on an undocumented behaviour of a library function.

Misunderstanding or abusing the interface of some library func-
tion is a very common software defect in dynamically typed lan-
guages such as Erlang. We consider this problem quite severe be-
cause an application might give the impression of working alright
but this remains so only until the library has the same observable
undocumented behavior. Of course, this is something that is not
guaranteed by the library developers. We have noticed this phe-
nomenon happening again and again — even in our own code!
in Erlang applications, For this reason, we have designed and pro-
posed a contract language for Erlang [1] and have already anno-
tated key libraries of Erlang/OTP with their documented interface.
Indeed, in Erlang/OTP R12B, the corresponding code in the 1ists
module reads as shown in Figure 4. Due to the presence of these
contracts, Dialyzer can easily detect such interface abuses and warn
the user about them.

In this particular case, the problem is easily fixed. The code of
Wrangler can simply use the lists:append/1 function which has
the behaviour that its authors are after, There are 13 calls in total to
lists:concat/1 that should become calls to 1ists: append/1,

After this fix, Dialyzer reports 10 warnings in total. The main
ones, those related to Wrangler files not from Erlang/OTP, are
shown in Figure 5.

The first and last of them are familiar. They are identical to those
in Wrangler 0.1 and have remained unaffected by code evolution
and undetected by testing and uses of Wrangler. As mentioned, it
is not very surprising that the first of them has remained undetected
since the defect appears in error-detection code which is notori-
ously hard to exercise,

refac_batch_rename_mod.erl:161: The call arlang:exit(‘arror’.[i. ,255,...]1) will fail

since it differs in argument position 1 from the success typing arguments:

(pid() | port(},any())

refac_duplicated_code.erl:441: The pattern {’erroxr’, _Reason} can never match the type ’false’ | {?value’,tuple}

rafac_fold_expression.arl:97:
refac_move_fun.erl:137: The pattern {’eror’,

The pattern {’error’, ’reason

'} can never match the type {’error’,’mone’} | {’ok’,_}
Reason} can never match the type {’error*,_}

refac_util.erl:921: Call to missing or unexported function refac_syntax:class_body/1

Figure 5. The main defects of Wrangler 0.3 as identified by Dialyzer

trim_clones(FileNames, Cs, MinLength, MinClones) ->

case lists:keysearch(Filel, 1, AnnASTs) of
{value, {Filel, AnnAST}} —>

{error, _Reason} -> {false, {Range, Len, F}}
cnd

-

Figure 6. Portion of the code of refac_duplicated_code. erl

The second warning is due to confusion about the possible
return values of the 1ists:keysearch/3 function. The offending
code is shown in Figure 6. We have seen similar defects in various
other Erlang code bases. The remaining warnings are simple typos
in error checking code. Similar defects have a tendency to remain
unnoticed for a long time.

We manually corrected these problems but for the last one (the
call to the missing function) which we did not know how to fix.
The whole process, including referring to Erlang/OTP’s documen-
tation and code to verify issues related to lists:concat/1 vs.
lists:append/1, took us a bit more than two hours. With an al-
most warning-free code base, we could start adding contracts to the
code of Wrangler in order to robustify its API and in the hope of
identifying more defects and interface abuses. Let’s see where this
got us.

3. Adding Contracts to Wrangler

The second action we recommend to any Erlang application is to
expose as much type information about functions and modules as
possible and make this information part of the code. Typically, type
information is only implicit in most Erlang programs. Making it
more explicit can happen in the following two ways:

Add explicit type guards in key places in the code. Such an ac-
tion has the advantage that it exposes type information to static
analysis tools such as Dialyzer and at the same time ensures
that calls to these functions will fail if they violate these type
tests during program execution. One disadvantage is that there
is a runtime cost associated with this action, but this cost is typi-
cally quite small. A more serious disadvantage is that programs
may not be prepared to gracefully handle such failures.

Add type declarations and contracts, Type declarations can give
convenient names to key data structures which can then be
used to document function and module interfaces. Such type
information can then be used by Dialyzer to detect interface
violations without occurring any runtime overhead. Quite often
such information already exists in comments: either in Edoc
format or even in plain text.

Of course, these two methods of exposing type information are not
mutually exclusive and projects can employ the combination that is
best suited for each situation in hand.

In the case of Wrangler 0.3, its source code already contains
a fair amount of @spec annotations (336 in total). However, the

76

bulk of these annotations is in files that are minor modifications of
Erlang/OTP modules. Because for the more up-to-date version of
some of these modules (the ones in Erlang/OTP R12B-3) we had
already performed a similar action to the one we will describe in
this section, we decided to focus on the @spec annotations in mod-
ules that have been written entirely by Wrangler’s authors. There
are 15 such modules but three of them (refac_module.graph,
wrangler.distel and wrangler_options) contain no annota-
tions. In the remaining 12 modules there are 54 @spec annotations
in total. Their breakdown according to module is shown in Table 1.

| module

refac_batch rename.mod
refac_duplicated._code
refac_expr.search
refac_fold_expression
refac_gen
refac_move_fun
refac_new_fun
refac_rename_fun
refac_rename_mod
refac_rename_var
refac.util

wrangler

| @specs |

RSN SR ST SR N

Table 1. Number of @specs in modules of Wrangler 0.3; modules
with no @specs and modules from Erlang/OTP have been excluded

3.1 Turning @spec annotations into -spec declarations

At least syntacticly, converting an existing @spec annotation into a
-spec declaration is a rather straightforward procedure. For exam-
ple, in refac_batch.rename_mod.exl the @spec annotation:

%% @spec batch_rename_mod(0ldNamePattern: :string(),
W NewNamePattern: :string(),
Do SearchPaths: : [string()]1) —>
YA ok | {error, stringQ)}

can immediately be turned into:

-spec batch_rename_mod(0ldNamePattern: :string(),
NewNamePattern: :string(),
SearchPaths:: [string()]) ->
70k’ | {’error’, string()}.

The single quotes around the atoms are not really needed, but we
recommend their use so that it is clear to the reader what e.g. is
supposed to be the atom *ok’, which denotes a singleton type in
the language of types, rather the ok () type where the programmer
has mistakenly forgotten the parentheses.

Quite often, one also needs to make up names for types which
are not built-in types. For example, refac_duplicated.code. erl
contains the following @spec annotation:

%Y @spec duplicated_code(FileName ::filename(),
Tt MinLines ::integer(),
% MinClones: :integer()) -> term().

which, after making some educated guess, can be turned into:

~type filename() :: string().

—Spec duplicated_code(FileName tifilename(),
Minlines ::integer(),
MinClones: :integer()) -> any().

If one continues this way, she is quickly faced with a problem.,
Because @spec annotations are not routinely checked by the com-
piler or any static analysis tool, many of them have suffered from
severe code rot and have become inaccurate, outdated, or even com-
pletely wrong. For example, to be correct, let alone precise, the
above -spec declaration should actually read:

~type filename() :: string().

-spec duplicated_code(FilaNames::[filename()],
MinLines ::[byte()],
MinClones:: [byte()]) -> any() .

Note that the problem is not in the type declaration that we intro-
duced but in that the original @spec annotation that the file con-
tained is not correct,

Out of curiosity, we performed the following experiment. We
converted all 54 @spec annotations of Wrangler 0.3 to -spec
declarations and added very loose type declarations for type names
which were not documented in the code: we basically mapped
most of these types to any (). This makes the contracts containing
these types as forgiving as possible. We then run Dialyzer on the
Wrangler files. Dialyzer reported a total of 164 warnings! Recall
that this was on a set of files which were warning-free without any
~spec declarations. This is not the first time we experienced this
behaviour: Edoc annotations need to be treated with caution.

In our experience, the ‘convert all @specs at once’ approach
is very crude. The user is simply overwhelmed by the number
of warnings that Dialyzer reports. We recommend the following
approach instead.

Start from some easy files. Easy files are either those that do
not contain many @spec annotations or those that depend on only
few other modules. This wa , one has the chance to run Dialyzer
on a single module at a time and correct the defects that Dialyzer
identifies on a module-local basis. Then continue this way until all
modules have been processed. Note that this is not guaranteed to
result with a set of files which, when considered together, can be
analyzed by Dialyzer without any warnings, If the warnings that are
produced are too many, then analyze the modules by considering
the strongly connected components that they form, fix warnings
in the process, and expand on this set until all modules can be
analyzed warning-free,

Fixing warnings of only one or of a small set of modules is usu-
ally quite easy. For example, for the refac_rename_var module,
one gets the following warning from Dialyzer.

refac_rename_var.erl:66:
The call cond_check(..,,
breaks the contract ...

-, NewNamel::atom())
-» NewName::string())

where one can immediately see that there is something wrong in the
last argument of this function; either in the call on line 66 or in the
contract of the function (i.c., the =spec declaration that we added).
Finding out which of these two is to blame is a bit more tricky,
especially if one is unfamiliar with the code. Quite often though
the module has some code part that gives a strong indication about
where to assign blame.

We followed the approach we describe above and converted
all @specs to -specs ending up with a set of modules for which
Dialyzer gave no warnings when run on a single module at a time,
In the process we had to fix a total of ten erroneous specs out of the
54 original ones. The ‘local’ column of Table 2 shows how these are
partitioned per module. We then run Dial yzer on the complete set of
modules, which resulted in a total of 42 warnings. (In fact, only 17

if one excludes warnings that are quite clearly a side-effect of some
other warning.) In any case, 42 is a much more manageable number
than 164. Most warnings were due to eight additional specs in the
code of Wrangler 0.3 being erroneous, which we also corrected.
Their modules are indicated in the ‘global’ column of Table 2. The
whole process took about six hours, Of course, it would have taken
us less time had we been familiar with Wrangler's code,

wrong @specs
[module | @specs | Tocal | global
refac_batch_rename_mod 1
refac_duplicated_code 1 1
refac_expr_search 1
refac_fold_expression 2
refac_gen 7 1
refac_move_fun 2
refac_new_fun 1 1
refac_rename_fun 2
refac_rename_mod 2
refac_rename_var 3 2
refac_util 21 6 5
wrangler 11 2|

Table 2. Wrong @specs in Wrangler 0.3; blank entries denote 0

3.2 Fixing defects exposed by ~spec declarations

When -spec declarations become part of the code, interesting soft-
ware defects are exposed by Dialyzer. For example, the Wrangler
file refac_util.erl contains the following @spec annotation:

@spec pos_to_var_name(Node::syntaxTree(), Pos::Pos) ->
{’ok’, {atom(), {Pos, Pos}}} |

To ease exposition, let us drop the variable names for referring
to types, introduce a type declaration for what the authors of
Wrangler denote as Pos, and fix this annotation so that its return
type is actually correct. The intended specification for function
refac_util:pos_to_var name/2 should read:

~type pos() :: {integer(), integer()}.
-spec pos_to_var_name(Node::syntaxTree(), Pos::pos()) ->
{7ok’, {atem(), {pos(), posQ}, cat()}} |

where cat () is some type. In refac_rename_var.erl this func-
tion is used as shown in Figure 7. In this code, Dialyzer warns that
the equality test between Def inePos, which is a two tuple, and a
singleton list will always fail. Once again, this is a very difficult bug
to spot or discover by testing because it is in code which handles
exceptional cases. (Under typical executions, the code goes to the
true branch anyway.)

rename_var(Fname, Line, Col, NewName, SearchPaths) ->

case refac_util:pos_to_var_name(AST, {Line,Col}) of
{ok, {VarName, {_, DefinePos}, C}} ->
if DefinePos == [{0,0}] ->
{error, "Renaming of
true ~->
% code that renames the variable here
case cond_check(AST1, DefinePos, NewName) of

- is not supported!"};

Figure 7. Portion of the code of ref ac._rename_var.erl

Once this problem gets exposed, Dialyzer also warns about
other problems further down in the code. Figure 8 shows a small
portion of the code of the cond_check/3 function. The call to
lists:any/2 demands that Pos, which comes from DefinePos

cond_check(Tree, Pos, NewName) —->
BdVars = lists:map(fun(_, B, .) -> B end, ...),
Clash = 1lists:any(fun(bound, Bds) ->

F_Member = fun (P) -> ... end,
lists:any (F_Member, Pos) and ...
end, BdVars),

Figure 8. Portion of the code of refac_rename_var.erl

in Figure 7, is a list. This code will surely fail if ever executed.
We could not decipher what exactly this lists:any/2 call and
two similar occurrences further down in the code of cond._check/3
try to do, so we did the best action we could think of: we simply
wrapped the Pos variables in a list. This silenced all but one Dia-
lyzer warnings on the complete set of files of Wrangler 0.3.

3.3 Strengthening and factoring -type declarations

Since we were unfamiliar with Wrangler’s code, when adding con-
tracts we initially mapped most types mentioned in @spec annota-
tions (like for example the types syntaxTree() and cat () in the
example of the previous section) to the type any (). This is the most
general type of the type system, representing the set of all Erlang
terms. Mapping these types to any () has the property that Dialyzer
will not report any contract violations due to a mistake in the def-
initions of these types. On the other hand, it is clear that in most
cases these type names denote only a subset of all Erlang terms and
mapping them (o any () is a gross overapproximation. We can and
should do better than that.

However, unless one is pretty certain about the values of types,
we recommend that initially one is not overly zealous in constrain-
ing them. The reason is that over-constrained type declarations can
result in a lot of warnings from Dialyzer. As a result, it might be
quite hard to find the culprits and correct these warnings in con-
junction with erroneous —spec declarations. We instead recom-
mend that one first tries to come 1o a state where the existing ~spec
declarations do not result in any warnings from Dialyzer and only
then start constraining the types. Indeed, this is the approach we
followed when typing Wrangler.

Sometimes, Edoc @type annotations alrcady exist in the files
and these can be changed to the corresponding ~type declarations.
Some other times, type declarations are pretty obvious, as e.g. for
the case of the filename () type that we mapped to string(). Fi-
nally, often information about types exists in comments or types are
pretty clear from the structure of terms and the names of variables.
This is for example what we did for pos (). In various parts of the
code, it was mentioned that this type denotes a pair of integers.
Thus, we initially added the declaration:

—type pos() :: {integerO), integer0}.

and corrected the warnings reported by Dialyzer. None of them was
related to this declaration. Then, looking deeper in the code, we re-
alized that pos () denotes the line and column numbers of a posi-
tion in the program source; the position {0,0} was used to denote
the default position or the absense of position information. We sub-
sequently refined its declaration to exclude negative integers:

-type pos(} :: {nonmeg_integer O, non_neg-integer()}.

For safety, a Wrangler programimer might want to further constrain
this type to appropriate integer ranges for lines and columns that a
source file might contain, For example, the above declaration can
be refined to:

—type pos() :: {0..100000, 0..200}.

78

In short: like applications, types can be gradually refined and
strengthened up to the point that the programmer wishes to expose
information about sets of values and impose constraints on their
uses. This way, programs can protect themselves from accidentally
violating these constraints.

Once types are declared, often one notices that the same type
definition appears in more than one file. For example, the above
type declaration for pos () was added and refined in a total of four
Wrangler files. It is of course bad software engineering practice
to have the same information in different places in the code. One
can either place this type definition in a common header file which
can then be included by all files that need it, or place it in only
one file, say m.erl, and then in all other files can use the notation
m:t () to refer to this t() type definition that module m contains.
For Wrangler, since a wrangler .hrl file already existed, we opted
for factoring all type declarations that were used in more than one
module to this header file.

3.4 Strengthening underspecified -spec declarations

The next step is to gradually strengthen some =spec declarations,
because quite often many of them are underspecified. For exam-
ple, in the code of Wrangler about a third of all @spec annotations
specify a return type of term() for the corresponding functions.
Obviously, this return type is not very precise; most of these func-
tions return terms with a statically known structure.

Luckily, when specs become part of the code, there is an easy
automatic way to discover the underspecified ones among them:

> dialyzer -Wunderspecs ——Src -I ../hrl -c *.erl

Running this command revealed a total of 19 underspecified
-spec declarations (out of the 54 ones). This was after we strength-
ened the ~type declarations; the number would have been 24 if we
had not done so.

Correcting the underspecified declarations is quite easy. For
example, for one of them Dialyzer reports:

refac_duplicated_code.erl:53:
Type specification for duplicated_code/3 ::
([filename O], [byte()], [byte O1) -> anyO
is a supertype of the success typing:
([stringO], [byteO1, [byteO1) —> {’ok’,[i..255,...]}

and of course it is a simple matter to change the return type in
the -spec declaration of this function from any () to either the
return type which is reported by Dialyzer (denoting a two tuple
where the second element is a non-empty string) or to the slightly
underspecified but much more readable type {?ok?,stringO}.

It is important to note that the success typing information re-
ported by the ~Wunderspecs option of Dialyzer is a conservative
approximation of the behaviour of the function which is safe to use
and can be copied and pasted in the file as is. Its use will never re-
sult in any additional Dialyzer warnings. Dialyzer does not really
need its presence because it is the one that it infers. But there is
a good reason to explicitly add this information in the file: it pro-
vides useful documentation and from that point on its consistency
with the code can be statically checked by Dialyzer.

Sometimes this search for underspecified contracts uncovers
repeated patterns which are so common that they deserve their
own type declaration. For example, the Dialyzer call above re-
vealed that many Wrangler files define an auxiliary function
application._info/1 that returns a two tuple of the form {{-,-},
non_neg_integer() }. Turns out that the two underscores are al-
ways atoms and the non-negative integer represents the arity of a
function. We thus added the following type declaration:

-type appl_info() :: {{atom() ,atom()}, arity(Q}.

> erlc twarn_missing_spec -I

../hrl refac_rename_var.erl

./refac_rename_var.erl:166: Warning: missing specification for function pre_cond_check/4

> typer —-show-exported -I ../hrl refac_rename_var.erl

Unknown functions: [{refac_syntax,get_ann,1}, ey
{refac_util,envs_bounds_frees,1},

%% File: "refac_rename_var.erl"

hih

~spec pre_cond_check(tuple(),_,_,atom()) -> bool().

~spec rename(Tree::syntaxTree(),DefinePos::pos(),NewName::atom()) ->

S, {refac_util,write_refactored_files,1}]

{syntaxTree(),bo01 ()}.

-spec rename_var(FileName::filename(),...,SearchPaths::[string()]) > {’ok’,string()} | {’error’,string()}.

> typer —-show-exported -I
Unknown functions: [{refachsyntax,get_ann,1}, e

../hrl refac_rename_var.erl -T refac_util.erl

{refac_util,parse_annotate_file,4},{refac_util,post_refac_check,s}]

%% File:
Y44

"refac_rename_var.erl"

~spec pre_cond_check(tuple(),non_neg_integer(),non_neg_integer(),atom())
-spec rename(Tree::syntaxTree(),DefinePos::pos(),NewName:

~spec rename_var(FileName::filename(),..

-> bool().

ratom()) -> {syntaxTree(),bool()}.
- sSearchPaths: : [string()]) -> {70k’,string()} | {’error’,string()}.

Figure 9. Finding missing contracts for exported functions of module refac_rename_var using Typer

in the header file of Wrangler although we could refine the two
atom() types even further. ’

With the help of Dialyzer, many underspecified contracts can
be strengthened more or less automatically. However, one should
be aware that Dialyzer does not report all underspecified contracts.
Instead, Dialyzer only reports those =spec declarations that are
found strictly more general than the corresponding success typings
that it infers for these functions [5]. If there exists even one argu-
tment position in the -spec declaration which is more specific than
the corresponding success typing, Dialyzer will not report these
declarations as underspecified. For this reason, one might want to
manually inspect all -spec declarations to spot arguments and re-
turn values whose types are underspecified. In fact, this is what we
did for Wrangler 0.3. Afier we corrected underspecified contracts
which Dialyzer reported, we used grep to detect -spec declara-
tions with an occurrence of the term() or any () type and manu-
ally corrected these, There were an additionally nine such ~spec
declarations., The whole process described in this subsection took
about two hours to complete.

3.5 Adding -spec declarations for exported functions

To case development and maintainability of Erlang applications,
we recommend that modules contain -spec declarations for all
their exported functions, This way, at least their public interface
is documented and Dialyzer can detect possible violations. To help
detect modules whose public interface is not documented, we in-
troduced a new compiler option in Erlang/OTP R12B-3, called
warn.missing spec, which wams about missing -spec declara-
tions for all exported functions of a module. We used this option
on the files of Wrangler 0.3 which are not from Erlang/OTP. The
number of existing and missing specs for exported functions for
these modules is shown in Table 3. As can be seen, only half of the
exported functions have a publicly documented interface.

With the help of this new compiler option and of the Typer
tool the missing function specifications can also be generated semi-
automatically. For example, Figure 9 shows the three commands we
used to find the missing contract of module refac_rename_var.
The first command uses the new compiler option to see the exported
functions without specifications; there is only one of them in this
module. Subsequently, Typer is used to generale specifications for
all exported functions in this module. For all functions with ex-
isting specifications (e.g, functions rename/3 and rename_var/5

79

@specs
present | missing

module

refac_batch_rename_mod
refac_duplicated_code
refac_expr.search
refac.fold_expression
refac_gen
refac.module_graph
refac move_tun
refac_new_fun
refac_rename_fun
refac_rename_mod
refac_rename_var
refac_util

wrangler
wrangler_distel 13
wrangler_options 1

I
2

4

[SJ S

:EN""—""‘N
—

Table 3. Number of existing and missing specs for all exported
functions of Wrangler 0.3 modules; blank entries denote 0

in this case) Typer is printing them as these appear in the file.
But Typer also generates conservative approximations of specifica-
tions for the remaining functions. As can be seen, the first attempt
1o generate such a specification for function pre_cond_check/4
was only partly successful, The generated specification contains no
type information for the second and third argument of the func-
tion because Typer also complained that it does not know anything
about functions of modules refac.syntax and refac_util that
the refac_rename_var module is using, By instructing Typer to
frust the existing function specifications of file refac.util.erl
(but recall that this module has specifications for only half of its
functions), Typer is able to infer an accurate specification for func-
tion pre_cond_check/4.

Actually, in this particular case, we happened to be somewhat
lucky, Module refac_util contained type specifications which
are sufficient for Typer to infer a relatively accurate type informa-
tion for pre_cond_check/4. However, ofien this is not the case. In
those situations, we recommend that the user starts from leaf mod-
ules (i.e., modules which do not call functions from other modules),
use Typer to annotate their exported functions with contracts, and
continue bottom up in the module dependency graph until all mod-
ules are annotated with contracts.

One can even be brave and use the --annotate option of Typer,
which will automatically insert the generated -specs in the source
code of the file(s) on which Typer is run.

Of course, one must always keep in mind that the specifications
that Typer generates are conservative approximations (in fact, they
are success typings) and will never contain any constraints that
are not present or enforced by the source code of the module.
In other words, these automatically generated specifications are
correct but possibly imprecise. In most cases, the user needs to
refine them manually, both in order to strengthen them and in order
to use appropriate type names for their arguments. For example, the
occurrence of tuple() in the specification of pre.cond.check/4
denotes a syntaxTree ().

4. Contacting the Authors of Wrangler

At this point, instead of proceeding on our own, we decided to get
in touch with the authors of Wrangler. We sent them our paper with
the information it contains up to this point.

In the beginning of July 2008, the code of Wrangler had been
extended and somewhat changed compared with the version of Jan-
uary 2008 that we were looking at, but most of our steps could eas-
ily be retraced even in the development version of Wrangler. The
Wrangler authors confirmed our findings. They also added -spec
declarations for most exported functions of Wrangler modules. Un-
fortunately, they added these specifications in one go and were sub-
sequently confronted with many Dialyzer warnings that they could
not figure out their cause. So, they asked for our help. Of course,
the culprit was that some of the ~specs that they added were in
conflict with the functions’ uses. In other words, the Wrangler au-
thors did not only confirm our findings but also corroborated our
opinion that converting all @spec annotations into ~spec declara-
tions in one go is something not recommendable in code bases of
significant size.

With our help, the erroneous function specifications which were
resulting in warnings from Dialyzer were corrected. There were
eight of them in a total of about 150 -spec declarations. In the
process, some of the specifications written by the authors of Wran-
gler were tightened and a few more were added by us. The end
result was a Wrangler code base which was totally free from Dia-
lyzer warnings, more robust, and with better documentation about
its main functions. The Wrangler authors were happier but we were
still not fully satisfied...

5. Testing Contracts of Wrangler

What troubled us was the following. Because Dialyzer’s analysis is
conservative and based on approximations, Dialyzer never reports
a code discrepancy if it is not absolutely certain that there is some-
thing wrong with the code. In particular, all -spec declarations are
trusted and are assumed correct unless Dialyzer discovers a clear
conflict between their definitions and uses. For functions with no
calls, for functions whose calls are with arguments whose types are
not precise enough, or in cases where the return value is not in-
volved in any explicit pattern matching, contract violations will not
be detected or reported.

For this reason, we have created yet another tool that, given a
test suite, dynamically checks the validity of ~spec declarations in
a set of files. This tool is not yet publicly available and its interface
is subject to changes so we will only describe its main idea here.

Currently, the tool starts with a set of .beam files and a test
suite which can be called from some top-level function (e.g.
mytest:run/N) possibly with some arguments. For all files which
have been compiled with debug_info on (and thus whose —specs
are retained in the byte code), it will employ runtime monitoring
to check the validity of their contracts and record all violations it

80

detects while the test suite is running, The recording of all contact
violations happens using the Erlang error logger and can be saved
in a file, if so desired. The contract checker is straightforward to
use for code bases with an already existing test suite. The only
drawback, albeit a serious one, is that the test suite will run sig-
nificantly slower. However, because all calls to contract-annotated
functions originating from non debug-compiled modules will not
be checked. the user can fully control which parts of the code base
will be coniract checked and the amount of runtime overhead to the
test suite.

The authors of Wrangler provided us with a small test suite
that we used to test the validity of -spec declarations in files that
were somehow “touched” by this test suite. These files contained
a total of 106 -specs out of which 55 were checked at least once;
the remaining 51 concerned functions that were not called by the
test suite. The contract checker detected a total of six contract
violations: two in calls to functions and four cases where functions
returned a value of different type than promised.

Two of the contract violations involved functions get_toks/1
and concat_toks/1 of the heavily called refac_util module.
They were both due to an erroneous declaration of the token()
type by the Wrangler authors. This type was declared as:

~type token() :: t’var’, pos(), atom()}
| {’integer’, pos(), integer()}
| {'float’, pos(), float()}
| {?char’, pos(), char ()}
| {’string’, pos(Q), string()}
| {*atom’, pos(), atom()}
| {atom(), pos()}

but failed to account for the fact that the lexical analyzer also
returns white spaces and comments as tokens. We extended this
declaration by including the following two cases:

| {’whitespace’, pos(), whitespace()}
| {’comment’, pos(), string()}.

and added an appropriate definition for the whitespace () type.
The refac_util module contained another contract violation.
The function get_bound_vars/1 was declared as:

%% @doc Return the bound variables of an AST node.

-spec get_bound_vars(Node: :syntaxTree()) —> [atom()].
get_bound_vars(Node) —>
get_bound_vars_l(refac_syntax:get_ann(Node)).

failing 1o account for the fact that a variable annotation can oc-
casionally be a two tuple containing an atom and a position (e.g.
{78e1£7,{77,11}}).

The forth violation concerns function fold_expression/3 of
the refac_fold_expression module. Its contract reads:

-spec fold_expression(filename(),integer().integar()) ->
{>ok’, [filemame()1} | {’error’, string()}

but it is clear from the code, shown in Figure 10, that this function
returns something different than a list of filenames (strings) when
the last argument to the fold_expression/4 fi unction is emacs.

A similar, though not the same violation, concerned the return
type of refac_move_fun:move.fun/6. Finally, the last violation
was detected in the contract of function refac_gen:generalise/5
whose last argument was erroncously specified as being a dir()
when in fact it should be [@ir ()] (i.e. a list of directories).

After the corresponding changes, the contract checker reported
no violations when running Wrangler’s test suite. Of course, this
does not mean that Wrangler’s contracts were not erroncous any-
more. Instead, it just means that contracts which were exercised by
the test suite accurately reflect their common uses.

fold_expression(FileName, Line, Col) ->
fold_expression(FileName, Line, Col, emacs).

fold_expression(FileName, Line, Col, Editor) ->
case refac_util:parse_an.uotate_file(FileNa.me, true, []) of
{ok, {AnnAST, _Info}} ->

Candidates = search_candidate_exprs (AnnAST, FunName, FunClauseDef),
case Candidates of

[1 -> {error, "No expressions that are suitable for folding against ..."};
- > Regions = case Editor of
emacs ->

lists:map(fun({{{StartLine, StartCol}, {EndLine, EndCol}},NewExp}) ->
{StartLine, StartCol, EndLine, EndCol, NewExp, {FunClauseDef, ClauseIndex}}
end, Candidates);
eclipse -> Candidates
end,
{ok, Regions} %% or {ok, FunClauseDef, Regions}? CHECK THIS.
end;
{error, Reason} -> {error, Reason}

Figure 10. Portion of the code of refac_fold_expression.erl

6. Concluding Remarks References

In this paper we described in detail the steps needed to gradually (1] M. Jiméncz, T. Lindahl, and K. Sagonas. A language for specifying
type the code base of an existing Erlang application. We caref] ully type contracts in Erlang and its interaction with success typings. In
documented the methodology we advocate, the effort that is re- Proceedings of the 2\?07 ACM S"("ZL"N Erlang Horkshop, pages
quires, and the pitfalls that it may involve. In most code bases the 11-17, New York, NY, USA, Sept. 2007. ACM Press.

process is far from straightforward, but with the help of the static [21 H. Liand S. Thompson. Testing Erlang refactorings with QuickCheck.
and dynamic analysis tools we have devel oped it can at least be In Pre-proceedings of Implementation of Functional Languages, Sept.

performed semi-automatically. 3 200:: T i SS—

In our experience, what we have described for the code base of 3] ;[I;Ogr'a:’"j ?“ .E?zngﬁ::gs o??}’:%;‘;,“ » c";;‘;,';*g?&'ﬁ ;:;12’;:::"
W]'ang[cr i 1o 'way refects (.)n i3 ‘*”a];?y asian app lt;:allon. In ch{’ on Partial Evaluation and Semantics-Based Program Mr:;npm’aﬁoﬂ.
it Is quite typical for most Erlang app ications out there on which pages 199-203. ACM Press, Jan. 2008.
we have applied Dialyzer. Type information is not a panacea, but

e : N [4] T. Lindahl and K. Sagonas. Detecting software defeets in telecom
having it as part of the code helps in catching some easy to detect

applications through lightweight static analysis: A war story, In C. Wei-

programming errors, documents intended uses of functions and Ngan, cditor, Programming Languages and Systems: Proceedings of
results in code which is easier to understand and whose correctness the Second Asian Symposium (APLAS'04), volume 3302 of LNCS,
is easier to maintain, pages 91-106. Springer, Nov. 2004,
[5] T. Lindahl and K. Sagonas. Practical type inference based on success
Acknowledgements typings. In Proceedings of the 8th ACM SIGPLAN Symposium on
Principles and Praciice of Declarative Programming, pages 167-178,
The research of the second author has been supported in part by New York, NY, USA, 2006. ACM Press,

a grant from the Swedish Research Council (Vetenskapsridet).
We thank Huiqging Li and Simon Thompson for confirming our
findings, giving us access to their repository and sending us a test
suite for Wrangler.

81

Refactoring Module Structure *

Léaszl6 Lovei Csaba Hoch Hanna K616

Rébert Kitlei

Tamds Nagy Anik6 Nagyné Vig
Roland Kirdly

Déniel Horp4csi

Department of Programming Languages and Compilers
Eotvos Lordnd University, Budapest, Hungary

{Iovei,hoch,khi.n_tamas.viganiko,daniel,h,kitiei.kiralyroland}@inf.elte.hu

Abstract

This paper focuses on restructuring software written in Erlang. In
large software projects, it is a common problem that internal struc-
tural complexity can grow to an extent where maintenance becomes
impossible. This situation can be avoided by careful design, build-
ing loosely coupled components with strictly defined interfaces.
However, when these design decisions are not made in the right
time, it becomes necessary to split an already working software
into such components, without breaking its functionality, There is
strong industrial demand for such transformations in refactoring
legacy code.

A refactoring tool is very useful in the execution of such a re-
structuring. This paper shows that the semantical analysis required
for refactoring is also useful for making suggestions on clustering.
Existing analysis results are used to cover the whole process of
module restructuring, starting with planning the new structure, and
finishing by making the necessary source code transformations.

Categories and Subject Descriptors D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Restructuring,
reverse engineering, and reengineering

General Terms Design, Languages

Keywords Erlang, refactoring, clustering modules

1. Introduction

In a large software, there are many interconnected program enti-
lies such as modules, functions, records, macros that form a com-
plex graph. Sometimes this graph grows to the magnitude that no
programmer is fully aware of the structure of the program code.
Such code is hardly maintainable, therefore the entities must be
grouped into smaller sets, called clusters, so that each cluster is
small enough to be maintained effectively.

Refactoring [4] is a disciplined technique for restructuring an
existing body of code, altering its internal structure without chang-
ing its external behavior. A refactoring tool is the perfect means
to analyse the connections between the entities and then automati-
cally suggests one or more clustering solutions for the user of the

* Supported by ELTE IKKK and Ericsson Hungary.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copics bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission andfor a fee,

Erlang’08, September 27, 2008, Victoria, BC, Canada.

Copyright (© 2008 ACM 978-1-60558-065-4/08/09. . . $5.00

83

tool. After this, the code can be restructured according to the sug-
gested clusters, The restructuring of the code can be done manually
or preferably by using the refactoring tool for this task.

Earlier papers [8, 9, 11] have reported on the design and im-
plementation of two refactoring tools developed in cooperation by
Ettvis Lordnd University, Budapest, and University of Kent, Can-
terbury for the functional programming language Erlang and the
OTP middleware.

Our refactoring tool, named RefactorEr] [6], creates a formal se-
mantical graph model from Erlang source code and stores the graph
in a relational database. The graph contains semantical anal ysis re-
sults, it can be modified on the syntax tree level, and the original
source code is reproducible from there. The tool has a user interface
provided as an Emacs minor mode to help performing refactoring
steps.

This paper presents the design of an analysis and restructuring
method of large Erlang programs using the existing framework of
RefactorErl,

1.1 Overview of Erlang

Erlang/OTP [3] is a functional programming language and environ-
ment developed by Ericsson, designed for building concurrent and
distributed fault-tolerant systems with soft real-time characteristics
(like telecommunication systems). The core Erlang language con-
sists of simple functional constructs extended with message passing
to handle concurrency, whereas OTP is a set of design principles
and libraries that support building fault-tolerant systems [2].

The structural elements of Erlang are relatively simple. There
are no classes and inheritance, no complex type definitions, and
no global variables. Program code consists of functions which are
organized into modules. Modules have a list of exported functions,
these can be called from other modules: non-exported functions can
only be used locally. Variables are always local to a function, they
have no type declaration, and they get a value once which can’t be
changed.

The only complicating factor is the presence of a preprocessor,
which handles file inclusions, macro substitutions, and conditional
compilation. Macros are the only means to create global named
constants (which are essential in protocol descriptions), and they
are usually placed in header files to be included in more modules.
During restructuring, when functions are moved between modules,
these file inclusions have to be taken care of to make necessary
macro definitions available.

There is one more language construct that is worth mention-
ing. Although Erlang is a weakly typed language, there is one type
declaration construct: records are widely used to describe process
states, act as database table rows, and in many other places to sim-
plify usage of large data constructs. Their impact on restructuring
is the same as of macros, they must be made visible using file in-
clusion at every place of usage.

1.2 Module restructuring workflow

Now suppose we have a large software written in Erlang, with too
many internal dependencies. How can we splitit into a few smaller,
more maintainable parts based on module functionality?

First, we need to explore every single dependency in the soft-
ware. This is where RefactorErl excels, see Sec. 2. for a summary
of our previous work, an overview of the refactoring tool which
hosts the analysis and restructuring tools, and introduction to the
call graph analysis work that was done to support clustering.

Using these dependencies, we can group modules which show
similar functionality. Existing clustering algorithms are used in this
phase, Sec. 3. analyzes the possibilities and arising problems.

When we have several different clusterings, we need to choose
the best one. A fitness function is used for this purpose, which gives
a higher score for belter clusterings — details are in Sec. 4.

There is one last design step. Those parts of the software which
can’t take part in clustering—typically library modules and header
files, which are used in too many modules—need to be distributed
into the clusters. This is done by splitting these files, moving every
part into the cluster which uses it, as described in Sec. 5.

This last part requires code transformation, which can be sup-
ported by a refactoring tool. The refactoring steps necessary for this
work are collected in Sec. 6.

2. RefactorErl for analysis and refactoring

From the refactoring point of view, the most important characteris-
tic of a programming language is the extent of semantical informa-
tion available by static analysis, As Erlang is a functional language,
most language constructs can be analysed easily. Side effects are
restricted to message passing and built-in functions, variables are
assigned a value only once in their life, and the code is organised
into modules with explicit interface definitions and static export
and import lists.

However, Frlang has certain features that make it hard, or even
impossible to understand the behaviour of a program by static anal-
ysis. Many rules of the language (for example the typing rules) fall
into the category of dynamic semantics. In some cases the mean-
ing of certain constructs can only be found out during runtime. A
prominent example is the dynamic dispatch of functions, and run-
ning dynamically constructed code is also possible. These features,
for example make it impossible to give a complete analysis of the
call structure of an Erlang program statically.

In order to define a refactoring, one has to define the side-
conditions (the conditions that are necessary for the safe execution
of the refactoring), the transformation (the intended change on the
code) and possibly the compensations (further transformations that
should be performed to keep the refactored code consistent and
preserve its behaviour). The operation of a refactoring is based on
different sorts of static analysis that collect syntactic and semantical
information. The obtained information can often be used by many
refactorings. For example, all variable-related refactorings (rename
a variable, eliminate a variable, merge subexpression duplicates
ete.) require scope and visibility information on the variables.

We developed a refactoring framework [7] which is able to anal-
yse and store any kind of Erlang source code, even code which con-
tains non-parsable macros in a way that makes it possible to restore
the original files, retaining whitespace and comments. We have im-
proved the preprocessor in order to enable it to handle all macro
structures encountered, Now industrial code can be processed while
still retaining the full source code. Support of file inclusion allows
of specifying multiple include file search directories, and appli-
cation directories for supporting include_1ib directives. Condi-
tional compilation support is supported, too. The actual conditions
are stored in a kind of semantic node called environmental node.

84

These can also hold other kinds of configuration information such
as include directories. Macro and record definitions are stored but
not expanded, unlike include files.

There are several semantical analyses implemented. For exam-
ple, when the tool loads a record definition into the graph (a form
with type record), the analyzer module creates a semantical record
object as child of the containing file (with link record) and links
the definition to the semantical object with label recdef.

The records can be referred by expressions. When an expression
refers to a record and there is no existing semantical object for this
record, it is created automatically. The reference is represented by
a link between the expression and the record with label recref.

2.1 Call graph analysis

Call graph analysis aims to give the exact function dependency
relations in a given amount of code. This means that if the scope
of the analysis is wider the result will be more accurate, but the
smaller scope’s call graph can never be invalidated by the new data.
Just new edges can appear.

Data flow graph on the other hand aims to give back the flow
of data through the functions. It shows how parameters, global
variables are used and passed around the system.

In Erlang to have an accurate call graph, data flow analysis
has to be done. This is the result of the highly dynamic nature of
the language, a result of how functions are treated. It is possible
for example to call functions from data we receive from different
parts of the system using the erlang:apply built-in function. The
source code of such data does not clearly show that it will be used
in a function call. In different parts of the system, it can be used
for a different purposes. This is because functions are identified by
atoms. Atoms can be created dynamically with for example the
erlang:list_to_atom function.

There are a subset of function calls which do not need data flow
analysis. These are the static function calls. Where every element
of the function call are known at compile time.

The dynamic calls — where the called function is not known at
compile time — can be further categorized based on how much in-
formation is present at compilation time. Naturally, the less infor-
mation given, the harder the analysis is. There are some edge cases
where the analysis is impossible. In these cases the analysis™ aim is
to limit the possible functions which the call could refer to.

2.1.1 Static call analysis

The static analysis aims to create the function call graph of the
static calls. This analysis is straightforward if we use the results
of the semantical analysis which is incorporated in our refactoring
system [8]. Collecting the function calls, and then sorting them
based on which function they are in-and which function they call is
essentially the work that has to be done to create the call graph for
the static calls.

By creating a different interface to retrieve the existing data, the
clustering algorithm's data collection part can be easier. Of course
this interface will be used to retrieve the dynamic function call data
as well. By providing a common interface for the two different
data we further ease the clustering algorithm’s initial data collection
complexity.

2.1.2 Dynamic call analysis

While building the static call graph is a relatively lightweight job,
the dynamic call graph building takes significantly more time and
resource. By default this part of the analysis is not done. The data
retrieval does not change whether this part of the analysis is done
or not. Of course the dynamic analysis possibly adds more data to
the graph resulting in a more accurate call graph.

The analysis method is based on the Observer design pattern.
It means that we have entities (variables, atoms, tuples etc.) which
are loosely connected to each other. During the analysis, new con-
nections and entities are created as well. Connections represent the
dependencies between certain entities.

When an entity finds out more information about itself (for
example a variable finds out its possible values), it sends this
information to the other entities which are connected to it. Because
connections can be created to an entity after its analysis is finished,
the entity is not deleted after its analysis is finished.

Entities are modeled with Erlang processes, and data propaga-
tion with message sending. This approach creates the opportunity
of parallel computation, because there is no strong order how the
entities should processed. There is one further advantage which is
re-computation after changes happen. If there are changes in the
underlying code, the graph can be adjusted to it with creating and
deleting entities and edges. In other words there is no need to re-
compute the whole graph.

To start the analysis we need initial entities which will be further
analysed. These are the dynamic calls unknown values. For exam-
ple the values of the erlang:apply/3 function’s parameters. Fur-
ther analysis is done by investigating entity types and surroundings.
This could result in new edges and new entities which have to be
further analysed and so on. When the value of the initial entities is
found out with the analysis, it is made available through the same
interface as the static call graph data.

CH

The clustering algorithm sorts entities into groups. The entities can
be modules or functions in the current implementation. The groups
are called clusters.

We have chosen the hierarchical clustering algorithm [1] as the
one which gives the most practical result: the user does not have to
determine the number of clusters in advance, but can choose among
the results with different cluster counts.

The main concept of the clustering method we use is the
attribute matrix. The rows of this matrix are the entities, and
the columns are the attributes of the entities (e.g. functions and
records). One element of the matrix describes the relation between
an entity and an attribute.

The clustering algorithm works on the attribute matrix. The
algorithm can be parametrized with functions, which describe the
distance of two entities and the properties of new clusters. This
property can be either the distance of the new cluster from the
existing clusters, or the attributes of the new cluster. The clustering
algorithm works in the following way: In the beginning, each entity
forms a separate cluster. Then, in each step, the two closest clusters
are selected and unified. This process continues until there is only
one cluster. The intermediate states contain a possible clustering of
the entities. The output of the algorithm is the list of these possible
clusterings. If the number of entities is n, this output contains n
clusterings, and the ith clustering contains n — 4 clusters.

Clustering modules and functions

3.1 Using the clustering algorithm
To obtain the result of the clustering algorithm, the following steps
have to be done:

1. The attribute matrix has to be created.

2. The attribute matrix can be filtered.

3. The attribute matrix has to be transformed in certain cases.

4. The actual clustering has to be done.

Each of these steps is described in the following sections.

85

3.2 Creating the attribute matrix

Before running the clustering algorithm, the attribute matrix is cre-
ated. The matrix describes the relation between the entities and at-
tributes. The entities are either modules or functions. Attributes can
be functions, records and macros. There may be also attributes such
as size, which indicates the number of other entities represented by
the entity. It becomes important when performing the clustering,
because the clusters are represented as enlities, as well, and these
entities contain many modules.

3.2.1 Filtering the attribute matrix

The attribute matrix can be filtered before clustering the entities.
During the filtering, the entities and attributes that are not wanted
to take part in the clustering algorithm are removed from the ma-
trix. Typically, library modules are removed from the entities and
module internal functions are removed from the attributes. Filtering
is done by a function that is parametrized with filtering functions,
which describe which entities and attributes should be removed.
The two mentioned filtering algorithms are implemented, but
the user can define filtering functions and fun expressions, as well.

3.2.2 Transformation of the attribute matrix

The clustering algorithm works with attribute matrices whose ele-
ments are numbers that describe the weight of the connection be-
tween the entity and the attribute. If an attribute matrix does not
satisfy this condition, it has to be transformed to that form. A gen-
eral transformer function can be used for this operation, which is
parametrized by the transformation function that transforms one el-
ement of the matrix. Various transformation functions were tested,
e.g. a function, with which the weight of the connection is that how
many times the attribute is used by the entity.

3.3 Running the clustering algorithm

After creating the attribute matrix that contains weights, the clus-
tering algorithm can be started.

Two clustering algorithms are implemented in the tool. Both
algorithms work the way described in the beginning of section 3,
but their exact ways of calculation are different. The first algorithm
uses entity matrix in each step, the second one uses attribute matrix
in each step. (They both use attribute matrix as a basis.)

The entity matrix user algorithm Using this algorithm the entity
matrix needs to be created from the attribute matrix. The rows and
columns of the entity matrix are entities. One element describes the
distance between the two entities.

The entity maitrix can be created from the attribute matrix using
a function of the tool. The way of calculating distances needs
be specified when calling this function. Functions are provided
that can be used for this calculation, but the user can define own
functions, as well.

The function that implements the rest of the algorithm is also
parametrized: it is parametrized by the function that is used to
calculate the distance of new clusters from the existing clusters.
Functions that can be given as parameters are provided, but the user
can also use own functions.

The attribute matrix user algorithm This algorithm does not
use entity matrix, only attribute matrix. Two functions have to
be specified as arguments: a function that calculates the distances
between two entities, and a function that calculates the attributes of
new clusters. The same distance calculator functions can be used as
in the entity matrix user algorithm. For calculation of the attributes
of new clusters, there are functions provided and the user can define
own functions, too.

Distance calculator functions The distance calculator functions
are used in both clustering algorithms. They calculate the distance
of two entities based on the attribute matrix. Their arguments are
the names and the attributes of the two entities.

We have implemented more than 10 distance calculator func-
tions. There are some based on the literature, e.g. the ‘Jaccard’
distance calculator function, which is a generic distance calcula-
tor function based on the number of common attributes. There are
others, based on function call structure and record usage. A kind
of antigravity has also been implemented, because otherwise big
clusters tend to grow more easily than small ones, and a few huge
clusters will come to existence next to a lot of small ones.

Cluster distance calculator functions The cluster distance cal-
culator functions are used in the entity matrix user algorithm. They
are used to calculate the distance of new clusters from the existing
clusters.

Their arguments are:

® Size of the first original entity.

® Size of the second original entity.

e Size of the other entity.

e Distance of the two original entities.

* Distance of the first original and the other entity.

* Distance of the second original and the other entity.

We have implemented 7 distance calculator functions. The one
called ward/6 seems to be working in the most sensible way,
The advantage of this function is that it can prevent the clustering
algorithm from creating one dominant buffer while there are a lot of
clusters with very few elements (typically one). Instead, unification
of large clusters is slowed, and unification of small clusters is
quickened.

Cluster attribute calculator functions The cluster attribute cal-
culator functions are used in the attribute matrix user algorithm.
They are used to calculate the attributes of new clusters.

There are simple functions, e.g. in which an attribute of the new
cluster is the sum of the same attributes of the original clusters.
There are also more sophisticated ones, in which the calculation of
the attribute may depend on the type of the attribute. The ori ginal
atiributes can be summed, merged, the average can be calculated,
etc.

3.4 Experiences

Parametrization of clustering It seems to us that the attribute
matrix user algorithm is better than the entity matrix user al gorithm.
It works better with our little, specific examples, where the correct
clustering is easy to see.

Without taking into account the size of the clusters explicitly,
the results show that usually one dominant cluster is created and
many small ones around it. With using an appropriate weighting
function, the results are satisfactory.

In the case of the entity matrix user algorithm, the distance cal-
culator function ward/6 succeeds to prevent creating one dominant
and many small buffers.

Speed of clustering Clustering the modules of our refactoring
tool (22 modules with 342 functions) takes 6 seconds. Clustering
an industrial software with approximately 100 modules and S000
functions takes two minutes. However, clustering the functions of
ourtool takes 37 minutes. This indicates that the run-time complex-
ity of clustering is quadratic in the number of entities.

86

4. Fitness function

We have implemented various clustering algorithms, some of them
with various parametrization possibilities, and the need to automat-
ically compare these algorithms has arisen. The informal descrip-
tion of a good clustering was that elements logically close to each
other should be in the same cluster and independent or loosely
connected elements should be in different clusters. We assumed
that logical closeness can be approximated by elements of program
code such as function calls between modules, joint record usage
and possibly macro usage,

We have constructed a fitness function that, from a result of a
clustering (a list of clusters), computes the fitness value — a real
number so that a better clustering gets a higher fitness value.

4.1 MQ metric

In the clustering literature, there is a widespread method for mea-
suring the fitness of a given clustering, namely the MQ metric [5].
This metric is independent of the entities of the clustering task, it is
based on only graph-theoretical notations.

4.1.1 First approach of implementing the MQ metric

Cluster factor Assume that there are 7 clusters, numbered from
1 to n. For each cluster ¢ we compute the cluster factor, CF}, as
follows:
_ 2.l£.i

2 = 0 (eij + €50)
where ¢;; is the number of connections between cluster i and
cluster j. (Fach pair of modules is ¢ither connected or not.) p; is
the number of connections inside cluster 1. (Each pair of modules
is either connected or not.)

After this, the M Q) is defined as the sum of cluster factors for
each cluster.

CFE;

n
MQ = Z CF;
i=1
Note: if we compute the MQ metric of a very disadvantageous
clustering, it is possible that there will be far more external con-
nections than internal ones, and this will lead to negative clustering
factors. This is unwanted because it distorts the fitness-space, i.c.
oul of two disadvantageous clusterings the better can have less fit-
ness value than the worse. To avoid this, we set the cluster factor to
0 whenever it would be negative.

Range of fitness values The MQ metric (in this approach) is a
nonnegative number for every possible clustering,
Special cases:

e There is only one cluster, and every module belongs to it. The
fitness value for this clustering is 1.

® Each module is in a separate cluster. The fitness value for this
clustering is 0, because there are no internal connections at all.

In general, the fitness value is a nonnegative number, with no
upper border.

Disadvantages There is a large group of clusterings which have
their fitness value 0. Usually all of these are very disadvantageous
clusterings so we do not have to deal with this, since we are
interested in the few most fit clusterings, But there are cases in
which we might want to compare even these very bad clustering
results and therefore we need a fitness function which gives useful
information on these clusterings, oo,

4.1.2 Second approach of implementing the MQ metric

There is another version of the MQ metric in literature which gives
the same fitness-space as the previously defined one, i.e. if one

clustering is better than the other in the first version, then it will
be better in the second too, and vice versa.

Intraconnectivity of a cluster For each cluster we calculate the
intraconnectivity value, which, for a given cluster 4 is the following;:

i
Ai:N?

where p; is the same as before, and N; is the number of modules
in cluster 4.

Interconnectivity of two clusters For each pair of clusters noted
with ¢ and j, the interconnectivity value is:

0
E;; = £ij
2N;N;
where €;; is the same as above, and N;, N is the number of
modules in cluster ¢, and cluster j respectively.

t=7
otherwise

Finally, the MQ metric is defined as:
A1 n=1
MQ = % :L:l Ai - Tkl—l_‘] Z?zl Ei]' otherwise

This version of the MQ metric gives a real number between —1
and 1 for every possible clustering. The A; and FEj; parameters
are always between 0 and 1, representing the number of existing
connections out of all the possible ones.

4.2 Towards an evolutionary algorithm

The fitness function can serve as the key component of some
evolutionary algorithms to do find an optimal clustering. We plan
to implement several evolutionary algorithms based on this fitness
function, such as steepest-ascent hill climbing, simulated annealing
and genetic algorithm.

S. Splitting modules and header files

Library modules and header files usually cannot be sensibly put
into one cluster, because their contents are used in more clusters.
However, if we look at their contents one-by-one, we often find
that they are used only in one cluster, so it makes sense to split up
these files using this information,

The splitting algorithm sorts functions, records, and macros
of modules or header files into smaller files depending on their
relations. Functions, records and macros will be called objects in
this section.

The algorithm implemented in the Refactorer] tool is based on
which clusters use which objects, and which objects use which
objects. Each of the given modules and header files will be split
independently from each other, so let us consider only one of the
modules. Splitting header files works in the same way as splitting
modules.

After the clustering, there are n clusters. Each cluster contains
one or more modules, but none of the clusters contain the module
to be split. The aim of splitting is that those objects that are used by
one cluster only should be placed into a new module that belongs to
it. More precisely, if an object is not used by any other cluster, even
indirectly, it can be placed in this new module. With this method
the number of dependencies outside the clusters can be reduced.

The number of new modules may vary between 1 and 7 + 1.
I every object is used by more than one clusters, the splitting
will leave everything in its place. However, if every cluster has
objects in the library module which are only used by it, and there
are objects which are used by more than one clusters, then a new
module will be created for each cluster and the original module will
remain with the remaining objects.

87

The algorithm calculates how to split the graph, but it does not
make the actual changes. It only returns the suggestion for splitting,

5.1 An example of using the library
Let us suppose that these are the test files:

% al.erl
-module(al).
~export ([£/0]).
-include("h.hrl").

£0O -
1lib:£2(), #r_ai{}, #rhi{}.

% a2.erl
-module (a2) .
-export ([£/0]).

£O -> 1ib:£1(), 1ib:£f2(), 1ib:f5().

% a3.erl

-module (a3) .
-export ([£/0]).
-include("h.hrl").

£ -> 1ib:£4(), 1ib:£5().

% h.hrl
-record(rhi,{something}).
-record(rh2, {something}).
-record(rh3, {something}) .
-record(r_al,{something}).

% lib.erl

-module(1ib).
-export([f1/0,£2/0,£3/0,£4/0,£5/0,£6/0,£7/0]).
-record(ri, {something}).

-record(r2, {something}).

-record(r3, {something}).

-define(MAC1,a).

-define (MAC2,b) .

—include("h.hrl").

10 ->
£2(), £30, £6(),
#r1{}, #rhi{}, #r2{}, #rh2{},
?MAC1, 7MODULE.
£20) -> £30), #r1{}, #rhi{}.
£3(0) > £7().

f4(0) ->
£6(), £70), #r2{}, #rh2{}, #r3{}, ?MAC2.

£5() -> #rh3{}.

f6() -> ?MODULE.

70 -
length([1,2]),
spawn (fun() -> ok end),
£80).

£8(0) -> ok.

The splitting function returns the following result:

[{"/erlang/lib.erl",
{[{fun_attr,1lib,f5,0},
{fun_attr,1ib,£6,0},
{fun_attr,lib,£7,0},
{fun_attr,1ib,£8,0},
{rec_attr,"/erlang/lib.erl",r2}],
[{o,

[a1,a2],

[{rec_attr,"/erlang/lib.erl",rl},
{macro_attr,"/erlang/lib.erl","MAC1"},
{fun_attr,1ib,f1,0},
{fun_attr,1lib,f2,0},
{fun_attr,1lib,£3,0}1},

{1,

[a3],

[{fun_attr,1lib,f4,0},
{rec_attr,"/erlang/lib.erl",r3},
{macro_attr,"/erlang/lib.erl","MAC2"}1}1}},

{"/erlang/h.hrl",
{[{rec_attr,"/erlang/h.hrl",rh3},
{rec_attr,"/erlang/h.hrl",rh2}],
[{o,

[al,a2],

[{rec_attr,"/erlang/h.hrl",r_al},
{rec_attr,"/erlang/h.hrl",rh1}1}1}}]

Each element of the main list specifies how to split a concrete
file. The first element specifies how to split "/erlang/lib.erl",
the second does the same with "/erlang/h:hrl".

Let us focus on how "/erlang/1ib.erl" should be split. Af-
ter the file’s name in the tuple there is a list of elements that should
not be moved: £5/0, £6/0, £7/0, £8/0 and the record, the name of
which is £2 and which is defined in the file "/erlang/lib.erl".
Then the elements that should be moved into the new file which
will belong to cluster 0 follow, after the list [a1,a2], which states
that cluster O consists of these two modules.

6. Transformations for module restructuring

Clustering modules is really a logical operation which does not
involve changing the code itself, but consequently, splitting library
modules and header files into parts that are used in the clusters is
a typical refactoring operation. This section introduces the basic
refactorings that are required to apply the results of clustering and
splitting.

These refactoring steps will be available in RefactorErl, move
function is already completed, and the other two is partially imple-
mented.

6.1 Move function

Move function refactoring enables to move an arbitrary set of
functions between modules. Selected functions are copied to the
given target module (each clause of each function), deleted in the
original module, and export lists are updated accordingly. Calls to
these functions are updated by changing module qualifiers to use
the new module name.

The refactoring takes care of the proper handling and moving
of macros, records and function calls, and ensures their visibility in
the previous and new place of the functions. It tries to avoid code
duplication as much as possible.

With the help of transformation several functions, which are
collected in a list by the tool, can be moved in one step. By
examining the content of the list, it can reject functions or make
recommendations for creating a proper list. When any function is

88

rejected in the list, the whole transformational step is rejected by
the system.

Parameters

e The module from which the functions are to be moved.
o The name and arity of the functions to be moved.

e The name of the module where the functions should be moved.
Side conditions

e The names of the selected functions should not conflict with
other functions in the target module, neither with those im-
ported from another module (overloading). Furthermore, the
name should be a legal function name in all modules.

o Macro name conflicts must not occur in the target module, that
is, macro names used in the functions must refer to the same
macro definition in the source and in the target module. This
applies to macros used in these macros too.

¢ Record name conflicts must not occur in the target module, that
is, record names used in the functions must refer to the same
record definition in the source and in the target module.

e If header file inclusions have to be made during the transforma-
tions, these inclusions must not introduce name clashes between
macros and records.

Transformation steps and compensations

1. The function bodies to be moved are deleted from their original
places with all their clauses.

2. The moved functions are placed at the end of the new module.

3. Functions that appear in the export lists of the original module
are removed from there, and a new export list is created from
them in the target module right after the last export list in that
module.

4. The functions, which are called in a moved function but remain
in the original module, are put in an export list in the original
module.

5. Moved functions that called from other functions in the original
module are exported in the new module and the calls in the
original module are changed to include a module qualifier that
refers the target module.

6. Moved functions that are referred by qualified names in the
moved functions are changed to use the new module name.

7. Moved functions that appear in an import list of the target
module are removed from that import list.

8. Moved function that appear in an import list of any module are
removed from that import list, and a new import list is created in
that module which refers to the moved function using the target
module name.

9. Qualified names referring to a moved function in any module
are changed to use the name of the target module.

10. Records and macros used in the moved function have to be
made visible in the target module, either including the header
file in which they are defined (but only when no record or macro
name clash is introduced by the inclusion), or copying their

definition.

6.2 Move record

This transformation moves a record definition between two files.
Source and target files can be either modules or header files, the
conditions are slightly different in every case. The goal of the

transformation is to make the record definition available in every
place where it is used after the move.

Parameters
e The module or a header file in which the records are defined.
e The name of the records to be moved.

¢ The name of the module or header file where the records should
be moved.

Side conditions

® Record names do not clash with existing record definitions in
the target file.

® Modules files cannot be included in other files, so moving to
a module file is permitted only if no other modules use the
records.

e If header file inclusions have to be made during the transforma-
tion, these inclusions must not introduce name clashes between
macros and records.

Transformation steps and compensations

1. The record definitions are removed from the source file.

2. The record definitions are placed at the end of the target header
file, or before the first function of the target module file.

3. If a record is moved into a header file, then every module that
uses the record is changed to include the target header file. This
is not an issue when the target is a module file.

6.3 Move macro

This refactoring moves macro definitions between modules and
header files. It is similar to move record, but it is a little more com-
plex, because macros can refer to each other. Macros can also refer
to records and functions, but this does not affect the transformation,
because only the definitions are moved, and the context of macro
applications remain unchanged, the same records and functions re-
main accessible everywhere.

Parameters
e The module or a header file where the macros are defined.
e The names of the macros to be moved.

e The name of the module or header file where the macros should
be moved.

Side conditions

¢ Macro names must not clash with existing macro names in the
target file.

® Macros can be moved into a module file only if no other module
refers to them.

¢ If header file inclusions have to be made during the transforma-
tion, these inclusions must not introduce name clashes between
macros and records.

e If a compensation refactoring is necessary (see the next para-
graph), it must fulfil these requirements too.

Transformation steps and compensations

e The macro definitions to be moved are removed from the source
module or header file.

® The macro definitions are put into the target file. They are
placed before any function definition in module files, and if the
target file refers to any moved macro in a non-macro definition,
the moved macro definitions are placed before these usage

89

points. In header files, if there are no references to the macros,
the definitions are placed at the end of the file.

e If the target is a header file, every module that refers to any of
the moved macros is changes to include the target header file.

® If the macros to be moved refer to other macros, an availability
check is done for every module that uses the moved macros.
Every referred macro is made available using the following
rules:

= Macros which are already visible in the module don’t need
further steps.

= Unavailable macros defined in a header file are made avail-
able by including their defining header file in the module.

= Unavailable macros defined in module files are made avail-
able by moving them into the same place as the originally
moved macros, using the same move macro transformation.
The failure of this compensation means the failure of the
whole transformation.

7. Conclusions

The components introduced in the paper are rather lightly con-
nected, some of them work with clusters of modules, and the refac-
torings are completely stand-alone. Their power lies in using them
together: different clustering solutions can be produced, the best
one can be selected, the list of neccessary transformations can be
generated, and this list can be automatically executed. Extended
with the possibility of manual intervention and editing, this covers
the whole process of restructuring large systems into smaller ones,
and proved (o be helpful in industrial applications.

References

[1] Anguetil N., Fourrier, C., Lethbridge T. C.: Experiments with
Hierarchical Clustering Algorithms as Software Remodularization
Methods Working Conference on Reverse Engineering (1999).

[2] Armstrong, J.: Making reliable distributed systems in the presence
of software errors. PhD thesis, The Royal Institute of Technology,
Stockholm, Sweden (2003)

[3] Armstrong, I.: Programming Erlang, Software for a Concurrent
World Pragmatic Bookshelf (2007)

[4] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring:
Improving the Design of Existing Code. Addison-Wesley (1999)

[5] Harman, M., Swift, S., Mahdavi, K.: An empirical study of the
robustness of two module clustering fitness functions. GECCO *05:
Proceedings of the 2005 conference on Genetic and evolutionary
computation (2005), 1029-1036

[6] Horvith, Z. et al.: Refactoring Erlang Programs.
http://plc.inf.elte.hu/erlang/

[7] Kitlei, R., Lovei, L., Nagy, T., Nagyn, V. A., Horvth, Z., Csmyei, Z.:
Generic syntactic analyser: ParsErl. International Erlang/OTP User
Conference (2007).

[8] Lovei, L., Horvith, Z., Kozsik, T., Vig, A., Nagy, T.: Refactoring
Erlang programs. To appear in: Periodica Polytechnica — Electrical
Engineering (2007) 19 pages.

[91 Li, H., Thompson, S., Lovei, L., Horv4th, Z., Kozsik, T, Vig, A.,
Nagy, T.: Refactoring Erlang programs. In: The Proceedings of
12th International Erlang/OTP User Conference, Stockholm, Sweden
(2006) http://www.erlang.se/euc/06/, 10 pages.

[10] Lovei, L., Horvéth, Z., Kirdly R., Kitlei R.: Static rules for variable
scoping in Erlang. To appear in: The 7th International Conference on
Applied Informatics, Eger, Hungary, 2007.

[11] Nagy, T., Vig, A.: Erlang refactor tool. Master thesis, E6tvds Lorand
University, Budapest, Hungary, 2007,

Author Index

AT1tS, TROMAS ...ovvevveeiererieneiniireseesnessasesssnseessasens

Boberg, Jonasccccciiiieriiininecennnesisn 9

Castro, Laura M.cccccocvvineiinrinnenoieccnnnessnennes
(07T T €1 10)17:111 1| OO
Cesarini, Francescoccccoveiviieiinenivonesivenns
Hoch, Csaba i
Horpécsi, Danielccoovcimmnmimmnsmisisie,
Hughes, JOhDcoovriiiiiiniciiiiiiinisiniinns
Kiraly, Rolandccoonmemmmimimmsnisinaneessens
Kitlei, RObert .cu.nmammasmssasamiavavising
KOO, HANNA ...cvvvvreeereiiirinseeereesarsecsnssssossessanass
L6vel, LASZIO o.vuvvirrerreisseeeeraesreesesssesssssssssssenas
Luna, Danielcccccvvereereninnisaesersressesseesns
Nagy, Tamascccccurmrmnvrinsrienns
Nagyné Vig, Anikdccccvvuvcivnnnns
Orosz, GYOIZY ...covcvievnenienininininnsnesnassenerasraens
Pappalardo, Vivianaccccevvvinnniniiissnennns
Pili, PI€TO 1uveeeeeieecreeesreesesesssrsrnssssnsssnssensnsessaens
Reinefeld, Alexanderoccvverienrensssrisnenns
Sagonas, Konstantinos ...
Santoro, Corradocovevienieiiasineresreesienseens
Scalas, Alceste . iimmsinsiiiisissiimstsimss
Schintke, FIOTaNcooveevereveerrsesessereessessssserses
Schiitt, ThOTSteNccceemveereererereersesssnnsressennes
Thompson, SIMONc.uviimmisicsmsmeime
T6th, Melinda awssammsmssnvssnseissmess

90

73

E— X
wssssvarniis 21, 83

61
29
.49
.41
73
29
.49
.41
41
61
61

¥ an

da

-
i
'

= v

.

-
. .
“ N
.8
" 1
v
.
0
'
L
-
- - - m——— v —— v by s s ~ N . = -
- B M N - N - - -
“ 0 - . H
W
5 '

