
Victoria, British Columbia, Canada

September 27,2008

\t

Association for
Computing Machinery

Advancing Computing as a Science & Profession

I

i

:Ã

Erlang'08
Proceedings of the 2008

SIGPLAN Erlang Workshop

Sponsored by:

ACM SIGPLAN

Co-located with

ICFP'08

Victoria, British Columbia, Canada

September 27,2008

Association for
Computing Machinery

Advancing Comput¡ng as a Science & Profession

Ì

I

Erlang'08
Proceedings of the 2008

SIGPLAN Erlang Workshop

Sponsored by:

ACM SIGPLAN

Co-located with:

ICFP'08

Association for
Computing Machinery

Advoncìng Camputinç as a Science & prafessian

The Association for Computing Machinery
2 Penn Plaza, Suite 701
New York, New York t0l2l-0701

CoPYriSht O 2008 by the Association for Computing Machinery, Inc. (ACM). permission to make digital
or hard copies ofportions ofthis work for personal or classroom use is granted without fee provided ihat
copies are not made or distributed for profit or commercial advantage attd thut copies bear tiris notice and
the full citation on the first page. Copyright for components of this work owned ùy others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specifìc permission and/or afee. Requeit permissión to republish from:
Publications Dept., ACM, Inc. Fax +l (212) 869-04s1 or <permissions6u"-.orgr.

For other copying of articles that carry a code at the bottom of the first or last page, copying is permitted
provìded that the per-copy fee indicated in the code is paid through the Copyrþhi Cleárancã Cénter,
222 Rosewood Drive, Danvers, MA 01923.

Notice to Past Authors of ACM-Published Articles
ACM intends to create a complete electronic archive of all articles and/or other material previously
published by ACM. If you have written a work that has been previously published by eiu in any joumal
or confeience proceedings prior to 1978, or any SIG Newsletter at any time, and you do NOT *unithi.
work to appear in the ACM Digital Library, please inform permissions@acm.org, stating the title of the
work, the author(s), and where and when published.

ISBN: 978- 1-60558-065-4

Additional copies may be ordered prepaid from:

ACM Order Department
PO Box 11405
New York, NY 10286-1405

Phone: I-800-342-6626
(US and Canada)
+t-2t2-626-0500
(all other countries)
Fax: +1-212-944-1318
E-mail: acmhelp@acm.org

ACM Order Number 555087

Printed in the USA

11

Foreword

It is our great pleasure to welcome you to the 7th ACM SIGPLAN Erlang llorl<shop, Erlang')9. This
years workshop continues the tradition of being co-located with the annual International Conference

on Functional Programming (ICFP), and being a forum for the presentation of research theory,

implementation and applications of the Erlang programming language.

The program committee accepted 10 papers that cover a variety of topics, including language

aspects, typing, refactoring, testing, high-performance computing and applications. The program

committee also invited a keynote presentation on the future of Erlang.

We are very grateful to the program committee members, the reviewers, the authors and to the

invited speaker, for the time and effort they devoted to provide such a high quality program. The

papers were each carefully checked by two reviewers selected from among the most qualified

available and then revised once more by the authors.

We would also like to thank Michael Sperber, this year's ICFP Workshop Chair for his support, and

the ICFP local organizers for their hard work on local arrangements. Special thanks go to Bjarne

Däcker for maintaining the Erlang'O8 website, advertising the workshop and sharing experiences of
previous Workshops. Finally we would like to thank ACM SIGPLAN for their continued support.

The workshop continues the tradition to include into the program a five minutes talks session to

provide opportunities for all participants to introduce themselves and thcir Erlang interests.

Vy'e hope you find this program interesting and that the workshop will provide you with a valuable

opportunity to share ideas with other researchers and Erlang practitioners from industry and

academic institutions.

Tee Teoh
Erlang'18 General Chair

Canadian Bank Note, Ottawa,

Canada

Zoltán Horváth
Erlang')9 Program Chair

Eötvös Loránd University,

Budapest, Hungary

Table of Contents

Erlang 2008 Workshop Organization V1

Session 1: Testing

. Testing Erlang Data Types with Quviq QuickCheck
Thomas Arts (T University of Gothenburg and Quviq AB),
Laura M. Casto (MADS Group - University of A Coruña),

John Hughes (Chalmers Sweden / Quvíq AB)

Early Fault Detection with Modet-Based Testing9
Jonas Boberg (Erlang Training and Consulting Ltd.)

Erlang Testing and Tools Survey 2t

I

¿

a

a

a

Tamás Nagy, Anikó Nagyné Yig (Erlang Training and Consulting Ltd.)

Session 2: Applications

. A Comparative Evaluation of Imperative and Functional
Implementations of the IMAP Protocol
Francesco Cesarini @rlang Training and Consulting),
Viviana Pappalardq Corrado Santoro (Jniversity of Catania)

Scølørís: Reliable Transactional P2P Key/Value Store
Thorsten Schütt, Florian Schintke Alexander Reinefeld (Zuse Institute Berlin and onScale solutions)

High-Performânce Technical Computing with Erlang.
Alceste Scalas, Giovanni Casu Piero Pili

29

4t

......49

(Centerfor Advanced Studies, Research and Development in Sardinia)

Session 3: Typing and Refactoring

. Refactoring with Wrangler, updated Data and process
refactorings, and integration with Eclipse........."..'.........61
Huiqing Li, Simon Thompson (Jniversity of Kent),
György Orosz MelindaTóth (Eönös Lonind University)

Gradual Typing of Erlang Programs: A Wrangler Experience It
Konstantinos Sagonas Q{ational Technical University of Athenf , Daniel Luna (Jppsala University)

a Refactoring Module Structure 83

László Lövei Csaba Hoch, Hanna Kö11ó, Tamás Nagy, Anikó Nagyné Víg
Dániel Horpácsi, Róbert Kitlei, Roland Király (Eönös Loránd University)

Author Index 90

t

Brlang 2008 Workshop Organizttion

General Chair: Tee Teoh (Canadian Bank Note, Ottawa, Canada)

Program chair: zoltÍn Horváth (Eötvös Loránd (Jniversity, Budapest, Hungary)

steering committee chair: Bjame Däcker (Erlang Training ønd Consulting, UI()

Program Committee: Thomas Arts (IT University, Göteborg, Sweden)

Francesco Cesarini (Erlang Training and Consulting, London, UK)
Clara Benac Earle (University Carlos III, Madrid, Spatn)

John Hughes (Chalmers University of Technology, Göteborg, Sweden)

Erik Stenman (Kreditor, Stockholm, Sweden)

Zoltáun Theisz (Erics s on, Ireland)
Simon Thompson (University of Kent, Canterbury, UK)
Rex Page (University of Oklahoma, USA)

Additional reviewers: LâszlóLövei (Eönös Loránd University, Budapest, Hungary)
Csaba Hoch (Eötvös Loránd (Jniversity, Budapest, Hungary)

Sponsor: @srcrrAN

v1

Testing Erlang Data Tlpes with Quviq QuickCheck

Abstract
When creating software, data types are the basic bricks. Most
of the time a programmer will use data types defined in library
modules, therefore being tested by many users over many years.
But sometimes, the appropriate data type is unavailable in the
libraries and has to be constructed from scratch. In this way, new
basic bricks are created, and potentially used in many products in
the future. It pays off to test such data types thoroughly.

This paper presents a structured methodology to follow when
testing data types using Quviq QuickCheck, a tool for random test-
ing against speciflcations. The validation process will be explained
carefully, from the convenience ofdefining a model for the datatype
to be tested, to a strategy for better shrinking of failing test cases,
and including the benefits of working with symbolic representa-
tions.

The leading example in this paper is a dafa type implemented
for a risk management information system, a commercial product
developed in Erlang, that has been used on a daily basis for several
years.

Categories and Subject Descrtpturs D.2.4 lsoftware Engineer-
izgl: SoftwareÆrogram Verification; D.2.5 lSoþ,vare Engineer-
lngl: Testing and Debugging

General Tenns verification

Keywords erlang, quickcheck, datatypes

1. Introduction
Software testing is an as necessary as delicate matter. In particular,
designing good test sets is a non-trivial task. Unconscious assump-
tions about the functionality of the subject under test may leave
important scenarios or possibilities out of the testing range/scope.
That is why automatic test generation tools that provide random
input can be helpful products.

As a successful example, Quviq QuickCheck has proven itself
as useful tool for testing Erlang programs (Thomas Arts et al. 2006;
Quviq). The flrst QuickCheck tool was invented by Claessen and
Hughes (Koen Claessen and John Hughes 2000). The version of
Quviq is implemented in Erlang and adapted to better fit industrial
needs.

Pemission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or dishibuted
for profit or commercial advantage md tbat copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and./or a fee.

Erlang'08, September 27, 2008, Victoria, BC, Canada.
Copyright @ 2008 ACM 978-1-60558-065-4/08/09... $5.00

Thomas Arts
IT University of Gothenburg (Sweden) /

Quviq AB
thomas.arts@itu niv.se

Laura M. Castro

MADS Group - University of A Coruña
(Spain)

lcastro@udc.es

John Hughes

Chalmers (Sweden) / Quviq AB
john. h ughes@chal mers.se

In this paper we present a method for validating user-defined
Erlang data types using Quviq QuickCheckl, As a case study, we
use the risk management information system ARMISTICE (AR-
MISTICE). We selected one data type from this risk management
information system as our leading example for this paper: the dec-
imal data type, a data type for fractional numbers without writing
a numerator and denominator. We found a surprising enor in the
implementation of this data type, of which symptoms had occurred
before, but whose scarce bug reports were not well understood. Er-
rors in a data type may occur in a very unexpected way at the user
level. The data type was fixed and thoroughly tested with the de-
scribed method, increasing the confidence that the present imple-
mentation is correct.

2. Motivation
ARMISTICE (Víctor M. Gulías er al. 2006,2005) is an informarion
system whose business logic has been developed using Erlang/OTP.
Using a functional language such as Erlang was a key factor for
success not only in implementing a software application to deal
with such a complex business domain as insurance management
(David Cabrero et al. 2003), but also in reaching an abstraction
level at the definition of the system which makes it applicable to
different business flelds. This innovative risk management system
(RMIS) is meant to be a tool for both the expert and the daily non-
expert users. An advanced profile will use ARMISTICE to specify
a set of resources and their relevant properties of interest, as well
as the insurance policies contracted to protect those resources from
the consequences of potentially harmful events, whichever these
might be for each particular case. On the other hand, the system
is of assistance also to the kind of user that, without any expert
knowledge regarding coverages and wananties, has to deal with
incident reports, accident claims, and flle trackings. In this case,
ARMISTICE helps by retrieving and isolating just the relevant
information for each scenario, according to the provided contextual
data, and thus, giving valuable support to actions and decisions.

This software system has been in production for a few years
now, after being tested by regular users during the last stages of
development. Such testing process is common in software develop-
ment cycles, but it is hardly ever complete and exhaustive. The fact
that an application has been running daily without major problems
is just a weak empirical proof of correctness.

In order to provide a greater degree of confidence, and taking
advantage of the application's core being implemented in Erlang,
we decided to use QuickCheck to automatically generate random
tests. As a good starting point, we chose ARMISTICE data types.
Data types are the smallest logic element that can be tested in
most software applications, and the components on which all other
business objects are built upon.

I In this paper, QuickCheck refers to Quviq QuickCheck version 1.13.

Figure 1. Decimal data type creation options

3. Testing Data Types

There are a number of data types implemented in ARMISTICE and
some of them, such as logico for booleans and entero for integers,
axe very similar to the basic data types in Erlang. Other data types
are built upon these basic types, for example a data type currency
for representing amounts in different currencies.

In order to be able to have a uniform way ofmarshalling and un-
marshalling values within the system, all ARMISTICE data types
have the same structure: a value is represented by a record with the
name of the value and wrapped in a tuple with oft as the first param-
eter. In case a data type operation results in an error, the value of
tlre data type is represented by a tuple with ûrst argument ¿ rror md
sccond argumcnt on otom describing thc causc of thc crror. Thus,
instead of representing booleans by atoms true and false, they are
represented by {ok,#logico{value = true}} and silr'llar for false.
A division by zero error with two entero values will not result in a
crash, but in areturn value {error,dívísíon-byzero}. This way, even
failing operations on the server side are detectable at the client side.

Communication between the ARMISTICE client, written in
Java, and the ARMISTICE server, written in F,rlang, uses an XIvIL
RPC based protocol. The server first takes care of unmarshalling
the messages to obtain Erlang terms, then invoking the conespond-
ing business core service, and finally marshalling the results before
replying to the client. For that reason, all data types have construc-
tors to create a value from a string and similarly they all implement
a function fo¡tríng fo convert a value to a string. Furthermore, such
operâtions are the basis of all communications with the client, so

they are performed very frequently. This means that such conver-
sions need to be fast.

All data types have been tested with the method2 presented,
motivated, and evaluated in this paper.

3,1 Decimal Data llpe
We present the method for testing data types with QuickCbeck by
a leading example in the form of ARMISTICE's decimal data type.
A. decímal is used to represent values with some digits before and

some after the decimal separator. It need not have the same range
as floats, since it is used to l'epresent sums of money. This data
type is defined in a module called decinal . erl which expofis a
creator named ner¡ in four flavours. As displayed in Fig. 1, input
to the function is either a single value or a two-element tuple (first
component for the integer part, second for the decimal part). Values
are either an integer, a float, or a string representation of one of the
two. When providing a single string value, it can contain coÍrmas
(thousands separator) and/or dot (decimal separator). The decimal
separator cannot be used ifthe two-element tuple notation is used.

2 The method has been developed by the company and has been fine tuned
during this case study.

Other data type constructofs provided include mathematical
operators: sum, substraction, product, division, negation, absolute
value, maximum and minimum; and relational operators, such as

'grealer than', and 'less than or equal'.
Now, for testing the decimal daf.afype, one needs a generator for

this data type, creating random instances of it, and a property that
represents what one likes the data type to fuIfiI. A relatively naïve
approach to generate a decímal would be to define the following
QuickCheck genera¡or in which the function ner¡3 is applied to an
arbitrary integer and an arbitrary positive integer.

decinatO ->
?LET(TupIe, {intO, natO}, new(Tupte)).

Note that a decimal can be constructed in many ways, as ex-
plained by the different inputs new can take, but the temptation fol-
lowed here is to keep the code for the generator small, since all
possible decimals seem to be producible in this way. We will show
later that giving in to this temptation results in a missed opportunity
to catch an error.

One of the properties that one may like to check is that the sum
operator is actually commutative,

prop-sum-connO ->
?F0RALL({D1, D2}, {decinalO, decínalO},

sun(Dl, D2) == sun(D2, D1)).

QuickCheck is used to check this property with successful re-
sult, meaning that the specified property holds for tens ofthousands
of randomly gcncrotcd tcst coscs. So, sum sccms indccd coÍìmuto-
tive. We now are faced with the questions: which other properties
do we add? and when do we have sufficíently mony properties to
cover testing o.f this data type?

3.2 Model for data type

We know from the field of mathematics and formal methods (Floyd
1967; Hoare 1972) that creating a model of our data type could help
in deciding whether we have created enough properties for the data
type. We would üke to show that each operation on decímals canbe
simulated by our model operations. Thus, we want an injection [ol
from the decimal data type into our model, such that Y Dt , Dz €
decimal

[sum(D1 , D2)l
fsubs(D1 , D2)l
frnult(D1 , D2)l
fdi.us(D1 , D2)l

ut(D1, D2)lt

lDrl f [Drl
lDtl - LDrl
[D1l * [D1l
IDtl líDtl
lDrl < [Drl

(1)

In general, we may need to implement a model with all these
operations. In this case, though, as our model we can use the stan-
dard Erlang implementation of floaring point numbers (in itself
built upon the C implementation that implements the IEEE 754-
1985 standard (mEE 1985). We are lucky here, since this choice
perfectly frts ow decímals regardless some rounding issues we will
discuss later on (see page 3), but in many situations one can imple-
ment a model that is simpler than the data type itself, for example
by not caring about efficiency and leaving out optimisations.

We choose a simple injection, viz, mapping decimals to Erlang
floating point numbers. In fact, this injection function was already
present in the code under test:

3 To enhance reading wo simplified the operations in this paper. For in-
stance, the function nev is a local function that calls decinal:neç and
removes the ok tåg from its result, and similarly for sun, nult, etc,

2

nodel(Decinal) ->
decimal : get-vaIue (Decinal)

Note that in the last equation shown above we use a differ-
ent model, viz [o]¿ for interpreting the result of the function
lt (Dl , D2), since that result is a logico, noT a decimal. The model
for logico simply maps to Erlang booleans and the injection that
we use is also already present in the corresponding module.

logico-model(Logico) ->
logico : get-vatue (Logico)

QuickCheck properties to check whether our implementation is
equivalent to the Erlang floating point implementation look like:

prop-sunO ->
?F0RALL({D1 , D2}, {deciroalO, decinalO},

nodel(suro(D1, D2))
== model(01) + nodel(D2)).

prop_1tO ->
?F0RALL({D1, D2}, tdecinalO, decimalO},

logico-model(lt(D1, D2))
== (model(D1) < nodel(02))).

If we now create one such property for each operation defined
in the data type, then by checking each of them for a large number
of random inputs, we would gain confidence that we tested the data
type operations suffi ciently.

We start by checking the first property with QuickCheck, which
immediately results in a failure.

> eqc : quickcheck(decinal-eqc :prop-sunO)
....Fai1ed! After 5 tests.
{ [{decinat, 1000000000000000}],

[{decimal, 1 1000000000000000}] }
falSe

After five tests, QuickCheck finds a counterexample against
the equivalence between adding two decimal values and adding
the corresponding two floats. However, the counterexample values
reported back by QuickCheck are in their internal representation,
which is hard to understand by anyone who is not familiar with the
decimal data type implementation. This would be even worse for
more complex data types. For a trained QuickCheck user, the values
are at least surprising, since one expects rather small integer values
and not values with 15 or more zeros. The fact that we actually
failed in this test with values 1 and 1.1 is only directly obvious to
the developer of the decimal data type.

We do not want to rely on the internal representation of a data
type, for one reason because it may be hard for others than the
developer of the module to understand, for another reason, because
implementations of data types may change and we want tests to
depend on them as little as we want implementations to depend
on them. Moreover, the internal representation is only the final
result of a computation constructing the data structure. We like
to know which steps were performed in this construction, since
they may reveal information about an observed failure. Therefore,
we wo¡k with symbolic values instead of r¿al values. This means
that QuickCheck generates a symbolic representation of a decimal,
which will be evaluated when needed (i.e., during testing). So, our
generator is rewritten to:

decinalo ->
?LET(Tuple, {intO, natO},

{ca1l, decinal, new, [Tup1e]])

Thus generating a symbolic call to decinal: new(Tuple), i.e.,
creating a tuple with tag call, module, function name, and argu-
ments, instead of actually performing the call.

Of course, we change properties accordingly and introduce in
their definition the evaluation of such symbolic values, a standard

QuickCheck function.

prop-sunO ->
?F0RALL({SD1, SD2}, {decinalO, decinalO},

begin
D1 = eval(SD1),
D2 = eval(SD2),
nodet (sr¡m (D1 , D2))
== nodel(D1) + nodel(D2)

end) .

With these modifications, a similar failure is reported back by

QuickCheck as:

) eqc: quickcheck (decinal-eqc: prop-sum O) .

.Failed! After 9 tests.
{{calt,decinal,ne$, [{2, 1}] },
{ca1l, decinal, new, l{2,2}1I}

Shrinking.. (2 tines)
{{call,decimal,new, [{0, 1}] },
{calt,decinal,new, t{0, 2}l }}

false

Now it is much easier to see that the problem can be reproduced
by using values 0.1 and 0.2.

Conform to the IEEE 754-1985 standard, Erlang float values
present an unavoidable rounding error , demonstrated by typing the
values in the shell:

> (0.1+0.2) == 0.3
false
> (0.1+0.2) - 0.3.
5.55112e-17

In other words, since floats are represented as a list of bits, there
is not always an exact representation of each decimal. Since our
computations are performed on the decimals and the conversion
to floats is only necessary to compare the results, we are satisfied
with an approximate equality. Therefore, we deflne the equivalence
relation == with respect to two maximum tolerance levels: an ab-
solute error value (ABS-ERRoR), which measures how different two
floats are; and a relative enor value (REL-ERROR), which takes into
account not only the values themselves, but also their magnitudes
(Dawson 2008). Note that we divide by the maximum of the ab-

solute values of the two floats, ensuring that the maximum never
is zero (unless they both aÍe zero, in which case the absolute error
value is used).

-def ine(ABS-ERROR, 1.0e-16) .

-def ine(REL-ERR0R, 1.0e-10) .

equiv(Fl,F2) ->
if (abs(F1-F2) < ?ABS-ERR0R) -> true;

(abs(F1) > abs(F2)) ->
abs((F1-F2)/FI) < ?REL-ERR0R;

(abs(F1) < abs(F2)) ->
AbS((F1-F2)/F2) < ?REL-ERROR

end.

To set the ¡eference error values, we use the knowledge that the
decimal data type in ARMISTICE has 16 digits precision (hence,

the value of ABS-ERROR) and agree to a 99.9999999999Vo accu-
racy (hence, the value of REL-ERROR). Just a minor change in the

3

QuickCheck specification is necessary to introduce the new equiv-
alence function.

prop-sumO ->
?FORALL({S01, SD2}, {decinalO, decinalO},

begin
Dl = eval(SD1),
D2 = evat(SD2),
equiv (nodel (sun (D1 , D2)) ,

nodet(D1) + model(D2))
end) .

Finally, the property passes thousands of ¡andomly generated
test cases.

3.3 Generator to cover data structure
Now we need to introduce one such property for each operation
on our abstract data type. Even though it might then seem that
we completely tested the decimal data type, we recognise that this
is not true. In the first place, and a simple code coverage can
demonstrate this, we applied the function new to only one of its
many types of input (cf. Fig. 1). In the second place, we may
have missed to test part of the data structure. Operations on the
data struchrre may actually invalidate an invariant. For example,
imagine a data type s¿t in which elements are stored in a sorted
list, but a set obtained from the union of two sets may invalidate
that invariant. Hence, not testing to delete an element from a set
obtained form the union of two other sets is a missed opportunity
to find an error. Note that code coverage will most likely not reveal
thet wc misscd tcsting to delete an element frolìt a set createtl by
the union oftwo sets, because we have one property testing all code
involved in a deletion and one property testing all code involved
in computing the union. Together, they cover all code involved in
both, which is not the same as covering combinations of creating
unions and deleting elements from the union.

Similarly, in our case study, we want to test, for example, multi-
plication of two decimals where each decimal itself is obtained by
operations that may invalidate an invariant, e.g.

roult (new(" 12,837 . L2,),
sun(ner¡(12), ne¡¡({13,4}))) .

To do so, we create a recursive generator to obtain arbitrary
nesting of decimals as arguments of constructors for decimals.
The depth of the recursion is determined by QuickCheck such that
small values are tried first, slowly growing as long as no effors are
detected. QuickCheck gives access to the parameter that controls
the structural size of the generated test case via the ?SIZED macro.

decinalO ->
?SIZED(Size, decinal(Si.ze)) .

decinal(0) ->
{call, decinal, new,

[oneof([i.ntO,
rea1O,
separator (decinal_string () , digits ()) ,
{oneof ([int O , decinal_string O J) ,
oneof(lnatO , digitsOl)]

l)
l);

decimal(Size) ->
Snaller = decinat(Size div 2),
oneof ([

decinal (0) ,
{cal1, decinal, sum, lSnaller, Snaller]],
{ca1l, decinal, nult, [Sna11er, Snaller]]

l).
Note that so far we only consider the sun and nuLt operators

to create data structures. We will soon see how to add the other
operators. Note also that we use Size div 2 for smaller decimals.
This is based on the fact that the smaller decimals have (at most)
two subtrees and we want to keep the number of nodes in the tree
roughly determined by the size parameter.

Additional code is necessary to specify how the strings in the
input may look like. The generator for an arbitrary number of digits
is again recursively defined.

digitsO ->
?SIZED(Size, digits(Size)) .

digits(0) ->
[disitO];

digits (Size) ->
Smaller = digits(Size-I),
oneof ([digits(0), [digitO ISnaller]I)

digitO ->
choose($0, $9).

We can use these digits to generate string representations of
decimals, either as a long list of digits, or as such a list grouped
by 3 digits at a time and commas inbetween.

decinal_stringO ->
signed(oneof ([digitsO, groups(3)J)) .

signed(G) ->
?LET(S, G, oneof([S,,'+"++5,'r-"++S]))

separator(G1, G2) ->
oneof ([G1,

?LET({Sl, S2}, {Gl, G2}, S1++"."++S2)l)

7"% groups of N digits
groups(N) ->

?SIZED(Size, groups(¡, Size div N))

groups(G, 0) ->
digits (N-1) ;

groups(G, Size) ->
Snaller = groups(N, Size-l),
oneof ([

groups(N, 0),
?LET([S1, 52],

[Snal1er, vecror(N, digitO)1,
S1**" ,

t'++S2)

l).
With this recursive generator, symbolic calls can be generated

that cover, in principle, the whole data structure. For example, in a
QuickCheck sample, the following value was generated:

{call,decinal,sun,
[{ca11, decinal, sum,

[{ca11, decinal, roult,
[{cal1,decimal,new, [{11,',4009351"}] },
{call, decinal, new, ["-930764,,]]l],

{call , decimal , new, t-2 . 359861 }l } ,
{call , decinal , new, t1 . 647831 }l }

Of course, we need to add the other operators as well, but first
we use QuickCheck to check our previously defined property for
the sum operator, which successfully passes thousands of tests.

4

Now we add a similar property for multiplication, which fails after
only a few generated tests.

6> eqc: quickcheck (decimal-eqc: prop-mu1t ()) .

.Failed! After 16 tests.
{{catt, decimal-eqc, sum,

[{ca11, decimal-eqc, sum,

l{call, decimal-eqc,new, ["+1 "]],
{call,decinal-eqc,new, [2. 36314e+4]]l],

{caIl, decimal-eqc, roult,
[{ca11,decínal-eqc,new, [-51],
{call,decinal-eqc,new, [-9. 6t993e+S]]l]l],

{cal1, decinal-eqc, sum,

[{ca1l, decimal-eqc, nu1t,
[{call,decimal-eqc,new, lu7 4, 4")},
{ca1l, decimal-eqc, new, [{"-6, 179", "40" }] }] },

{ca1l , decinal-eqc , nult ,

[{catl, decimaI-eqc, new, ["47"]],
{call,decina1-eqc,new, lü-467 ,725.079"1 }l }l }}

Shrinking. .. (31 tines)
{{ca11 , dec iroal-eqc , sum ,

[{ca11, decinal-eqc, sum,

[{ca11, decirnal-eqc, new, ["+0"]],
tcall , decinal-eqc , new, [0 . 00000e+0]]l] ,

{call, decinal-eqc,mult,
[{ca11, decinal-eqc,new, [lJ],
{ca1I , decinal-eqc , new, [10 . 1400]]l]l] ,

{calI, decinal-eqc, sum,
[{cal1, decimal-eqc,nu1t,

[{ca1l,decinal-eqc,new, Ir'00. 4"]],
{ca1l, decimal-eqc,new, [{" -0, 000", "40"}] }] },

{call, decinal-eqc,nu1t,
l{calt,decinal-eqc,new, ["40"]], .

{ca1l, decimal-eqc, new, [" -000, 000 . 078 "]]l]l]]
false

As we can see from this example, the failing test case contains
a fairly large expression. The shrinking procedure reduces the test
case quite a lot, but there are still a numbe¡ of terms in there that
a human tester would reduce further. For example the sign could
be removed from {caII, decinal, new, [" +0 "]], but even better
one could try to remove the whole term. Another reduction could
be used for the string "-000, 000. 078", where six zeros could be
reduced to one, at least if the value is important and not the actual
structure of the string.

3.4 Improved shrinking of recursive data types

The reason why the previous terms are not shrunk up to the ex-
tent we would like they were, lays in the definition of our gener-
ators. When we nest LET macros, QuickCheck first shrinks on the
outermost level and when that is no longer possible, the generator

defined inside the LET is shrunka.

QuickCheck offers a macro SIIRINK with which one can define
one's own shrinking rules. The macro has two arguments, the first
being a generator, the second a list of generators. The generators in
that list are added as shrinking altematives to the generator in the
first argument. These shrinking alternatives are applied before the
built-in shrinking. For example, SHRTNK could be used to ensure
that the signed generator always tries to shrink to a representation
without a plus or minus symbol.

signed(G) ->

4The choose generator builçin shrinking strategy always defaults to the
first element in the argument list, while shrinking of int, real or nat tends
towards zero.

?LET(S, G,
?SHRINK(oneof ([S, rr+tr++S, rr-rr++S]), tsl))

Thus, whenever a test case fails, QuickCheck will first re-test
by removing the sign. The original signed generator would not do
so, since it would only shrink within the altemative chosen by the
oneof generator.

Note that the order in which we mix LET and SHRINK above is
important. Should we have written

signed(G) ->
?SHRINK (

?LET(S, G,
oneof([S, "+"++5, rr-rr++S])), tG])).

then shrinking would choose a sequence ofdigits without a sign,
but the sequence would have nothing in common with the original
sequence. That is not what we want in this case.

In fact, we often want to know the generated value in order
to decide which shrinking steps to add, thus, often having first
a LET and then a SHRINK macro. Therefore, Quviq has added a
LETSHRINK macro to QuickCheck which combines the two earlier
mentioned macros. As arguments we provide a list of bindings and

a list of generators, resulting in adding those bindings as shrink-
ing altematives. In that way, the above signed generator can be
simplified to:

signed(G) ->
?LETSHRINK(tS] , tG] ,

oneof ([S, "+r'++S, "-"++S])) .

where S is automatically added as a shrinking altemative.
The ?LETSHRINK macro can also be used to reduce the number

of groups present in the failing test case ' -467 ,725 .07 9 " , for ex-
ample, which shrinks to "-000,000.078" instead of also remov-
ing the group of three zeros. We define that each smaller generator
in the recursively defined generator is automatically added to the
shrinking alternativess.

groups(G, Size) ->
Snaller = groups(N, Size-1),
oneof ([

groups(N, 0),
?LETSHRINK([S1, 52] ,

[Smaller, vector(N, digitO)],
S1**" , "++S2)

t).
V/ith this shrinking rule added the string " -000 , 000 . 078 " will

shrink to "-000.078". Of course, we would still like to shrink
that further, which means that we need to look at the generator for
digits.

digits(Size) ->
Snaller = digits(Size-t),
oneof (ldigits (0) ,

?LETSHRINK(lDigitsJ , [Sma11er] ,

[digito lDigitsl)
l).

Which will now enable to shrink to "-0.078" as we can see

from re-checking the property on the same example with all above
shrinking alternatives added.

5 Strictly speaking, a group should start with a number of digits less than or
equal to three. However, we add the possibility to have a group with exactly
three digits. We add this as our second shrinking altemative, whereas the
first is a flexible number of digits.

ï. 1

f-"

i-it'.
:

5

Shrinking. . (35 tiroes)
{{ca11, decinal-eqc, sun,

[{caIt, decinal_eqc, sum,
[{calt, decínaI_eqc, new, ["0"]],
{call , decinal-eqc , new, [O . 00000e+0]]l] ,

{cal1, decíma1-eqc, nult,
l{call,decimal_eqc,new, [1J],
{call , decínal-eqc , new, [10 . 14OO]]l]l] ,

tcaIl, decinal-eqc, sun,
[{ca1l , decimal-eqc , nult ,

[{calt,decinal_eqc,new, IuO. 4,']],
{calI, decirnal_eqc, ner.r, [{', -0,,, "40,, }] }] },

{call, decinal-eqc,nuIt,
[{call, decinal-eqc,new, [',40"]],
{cal1,decinaI-eqc,new, ["-0.078"]]l]l]]

false

With these rules for shrinking added, we increase the simplic-
ity of our failing test case. However, the term structure is still un-
changed, although we know that adding zero to a number would
result in that same number. We can shrink the structure by once
more using the LETSHRINK macro, now in the definition of the re-
cursive generator for decimals.

decinal(Size) ->
Snaller = decinal(Size div 2),
oneof ([

decinal(0),
?LETSHRINK([D1, D2], [Sroaller, Snatler],

{caIl, decirual, sun, [01, D2]]),
?LETSHRINK([D1, D2], [Sna1ter, Smaller],

{ca11, decirnal, nult, [Dl, D2]])
l).
In addition to simplifying the actual term, we also want to

be able to see the difference between the value created by the
implementation and the value computed in our model. We can do so
by adding a UHENFAIL macro to the property, which only evaluates
its first argument if the second argument is false.

prop-nultO ->
?F0RALL({SDl, SD2}, {decinatO, decinalO},

begin
D1 = eval(SDl),
D2 = eval(SD2),
Mode1 = model(D1) * model(D2),
Real = nodel(nuIt(D1, D2)),
?hIHENFAIL (

io:fornat("Real -p\nModel -p\n",
[Real, ModeU),

equiv(Real, Model))
end) .

Checking this re-defined property on the same example, shows
a difference in outcome by a factor 10. Running QuickCheck a few
additional times always shows the same factor l0 difference.

Shrinking.(bl tines)
{{ca11, decimal-eqc,new, [10. 14OO]],
{ca1l, deciroal_eqc, sun,

[{calt, decinal_eqc,new, ["0. 4"]],
{caI1, decimal-eqc,nu1t,

[{ca11, decinal-eqc,new, [,,47"]],
{caIl, decimal_eqc,new, ["-0. 078"]]l]l]]

Real -331. 172
Model -33.1172
false

The difference was rather quickly identified as an error in the
decinal module implementation: the carrier was inconectly prop-
agated. The problem arose when values were rounded to ignore
the least signiflcant digits, which are not to be stored, as previously
said. In such cases, a rounding operation was considered for the last
decimal digit to be stored, but no carrier was taken into account to
be propagated to the left. Instead of that, if the last decimal was to
be modified (rounded) and this digit turned our to be a 9, then the
9 was erroneously replaced by a 10. For instance, when rounding a
large number like 123.456789987654 on six significant digits, we
should obtain 123.456790. But, instead, the erroneous code was
replacing itby 123.4567810. Since the internal represenration of
decinals is a sequence of digits with a fixed number of decimals
(six in this example), this longer sequence is then interpreted as:
1234.567810.

Strangely enough, this rounding error had been in the code for sev-
eral years without being found a problem. However, after detecting
it, the developer could actually relate it to some unsolved, obscure
error reports from the customer.

After correcting the code, the properties for addition and multi-
plication operators passed thousands of generated test cases.

3.5 Well defined generators

We now add the additional operations substraction and division
to the generator and create properties for them similar to those
for addition and multiplication. This takes hardly any effort after
having the framework in placc.

decinal(Size) ->
Snaller = decinal(Sj-ze-t),
oneof ([

decinal (0) ,
?LETSHR]NK(

[S01, SD2], [Sna1ler, Snaller],
{cal1, decinal, su¡n, [SDl, SD2]]),

?LETSHRINK(
[SD1, SD2], lSnaller, Snaller],
{call, decinal, mult, [SD1, SD2]]),

?LETSHRTNK(

[S01, SD2], [Smaller, Snaller],
{caI1, decinal, subs, [SDl, SD2]]) ,

?LETSHRINK (

ISD1, SD2], [Srnaller, Snaller],
{cal1, decinal, divs, [SDl, SD2]])

l).
We check the properties with QuickCheck and now the property

for the addition fails again ! It does because it crashes in the evalua-
tion of a generated value. In other words, we generated a symboiic
value that does not correspond to a real value.

) eqc : quickcheck (deciroal_eqc : prop_sum O) .

.....Failed!
After 13 tests.
Shrinkíng. . .. (4 tines)
Reason:
{ 'EXIT ' , {{not-ok, {srror , decimal-error}} ,

[{connon_lib, ok, 1},
{decinal_eqc,, -prop_subs/0-fun-0- r, 1},
{eqc,' -f ora]-l-/ 2-lltr¡-A- t,2},

...t])
{{call , decimal , divs ,

[{ca11 , decinal , new, t{0 , t] }l } ,
{ca1I, decinal,new, ["0"]]]],

6

{call,decinal,new, [0]]]
false

Indeed, shrinking helps us in determining the problem: we di-
vide by zero when we create our decimal. Evaluating this symbolic
value retums a different wrapper than ok, viz, not-ok and hence
the function taking the wrapper away creates a badmatch exception.

Actually, we do want to test that division by zero gives us an
expected error value. That is, precisely, done in the property for
division, since there we test for each decimal value that a division
in the model results in the same value as a division of decímal
values. Division by zero in the model should equally well generate
an exception.

prop-divsO ->
?FORALL({S01, SD2}, {decimalO, decinalO},

begin
Dl = eval(SDl),
D2 = eval(SD2),
case nodel(D2) == 0.0 of

true ->
{rEXrT" _} =

(catch nodel (D1),/modet (02)),
is-error (divs (D1, D2)) ;

false ->
equiv(nodel(dj.vs(D1, D2)),

model(D1) / nodet(D2))
end

end) .

With such a property, we already check that division by zero is
an exception case. What we want is to avoid generating these ex-
ception cases, instead we only want to generate well defined sym-
bolic values, meaning that such symbolic value does not raise an
exception when evaluated. We use a simple, generally applicable
concept for doing so. We define a generator defined which evalu-
ates the symbolic value and catches a potential exception; the sym-
bolic value is only defined if no exception occurs. We count on
the fact that the majority of the symbolic values will not raise an
exception when we evaluate them and we introduce a generator
ue11-defined to keep generating values until we find a defined
one.

defined(E) ->
case catch {ok, eval(E)} of

{ok, -1 -) true;
{'EXIT', -} -> false

end.

well-defined(G) ->
?SUCHTHAT(8, G, def ined(E)) .

We use these generators in our QuickCheck specification for
decimals by replacing the generator for decimal by

decinalO ->
?SIZED(Size, well-def ined(decimal(Size))) .

One may consider this to be cheating. After all, we could have
an error in our code that makes an operation crash, even though
we do not want that to happen. If we filter the generators and
never produce such faulty value, how well do we test? Here it is
important to remember that we check each operation in a property.
Thus, if there is any value for which the addition fails, then that
value is checked in the property for addition. The only case we
never check is whether the ne¡¡ operation crashes on a specific
input. Therefore, we add one additional property, checking that

generating base values always succeeds. In addition we also check
that applying the model function to an obtained decimal does not
raise an exception.

prop-newO ->
?FORALL (SD, decinal (0) ,

is-f loat (nodel (eva1 (SD)))) .

Finally we succeed in passing hundred thousand tests for each
property in our specification. Therewith we have thoroughly tested
the decimal data type.

A last property remained untested, which is the actual motiva-
tion for introducing the decimal data type in the software. The data
type is used to ease marshalling from and to strings to enable com-
munication via a web-service-like interface. We want to verify that,
for each and every decinal data structure we generate in any pos-
sible way, converting it to a string and then performing the ¡everse
operation (call decimal:new with thât same string) is idempotent.

prop-decinal-stringO ->
?FORALL(SD, decimalO,

begin
D = eval(SD),
deciroal:ne¡¡(decinal:to-string(D)) == D

end) .

With this last property also successfully checked, we conclude
the testing of The decimal implementation.

4, Conclusions
The contribution of this paper is the introduction of a methodology
to test data types, consisting in four steps:

1. Define a model for the data type: the goal is checking whether
the data type implementation is equivalent to the model, thus
holding equivalent properties.

2. CreaTe as many model-equivalence checking properties as op-
erations in the data type. Work with symbolic values instead of
real values, to keep independent of internal representation of
the data type.

3. Write data type generators. Make sure they cover all the data
structure, i.e., define recursive generators that include all oper-
ations producing values of the data type as a result. Mind that
generated values are well-defrned, placing exception cases test-
ing just at relevant properties.

4. Ifneeded, define your own shrinking prefe¡ences to help reach-
ing the least significant counterexample.

With this methodology, QuickCheck can be used in a more
structured way, giving more confidence in the result of all Quick-
Check tests. The methodology has been applied to Erlang data
types, but the approach should as well be applicable to data types
deûned in another language, such as C and Java, provided we can
interface Erlang with such language. We plan on investigating that
as part of our continued research.

Even though one may expect data types to be rather simple
pieces of software, we have shown that failures can be detected
in software considered very stable and used for several years. We
have applied the developed methodology to other data type imple-
mentations as well, for example, The entero and logico data types in
the same risk management information system, and the queue daTa

type in the Erlang standard library. This showed that the method is
generally applicable and basically a recipe to follow.

Using either QuickCheck or another test case generation tool
is not a trivial step, though. A too naïve approach can convice

7

ourselves we have tested enough when we are actually missing a
lot or even not really proving anything relevant. In this paper we
have explained, step by step, an exhaustive procedure that can be
easily followed. By describing the process thoroughly we have tried
to justify each stage of the process and illustrate possible problems
(wrong approaches, obscurity of dealing with real values and their
internals, failure to test all possibilities, unsatisfactory shrinking)
and how to overcome them (model definition, symbolic values,
recursive generators, self-defi ned shrinking rules).

As said before, we plan to extend this methodology to non-
Erlang data types in the near funrre, taking advantage of already
existing intercommunication alternatives between Erlang and other
technologies such as C or Java. We are also working on a broader
methodology that will consider how to check not just a relatively
simple issue as data types, but a whole application business logic.
We aim to do so focusing on layered client/server applications, and
independently from the user interface and persistent storage.

Acknowledgments
We thank Víctor M. Gulías from the University of A Coruña for
his support and for creating the possibility for this collaboration.
This research was partly sponsored by two grants: FARMHANDS
(MEyC TIN2005-08986 and XUGA PGIDIT06PXICI05I64PN)
and EU FP7 Collaborative project ProTest, grant number 215868.

References
ARMISTICE. Armistice. http://www.madsgroup,org/armisticel, 2002.

David Cabrero, Carlos Abalde, Carlos Varela, and Laura M. Castro.
Armistice: An experience developing management software vrith
erlang. ln Principles, Logics, and Implementations of High-Level
Programming lnnguages, Upþsala, Sweden, August 2003.

Bruce Dawson. Comparing floating point numbers. http://www.cygnus-
software.com/papers/comparingfl oats/comparingfl oats.htm,
2008.

R.W. Floyd. Assigning meaning to programs. In Proc. of Symposia in
AppL Math. American Mathematical Society, 1967.

C. A. R. Hoare. Proof of correctness of data representations. Acta
Info rmatic a, I :27 l-281, 197 2.

IEEE. Standard for binary floating-point arithmetic.
htç://grouper.ieee.org/groups/7S 41, 1985.

Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of haskell program s. ln I C F P, pages 268-27 9, 2O00.

Quviq. Quviq. http://www.quviq.com, 2008.

Thomas Afs, John Hughes, Joakim Johansson, and UlfWiger. Testing
telecoms software with quviq quickcheck. ln ERLANG '06:
Proceedings of the 2006 ACM SIGPIAN workshop on Erlang,New
York, NX USA,2006. ACM Press.

Víctor M. Gulías, Carlos Abalde, Laura M. Castro, and Ca¡los Varela. A
new risk management approach deployed over a clienVserver
distributed functional architecture. ln lSth Intemational Conference on
Sy s te ms Engine e r ing, pages 37 0-37 5, University of Nevada, Las Vegas
(USA), August 2005. IEEE Computer Society. http://www.icseng.info.

Víctor M. Gulías, Carlos Abalde, Laura M. Castro, and Carlos Varela.
Formalisation of a functional risk management system. In 8rå
Interuational Conference on Enterprise Information Systerzs, pages
516-519, Paphos (Cyprus), May 2006. INSTICC Press.
http://www.iceis.org.

8

Barly Fault Detection with Model-Based Testing

Jonas Boberg

Erlang Training and Consulting Ltd.
29 London Fruit & Wool Exchange

Brushfield Street
London, El 6EU, UK

jonas@erla ng-consu lting.com

Abstract
Current and future trends for software include increasingly com-
plex requirements on interaction between systems. As a result, the
difficulty of system testing increases. Model-based testing is a test
technique where test cases are generated from a model of the sys-
tem. In this study we explore model-based testing on the system-
level, starting from early development. We apply model-based test-
ing to a subsystem of a message gateway product in order to im-
prove early fault detection. The results are compared to another
subsystem that is tested with hand-crafted test cases.

Based on our experiences, we present a set of challenges and
recommendations for system-Ievel, model-based testing. Our re-
sults indicate that model-based testing, starting from early develop-
ment, significantly increases the numbe¡ of faults detected during
system testing.

Categoríes and Subject Descríptors D.2.5 lSoftware Engineer-
lngl: Testing and Debugging

GenerølTerms Verification

Keywords Model-based testing, system testing

1. Introduction
The cost of finding and fixing faults in software typically rises as

the development project progresses into a new phase. Faults that
are found after the system has been delivered to the customer are

many times more expensive to track down and correct than if found
during an earlier phase []. Current and future trends for software
include increasingly complex requirements on interaction between
systems [2]. The increased complexity means that a system may
have potentially infinite combinations of inputs and resulting out-
puts. It is difficult to get satisfactory coverage of such a system with
hand-crafted manual or automatic test cases [3].

Model-based testing is a test technique where test cases are gen-

erated from a model of the system. There are model-based testing
tools that can automate the generation of test cases f¡om a behav-
ioral model, including test oracles that can determine whether the
system under test behaved correctly at the execution of the test case

[4]. Test cases generated from a model have been shown to give a

Pemission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies ile not made or distributed
for profit or commercial âdvantage and that copies beu this notice and tbe full citation
on the frrst page. To copy othemise, to republish, to post on seruers or to redistribute
to lists, requires prior specific permission and/or a fee.

Eùang')\, September 27, 2008, Victoria, BC, Canada.
Copyright O 2008 ACM 978-l-60558-065-4/08/09... $5.00

high coverage of system interaction points, given that the genera-

tion is ca¡efully guided [5].
Intensive research on model-based testing has been conducted,

and the feasibility of the approach has been demonstrated. Still,
few conducted studies focus on early-fault detection and the appli-
cation of the technique on specific test levels. Industrial adoption
of model-based testing remains low [6]. Although this is partially
due to technical limitations, process-related issues remain a large
concern. The model-based testing practice must be integrated into
current software processes [6]. Limited understanding of the ben-
efits model-based testing delivers at different levels of testing, and
the associated challenges of its application in real world projects,
is therefore an obstacle to adoption ofthe technique.

Finding problems faced in industrial software development, and

finding solutions that developers will embrace, is an often listed ba-
sis for successful technology transfer [7]. We have conducted a pre-
study of an ongoing system development project at Erlang Train-
ing and Consulting (ETC). The project develops a message gate-
way product with two subsystems, an E-mail gateway and an In-
stant Messaging (IM) gateway. The gateway is implemented using
the Erlang/OTP platform. Both subsystems essentially interconnect
networks that use different communication protocols, by perform-
ing the required mapping of protocol messages. The E-mail gate-
way allows a client to access multiple types of e-mail servers using
a single communication protocol. The IM gateway provides mobile
devices an interface to multiple instant messaging protocols.

The pre-study indicates that faults which should have been
found during system testing of the IM gateway subsystem, have
repeatedly been left undetected until customer acceptance testing.
Several negative consequences as a result of this fault-slip through
have been observed:

o Reproducing and locating the source of the fault requires more
effort as the customer anomaly reports often are on a high level.

r The developing organization and customers' confidence in the
system passing the acceptance test exit criteria is reduced.

¡ Additional effort has to be spent on building and deploying new
release candidates as faults are found and fixed.

In this study, we show that applying model-based testing to the
E-mail gateway system, starting from early development, signifr-
cantly increased the number of faults found during system testing.

1.1 Purpose

The purpose of this mixed methods study is to better understand
how model-based testing can be used as a systemlevel test tech-
nique, starting from early development. This will be done by con-
verging both quantitative and qualitative daÍa. Faults-slip-through
will be used to measure the relationship between using model-

9

based testing as a system-level test technique from early develop-
ment, and the number of faults that should have been detected dur-
ing system testing but are left undetected until customer acceptance
testing.

As described above, the message gateway, developed at ETC
(the research site), has two subsystems. In this study, model,based
testing will be used for systemJevel testing of the E-mail gateway
subsystem. The faulrslip-through measurements for this subsystem
will be compared to the measurements of the baseline subsystem -
the IM gateway. The IM gateway is tested with a combination of
manual and automated test cases that are hand-crafted without the
support ofa model. There are many different kinds oftesting. This
study will focus on black box functionality testing (both positive
and negative). At the same time, the managers' and developers, per-
ception of the impact of the model-based testing will be explored
using observations and qualitative interviews.

1.2 Approach

Studies of software process improvement suggest that regardless of
whether a quality initiative is technical or organizational, the hu-
man factor should be considered, because of the potential barriers
to change t8l. ETC has not used model-based testing as a system-
level test technique before. Model-based testing is not just a matter
of generating tests, and executing them to detect defects. It involves
several other activities, such as creation of the system model, an-
alyzing the output, reporting defects and generating reports. An-
other important activity is regression testing, which is often cited as
the most important benefit of test automation [9]. The model-based
testing practice must therefore he integrated into the project,s test
process [6]. This integration can meet resistance as existing local
practices may directly conflict with the model-based testing tech-
nique [10]. In view ofthis, this study will be conducted in the form
of a sofiware process improvement initiative.

1.3 Overview

The rest of this paper is organized as follows. Section 2 gives
an overview of relevant concepts, summa¡izes related studies and
presents our research questions and hypothesis. Section 3 describes
the method used in the study, including how we collected and
analysed our data. Section 4 describes the two subsystems under
study. Section 5 gives examples of how the system under test
was modeled, describes encountered chatlenges and presents a set
of recommendations for model-based testing on the systemJevel.
Section 6 describes the actual results, in terms of changes in fault-
slip-through. Section 7 discusses the results and presents issues
in the conducted comparisons. Finally, we conclude and suggest
questions for further research in section 8.

2. Related Research
This section has four parts. The first part gives an overview of
model-based testing. The second part presents an overview of stud-
ies that relate directly to this one - model-based testing as a fault-
detection practice in industry, and its impact on the development
process. The third part presents selected measurements of early
fault detection. Finally, the fourth part specifies the research ques-
tions and hypothesis ofthis study.

2.1 Model-basedtesting

The term model-based testing is commonly used for a wide variety
of test generation techniques. In this article, model-based testing is
a test technique, by which test cases are generated fromabehavior
model of the system under test [10]. Furthermore, we constrain
ourselves to the generation of test cases that include a test oracle
[0], which can assign a pass/fail verdict to each executed test.

Model-based testing typically involves the following steps: [4,
10,111

1. Building an abstract model of the behavior of the system under
test. The model captures a subset of the system requirements.

2. Definition of test selection criteria. The criteria defines what test
cases to generate from the model.

3. Validating the model. This is typically done by sampling ab-
stract test cases from the model and analyzing them. This step
is performed to detect major errors in the model that may even
hinder generation of test cases.

4. Generating abstract tests from the model, using the defined test
selection criteria. At this stage, the generated test cases are
expressed in terms of the abstractions used by the model.

5. Transforming (concretize) the abstract test cases into executable
test cases.

6. Executing the test cases. At execution time, an adaptor compo-
nent transforms the output of the system to the abstraction of
the model.

7. Assigning of a pass/fail verdict to executed test case.

8. Analyzing the the execution result.

The remainder ofthis section gives an overview ofthe variations
within the model-based testing practice.

2.1.1 Model types

The behavior of a system can be described using a variety of dif-
ferent model types. Common model-types, such as finite state ma-
chines, extended finite state machines, state charts, markov chains
and temporal logic are widely described in literature.

2.1.2 Modelabstraction

The model must be validated against the system requirements,
which may be specified at any level of formality. This implies
that the model must be more abstract than the system under test.
If it were not, validating the model would require as much effort
as validating the system. At the same time, details of the system
that are not modeled, cannot be verified using the model [12]. An
overview of abstractions that can be applied in the creation of the
model is provided in [3] and [2].
2.1.3 Model notation

In principle, all notations with formal semantics can be used as
a basis for model-based testing. Examples of commonly used no-
tations are formal specification languages (such as Z), tool ven-
dor specific languages, general-purpose programming languages,
the Unified Modeling Language (UML) and domain specific lan-
guages. [4]

2.1.4 Concretizing abstract test cases

The approach to concretization of the test cases depends on the
nature of the model abstraction. When only the system input data is
abstracted by the model, an adaptor component (sometimes called
driver ll2l) is typically used. The adapror adaprs rhe input part of
the test case to the format accepted by the system under test [1 l].
This adaption may also be delayed to test execution time. If the test
case is on a higher level of abstraction a template is used to derive a
concrete test case. The template adds additional semantics making
the test case executable [4].

2.1,5 Online and offline testing

The online testing technique generates the steps of a test case
from the model in lock-step with executing them. This generation

10

technique handles the non-determinism that arises in the testing of
reactive and concurrent systems U4l. With off-line test generation,
a complete test case is generated before execution. This has other
practical advantages, for example the test case can be executed
repeatedly (regression testing). It also allows for analyzing and
simplification of the test case before it is executed.

2.1.6 Available tools

Generating test cases from high-level specifications is not a recent
idea. In 1986 Hayes [15] showed how to systemarically derive tesrs
of abstract data structures from a formal specification. At that time,
however, the generation and execution oftest cases was performed
manually. Today, there is a growing number of tools available that
automate many of the steps involved in model-based testing. Utting
and Legeard [4] provides a comprehensive overview of model-
based testing tools.

2.1.7 Quviq QuickCheck

QuickCheck, developed by Quviq AB, is a tesring tool for guided
random and model-based testing. QuickCheck can simplify a failed
test case to a minimal failing test case [16], thereby reducing the
problem ofdeducing the cause of failure for complex test cases. A
minimal test case is a test case where every part of the system input
is significant in reproducing the failure.

QuickCheck provides a framework for modelling the system un-
der test using an Abstract State Machine. A model is built using Er-
lang, a general-purpose programming language [17], with support
of the library provided with QuickCheck.

Applícøbílíty A case study, where Ericsson's Media proxy was
tested using QuickCheck, indicates that the tool can be applied
to testing communication protocols. The study also found that
QuickCheck potentially reduces the required investment compared
to hand-crafted test cases [16]. The system that was tested with
QuickCheck in the study had already been pre-release tested by
the development team. There are no studies on using euickCheck
earlier in the development.

2.2 Model.based testing in industry

This section outlines and evaluates prior studies on model-based
testing as a fault detection practice in industrial projects. Only
studies where the test case generation and execution steps were
automated are included.

AGEDIS (Automated Generation and Execution of Test Suites
in Distributed Component-based Software) was a three-year re-
search project on the automation of software testing funded by the
European Union. Five case studies were conducted. These stud-
ies focused on applying model-based testing methods and tools to
test problems in industrial settings. The studies were conducted at
France Telecom, Intrasoft and IBM. The findings were that model-
ing increased the understanding of the system under test and was
found to be an effective way to analyze complex requirements.
It was also found that when a requirement changed, adapting the
model and regenerating the test cases required less effort compared
to updating manually constructed test cases. [18]

Artho et al. [19] presents a case study that applied model-based
testing to the controller component of NASAs K9 planetary rover.
The modeling language and test framework used was based on a
discrete temporal logic. The technique was found promising and
located a fault in the controller. The model was developed, and
the testing conducted after implementation of the full system was
finished.

Dalal et al. [1 0] reports on obstacles of introducing model-based
testing into test organizations. Four case-studies offour large-scale
projects are presented. One finding was that model-based tests were

sometimes seen as mysterious. This was because the objectives of
each test case are not as clearly defined as in a typical manually
crafted test case. The study suggests that the projects' test pro-
cess, including test strategies and planning must be adapted, so that
the model-based testing is well integrated. Establishing the infras-
tructure for running and logging the massive amount of generated
test cases requires effort. Also, modeling was found to improve the
specification and the understanding of the system, which is in line
with the findings of the AGEDIS studies [18].

Dalal et al. suggests that defects in the model can be mini-
mized by ensuring traceability from the requirements to parts of
the model. This allows fault analysis to faster determine whether
the requirements or the implementation is inconect. The sugges-
tion originates in that more than half of the failed tests related to
defects in the model, rather than the system under test. Other stud-
ies indicate similar model defect ratios (see pretschner et al. [12],
Blackburn et al. [3]). The following limitations in rhe case stud-
ies can be identified: Only individual components were tested. Test
oracles were not generated from the model, but added manually.

Dalal et al. also identifies the following questions for future
work:

o What are the challenges of applying model-based testing during
different phases of testing?

r What benefits will model-based testing deliver at different
phases oftesting? [10]

Pretschner et al. [12] investigates whether the model-based test-
ing approach pays off in terms of quality and cost. euality of
model-based test cases are compared to traditional, hand-crafted
test cases. The system under test is a network controller for a au-
tomotive infotainment system. The findings of the study were that
model-based testing did not detect more faults in the implemen-
tation than hand-crafted test cases. Also, no cor¡elation between
severity of errors and types of tests were found. On the other hand,
the model-based tests resulted in the detection of significantly more
requirement defects. The study indicates that tests were executed
after the system was completely implemented. Therefore, the ben-
efit of test case re-generation were not seen in the study. Also, the
length of the test cases was restricted, as a failing test case was
inspected manually, and the execution time was long due to hard-
ware limitations. The study acknowledges these deficiencies and
points out that the economics of using model-based testing based
on behavioral models is not yet understood, in particular whether
the life-cycle spanning updating of the model is efficient.

Blackbum et al. [3] discusses the specific skills and practices
that are needed to incorporate model-based testing into an organi-
zation's test process. The presented material is based on learnings
from working with model-based testing in companies and projects
during multiple years. The article suggests that an incrementally
developed model detects inconsistencies and missing details in re-
quirements early in the development process. Also, objective mea-
surements are pointed out as important to make the effects of the
model-based testing visible.

Evaluatíon Summary Based on evaluation above, it can be con-
cluded that existing research on model-based testing for early-fault
detection is lacking. In conducted studies, model-based testing has
typically not been an integrated part of the development process.
Also, most studies apply model-based testing on the component
level, or to a limited part of the system. Few studies focus on the
the application of the technique on the system-test level.

2.3 Measuring early fault detection

The central concept underlying this study is that the cost of find-
ing and fixing faults in software rises as the development of the

t1

software progress into a new phase [9]. Reducing the number of
defects that are left undetected until customer acceptance testing is

a type of improvement work - improvement of the test process. In
improvement work, measurements are important in order to know
whether you are actually improving. A common test process met-
ric is the number of defects found on different test levels[9]. An
important criteria for selecting a performance measure is that it re-
lates closely to the issue under study. As shown by Damm, most
measurements cannot acknowledge that not all faults are effectively
found on the test level that they were introduced on. Instead, Damm
proposes the use of a method called Faults-Slip-Through (FST) [9].

2.3.1 Faults-Slip-Through

When applying the FST method, faults are classified according to
the phase in which they should have been found. The method has

the following steps [9]:

1. Determine which defects should be found on which test level.
This is part of the test sffategy. It is not already documented by
the organization, that has to be done first.

2. For each reported fault, find the test level the defect was found
on, and which test level it should have been found on, according
to the documented test strategy (see 1)

3. For each test level, summarize the number of faults that should
have been found earlier, per test level.

Phøse Input Qualíty Phase Input Quality - the fault-slip{hrough
ratio, can be calculated from the absolute FST data as follows [9]:

Phase Inpur Quality(PlQ) :
""q

. rOO

where ,SF is the number of faults found on test level X that slipped
from earlier test levels and PF the total number of faults found on
test level X.

This formula calculates the percent of faults found at a test
level that should have been found earlier. Damm et al. observed a

relationship between the number of faults found and the PIQ; if the
PIQ for the test level is high, and many faults are found on that test
level, this indicates that the test strategy compliance of the earlier
test level is low [9]. It is important to analyze the PIQ in the context
of the absolute number of found faults. For example, the PIQ of a
test level could be high, although only a few faults were found on
that test level. Few faults found typically indicates that none or little
improvement is needed.

2.3.2 ODC trigger analysis

One way to classify faults is by software triggers. A trigger is a type
of stimulus that activates a fault into a failure. A method of such

classification is ODC trigger analysis[2O]. In ODC trigger analysis,
each fault is assigned to an activator category. For example, faults
that go into the Test Sequencing category are such that require
execution of a sequence of functions for the fault to surface. On the
other hand, faults that go into the Interaction category require the
execution of a sequence of functions with varying parameters [20].
ODC trigger analysis can be used to evaluate the test process by
identifying what types of faults are found on a specific test level. In
combination with the fault-slip-through, it can be used to evaluate
what activities in the test process are in need of improvement, and

the success of such improvements [9].

2.4 Research Questions and Hypothesis

The central question asked in this study is:

How can model-based testing be applied at the system-
level to enable early fault-detection and increased confi-
dence in the system?

Based on the evaluation of related work in section 2.2, and the
challenges identified, the following sub-questions will be addressed

by this study:

Q1. How can model-based testing be used to reduce the number of
faults that are left undetected until customer acceptance testing?

Q2. What are the challenges of applying model-based testing at the
system-level?

The introduction of automated system tests with a high level of
interaction coverage should decrease the number of faults that are

left undetected until customer acceptance testing. This expectation
constitutes the hypothesis for this study:

H l. Applying model-based testing on the system level will decrease

the fault-slipihrough from system testing to customer accep-
tance testing.

3. Methods
The study was conducted using the action research method [21].
This was motivated by the practice oriented nature of the study,
and the author's involvement in both practice and research. Action
research is cyclic. Each cycle typically includes planning, acting,
observing, and refl ecting. [2 I]

The studied development project used a development process

based upon the DSDM framework (The DSDM framework is fur-
ther discussed in DSDM, Business Focused Development [22]).
The length of each time-box was approximately four weeks. The
customer conducted an acceptance test on each system release.

The study covers two releases of the messaging gateway. l'igure
1 shows the timeline of the study. Due to confldentiality reasons, we
cannot state the actual release names. We denote these releases as

Release X and Release X+l , respectively. The second release of the
E-mail gateway subsystem was developed during two shorter time-
boxes, with an interim release, which we call Release X+0.5. No
acceptance test was conducted on the interim release. We present

the results for this release separately.

Figure 1. Study timeline

3.1 Research cycles

Each action-research cycle corresponded to a time-box in the E-
mail gateway project. The following actions were conducted during
each of the three time-boxes:

Planning A set of functional requirements to add to the system
model was selected. The selection was based on the given priority
of requirements for the current time-box. In addition the develop-
ers were asked to prioritize the modeling of the requirements. The
latter was done to allow for early testing of features that the de-
velopers delivered for system testing (the features due for system
testing in the time-box were not all delivered at the same time).

Acting The selected functionality was modeled. A set of abstrac-
tions was applied in the process of modeling the system. The ab-
stractions selected were based upon the project's test strategy (what
aspects to test on the system level) and trade-offs including diffi-
culty of modeling and ease of validation of the model.

EMGW Rêlease X

ll\rGW Release X Reìease X

Aæeptance
Têst

lMcW Rêlease X+1

EMGW Re'ease X+0.5 EMGW Release X+1 Acæptance
Test

Releâse X+1

12

As soon as features were released by the developers for system
testing, the model was used for test generation and execution.
Detected anomalies were reported in the projects issue tracking
system. After.analyzing an anomaly, a fault was typically founã
to be present in either the model or in the system. Ás fauits were
corrected, the tests were re-executed.

Observíng After completion of the time-box, the results of the
testing were observed and analyzed.

Reflecting The developers and test manager were involved in
reflecting on the results of the model_based tãsting and suggesting
improvements for the next time-box.

3.2 Site of study

Jhe si-t19f study was Erlang Training and Consulting (ETC).
Part of ETC's core business is to devel,op distributed fault tolei_
ant systems utilizing the Erlang/OTp platform, most of which are
network-intensive. Erlang/OTp includes the general purpose pro_
grammìng language Erlang, which has built_in support for coniur_
rency, fault-tolerance, and a set of libraries for appìication develop_
ment [17].

3.2.1 Experience of model-based testing
Prio-r to this study, model-based testing was used by some develop_
ers for testing on the unit level. The tool used was QuickCheck (säe
section 2.1.7). The majority of the developers of ÈTC had under_
gone training in use of the tool.

3.3 Researcherts role

The author's role in this stud¡ except from data collection and
analysis, was to introduce model-based testing as a technique for
system testing in the project. The author also constructed the model
of the system, and executed the tests generated from the model.
The risk of bias inherent due to theluthor,s involvement and
interventions is acknowledged.

3.4 Data collection and analysis

This section presents the applied data collection and analysis pro_
cedures. Both quantitative and qualitative data was collected inìhis
study. Found faults were analyzed and the fault_slip_through to ac_
ceptance testing measured. The impact of the model_baseã testing
was verified through qualitative interviews wìth the test managei
and developers. In addjtion, the experiences of system_level mod-
eling, test execution were logged.

3.4.1 Fault Analysis

Faults found during system testing and acceptance testing were
measured at the end of each time-box for eaìh of the two sub_
systems. Data on found faults was collected from the organization
issue tracking system. Both the internal organization and the cus_
tomer reports detected anomalies into this system. The reports in-
clude the details of the anomaly, the reporter and the date of the
report. This data was sufficient for the FST measu¡ement. Each
anomaly report was analyzed according to the following criteria:

1. The anomaly has been contrmed to have been caused by a fault
in one of the two subsystems

2. The fault ¡elated to a functional aspect of the system

Note that (1) also implies that faults in a shared component of the
two subsystems were filtered out. Reports that fulfilled these two
criteria were used as input for the fauit-slip_through measurement
(see section 3.4.2) and classified rhrough ODC fa;lr analysis (see
section 3.4.3).

The detected faults for the E-mail gateway system were further
analyzed according to whether they were f*nO ¿u. to execution
of a manually crafted test case, or a test case generated from the
model. This distinction was useful to evaruate thõ model-based tesr
ing at the end of each time-box. For example, what faults did the
manually crafted test-cases detect, that the ónes generated from the
model did not? The evaluation was used as inpút to the improve_
ment of the model for the next time-box.

. In case of duplicate anomaly reports for a fault in the system,
both reports were used to classify the fault, but only one fault was
counted. No faults had an anomaly report from bóth a manually
crafted and a generated test case.

3.4.2 Fault-slip-through

The fault-slip-through to system testing and acceptance testing
was measured at the end of each time_box, for eaãh of the twõ
subsystems. The Phase Input euality for the two test levels was
then derived from the fault-slip-through data.

Definítíon of test levels The FST measurement requires a def_
inition of what defects should be found on which teit level (see
section 2.3.1). This definition was created by means of open_enàed
interviews with the test manager, and four developers. In the inte¡_
view, the subject was first asked to identify the tesi levels of the test
process. For each identified test level, the subject was then asked
to describe the type of defects that should be found on that level.
At the end of the interview, the subject was presented ten anomaly
reports, selected from the issue tracking sysìem. The anomaly re_
ports were randomly seleòted from both development pro¡ects,ïith
the constraint that they were all reported during the last two time_
boxes, and that the reported uno.aly had been'found to be caused
by a fault in the system. For each rèport, the subject was asked to
classify on which test level the faultihould have"been found. This
second step was performed to validate the answers in the interview.

Oefne! test strategy We formalized the test strategy based on
analysis of the interview results. The test strategy defined the fol_
lowing test levels: unit testing, integration testin!, external integra_
tion testing, system testing and acceptance testing. The definition
of the test strategy was verified with the interview-subjects.

3.4.3 ODC trigger analysis

Faults were classified using ODC trigger analysis. For about g07o
of the reported anomalies,.the information p.esent in the anomaly
report was sufficient for classification. In the rest of the case, th;
involved project members were consulted. As recommended by
Damm et al [9], we iteratively developed the classification schemã
during fault analysis. The scheme useà is shown in table 1.

¿l

Category I Description

Coverage

Sequencing

Interaction

Variation

Fault tolerance

Concurrency

Configuration

Execution of a single function
Execution of a sequence of functions
Execution of a sequence of functions and
multiple parameters interacting with each
other
As Interaction, but including invalid param-
eters (negative testing)
Recovering from faults and fail-over scenar_
ios
Faults that only occur due to concurrent in_
teraction with the system
Faults related to specific contgurations

13

Table l. ODC Trigger Classiñcation Scheme

The E-mail gateway and IM-gateway requires the client to con-

nect and login before any other function can be used. Faults that

were triggered by the execution of a single function, after connec-

tion and login, were therefore classified to the Coverage category'

An exception was made for faults where the parameters to the login

function affected whether the fault was triggered or not.

3.4.4 Qualitative interviews

4rev1 (IMAP4revl) and the Mobile Services Protocol (MSP)' The

client access a message store, through the gateway, using a subset

of the IMAP4revl protocol. The gateway also supports the IMAP
IDLE extension. The extension enables the client to be notifled as

messages arrive to a mailbox, without having to poll the server'

Thé Instant Messaging Gateway (IMGV/) uses the Wireless

Village Client-Server protocol to provide mobile clients access to

multiple instant messaging protocols.
Bôth of these subsystems were developed using the Erlang/OTP

platform. They share large parts of the architecture,
-and

a set of core

õomponents, ôriginally developed for the IMGW. Most of the im-

plementation wai conducted in Erlang, while some parts were done

in C. A1l development was conducted in a GNU Linux./OpenSuse

environment. The project team consisted of 9 persons on full time'

Some of the developers worked solely on one of the subsystem'

while some were involved in both systems.

We conducted qualitative interviews with the test manager and

four developers. The purpose of the interviews was to explore

the perceiveã impact of the model-based system testing. The test

manager was invõlved in the testing of both subsystems, while two

of thJdevelopers worked primarily on the IM gateway and two on

the E-mail gateway.

Tíme and location The subjects were planned to be interviewed

at two instances. Once after the end of the second research cycle,

with the intent to get detailed in-process feedback on the improve-

ment initiative. In addition, once before the acceptance test of the

last studied system release (Release X+1). Due to time constraints,

we conducted only the first set of interviews. The interviews were

conducted at the research site.

Intervíew outline The interviews were conducted using the inter-

view guide approach and had two parts. In the first part, the subjects

were ãsked a6out their confidence in the testing of the respective

subsystem and their confidence that the acceptance test exit crite-

ria would be fulfilled without extending the acceptance test phase

due to detected faults. Second, they were asked to elaborate on the

factors involvctl h their leve1 of confidcncc. In thc sccond pûrt, the

subjects were directly asked about their perceived impact of the

model-based system testing.

3.4.5 Observations

Obse¡vations of team and customer meetings, and e-mail corre-

spondence between the customer and the developing organization

provided additional data on the confidence in the system and feed-

back on the improvement initiative.
To assist in the data collection, a field log was used to record

observations. The field log was also used to document experiences

on the system modeling, test execution, and reporting of the test

results.

3.5 Model-based testing tool

The tool used in this study was Quviq QuickCheck (see section

2.1.7). QuickCheck uses Erlang as a specification language' This

means that there was in-house competence in the specification

language used to model the system under test. Also, the tool had

been uied and proven at the site of study (see section 3.2)' lt was

not within the icope of this study to compare different tools for

model-based testing. Therefore, the selection of a tool that has seen

successful use in the development environment allowed the study

to stay within its focus area.

3.6 Verification

The concurrent triangulation strategyl23] was used to verify the

findings of the study. The fault-slip-through measurements were

compared to the impact of the model-based testing, as perceived by

the interview subjects.

4. System under studY

The E-mail gateway (EMGW) provides e-mail clients a uniform in-

terface to message store servers that use a variety of access proto-

cols. Supported serve¡s include those that use the Post Office Proto-

col version 3 (POP3), the Internet Message Access Protocol version

4.1 The IMAP4 protocol

The IMAP4revl is specified by a Request For Comments (RFC)

and is ratifled as an ¡fiernet standard by the Intemet Engineering

Task Force (IETF) 1241. The 108 page long specification deflnes a

set of commands that the client can send to the server, how each

command is to be interpreted by the server and the responses that

may be returned. The IMAP4revl protocol builds on the Multipur-
pose Internet Mail Extensions (MIME), defined by a range of RFCs

[25] which specifies the format of e-mails.-
An impoitant part of the protocol is that the connection can be

in different states (see figure 2).

Figure 2. IMAP connection states

Only a subset of the commands are valid in each state' The con-

nectionstarts in the Non Authent icated State. A successful login

command results in a transition to the Authenticated state' The

client can now select a mailbox to work with. In this state' com-

mands that affect the messages in the mailbox can be executed' In

addition, the client can issue an idle command, causing a transition

to the IdIe state, in which the client is notified about changes to

the mailbox. The connection can be terminated from any state, ei-

ther by the client sending a logout command, or by the connection

being closed (due to a client or server error).
Although only a subset of the IMAP4 protocol is implemented

by the EM-GW there is still a wide range of variations that the sys-

tóm must be able to handle. The subset of the protocol that the sys-

tem must handle is defined by the intemal ETC system requirement

specification document. This document and the relevant RFCs were

tñe main sources of information when developing the model of the

system.

Non
Authenticated

Aulhenticated

ldleSelecìed

74

4.2 The Wireless Village protocol

The,Wireless Village Client-Server protocol is part of a set of
specifications for mobile instant messaging. The protocol uses the
H1*IPl.l protocol as a bearer and opeiatei ouer Tcp/Ip. The Ex_
tensible Mqkup Language (XML) is used to exchange data be_
tween the client and server. [26] The core of the protocol is speci_
fied by a set of five documents, in total 220 pug..,iot including the
HTTPl.1 and XML specifications.

5. Modeling and Testing Challenges
We constructed a QuickCheck Abstract State Machine (ASM)
model of the EMGW system, which was subsequently used to gen-
erate and execute test cases. This section givei examples of Íow
the system was modeled, and describes enõuntered cñailenges in
the modeling and test execution.

5.1 QuickCheck Abstract State Machines
A QuickCheck ASM is specified by a srate, a callback module and a
set of command generators which are used by the callback module.
The ASM- is normally used in a euickChðck properry which is
then tested. QuickCheck properties are furthe¡ ¿ñcuised in Tesring
Telecoms Sofrware with euviq euickCheck [16].

A generated test case is a list of symbolic ðommands, on the
form:

{set , {var , 1} , {cal1 , Module , Function, Argunents}}

:ry-h of which represents the execution of an external function.ASM extemal functions allow the modeling of non_determinism in
the system environment, scc Scquential Àbstract_State Machines
Capture Sequential Algorithms l27l for more infornution on this
topic. During test case generation, euickCheck represents the re_
sults of a symbolic command by a symbolic variable ({var 1} in
the example above), that can be used as part of subsequent com_
mands. During test case execution the symbolic variables are re_
placed by the actual value provided by thè environment.

_ . QuickCheck implements a subset of the ASM execution theory
(described by Gurevich t28l). A limitation is that there is no buiit
in^support for separating parts of the model. That is, separating
different concems of the system, in order to avoid a monolithiõ
model that is difficult to validate and maintain. At the same time,
it is.relatively easy for the modeler to create nested state machines,
as the model is specified.using a general purpose programming
language. This is a technique that was useO èxt"nsìueIy for thõ
EMGW model.

5.2 The EMGW state

Only a subset of the IMAp commands are valid in each protocol
state. The state of each client connection must be modelèd to be
able to constrain the test case generation to mostly positive test
cases. In addition, the state of each mailbox must be môdeled, to be
able to generate valid commands that affect the messages.

The EMGW state was modeled by an Erlang record:

-record(state, {clients=[], accounts].
where clients is a list of client connections, and accounts a list
of e-mail accounts. The following Erlang record models each client
connection:

-record(client, {connection, user_id, inap_state,
selected=undef ined, idle=false)) .

connection is a reference to the client connection in the adaptor
component, user_id an abstraction ofthe login credentials, thãt is
also used to identify the account. inap_staie is the current state
of the IMAP connection, selected ls the name of the selected

mailbox and idle specifies whether the connection is in the idle
state,

5.3 Adaptor

One of the first tasks was to develop the adaptor (see section 2. 1.4).
The adaptor is an abstract concept. In practice, the adaptor may
be split into multiple componenti. For ihe EMGW we used twó
adaptor components:

. Adaptor for the IMAp protocol

. Adaptor for sending e-mail messages to an account, to be able
to test the message related IMAp commands.

We recognized that the IMAp protocol abstractions would have
to change as additional system features were incrementally added
to the model. With the design principle .,encapsulate whatïaries,,,
the IMAP protocol adaptor was constructed in two parts:

¡ An IMAP client that enables communication with the EMGW
using a functional Erlang interface. The client formats the
IMAP commands and parses the seryer response into an Er_
lang term representation.

r An interface to the aforementioned client that maps from and to
the abstraction of the model

In this way, changes to the model abstractions led to isolated
changes in the second part of the adaptor. Also, the lMAp client
was not specific to the model abstractions, and could later be re_
used by the project team fo¡ system load testing.

5.4 Generating IMAp commands

IMAP commands were generated in the form of calls to the adaptor.
As alrnning example, this and the following section will usó the
IMAP select command.

select_cmd(Client, State) ->
{call, inap_adaptor, select,

[Ctient#client . connection,
nailbox_nane (Client, State) J).

Here, a select command is generated, given a client and the
current state. A random mailbox name is generated by the
mailbox_name generator, which is specified as follows:

mailbox_nane(Client, State) ->
?LET(Mai1box,

oneof (account (Client#client . user_id, State))
#account . nailboxes) ,

Mailbox#mailbox . nane) .

The clients account is looked up from the state, and a random
mailbox is picked, whose name is returned by the generator.

5.5 ASM callback functions

A QuickCheck ASM callback module specifies a precondition,
next_state and postcondítion function. The callback func_
tions for the select command were specified as follows.

The precondition determines whether to include a symbolic
command in a test case, given the current state.

precondition(State, {call, _, select, [Cnid,_11¡ _¡
nin_state (client (Cpid , State) , ?AUTH)

Here, nin_state ensures that the client is at least in the
Authenticated state for the command to be included in the test
sequence.

The next_state function updates the state, given the executed
command, its result, and the state the command was executed in.

1-5

next-state(State, -Result,
{call, -, select,

[CPid, MailboxNa.me]]) ->
C1ient = client(CPid, State),
update (Cl ient#client{ inap-state=?SELECTED,

s elected=MailboxNane),
State) ;

The next-state function specifies that the client connection tran-

sitions to the Selected state, and the selected mailbox name is

updated when the select command is executed.

The postcondition evaluates the result of a command, given

the statð the command was executed in. A test case is assigned a

failed verdict if a postcondition fails.

postcondition(State, {call, -, select,
[CPid,-]], Result) ->

is-status (Result, fOK-RESP) ;

Here, is-status checks that the server responds to the select

command with the 0K resPonse.

5.6 Challenges and lessons learned

This section presents a set of encountered challenges and recom-

mendations for systemlevel modeling and test execution.

Develop the moilel íferøtívely Iteratively developing the model is

se"n uJ crucial. There is a high investment in creating the model'

Using it from early devetopment is seen to give higher returns as the

partial model can be. used to lest the system in early development'

Èarly modeling also allowed the modeler to gradually build up the

higtr level of domain knowledge required' In addition, we found

thãt the modeling practice contributed to the understanding of the

system requirements, as validation of the model and the analysis of
detected faults led to the discovery of unspecified behavior.

Fíndíng abstrøctíons Finding abstractions that allow the model

to be more abstract than the system under test can be difficult.
We found that this can be remedied by using multiple layers of
abstraction, and a combination of multiple model types. We used

a Backus-Naur form (BNF) grammar to generate a parser for the

IMAP protocol, which was used in the IMAP client part of the

adaptor. The parser threw an exception for any malformed system

output. In practice this means that part of the verification was

periormed by the adaptor, but allowed for a simpler ASM model.

Test techníques are complementary Manually crafted test cases

can test samples of complex behavior, without having to create a

complete model of the behavior. We found that the techniques of
modèl-based testing and manually crafting test cases are comple-

mentary. For example, the system fail-over scenarios, that make

sure that service is maintained in the event of a failure were seen

as overly complex to model and were instead tested using a set

of hand-crafted test cases. A useful technique, that can be applied

when a system feature is overly complex to model completely' is to

only model the feature partially, and limit the command generators

to test cases that the model is valid under.

Put effort ínto the adaptor Developing an adaptor for a system-

level model requires considerable effort. On unit and component

level, the interface under test is typically less complex. Testing

the IMAP protocol required the development of an IMAP client'
and applying of multiple layers of abstractions. The total effort
involvedìn developing the adaptor exceeded 40 working hours. On

the othe¡ hand, we found that a well designed adaptor can simplify
the modeling, as described above. Parts of a layered adaptor can

also potentially be re-used in other parts of the project.

Model validatíon by testing The complexity of a systemlevel
model means that the modeling has to start as soon as the require-

ments for the current time-box have been established. On the othcr

hand, the validation of the model, aside from code review and sam-

pling, cannot start until the system is ready for system testing. We

èxpðrienced that validation of the model had to continue throughout

thé full system-test phase. We also found that faults in the system

sometim¿s not only hid other faults in the system' but also faults in
the model. As faults in the system were repaired, the next test runs

often found faults in the model that were previously undetected.

We recommend that a project uses short time-boxes, with small in-

crements in both the implementation and model. This allows for
shorter feedback-cycles which eases the model validation.

Reliance on external components System level tests rely on a

large number of external components, many of which cannot be be

replaced by a dummy (stubbed). For the EMGW system, the test

eniiron-"nt included a POP3 and IMAP server which was used

through the gateway. During system testing, we found two faults in
this sérver that hindered further testing, and could not be worked

around. Tracking down the problem and patching the server took

two working days. There is a high risk of failures in extemal com-

ponents as the model generated test-cases tests intricate scenarios'

We recommend that the suppliers of extemal components are care-

fully selected, and that good contacts are maintained with the sup-

pliers, in case of failures.

Executíon of partíal tests When a failure in the system is de-

tected by the model-based testing, testing cannot be continued since

rhe same failure is likely to occur again. It should be possible to

continue testing, in the presence of minor faults in the system'

QuickCheck does not provide any support for const¡aining test case

gèneration or disable parts of the model, in order to allow for this'

inst"ud we had to perform temporary changes to the model. In

the absence of tool support, we recommend that such changes are

tracked. We used a commenting convention to mark temporarily

changed model Parts.

6. Results
6.1 Detected faults

The following sections presents the faults found in the studied re-

leases. We present faults detected during system testing and accep-

tance testing of two releases of the messaging gateway, Release X
and Release X+1. We also present the faults detected in the interim
release, Release X+0.5 that only included changes in the E-mail
gateway.

6.1.1 Release X

Table 2 and 3 shows the fault-slip-through to system testing and

acceptance testing for the two subsystems.

Found/Belonging System Test AccePtance test

Unit Test

Integration Test

External Integration Test

System Test

Acceptance Test

Total found/test level rt(7) 6

Table 2. FST Release X - Email Gateway

As can be seen in table 2, 1l faults were found in the E-mail
gateway during system testing. The numbers in parenthesis show

I
0

0

3

2

I
1

0

9

0

(0)

(1)

(0)
(6)

(0)

16

how many of the faults were detected by the model-based tests.

7 of the 11 faults were detected by the model-based tests. Of the
4 faults found with the hand-crafted test cases, 3 could have been
found with the model-based tests (but were found by a hand-crafted
test case before that), one had a trigger classified to the category
Fault tolerance. 6 faults were found during acceptance testing. Of
the 6 faults found during acceptance testing, only two should have
been found on that test level.

FoundÆelonging System Test Acceptance test

Unit Test

Integration Test

External Integration Test

System Test

Acceptance Test

Total found/test level I4 18

Table 3. FST Release X - IM Cateway

Although more faults were found in the IM Gateway during
system testing (see table 3), significantly more faults we¡e also
found during acceptance testing. Compared to the E-mai1 gateway,
a larger percentage of the faults should have been detected already
during unit testing.

ST-M

F

s1

I Coverage

E Sequence

El lnteraclion

tr Variation

I Fault tolerance

ñ Concurrecy

lE ConUgurat¡on
AT

012345678
Faults found

Figure 3. EMGW Release X, ODC trigger distribution by test
level

ODC Trigger Analysís Figure 3 shows the ODC trigger distri-
bution for the faults found during system and acceptance testing
of Release X of the E-mail gateway. The bar labeled ,SFM shows
the distribution of the faults found by the model-based tests, while
the bar labeled ,SI shows the distribution of the faults found by the
manually-crafted tests. AZ shows the distribution of the faults that
slipped through to acceptance testing. A majority of the system test
triggers are in the sequence category.

As can be seen in figure 4, a large proportion of the IM Gateway
fault triggers are in the interaction category, for both test levels. The
number of faults with a sequence trigger are about the same as for
the E-mai1 gateway. It is also notable that four of the faults found
during acceptance testing have triggers in the coverage category, as

each of these faults could have been found earlier by a test case

invoking only a single function (with a specific set of parameters).

6.1,2 Release X+0.5

The E-mail gateway had an interim delivery halfway to release
X+l. No acceptance testing was conducted on this delivery. Table

ST

¡ Coverage

I Sequence

tr lnteraction

tr Variation

I Faull tolerance

ñ Concurecy

O ConRguration

ts

AT

0246810121416
Faults tound

Figure 4. IMGW Release X, ODC trigger distribution by test level

4 shows the number of faults found during system testing. The
numbers in parenthesis show how many of the faults were detected
by the model-based tests. In tota1, 17 faults were found, of which
11 were found with the model-based tests. The 6 faults found with
the hand-crafted test cases and not by the model-based tests were
further analyzed, with the following findings:

o Four of the faults reiated to the server sending the wrong eror
code in response to an invalid request. Although the enor con-
ditions were part of the system model, the specific error code
for invalid requests were not. They were subsequently added to
the model.

¡ Two of the faults were classified to the trigger ca|egory Fault
Tolerance. Such faults were not to be found with the model-
based tests, according to the test strategy.

FoundÆelonging System Test

Unit Test

Integration Test

External Integration Test

System Test

Acceptance Test

Total found/test level 17 (1 1)

Table 4. FST Release X+0.5 - E-mail Gateway

6.1.3 Release X+l
Table 5 and 6 shows the fault-slip-through for the two subsystems.

Found/Belonging System Test Acceptance test

Unit Test

Integration Test

External Integration Test

System Test

Acceptance Test

Total found/test level 64 (48) t7

Table 5. FST Release X+1 - E-mail Gateway

As can be seen in table 5, 64 faults were detected during system
testing of the E-mail Gateway. 48 of these faults were detected by

4
0

0
l0
4

6
0

0
8

0

4 (4)

0 (0)

0 (0)
13 (7)

0 (0)

24(21)
I (1)

0 (0)
3e (26)
0 (0)

3

0

0

4
10

17

Table 6. FST Release X+1 - IM Gateway

ODC Trígger Analysis Figure 5 shows the ODC rrigger distribu-
tion for the laults found during system and acceptance testing of
Release X r 1 of thc E-mail gatcway. Most of tlie tr.igger.s are irr the
sequence category, but a significant number of the faults found by
the model-based testing are in the coverage category. Most of the
faults with a coverage trigger are those that slipped through from
unit testing, and a¡e related to parsing. The model-based tests de-
tected six faults with interaction triggers.

Figure 6. IMGW Release X+1, ODC trigger disrribution by test
level

is low. The comparisons should therefore only be reviewed in con-
text of the absolute number of faults.

As can be seen in table 6.1.4, the E-mail gateway system test
PIQ was 1 87o for Release X, the first studied release, and increased
for subsequent ¡eleases. For the IM gateway the system test ple has
instead decreased from'/9Vo fo I4Vo, although this latter value has
a very 1ow statistical power due to the few numbe¡ of faults found
during system testing. Although 17 fautts were found during the
acccptance testing of release X+1 of tlc E-rrrail galeway, a majority
of these faults were not slip-throughs. This gives a acceptance test
PIQ of 417o. This can be compared to the IM gateway, were a
majority of the faults (867o) found during acceptance testing should
have been found earlier.

the model-based testing. The table indicates that 16 of the faults
were found by manually crafted test cases. In fact, 9 of these
faults were found while manually analysing the system input and
output traces, resulting from the model-based tests. It is notable
that24 of the faults should have been detected already during unit
testing. Analysis of the anomaly leports show that most of these
are related to parsing of e-mail messages. 17 faults were found
during acceptance testing of this release. Of these 7 should have
been found earlier.

Only 14 faults were detected in the IM Gateway during system
testing (see table 6). The same number of faults were detected
during acceptance testing. A majority ofthe faults should have been
found earlier.

Found/Belonging System Test Acceptance test

Unit Test
Integration Test
External Integration Test
System Test
Acceptance Test

Total found/test level l4 t4

Sf,M I Coverage

E Sequence

D lnìeraction

tr vadalìon

¡ Fault tolerance

N Concurrency

¡tr ConfiOuration

F

ST

10 20 30

Fault6 foùnd

40 50 60

Figure 5. EMGW Release X+1, ODC tr.igger distribution by test
level

Figure 6 shows the ODC trigger distribution for the IM gareway.
The rigger distribution is similar to that of Release X of the subsys-
tem. Again, a large proportion of the triggers are in the interaction
category.

6.1,4 Summary - Phase Input Quality
By calculating the Phase Input Quality (PIQ) from rhe FST mea-
surements (as described in section 2.3.1), we can compare the fault-
slip-through data of the two subsystems. As relatively few faults
were detected for some test levels, the statistical power of the ple

ST
I Coverage

g Sequence

tr lnteracl¡on

E Varial¡on

I Fault tolerance

N Concurrency

¡! Configuration

ts

o2 46810121416
Faults lound

4
0

1

7

2

I
I
0

t2
0

ReleaseÆST X X+0.5 X+l
EMGW FST to ST
EMGW FST to AT
IMGW FST to ST
IMGW FST tO AT

18Vo

6'lVo

43Vo

787o

247o 39 Vo

41Vo

l4Vo

86Vo

Table 7. PIQ - Comparison between releases of subsystems

6.2 Perceived impact and feedback

This section summarizes the results of the first set of interviews.
conducted at the end of the second research cycle.

IM gateway The three subjects involved in the development and
testing of the IM gateway generally expressed a 1ow confidence
in release X of this subsystem. The fact that system testing was
not compietely finished as the acceptance testing started was stated
as a factor in this low confldence level. Two subjects also stated
that they perceived the system testing as not sulnciently covering
all feature interaction points, with the risk that new features might
cause yet undetected side effects in other parts of the system.

E-mail gateway The three subjects involved in development and
testing of the E-mail gateway expressed a high level of confidence
in release X and release X+0.5 of this subsystem. All of the subjects
stated that improved testing on all levels contributed to this level of
confidence. The three subjects (who had also experience with the
development and testing ofthe IM gateway) pointed out improved
unit testing and the model-based system testing as contributing
activities. One of the subjects thought that the results of the model-
based testing was clear to internal organization. The two other

18

subjects thought that only the capability of detecting defects was
clear, but that visibility in terms of executed tests and system
coverage needed improvement. A1l three subjects stated that they
perceived the results as unclear to the extemal organization.

7. Discussion
A high number of faults were found in both subsystems during the
acceptance test of release X. Over half of these defects should have
been found during system testing. We can thus not measure any
significant difference in fault-slip-through between the two subsys-
tems for this release. A high number of faults were detected by the
model-based tests during system testing of Release X+0.5 and Re-
lease X+I. Of the faults detected in the E-mail gateway during the
acceptance testing of release X+1, most could not have been de-
tected on previous test levels. There is a significant difference com-
pared to the IM gateway, where most of the faults detected during
acceptance testing should have been found earlier. The finding that
our improvement initiative did not see effect until Release X+l is in
line with prior studies that suggest that successful implementation
of improvements requires multiple iterations [29].

7.1 Complexity of protocol

The difference in complexity of the two subsystems external proto-
cols are likely to have influenced the ODC trigger analysis results.
In release X, the number of detected faults with a interaction trigger
were significantly higher for the IM gateway, while few faults with
the interaction trigger have been found in the E-mail gateway over-
all. The IM Gateway uses the Wireless village protocol (see section
4.2),which we perceive as being more complex than the IMAP pro-
tocol (see section 4. 1), in terms of the number of interacting request
and response parameters.

7.2 Stability of IM gateway

Significantly less faults have been found during the system test
of the IM gateway in release X+1. Differences in the types of
features added to the two subsystems is likely to have influenced
these figures. Multiple new components were developed for the E-
mail gateway for this release. The new IM gateway features on the
other hand, were mostly implemented by the extension of existing
components that have been thoroughly tested in previous releases.
Notwithstanding the higher stability of the IM gateway, more faults
in this subsystem slipped through to acceptance testing, compared
to the E-mail gateway.

7.3 Fault-slip-through to system testing

We can see that the fault-slip-thorough to system testing was signif-
icantly lower in the E-mail gateway, compared to the IM-gateway,
in release X. We attribute this to improvements in unit testing, at-
tributed to another improvement initiative (see section 7.4, Intemal
validity). In subsequent releases of the E-mail gateway, more faults
have slipped through to system testing. One plausible reason for
this is that as the system testing improves, the developers perform
less unit testing. This has been indicated by two of the developers,
who during development of release X+l stated that they would like
to start system testing early, due to the model-based tests' potential
of finding defects.

7.4 Validity Threats

When conducting an empirical study in industry, the subject cannot
be controlled as in a laboratory research experiment. The following
validity threats may therefore be of concem in this study.

Internal validity A possible threat to the internal validity of this
study is another process improvement initiative that was executed at

the research site during the duration of this study. The objective of
the other initiative is to increase the quality of the releases delivered
to the customer. It might therefore be of concern as to whether
any observed changes in fault-slip-through can be attributed to
this model-based testing initiative. This threat is mitigated by two
facts. First, this other initiative is project wide (it affects both
subsystems), secondly the fact that the model-based test cases have
found a majority of the faults in the E-mail gateway.

Another validity threat is whether other factors than the model-
based testing have had an impact on an eventual reduction offaulç
slip-through to acceptance testing. The interviews conducted with
the test manager and developers increase the validity, as they show
that the internal organization is in agreement about the impact of
the model-based testing.

External vølídíty In this snrdy, the results are overall not fully
generalizable since they are dependent on the studied project using
certain processes and tools. Nevertheless, the results should be
generalizable within similar contexts.

A threat to the generalizability of the results of this study is
the fact that the tested system is developed in Erlang, which is
also the speciflcation language used with the model-based testing
tool. Concerns that the results are not generalizable to projects
where the implementation and specification languages differ may
therefore be raised. However, the interfaces of the system, that the
system tests interacted with, are internet standard protocols, layered
over TCP/IP. While Erlang mechanisms were taken advantage of to
issue test specific commands (for example to restart components to
ensure a consistent state at the start of each test case), the effort
to implement these test specific intefaces in another environment
is seen as negligible, compared to the total effort required for the
model-based testing.

8. Conclusions and future work
This study set out to contribute to the understanding of system-
level model-based testing as a test technique for early fault detec-
tion. Our experiences of modeling and test execution are generally
in line with those reported by prior studies. We contribute further to
the understanding of system-level model-based testing by present-
ing a set of challenges and recommendations specific to this test
level.

A substantial initial investment is required to integrate the
model-based testing into the test process. As the management and
customers are highly dependent on measurable results and progress
reports from system testing, introducing model-based tests on this
level requires considerable planning and effort.

The test results for the two subsystems shows that, for the sub-
system tested with the model-based tests, significantly less faults
slipped through from system testing to customer acceptance testing.
This supports our hypothesis Hl, that model-based testing would
decrease our fault-slip-through from system testing to customer ac-
ceptance testing.

During the study, we observed that the customers' confidence in
the system is dependent on the availability oftest reports. The cus-
tomer (external organization) requires these reports to see that the
system has been sufficiently tested. As identified by prior studies,
it is also important to make the results of the model-based testing
visible within the intemal organization, to get commitment to the
technique. We identify the following question for further research:

o How can reports on the coverage and results of model-based
tests be presented to the internal and external organizations?

:

t-
i.¡ :

r
_'\-

l

ì

:

19

Acknowledgments
Part of this work has been carried out during my time at the IT
University of Göteborg. The work has been sponsored by Erlang
Training and Consulting Ltd and Quviq AB. I would like to thank
my supervisor Thomas Arts for his help and support during the
project.

References

[1] Barry Boehm and Victor R. Basili. Software defect reduction top l0
list. Computer, 34(1):135-147, January 2001.

[2] Barry Boehm. Some future trends and implications for systems and
software engineering processes. System.s Engineering, 9(7):1-19,
2006.

[3] Mark Blackbum, Robert Busse¡ and Aaron Nauman. Why model-
based test automation is different and what you should knów to get
started. In International Conference on Practical Software Quality.
Software Productivity Consofium, NFP, 2004.

[4] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco,
cA, usA,2006.

[5] Jeff Otrutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann.
Generating test data from state-based specif,cations. The Journal of
Sofrv,are Testing, Verification and Reliability, l3(l):25-53, March
1997.

[6] Antonia Bertolino. Software testing reseatch: Achievements,
challenges, dreams. ln FOSE '07: 2007 Future of Software
Engineering, pages 85-103, Washingron, DC, USA, 2007. IEEE
Computer Society.

[7] Adrian M. Colyer. From research to reward: Challenges in technology
transfer. In ICSE '00: Proceedings of the 22nd international
conference on Software engineering, pages 569-576, New york,
NY, USA,2OOO. ACM.

[8] Mahmood Niazi, David Wilson, and Didar Zowghi. A maturity
model for the implementation of software process improvement: an
empirical stttdy. Journal of Systenu and Sofnvare, T4(2):155-112,
2005.

[9] Lars-Ola Damm, Earþ and Cost-Effective Software Fault Detection
- Measurement and Implementation in an Industrial Setting. pltD
thesis, Blekinge lnstitute ofTechnology, Department ofsystems and
Software Engineering, 2007.

t10l S. R. Dalal, A. Jain, N. Karunanirhi, J. M. Learon, C. M. Lon, G. C.
Patton, and B. M. Horowitz. Model-based testing in practice. In ICSE
'99: Proceedings of tlte 2lst international conference on Sofnvare
engineering, pages 285-294, Los Alamiros, CA, USA, 1999. IEEE
Computer Society Press.

[1 1] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy
of model-based testing. Working Papers 2006. Department of
Computer Science, The University of Waikato (New Zealand), April
2006.

[12] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Zölch, and T. Stauner. One evaluation of model-based
testing and its automation. In lCSË' '05: Proceedings of tlæ 27th
intemational conference on Software engineering, pages 392-401,
New York, NY' USA.2005. ACM.

[3] Wolfgang Prenninger and Alexander Pretschner. Abstractions for
model-based testing. In Electronic Notes in Thzoretical Computer
Science. Proceedings of the International Workshop on Test and
Analysís of Component Based Systems (TACoS 2004), volume l16,
pages 59-71, Los Alamitos, CA, USA, January 2005. Elsevier
Science Publishers Ltd.

[14] Colin Campbell, Margus Veanes, Wolfgang Grieskamp, Wolfram
Schulte, Nikolai Tillmann, and Lev Nachmanson. Model.based
testing of object-oriented reactive systems with spec explorer,
technical report MSR-TR-2005-59. Microsoft Research, May 2005.

[15] I J Hayes. Specification directed module testiîE IEEETransactions
on Software Engineering, l2(L):124-133, 1986.

[16] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger.
Testing telecoms software with Quviq QuickCheck. ln ERIA,NG
'06: Proceedings of tlrc 2006 ACM SIGPLAN worlcshop on Erlang,
pages 2-10, New York. NT USA,2006. ACM.

[7] Joe Armstrong. Programming Erlang: Sofnvare for a Concurrent
World. Pragmatic Bookshelf, July 2007.

[18] Ian Craggs, Manolis Sardis, and Thierry Heuillard. Agedis case
studies: Model-based testing in industry. In lst European Conference
on Model Driven Sofware Engineering. AGEDIS, December 2003.

[19] Cyrille Artho, Howard Barringer, Allen Goldberg, Klaus Havelund,
Sarfraz Khurshid, Mike Lowry, Corina Pasareanu, Grigore Rosu,
Koushik Sen, Willem Visser, and Rich Washington. Combining
test case generation and runtime verification. Theoretical Computer
S c ie nc e, 336(2-3) :209-234, 200 5.

[20] Ram Chillarege and Kathryn A. Bassin. Software triggers as a
function of time - odc on field faults. DCCA-S: Fifth IFI? Working
Conference on Dependable Compu.ti.n.g for Critical Applications,
September 1995.

[21] Wesley Vernon. An introductory guide to putting action research into
practice. PodiatryNow, February 2007.

[22) Jeniffer Stapleton. DSDM, Business Focused Development, Second
Edition. Pearcon Education, 2003.

[23] John W. Creswell. Research Design: Qualitative, Quantitative, and
Mixed Methods Approaches. Sage Publications Inc.,2003.

[24] Network Working Group. Request for comments 3501 - intemet
message access protocol - version 4rev1. The Internet Engineering
Task Force, http://u/ww.ietf.org/rfclrfc3501.txt, March 2003.

[25] Network Working Group. Request for comments 2045 - mul-
tipurpose intemet mail extensions (mime) part one: Format of
internet message bodies. The Intemet Engineering Task Force,
http://www.ietiorylrtc/rtc2)45.txt, November I 996.

[26] Wireless Village. Wv client-server protocol v1.1. Open Mobile
Alliance Ltd'2002.

[27] Yuri Gurevich. Sequential abstract-state machines capture sequential
algorithms. ACM Transactions on Computational Logic (TOCL),
l(1):77-l 1 1, 2000.

[28] Yuri Gurevich. Evolving algebras 1993: Lipari guide. tn Specification
and validation methods, pages 9-36. Oxford University Press, Inc.,
New York, NY, USA, 1995.

[29] Anna Borjesson and Lars Mathiassen. Successful process implemen-
tation. I EE E Software, 2l(4):3644, 2004.

20

Erlang Testing and Tools Survey

Tamás Nagy and Anikó Nagyné Víg
Erlang Training and Consulting Ltd, London, United Kingdom

{an iko, tamas}@erla ng-consu lting.com

*

Abstract
As the commercial usage of Erlang increases, so does the need for
mature development and testing tools. This paper aims to evaluate
the available tools with their shortcomings, strengths and commer-
cial usability compared to common practices in other languages.

To identify the needs of Erlang developers in this area we pub-

lished an online survey advertising it in various media. The results
of this survey and additional research in this field is presented.

Through the comparison of tools and the requirements of the de-
velopers the paper identifies paths for future development.

Categories and Subject Descríptors D.2.5 [Software Engineer'
iregl: Testing and Debugging-Testing tools

General Terms Verification, Management

Keywords Erlang, Test Tools, Market analysis

1. Introduction
The aim of this paper is to conduct research on the tool chains used
in Erlang software development projects.

¡ To identify the strengths and weaknesses of the existing prac-

tices.

o To point out missing components of a healthy workflow.

The focus is on property and model based testing and test driven
development. Furthermore, it aims to create guidelines for further
development by identifying the common pattems in this area.

We published an online survey about Erlang tools. This had

been advertised on mailing lists and separate emails had been sent

out to selected Erlang oriented people. We have got -200 responses

from developers, managers, testers and research engineers.
The research uses the results of the online survey aimed at

Erlang developers, but takes into account tools which are currently
not used by the Erlang community but have similar functionality
to existing ones. This is to provide a ctoss reference to common
practices in other communities.

The next section describes the research methods for collecting
information from Erlang users. In Section 3, non-Erlang testing

* Supported by EU FP7 Collaborative project ProTest, grant number
215868

Pemission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies ue not made or distributed
for profit or commercial advantage and that copies betr this notice and the full citation
on the first page. To copy otheruise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Erlang'09 September 27, 2008, Victoria, BC, Canada.
Copyright @ 2008 ACM 978-1-60558-065-4/08/09... $5.00

tools are explored to provide a basis for comparison and determin-
ing the functionalities we need (gaps) from Erlang tools. Section
4 focuses on tools used by the Erlang community, using the sur-
vey's results to identify the most widely used tools and applications
which could be used to create an integrated framework for develop-
ment. Section 5 rates the applicability ofthese tools in developing
commercial products.

2. Research method
We published an online survey in order to gather data about the
usage and spread of Erlang tools and applications in the commu-
nity. We advertised this via the Erlang mailing list [2], which has

around 1000 registered users, and on separate smaller Erlang re-

lated mailing lists. For example the trapexit [1] site's mailing list,
and the ProTest project's [3] mailing list. This survey was open for
everyone, and anonymous submission was accepted as well.

There was a separate survey, with the same questions, open to
a selected 200 people who were known to have a background in
Erlang but not necessarily in software development.

Overall, for the two surveys, 200 responses were received. The
submitters were questioned about their role within their organiza-
tion. From the answers it is clearly visible that 40-45Vo were de-
velopers and the remaining 55-607o almost equally proportioned
between the managers, testers, researchers and students.

2.1 Structure of the survey

The survey contained 20 questions covering four different topics.
The questions can be found in the Appendix A. The topics covered
were:

l. The development environment of the Erlang users.

2. How widely are the currently available Erlang tools known
and used. The participants had the possibility to raise specific
problems, if any occured, which put off the adoptation of the

tools.

3. The submitter's role within the organization and background in
Erlang.

4. Identify common processes which could be helped with tool
support.

3. Testing tools
There is a lot of research focused on automated testing with many

successful industrial case studies justifying these techniques having
a place in a commercial setting.

These tools cater to different purposes. Because of this, it is

difficult to show everything in one paper. The aim is to highlight
the unique features available in these tools, providing a bridge to
Erlang.

2t

3.1 Model based testing

In brief, model based testing means that test cases are derived from
a model that describes some aspects ofthe system being tested.

The Microsoft Spec Explorer [Silva et al.(2008)] is a model
based testing tool developed in .NET. There are two specification
languages one can use to create the model of a system:

¡ Spec# - which is an extended version of C# with a possibility to
specify pre- and postconditions

r AsmL [Bamett et al.(2003)] - which is an abstract state machine
language

One of its features is the possibility to visualise the model of
the system. Because the models of large systems tend to be very
complex, the visualisation makes it possible to merge states of the
system into hyperstates. The idea of hyperstates is merging states
together, creating a layered state space, it is possible to de-clutter
the model. This technique makes it possible to unfold only those
parts of the model that one is interested in.

The tool has a wide range of possibilities to influence the test
runs. For example with parameter selection, method restriction and
state filtering.

It can be used for offline and on-line testing. Offline means
that pregenerated tests are run to test the system. On-line or on-
the-fly testing means that the test is generated dynamically as it
is running. With online test generation the reproducibility might be
lost, but because the test generation can take into account the actual
responscs of thc systcm, timing and perfolmance also ilfluence the
result.

The Spec Explorer has excellent features, but from a commer-
cial point of view it is not applicable because it is only available
for non-commercial purposes. There are commercially available
model- based testing tools with similar functionalities. For exam-
ple, Conformiq Qtronic [Huima(2007)] makes it possible ro run of-
fline and on-the-fly tests as we1l.

There are tools which address model based testing through a dif-
ferent approach. They use strictly typed domain specific language
to specify the system under test. One of these tools is HOTTest
[Sinha et a1.(2006)]. Using this approach, assuming rhar all the
domain-specifrc requirements are availabie and the model was cre-
ated, it is possible to automatically generate a test oracle. Further-
more, it is possible to extract domain specific invariants to create
additional test cases from the model.

Sinha claims in [Sinha et al.(2006)] that fo¡ darabase sys-
tems this technique was the most effective to capture domain-
specific requirements either explicitly stated in the documenta-
tion/specification or implicit. Implicit requirements are more con-
sidered to the writer of the specification, and as a result they are not
written down but still part of the model.

There is another group of model based testing tools, closely re-
lated to the ones using domain specific languages to specify the
model of a system. These testing tools use the UML specification
of the system as a model to test against. The difference is that the
domain specific languages are, as the name suggests, designed for a
specific problem, whereas UML is a general-purpose modeling lan-
guage. Commercially these tools have wider acceptance, because
usually there is already a UML model available to base the test-
ing on. Both Conformiq Qtronic [Huima(2007)], Rhapsody Test-
Conductor and TnT [Hartmann et a1.(2000)] support testing against
UML models. These tools usually provide a graphical interface al-
Iowing users to create the model of the system. With complex mod-
els however these can become complicated [Sinha et al.(2006)], be-
cause of their number of states. There are limitations in graphical
systems ofhow many states can be handled effectively.

3.2 Automated unit testing

Even though unit testing is less time consuming and less complcx
than system testing, automating parts of the process can help im-
prove quality.

JUnit [Riehle(2008)] and JTest together create a framework
for Java which can automatically generate test cases for unit test-
ing. There is functionality to add your own tests to the previously
automatically generated ones. In CIC++/C# NTest provides simi-
lar functionality by providing automated testing of classes. What
makes these tools highly valuable for the developer is that these
tests can be run after every change in the code without major effort.

3.3 IntegratedFrameworks

There are directions in the industry/research which aim to create
a common framework that provides a well defined interface for
different kinds of model based testing tools.

One of these is the AGEDIS [Hartman et al.(2004)] framework.
The user has to specify three different things for the testing:

e the behavioral model of the system

. the test execution directives which describe the testing architec-
ture of the system under test (SUT)

. the test generation directives which describe the strategies to be
employed in testing the SUT.

Then the system provides three different ApI for model testing
tools to hook into the framework. Using these interfaces the test
generation and oracle checks can be specialised without the need
of changing the user input.

4. Erlang Tools
In Erlang there are many tools and applications useful during the
development and testing process. In this chapter we try to give a
short overview with an introduction to the most commonly used
tools. The usage and awareness of each tool can be seen in Figure
1

4.1 Testing tools

Almost every developer uses some kind of test method, either with
an existing test environment or with "home grown,, functions and
applications. From the ratio of the used testing tools it is clear
that there is no freely accessible, widely used, flexible and stable
tool. Most developers use proprietary tools or manually written test
functions.

The available set provides different levels and methods for test-
ing from unit testing to system testing. We will show how well are
they adapted to the general requirements to keep the testing meth-
ods easy and quick for integration into the development cycle.

4.1.1 EUnit
EUnit [Carlsson and Rémond(2006)] is an open source light weight
test server for Erlang. It tries to transfer the main ideas of the ex-
isting unit testing frameworks from other languages like SmallTalk
(SUnit), Java (Junir) [Riehle(2008)] applied ro Erlang. The main
goal is to provide a system where writing test cases is easy, the test
cycle is fast and the results of the tests are presented tersely.

During unit testing independent parts of the program are tested
separately. The units can be functions, modules, processes or even
applications. EUnit allows the developer not only to test functions
with assertions, but even to write test generator functions with the
support ofbuilt-in macros. Test generators provide a representation
of tests to be able to run with Eunit.

An important feature is the ability to disable the testing by
defining special macros during the compilation or by adding them
to the source file.

22

Wrangler

ïsung

Sinan

RefactorErl

QuickCheck

OTP Test Server

McErlang

Faxien

Eunit

ErlVer

Distel

Ðialzyer

CËAN

Common Test Env.

17.5

Used tools according to the survey

Ërlang Tools

35.0 52.5 70.û

Known tools according to the survey

0

4,1.2 OTP Test Server and Common Test Environment
The OTP (Open Telecom Platform) developers designed a test suite
execution environment based on Erlang to support regular auto-
mated testing. OTP Test Server [Wigeretal.(2002)] is a portable
test server for application testing. The suites can be run on local or
remote targets, the progress is logged and the result can be viewed
in HTML pages.

Common Test [Blom and Jonsson(2003)] is a framewo¡k based
on the OTP Test Server application. It is suitable for both black-
box and white-box testing. Black-box testing can be done on any
type of target system, not just ones implemented in Erlang, as
long as the testing can be executed through standard Operation
and Maintenance (O&M) interfaces. It provides code coverage
analysis by integrating the OTP Cover Tool. According to the
survey, the set up of the test environment is complex, suffers lack
of documentation and its strict regulation about name conventions
makes it hard to use and adopt.

4.2 QuickCheck

QuickCheck [Arts et a1.(2006)] is a commercial rool for properry
and model based testing. It tests running code against formal speci-
fication. It can be used at diffe¡ent levels of testing from unit testing
to system testing. The test case generation is random but control-
lable. One of the strongest points of the system is that it has a built
in automated test case simplification, called shrinking, to support
and facilitate the error.

The system is really efficient for testing and finding problems
in complex systems at an early stage of development, especially
for testing code against formal specifications. A model can be built
according to the specification, and the system can be tested against
separate aspects of the built model.

The users would like to have supervision with statistics on what
has actually been tested. A dashboard reporting code coverage and
executed test cases would ¡ate it user friendly. Another aspect of

Figure 1. Popularity of Erlang tools among the community(Zo)

z-)

QuickCheck is that it has a steep learning curve, even for an Erlang
developer.

4.3 Tools for supporting the development cycle

In this chapter we collected projects with different functionalities,
which later can be used in an integrated test framework,

4.3.1 Refactoringtools

Refactoring means improving the quality of code
through rewriting without changing its extemal behaviour. The
most common program transformations in Erlang are:

¡ renaming variables, functions, records, modules

¡ converting data structures (tuples to records)

¡ function argument operations

. detecting and resolving duplicate code parts

The existing tools are already integrated into the most common ed-
itors (in Figure 2). They are based on static analysis of the code and

therefore can safely work on big code basis. They can however not
support all possibilities of the language; OTP specific behaviours
and some of the dynamic function calls are under development, but
will not be available for some time.

Wrangler Wrangler [Li and Thompson(2008)] supports both
Emacs (with Distel) and Eclipse. The refactoring palette contains
seven transformation and two search options.

RefactorÛrl RefactorErl [Lövei et al.(2007)] has six refactor
steps. It stores the analysed source code in a database and pro-
vides an interface which can be a base fo¡ more applications. It's
installation is easy as an installer is provided for Windows, while
on Unix systems it is distributed as a source package.

4.3.2 Analysis and checking tools

Dialyzer [Lindahl and Sagonas(2004)] is a static analysis tool for
detecting discrepancies in the sou¡ce or byte code files automati-
cally. Typical enors detected by the tool include

¡ obvious type errors

o redundant tests

¡ unsafe virtual machine byte codes

¡ unreachable code parts

McErlang [Fredlund and Svensson(2007)] is a model checker
for verifying distributed Erlang programs. It has excellent support
for the most difflcult characteristic of the language, namely general
process communication, node semantics, OTP component libraries,
fault detection and tolerance through process linking.

4.3.3 Automated build tools and package management

Faxien [6] is a package management which helps to find and install
or publish OTP applications.

Sinan [5] is a build system for OTP projects. It not only com-
piles and builds OTP applications but provides a framework for
building the documentations, runs dialyzer, checks unit tests, pro-
duces output reports and handles all application dependencies.

4.3.4 Load tools

Tsung [4] is an open source multi-protocol disributed load and
stress testing tool. Different kinds of servers can be stressed by us-
ing the loader, stimulating thousands of virtual users concurrently
connecting from several client machines. It is used to test the scal-
ability and performance of the TCP/IP based client-server applica-
tions.

Figure 2. Editor usage among Erlang users.

4.4 Usability of the tools

One of the keys to the popularity of a tool or toolset is user friend-
liness. The interface should be easy to use, and if it is possible well
integrated to the development environment. The layer of the inte-
gration can be on the following levels:

1. editors with plugins

2. OS co¡nmandline

3. developing software interface (Erlang shell)

It is important to design the interface(s) of the tool, according to the
common development environments. Graphs showing the usage of
operating systems and editors are in Figure 2 and 3.

According to the survey result the most common editors are
platform independent. It is an important result, since the usage of
operating systems is quite balanced between the different distribu-
tions of BSD, Linux, Macintosh and Windows. All tough Linux
distributions are the majority.

The Erlang users' favourite editor is the Emacs with different
plugins. The most widely used plugins in descending order are:

. Erlang mode in emacs: included in the Erlang distribution, sup-
ports syntax highlight, indentations, comments, function header
commands, skeleton templates and compiling. The other Emacs
plugins are extensions ofthis plugin.

o Distel connects to a live Erlang node. It is more than a simple
extension ofthe erlang mode. It can handle dynamic tags, pro-
vides the advantages of shell options to the editor such as auto
completion of module and function names, process and docu-
mentation viewer, a debugger and profiler frontend.

o Eflymake runs a syntax check in the background and highlights
the erroneous codeparts

t9%

Editors

17%

Eclipse 19 Emacs

SciTe @ v¡m

12%

{Þ NetBeans

C other

10/o
2%

o
&

24

lD Linux @ Mac @ Solaris
(Ð windows @ other

Figure 3. OS usage among Erlang users.

¡ Wrangler and RefactorErl (see in Section 4.3.I) are refactor
plugins built in to the Erlang mode, they can be used with Distel

¡ Esense or ErlangSense provides features similar to IntelliSense
or CodeSense in other editors: completes module names, ex_
ported functions, record names, record fields, macros, and
shows popup documentation for the above elements.

Most developers use plugins, modes with their editors.
¡ Eclipse with Erlide is widely used, but some of the program_

mers found it heavy weighted when compared to Emaòs and its
Erlang mode. They found it hard to instal, and not well tested.

o Vim has syntax highlighting, indentation, and many ,,home
grown" scripts for different functionalities.

r Most popular editors_a,fter Emacs and Eclipse are operating
system specific with different levels of Erlang support, mostty
with syntax highlighting;

. Textmate with Erlang Bundle

. Notepad++

. KDevelop

. Kate

. Gedit

There is a need for more complex development helping func_
tionalities such as function argument pop ups, auto compietã, func_
tion description notes, auto formatting,-a good build environment
and a debugger.

4.5 Open problems

We asked the survey participiants to name problems which make
the tools cumbersome to use:

o "Documentation is not enough, and needs some examples,,
o "bad documentation"

¡ "Generally most tools lack the documentation to use them prop_
erly without digging into the source code."

¡ "Generally a lack oftutorials, examples ofusage and best prat_
ices"

¡ "Haven't used them enough to comment but cursory opinion
seems to indicate that test suites need better managemeni facil_
ities"

r "[any application] is not complete,'
¡ "It is difficult to stub my other modules that are being tested,,
¡ "Unstable and not complete,'
. "Most of them are not very thought through. Most of them are

badly layered are not extensible in otherïays. Most of them
organically grown quick hacks without structure',

o "Too much work to set them up,'
. "Some of them need a lot of configurations to run, and you need

to do it manually"

¡ "I tried to use dialyzer but it isn,t easy to use"
¡ "It would be great if eclipse plug_ins worked so that I could

get the same benefits I get in Java: function argument pop
ups, auto complete, function description notes, auto formatting,
good build environment and debugger,'

The missing applications/functionalities are, identified by the sub_
mitters:

¡ "Specialized Traffi c Generators,'

r "Create and Interactive protocol tester,'
r "It would be nice to be able to somehow generate, at least

partially, mock modules to isolate modules under unit test."
o "Continuous integration and hooks for svn, cvs and git"
¡ "Improve [various testing applications]"
¡ "'A standard harness that runs: a compile check, EUnit tests,

Common Tests, the Dializer'

_ According to these survey results, we would like to highlight
the-general shortcomings and weaknesses of almost every frla-ng
tool and project:

1. lack of documentation

2. missing examples and tutorials

3. not completed, tested when published

4. not well designed: badly layered, not extensible, no structure
5. doubts about sustainability

6. hard to install and use especially for non Erlang users

7. sometimes too much configuration is needed and has to be done
manually

Even if there are useful tools widely used by the Erlang com_
munity, the- survey reports that it is still missing functionallty and
integrated frameworks for:

¡ The ability to test efficiently on different levels, stubbing func-
tions cause big problems and a lot of effort. At the moment there
is no available stubbing tool. No tool can',generate at least par_
tially mock modules to isolate modules unãer unit test".

¡ The missing aspect ofthe testing tools is a high qualìty display
ofthe results from different interfaces with staiistiis anã gruþlr..

r Even though there are available load testers for different pro_
tocols there is no freely available interactive protocol te;ter,

Operating system

6%

47%

9%

2A%

I

j

!

25

framework for testing web applications through http or special-

ized traffic generators.

r A missing area is continuous integration; hook towards version

control systems (svn, cvs and git), integrated into a general

framework.

¡ Existing frameworks do not contain enough functionality. There

is a need for a standa¡d hamess that runs compile check, unit
tests, system tests, xref, dialyzer and tsung performance tests.

5. Appticability of tools in developing commercial
products

According to the survey results the testing phases of Erlang projects

are poorly supported. Most of the developers use proprietary or

manual solutions for unit and system level testing.

From a commercial point of view, the feature set of one tool is

less important than other factors namely:

r ease ofuse

. support

r good documentation

¡ examples

o ease ofcomprehending the results

5.1 Ease of use

This covers the ease of initial configuration to non-Çryptic error

messages related to user interaction. Again the survey showed that

the initial configuration is considered hard, manual and error prone

work. A lot of test systems tend to retum cryptic error messages.

Most of these problems could be solved by integrating the tools into

one framework, an Integrated Development Environment (IDE).

Since this would cut down the configuration needed, the tools

would work in the same environment providing similar behaviour'

5.2 Support

Problems with the toolset being used for testing can result in a

major loss of development time. It is important to be able to resolve

the issue efficiently as soon as possible. This was clearly visible
from the survey, becaus e 307o of users would pay for support and

training.

5.3 Good documentation

If there is little documentation for a tool the possibility of commer-

cial adoption is low. This was also evident in the survey. Missing or

bad documentation was the top problem which came to light with

the existing tools.

5.4 Examples

It helps the early adopters ifthere are available hands on exercises'

use cãses and examples. If the early impressions are positive the

acceptance rate of the tools will be higher. From the survey it is

clearly visible that there is a need for training courses.

5.5 Ease of comprehending the results

If it is really hard to interpret the results of a tool it will never

pass the evaiuation phasç. From the survey it seems there is a need

ior online and offline solutions where more is better. The online

means an immediate result as the testing progresses. Offline means

a conflgurable report generation functionality, including browsable

webpages, a dashboard or pdf reports.

6. Conclusion
Our research clearly indicates that the tools available for Erlang,

commercially or otherwise, have shortcomings in many fields, al-

though they address relevant issues.

One of these shortcomings, for most of the tools in the sur-

vey, is the lack of tutorials and examples alongside vague docu-

méntation. Even if these tools are useful, addressing existing prob-

lems should be a priority of the community. This is clearly visible
from the fact that 30Eo of the survey participants are willing to pay

for consultancy on some tools together with a wide adaptation of

QuickCheck.
The other field that limits widespread use is lack of automated

build and test of software. Even though there are tools solving this

problem, they are not integrated with each other, and their output

is very diverse. The survey shows that most people yeam after an

IDE where building, testing and reporting the results are integrated

in the overall workflow.
Although it has already been mentioned, the need for a report-

ing functionality cannot be emphasised enough. One of the most

iniportant functionality is the ability to repoft' The more structured

infòrmation available, the better. For example in the model-based

testing case (see in Section 4.2) itis really hard to get information
about coverage and what has been actually tested.

Many of the mentioned test tools can be used in the development

of non-Erlang projects. They are however, rarely used by compa-

nies who do not have a history of using Erlang. As Erlang gets

wider acceptance and is used to test non-Erlang projects, it is im-
portant to iackle issues concerning user interaction, as they will
affect the evaluation and adoption of Erlang.

26

A. Appendix: The questions of the survey
1. Which editor do you use for Erlang development?

(a) Eclipse

(b) Emacs

(c) NetBeans

(d) SciTe

(e) Vim
(f) Other

2.
-?9

y_og use special Erlang plugin/mode with your editor (Er_
lide,ErlyBird,Distel,Emacs mode, etc.)?

3. On what platform is the development done?

(a) Linux/Unix: Debian, Radhat, Suse, Ubuntu, Other
(b) Macintosh: Tiger, Leopard, Other
(c) Solaris

(d) Windows: XR ME, Vista, Other
(e) Other

4. Have you ever heard of the following Erlang tools?
(a) CommonTest Environment

(b) CEAN

(c) Dialyzer

(d) Disrel

(e) ErlVer

(f) Etomcrl

(g) EUnit

(h) Faxien

(i) McErlang

0) OTP Test Server

(k) Quickcheck

(l) RefactorErl

(m) Sinan

(n) Tsung

(o) Wrangler

(p) None of the above

(q) Other

5. Have you used the following Erlang tools?
The option list is the same as in the previous question.

6. What Erlang open source applications have you used?

(a) CouchDB

(b) Ejabberd

(c) Erlinda

(d) ETISDB

(e) ErlSoap

(f Erlsom

(g) Erlyweb

(h) osERL
(i) Yaws

() Mochiweb

(k) Tsung

7. Would it help if we generate automated tests for these open
source applications?

8. Do the tools you are using have any shortcomings which make
them harder to use?

9. Are there any other tools you tried but decided not to proceed
with? What were their shortcomings?(Unstable, Not completed,
Not resolving my problem, etc).

10. Do you have automated builds and test suites in place? If so,
what system are you using?

1 1. What methods are you using to test your system?
(a) Test driven development

(b) Develop-rest iteration

(c) Black box resting

(d) Gray box resting

(e) White box testing

12. What testing tools are you using?

(a) Common Test

(b) EUnit

(c) Manually written functions

(d) OTPTest Server

(e) QuickCheck
(f) Orher

13. Would you be interested in trying out the test tools which will
result from the protest project?

14. Do you have time and resources to try new tools?

15. Would you prefer training courses - with hands on exercises _

for these new tools?

1 6. Would you consider short term consultancies?

17. Would you be willing to pay for these courses and consultan_
cies?

18. Imagine that you have three wishes, what Erlang testing appli_
cations would you like to: create or improve already õ*istìng
ones?

19. Thank you.for filling out our survey! If we have managed to
pique your interest please choose from the following optìóns
(a) Do you want a summary of this survey when completed?
(b) Do you want to join the protest project announcement list?
(c) Do you want us to contact you when the first tools are

released?

20. Please give us your contact details

21. What is your role in the organisation?

(a) Manager

(b) Project manager

(c) Software developer

(d) Tester

(e) Researcher

(f) Other

t

27

References
ltuts et a1.(2006)] Thomas A¡ts, John Hughes, Joakim Johansson, and

Ulf Wiger. Testing telecoms software with quviq quickcheck' In

ERIAÑG'06: Proceedings of the 2006 ACM SIGPLAN workshop

on Erlang, pages 2-10, New York, NY, USA' 2006. ACM' ISBN

1-59593-¿90-4. doi: http://doi.acm.org/10.1 145/1 159'7 89'1159792'

[Barnett et al.(2003)] Mike Barnett, Wolfgang Grieskamp, Lev Nach-

manson, Wolfram Schulte, Nikolai Tillmann, and Margus Veanes'

Model-based testing with asml.net. ln lst European Conference on

Model- Driven Software Enginee ring, December 2003'

[Blom and Jonsson(2003)] Johan Blom and Bengt Jonsson' Automated

test generation for industrial erlang applications, In ERLANG '0'1:

Proceedings of the 200j ACM SIGPI'AN workshop on Erlang' pages

8-14, New Yórk, NX USA,2003. ACM' ISBN l-58113-772-9' doi:

http://doi.acm,org/10. I 145/940880'940882'

[Carlsson and Rémond(2006)] Richard Carlsson and Mickaël Rémond'

Eunit: a lightweight unit testing framework for erlang. ln ERIA'NG

'06: Procõedingi ofthe 2006 ACM SIGPI'AN workshop on Erlang'

pages 1-1, New York, NX USA,2006' ACM' ISBN 1-59593-490-l'

doi: http://doi.acm.org/10'1 145/1 1597 89.1159791.

[Fredlund and Svensson(2007)] La¡s-AAke Fredlund and Hans Svensson'

Mcerlang: a model checker for a distributed functional programming

language-. ln ICFP '07: Proceedings of the 2007 ACM SIGPIA'N

intãrnationat conference on Functional programming, pages 125-

136, New York, NY, USA, 2007' ACM' ISBN 978-1-59593-815-2'

doi: http://doi.acm.org/10. 1 145/1291151.129117 l.

[Hartman et al.(2004)] A. Hartman and K. Nagin. The agedis tools fo¡
model based testing. SIGSOFT Softw. Eng' Notes,29(4):129-132'
2004. ISSN 0 1 63-sÞ48. ¿oi: http://doi.acm.org/1 0.1 145/1 0 I 3886' I 007529

lHartmann et al.(2000)] Jean Hartmann, Claudio Imoberdorf, and

Michael Meisinger. Uml-based integration testing' In ISS?A

'00: Proceedings of tlæ 2000 ACM SIGSOFT international sym-

posium on Software testing and analysis, pages 60-70' New

York, NX USA, 2000' ACM' ISBN 1-58113-266-2' doi:

htþ://doi.acm.org I l0.l 1 45 I 3 47 324.3 4887 2.

[Huima(2007)] Antti Huima. Implementing conformiq qtronic' In

Te s t Con/MTES, Pages l -12' 2007 .

[Li and Thompson(2008)] Huiqing Li and Simon Thompson' Tool support

for refaótoring functional programs. In PEPM '08: Proceedings

of the 2008 ACM SIGPLAN symposium on Partial evaluation

and semantics-based program manipulation, pages 199-203' New

York, NX USA, 2008. ACM. ISBN 9'78-1-59593-977-7' doi:.

http://doi.acm.org I 10.11 45 I 1328408.1328437 .

[Lindahl and Sagonas(2004)] Tobia-s Lindahl and Konstantinos Sago-

nas. Deteiting software defects in telecom applications though
lightweight static analysis: A war story. In Chin Wei-Ngan' editor,

elogramming Innguages and Systems: Proceedings of the Second

Asian Symposium (API'AS'14), volume 3302 of LNCS, pages 91-
106. Springer, November 2004.

ll-övei et al.(2007)l László Lôvei, Zoltrán Horváth, Tamás Kozsik, and

Roland Klály. Introducing records by refactoring. ln Proceedings

of the 2007 SIGPIA'N Erlang Worl<shop, pages 18-28, Freiburg'

Germany, Oct 2007.

[Riehle(2008)] Dirk Riehle. Junit 3.8 documented using collaborations'-
S/GSOFT S oftw. Eng. Notes, 33(2):l-28, 2008. ISSN 0163-5948'

doi: http://doi.acm.org/10. 1 145/1 350802. I 3508 I 2'

[Silva et a1.(2008)] José L. Silva, José Creissac Campos, and Ana C' R'

Paiva. Model-based user interface testing with spec explorer and

concurtåsktrees. Eiectron' N otes Theor. Comput. Sci'' 208:7 7 -93,
2008.
rssN 1571-0661.
doi: http://dx.doi.org/1 0. 1 016/j.entcs.2008'03. I 08.

lsinha et al.(2006)l Avik Sinha and Ca¡ol Smidts. Hottest: A model-

based test design technique for enhanced testing of domain-specific

applications. ÀCM Trart. Softw. Eng. Methodol., 15(3):242-2'18,

2006. ISSN 1049-331X.
doi: http://doi.acm.org/1 0. 1 145i 1 1 5 I 695. I I 5 1697.

[Wiger et al.(2002)] Ulf Wiger, Gösta Ask, and Kent Boortz' World-class- - product certification using erlang. ln ERIANG '02: Proceedings

b¡ ttt ZOOZ ACM SIGPL{'N workshop on Erlang, pages 24-33'
Ñew York, NY, USA,2002. ACM. ISBN 1-58113-592-0' doi:

htç://doi.acm.or gl t0.1145 I 592849.592853.

[1] Trapexit http://www.trapexit'org Jun 2008

[2] Erlang http://www.erlang.org Jun 2008

[3] ProTest, property based testing http://www.protest-project'eu Jun

2008

[4] Tsung http://tsung.erlang-projects.org Jun 2008

[5] Sinân http://codc.guogle.com/p/sinan Jun 2008

[6] Faxien http://code.google'com/p/faxien Jun 2008

28

A comparative Evaluation of rmperative and Functional
Implementations of the IMAp protocol

Abstract
This paper describes a comparative analysis of several implernen_
tations of the IMAP4 client-side protocol, written in Erláng, C#,
Java, Python and Ruby. The airn is basically to understand whether
Erlang is able to fit the requirements of iuch a kind of applica_
tions, and also to study some parameters to evaluate the sùiìabil_
ity of a_language for the developrnent of certain type of prograrns.
We analysed five different libraries, comparing théiì characte-ristics
through some software metrics: number of iource lines of code,
m emo ry c o n s ump Í i o n, p erfo r m anc es (ex ecu t i o n t im e) and fun ct ion _

ality of prinitlyes. We dcsuribe pros and cons of eách library and
we conclude on the suitability of Erlang as a language for the im_
plementation of protocol- and string-intðnsive TCÞ/IÈ-based appli_
cations.

Categories and Sabject Descríptors D.3.3 [programming Lan_
guagesl: Language Constructs and Features - abslracÍ datã types,
polymorphism, control strucÍures,

General Terms Algorithrns, performance, Design, Standardiza_
tion, Languages.

Keywords Erlang, IMAP, Imperative Languages, Functional Lan_
guages, Comparative Evaluation

in an exclusion, advantaging other choices better known to the de_
velopers.

When several choices of programming languages and platfonns
are available, debates over the advantages and drawbacks of one
paradigm or language or platform with respect to different ones
arise, compromising between an objective waluations of features
and personal taste. The issue is that it is not so easy to derive rnet-
rics that allow programmers to objectively understand the appropri_
ateness

_of
a language for the development of certain types ôi appli-

cations [13, 15]. When these rnetrics are available, apptying the; to
a projcct-cither not started or cornpleted-is not an-easy tãsk. Best
practices often consider an a-posteriori evaluation ofan already de_
veloped application, airning at understanding if certain parts of the
systern (or the whole), which have been particularly haid and tirne
consuming to implernent or do not perfonn could have be realized
better using a different technology. Such an evaluation irnplies an
analysis of(l) the effort that was needed to develop the applìcation,
(ll) the difficulties encountered in the developrnent procêis (due to
lack oflanguage constructs or library functions), (rÐ the coàplex_
ity of the developed program which leads to I more error_prone
application requiring more effort in debugging and testing, 1lv¡ ttre
perfonnances of the whole system.

Wjth these aspects in mind, this paper aims at providing a corn_
parative evaluation of different irnplementations õf clientlibraries
for the IMAP email protocol [4]. The starting point was an Erlang
project requiring the implementation of an llviAp client. In ordei
to understand_the appropriateness of Erlang in sirnilar applications,
we perfonned a series of tests comparing the Erlang solution with
some other implernentations written in different programrning lan_
guagel, ranging frorn cornpiled/imperative, such aJ Java aná C#,
to scripting/imperative ones such as python and Ruby. The airn ié
to evaluate some parameters like performorr"r,

"opibility
to meet

u.ser,requirements and, ffirt needed to develop the library using
that language. This is achieved by both using metrics detailed in
th,e following Sections of the paper and perfonning a critic analysis
ofthe code and the characteristics ofthe provided prirnitives.

The paper is structured as follows. Section 2 provides an
overview of related work. Section 3 gives a brief deìcription of
the IMAP protocol, showing the basic issues that have to be faced
in the developrnent of a client-side library. Section 4 illustrates the
basic software architecture of an IMAp client library. Section 5
presents the metrics used to perform the analysis. Seition 6 illus_
trates the irnplernentations we analysed, highlighting their charac-
teristics, and Section 7 sumrnarises the results óf thãevaluation of
thern. Section 8 completes the paper with our conclusions.

1. Introduction
The choice of prograuuning language and platfonn to be used in
a soffware system is an issue faced at the start of every project. In
the majority of cases, this choice will be influenced úí thä skills
of the programmers and the software development policies of the
company. This is quite reasonable from the prospecti.,re of the de_
cision rnakers, but it should not solely rest on thèse factors alone.
This decision should be based on other aspects such as the evalua_
tion of how a language and platfonn best hts the problern dornain.
However, even if a particular language could be very appropriate
for an application, sensibly reducing the development tirne while
increasing perfonnance, the lack ofprogramrner tnowledge results

Francesco Cesarini

Erlang Training and Consulting
416 Fruit &'Wool Exchange

Brushfield Street, London El 6EL,
England

fra ncesco@erlang-consu lting.com

Viviana Pappalardo

University of Catania
Dept. of Computer and Telecomm.

Engineering
Viale A. Doria, 6

95125 - Catania, Italy
viviana. pappa lardoS4@a lice. it

Corrado Santoro

University of Catania
Dept. of Mathematics and Informatics

Viale A. Doria, 6
95125 - Catania,Italy
santoro@d mi. unict. it

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that còpies are not made or distributed
for profit or commercial advantage and that copies ber this notice and the full ciration
on_the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/o¡ a feó.
Erlang')?, September 27,2008, Vicroria, BC, Canada.
Copyriglrt O 2008 ACM 973-l-60558-065-4/08/09... $5.00.

29

2. Related Work
Any experienced Erlang developer will confinn that Erlang pro-

grams they have written consist of four to ten times less code than

iheir counterparts in C, C+t- and Java. This has been an urban leg-

end among the Erlang programmers at Ericsson long before Erlang

was released as open source. Almost a decade aÍïer its release, how-

ever, there still is very little scientific evidence to back up these

claims. Examples such as pivot sort using list comprehensions or

a distributed remote procedure call server example are used to ar-

gue the case. Indeed, they might prove
_a

point when compared to

óther languages, but when looking at Erlang, there is a necessity to

benchrnark whole systems, not code snippets.

Similar arguments should be made when looking at perfor-

mance. As a result, existing language shootouts of sequential code,

though valid, do not provide the whole picture. This is enforced

by Bogdan Haustnan's just in tirne C compiler [9]' which was part

ofthe early versions ofthe beam emulator, and through the com-

pilation of Erlang to native code in the High Perfonnance Erlang

project [1 1]. In both research projects, a notable increase in the ex-

ecution ofsequential code was achieved. But when complete pro-

duction systems were benchmarked, the results were more modest.

Erlang systems consist of more than the sequential computation

ofFibìnacci or factorial sequences. They are complex, distributed

rnassively concurrent systems.

In 1989, an Erlang prototype named ACS/Dunder implernented

10% of the features of the MD110 private automatic branch ex-

change (PABX). Its purpose was to validate Erlang as a language

for programming the next generation of telecom applications' pro-

viding the productivity comparisons between F,rlang an<l PLEX,
the pioprieiary Ericsson language originally used to develop the

MD I 1 0. Though the results of the ACS/Dunder project were never

made public, Joe Annstrong in 2007 revealed that, depending on

the implemented feature, an itnprovement in design efficiency of
a factor three to twenty-two [3] was achieved' These figures were

hotly debated at the time, and depending on whether you believecl

in Erlang or not, were considered highly controversial' As a result

ofthis controversy, the final results were downgraded frorn an av-

erage of eight to three. Quoting Joe Armstrong, "The factor three

wal totally arbitrar¡ chosen to be sufficiently high to be impressive

and sufficiently low to be believable".
Ulf Wiger, in his 2001 paper "Four-Fold Increase In Produc-

tivity and Quality" [18] states that comparisons of projects within
Ericison using C, C++, Erlang, Java and PLEX project yield a sim-

ilar line per hour productivity and a sirnilar bug density per line

of code. What differed between the projects was the final source

code volume. Comparisons of C++ projects which were rewritten

in Erlang resulted in four to ten times less code, concluding that

using Erlang equated to a four to ten-fold increase in productiv-

ity ind quality. Wiger, however, states that though these numbers

would not hold up to a scientiflc scrutiny, they provide a consistent

pattern with experiences of non-Ericsson projects.
The first study to provide scientific evidence and back up the

findings by the ACS/Dunder project and Wiger was the comparison

of C+¡ and Erlang for Telecoms Software. Run as a collaboration

between Herriot Watt University and Motorola Labs, the research

project consisted in refactoring two C# applications which were

in production at Motorola to Erlang [12]' Cornparisons were made

on the Perfonnance, Robustness, Productivity and impact on pro-

gramming language constructs. The conclusions 'were a70 - 85%

ieduction in code for the Erlang based system. The code reduction

was explained by the fact that 27o/o of the Cl-f code consisted of
defensive programming, 11% of rnemory management and23o/o of
high level communication, all features which in Erlang are part of
thè semantics of the language or irnplernented in the OTP libraries.

One of the applications cornpletely rewritten in Erlang resulted in

a 300% increase in throughput, but that can be argued was a result

of Erlang and its light weight concurrency model being the right
tool for itre ¡ot. The Dispatch application in question had lots of
concurïency, short messages and little in terms ofheavy processing

and number crunching. The C# version had been written with re-

silience in mind, not performance. Resilience comes almost for free

in Erlang. Other conclusions from the project were that robustness

and scalability were higher in Erlang while maintenance costs were

lower.

3. Overview of the IMAP Protocol

IMAP stands for Internet Message Access Protocol' It allows client
programs to access and handle electronic mails stored on remote

inail servers. It was proposed by Mark Crispin as an alternatìve

to the POP3 protocol. The current version, IMAP4 revision 1

(IMAP4revl), is deflned in RFC3501 [4]' It supports communi-

cation either over a TCP/P connection using port 143, or over

a SSL connection using port 993. The most important advantage

of IMAP4 over POP3 is that emails can be stored on the server,

allowing any client to access them from any location'
An IMAP4revl session is based on reliable client/server net-

work connection over which a request-reply model is run. Clien-
t/server interactions start with an initial greeting message from the

server and consist of a client request, followed by optional data

sent by the serverr and tenninated by a result response. Client and

server transmit strings terminated by CR+LF character sequence.

Each request sent by a client consists of a Tag, a unique alphanu-

rneric prefix for each nressage rtse<l to match client request to server

reply, and a Command. If the cotnrnand from the client does not

require the server to send additional data2, the server replies imme-

diátely with a tagged response l1ìessage, including an indication of
the outcome of the interaction (e.g' success or failure). An exarn-

ple of a client/sen¿er interaction (a LOGIN comrnand) showing the

tagged response is reported below:

C1ient: 4001 LOGIN username password
Server: 4001 0K LOGIN 0k

When data needs to be sent before the response message, the

server reply can be split into one or üìore lines according to the size

ofthe messages themselves. These responses are called untagged,

they are preflxed not by the /4g but with characters '*' or '*'. Below
is ãn exâmple of untagged responses retumed as the result of the

SELECT command:

Client: 4002 SELECT INBOX

Server: * FLAGS (Junk NonJunk ' '.
Server: * 0K IPERMANENTFLAGS (Junk NonJunk .. '
Server: * 4270 EXISTS
Server: 't 0 RECENT

server: x 0K IUIDVALIDTTY 1186814135] 0k
Server: * 0K IMYRIGHTS "acdilrsw"] ACL

Server: AOO2 0K IREAD-I^IRITE] 0k

A client/server session is represented by the finite-state machine

depicted in Figure 1. Most commands are available only in certain

státes, so if a command is sent by the client when in an inappropri-

ate state, an error message is refuined.
The initial state,"server greeting", is reached after connection.

In this state, the server sends a message containing a welcorne text

and, in sorne cases, the servet's capabilities.

I It depends on the command to be executed.

2 This happens, for example, in LOGIN and LOGOUT commands.

30

(r)

t7l

Figure 1. IMAP4revl State Diagram

Following this message, the client enters the Not Authenticated
state (transition 1) unless the connection is pre-authenticated.3. In
the Not Authenticated state, tnost commands are rejected, because
the client has to supply its credentials in order to start its session.

This is perforrned by a proper LOGIN command, if successful
(transition 4), the client reaches the Authenticated stafe and must
use the SELECT comrnand to choose which mailbox to access.

This command contains the name of the mailbox to be manipu-
lated, allowing the client to enter the selecfed state (transition 5).
When activities are over, the LOGOUT command terminates the

session (transition 7) and closes the connection. In general the /o-
gout state is entered following the LOGOUT command from the
client; however, if a protocol error is detected during the session
or a session tirneout elapses, the server is allowed to unilaterally
trigger the logout and close the connection.

A basic IMAP4 session is characterized by the initial sequence

of commands LOGIN and SELECI followed by commands for
manipulating the messages and the mailboxes such as (but not lim-
ired to) FETCH, LIST, STORE, COPY and finally terminated by a
LOGOUT. FETCH is the important command ofthe IMAP4 proto-
col, as it is used to retrieve data items such as header fields, text or
attachments of one or more messages. The basic syntax requires the
inclusion of additional parameters, expressed by means of proper
keywords and used to select specific portions ofthe rnessage(s). As
instance, keyword BODYSTRUCTURE (or simply BODY) allows
a client to get infonnation on the structure of a message and its
various components. Possible component infonnation might cover
attachments, text, their size, encoding character set and the MIME
type, to rnention but a few The keyrvord BODYlsection] retrieves
one or rìore of the specified sections of the whole body; sections
can be HEADER, HEADER.FIELDS, MIME, TEXI etc.; key-
word ENVELOPE returns the structure of the envelope of an email
message containing the fields date, subject, from, sender, reply-to,
to, cc, bcc, in-reply-to, and message-id.

Together with the data to be retrieved, the FETCH command
requires an identifler of the involved rnessage(s). To this ain,
IMAP4revl defines two type of numeric message identifiers: the
message number (or message sequence number), reflects the posi-
tion of the message in the given mailbox, while the unique identifier

3 Pre-authenticated conditions (transition 2) are indicated by a proper capa-

bility in the greeting message. Pre-authentication is in general performed
by a check on the clicnt's IP address or other peculiar mechanisms.

(UID) is a number assigned to the message when it is placed in the
mailbox (delivered from a sender or as a result of the COPY com-
mand). There is a basic difference between these identiflers: while
lJlD is unique and its value does not change during the life span

of the message, the sequence nunber can vary by modi$ing the
position of the message in the mailbox; this situation can happen
when messages are deleted or inserted.

The response to a FETCH cortmand contains data organized as

LISPlike nested lists and enclosed between round parentheses, " ("
and ")". At a first glance, this response has a simple structure, but
it can get complex when nesting occurs as a result of the message

forwarding or the inclusion of an RFC822 form [17]. The structure
of a message contains a header, a body section and one or more
attachments, unless it is a MIME-IMB [6] message consisting of
several sections.

The following examplea of the FETCH BODYSTRUCTURE is
the typical nested structure of the FETCH reply message, where
each level of nesting is indicated by a pair of parentheses. The
structure of the message reported in this reply is composed of two
parts; the text of the mail, written in both plain ASCII and HTML,
and an attached binary file named "es.rar", encoded in BASE64.
The "boundary" element is a delimiter between the text and the
attachment.

* 3421, FETCH (BODYSTRUCTT,RE

((
(,'TEXT"'rPLAIN| (,,charsetI I'iso_9959_1")

NIL NIL 'rquoted-printabLett 22 2)
(r'TEXT,,'rHTML" ("charset'r "iso_ggb9-1")
NIL NIL I'quoted-printable" 393 19)

''ALTERNATIVEII
("boundary"rr- - -=-NextPart-002-01C72136.F960F349")

)
("APPLICATION"'r0CTET-STREAM'' ("nane" rres.rar")
NIL rres.rar" 'rbase64" 261814 NIL
(t'attachnentr' ("filename" "es.rar"))

) "MIXED"
('rboundary"
tr- --=-NextPart-001-01C72136. F960F349 ")

)
)

When the reply contains the headers or the text of an email,
complexity increases as the nested structure can encapsulate bare,
unformatted ASCII or binary data such as email headers, text,
attachments, and other included ernails. In this case, the presence of
the octets stream is indicated by enclosing its size in curly brackets.

Another comrnonly used IMAP command is LIST, allowing a

client to look into a rnailbox hierarchy displaying all folders, rela-
tionships and attributes. The syntax of the command requires the
reference and mailbox-name parameters. As mailboxes are hierar-
chically organized, the reference denotes where in the hierarchy
the inspection should be started. The mailbox-name denotes which
mailbox to search in. Its notation allows wild cards, denoted by the
special characters '*' or '%'. The reply to the LIST cornmand re-

turns a set of untagged responses, one for each folder of the hierar-
chy. They contain the folder narne, its path, the hierarchy delimiter
and folder attributes5.

a Line breaks and indentations have been added by authors in order to make

the example clearer; rcal server's reply is not formatted as shown, even ifit
is contained in several lines.
5 According to [4], attributes are chosen among the following values:

\Noinf eriors, \Noselect, \tlartea, \Unmarked, \HasNoChildren,
\HasChiIdren.

31

3.1 Implementationlssues

As the reader can obserye from the explanation of the IMAp proto-
col, the client/server interactions and the data transport are stiaight
forward to irnplement, as data exchange occurs by encoding mès-
sages in ASCII strings terminated by the CRLF character and send-
ing/receiving thern through a socket. The problem with IMAP is
in the application layeq as the grammar of the server response is
very articulated and complex, putting a requirement on the client
to be able to parse and interpret all replies. As a result, most of
the implementation effort of an IMAP client is in the parsing of
the IMAP seryer responses. In particular, as has been illustráted
above, parsing the FETCH response can be challenging because of
the variety of information included in the structure of the message
and included attachments. The response to a "FETCH BODYS-
TRUCTLIRE" command is one of the most complex to parse, as
it can contain many levels of nesting. The response to a .,FETCH

BODY[section]" command can also present some difficulties in the
transcoding activity, as the client has to translate text or attachments
contents from the reply encoding (such as BASE64) to an encoding
handled by a client program (such as UTF-8 or binary). Finally, ai
the grammar described in standards [4, 6] also permits user-defined
fields or attribute values, another irnplementation difficulty is mak-
ing the parser rnodule generic and flexible so as to cater for these
situations.

Utat Prcgnñ

i LoGrN i SELECT i Lrsr i i rercs i

IMAP Hish-Lêvel

4. Architecture of an IMAP Client Library
This Section gives a briefoverview ofthe software architecture of
an IMAP client. According to the specifications provided in the
standard 14], we can consider an IMAP client library as composed
of the following software layers:

1. Communication layer, handling socket connectivity.
2. Low-level IMAP protocol handler which is responsible to

lnanage request/reply communication properly adding the tag
to the request and differentiating tagged and untagged re-
sponses.

3. IMAP interpreter, whose task is to parse server replies, trans-
forming them into native types ofthe target language used in
the client irnplementation.

4. IMAP FSM, which handles the flnite-state rnachine of the
IMAP protocol (see Figure 1), rnanaging state transitions and
ensuring that sent commands are valid in the current state.

5. IMAP highJevel interface, which irnplements the various
commands of the IMAP protocol by directly using the ser-
vices provided by the low-level IMAP protocol handler and the
IMAP interpreter.

This architecture depicted in Figure 2 is generic and consistent
with all of the client implernentations we analyzed. According to
the specific functionality of the library however, one or more of
the layers could have been omitted depending on the functionality
ofthe client. As an exarnple, a library which does not parse server
replies, returning thern directly to the user will not have an IMAp
Interpreter layer; similarly, if the handling of the FSM protocol is
not support by the client side, the IMAP FSM layer will be not
present.

As will be argued in Section 7.1, the presence (and lack) of
layers will irnpact the software writing process of the IMAp client
and influence the estimation of the effort involved. Indeed, we
can consider that the lower layers such as the Communication,
Low-level IMAP protocol handler, IMAP interpreter and, IMAp
FSM (when present) have to be developed first, requiring a big
initial effort, while irnplementing the various commands can bè
considered quite simple; they can be done incrementally, one at a
tirne, directly exploiting the services provided by the lower layers.

IMAP FSM

IMAP lntêrpreter

Low-level Prctocol Hândler

Commuñicåtion Layer

Figure 2. Software Architecture of an IMAP Client Library

def fetch(set, attr)
¡€tun f etch_interÂal (,'FETCH"

eDd
set, attr)

def fetch_iûterûal(cnd, set, attx)
if att¡. iûstÐce_of?(StriDg)

attr = RacData.Dew(att¡)
eûd
synchroÂize do

@responses . detete (TFETCHÌ)
sënd_comÐd(cnd, llessageset, nee(set), attr)
returr @responses . delete ("FETCH',)

eûd
end

def store(set, attr, flags)
returD store_iDternal('ìST0RE!', set, attr, f lags)

end

def atore_interÀal(cnd, set, attr, flags)
if attr. iûeræce_of ?(striûg)

attr = RawData.new(att¡)
ênd
slDchronize do

@reapoûses. delete (,,FETCH")
seDd_comed(cúd, Messageset,new(set), a¡¡¡, ¡1"a"¡
¡eturn @responses. delete ("FETCH")

eDd
end

Figure 3. Code Snippet of the Ruby IMAP Library

5. Evaluation Criteria
As argued in Section 1, providing objective parameters to measure
software quality is not an easy task. The literature repofts some
indicators [5, 12] and, even if sorne developers and researchers
stil1 do not agree on their objectiveness, they should be considered
adequate and provide a good degree ofconfldence [15]. According
to this literature, we selected the following parameters:

o Number of source lines of code (SLOC);
c FunctionoliÍy of prinitives
. Amount of memory required
t Execution time/throughput

The listing in Figure 3, which is the code for the FETCH and
STORE comrnands of the Ruby IMAP library clarifies this aspect.
Adding another cornmand involves replicating the basic structure
of the code and replacing the cornmand string to handle the new
functionality.

JZ

5.1 Source Lines ofCode

This is obtained by counting the numbers of lines of all the source

flles composing the library and removing blank lines and com-
ments. This pararneter should provide an indication of the effort
required to develop the application: roughly speaking, the more the

SLOC the rnore the time required to write the software and to test

it. However, as argued in [0], SLOC is dependent of at least three
factors: programmer's skills, programming language and program

functionality.
Indeed, it is quite simple to understand that sources written

by different programmers, with different programming abilities,
could sensibly differ in the number of SLOC; in general, if all
programs exhibit the same functionalities, the rnore skilled the
prograrnmer the less the number of lines written. In any case, given
that most of the implementations compared in this paper are part
of the library of the language we tested, we can assume that they
have been written by programmers with a very good knowledge
ofthe language itselfand therefore they can be considered "good
software"; so, as for this point of view, it rnakes sense to compare
the number of SLOC of these implernentations.

Another factor that affects the number of SLOC is the prograrn-
ming language employed. Obviously, the presence of certain lan-
guage constructs has a strong irnpact on the lines ofprogram used

for a certain functionality. For exarnple, extracting the first eletnent

of a string is obtained in Erlang by means of a simple oneJine state-
rnent: [HlTl = String. Moreover, if this extraction is perfonned
in the declaration of a function clause, as is often the case, the code
becomes even uìore coÍìpact, as the line will contain the function
declaration, check a condition (that the string is not empty) and per-

tbnn a double assiglment. In Python or Java, the extraction ofthe
first element requires two lines of code, and additional lines when
we intend to also include the not check:

H = StringL0l
T = Stringll:]

H = string.charAt(0);
T = string.substring(1) ;

iJ String != rr'
H = String[O]
T = String[l:]

if (string.lengthO != 0) t
H = string.charAt(0);
T = string.substring(1) ;

Ì
This dependence of SLOC upon the language used is not only
fundamental for our study, but also quite desirable as we want
to understand the effort needed to develop the IMAP client using
different languages. The presence of certain constructs that require
less lines of code implies less tirne needed to write the software and
to test it.

Another irnportant aspect that influences the nutnber of SLOC
is the functionality the software exhibits; indeed two different irn-
plementations of an application which at flrst glance rnight appear
the same but in reality differ in functionality, cannot be compared in
terms of SLOC, as the feature rich irnplernentation will presumably
have a higher nutnber of SLOC. This is the reason why, in evalu-

ating the software, the SLOC parameter is weighted by means of
the so-called Fanction Point Analysis (FPA) [8]; this is a technique
that allows developers to analyze a soÍïware implementation and

derive a parameter, called number offunction poirfs, providing an
objective evaluation ofthe functionalities ofthe analyzed software.
Given this measure, weighting the nurnber of SLOC with respect to
the number of function points should give a more precise estimate

ofthe required development effort required.
However, performing FPA is not an easy task, above all when

dealing with a library. According to [7], FPA seems lnore appro-
priate for a cornplete application or software system rather than a
single cornponent. For this reason, in the analysis of SLOC, we
used a different approach with the airn of obtaining the sarne ob-

jective evaluation. Indeed, as argued in Section 4,by analyzingthe
implernentations given with their source code (i.e. Python, Ruby,

C# and Erlang), we noted their software architectures were very
similar to one another. In particular, once the blocks for the low-
level protocol, request assernbly and reply parsing had been devel-

oped, adding a new functionality (i.e. support for another IMAP
command) only involved writing a function (or method) that used

the primitives provided by these basic blocks. From such a charac-

teristic, we can derive that comparing the number of SLOC of two
inplementations, even if they support different sets of cornmands,

can be performed by simply analyzing the parts of the software
which provide the same functionalities, namely the low-level pro-
tocol, request assembly, reply parsing and the common commands

in the different implementations.

5.2 Functionality of primitives

As argued before, Function Point Analysis is not easy to perfonn
and also not appropriate for a library. On the other hand, in a

comparative analysis as the one described in this paper, an under-

standing of the specific functionalities of a given library should be
mandatory. The aim should be to try to understand the quality of
an irnplementation in tenns of its capability to provide a complete,
transparent and flexible support of the IMAP protocol.

Checking the cornpleteness of a solution is quite sirnple, since

it implies to analyse if the library is able to support all or a sub-
set of the cor¡nands and functions of the IMAP4 standard. As
for transparency and flexibility, an analysis of the software archi-
tecture of the solution and the interface of the various prirnitives
(i.e. signatures of function or methods) is needed, in order to un-
tlerstand if a good leve1 of abstraction is provided. Indeed, rnany

commands of the IMAP4 standard require additional parameters

which should be passed to the function (or rnethod) irnplernenting
that functionality. Even if they are then sent as string in the pro-
tocol messages, these parameters may vary in type and semantics,
therefore a well-written library should treat them according to their
real meaning. As an example, a function irnplernenting the FETCH
corrmand could require the additional paraûìeters to be passed as

either different arguments or a cornplete string. In the latter case,

there is a lack ofa proper abstraction level, since the programmer
has to rnanually create the string to be passed: in other words, to
use the library the programmer has to possess a certain knowledge
of protocol messages, an aspect which is in contrast to the comrnon

rules of software engineering that instead require library/software
modules to hide specifrc lowlevel þrotocol) details by providing a

high-level flexible and unifonn interface.
A similar argumentation can be given for functior/method re-

sponse values, which should reflect the outcorrìe and the reply of
the command irnplernented. If a reply is already interpreted by the

library and provided as a structured data type ofthe language (prirn-
itive or derived), the programmer can directly use it without writing
additional parsing code. Once again, this is an indicator ofa proper
encapsulation and abstraction level ofthe library characteristics not
featured by e.g. an irnplernentation returning raw protocol replies,
since, in this case, an additional progratnming effoft is rçquired to
properly understand and use them.

5.3 Memory Consumption

Mernory consumption is a perfonnance parameter that expresses

the metnory usage of an application using the IMAP library be-

longing to a certain language. We developed a sirnple test program
that logs in and fetches a bunch ofmessages. During the execution

of the test program on a Linux OS, we collected infonnation about

memory usage by checking the status contained in the "/proc" fi1e

system, in particular, by looking at total program size, code size

and data size.

Java

33

5,4 Execution time/throughput

The second perfonnance parameter we evaluated was the execu-
tion tirne of certain IMAP commands. As reported in [4], most of
the commands imply the execution of a specific activity and reply
with a simple successlfail response. Replies from commands sucir
as SELECI FETCH or LISI however, are more articulated and
probably require complex parsing ofthe result. For this reason, in
order to evaluate the interaction throughput featured by each spe-
cific command of the various implernentations, we let the client pèr-
form both simple and complex commands. Simple commands pro-
vide an indication of the performances of the low-level requeslre-
ply protocol, while complex commands can be used to ineasure
the perfonnances of the parser when it is present in the tested im-
plernentation, In detail, the commands we used for performance
evaluation are LOGIN, SELECT, FETCH and LIST.

6. Evaluated Solutions
In this Section the IMAP libraries which constitute part of this
study will be described. All of them have been found in the Inter-
net. Sorne of them are free while others are commercial products.
Fufthennore, among the free libraries, some are provided with the
source code while other are available only in compiled fonnat, so
analysis based on SLOC, described in Section 5.1 will not be appli-
cab1e. The airn of all of the solutions studied is to provide IMÁp4
client support to developers. Each library provides only sorne ofthe
features described in the IMAP standard [4], but they all include
the most irnporlant commands. These libraries represents differ-
ent approaches to the solution of the IMAP4 interfacing problcrn,
therefore, to analyze and study theii characteristics provides their
respective advantages and disadvantages. Each library supports de-
velopers in different ways, with varying functionality, different pa-
rameters and return values. The following subsections will provide
an in-depth description ofthe characteristic ofeach ofanalyzed so-
lutions.

etc. In detail, from the point of view of the socket streaming,
each time a "getXXX" rnethod is invoked, a proper interactioi
with the server is started to obtain the desired data item; such an
information is then cached in the Message object in order to make
it readily available if it is further needed. Such a data retrieving
policy could be considered a drawback, as for performances, sincè
it causes a new protocol interaction with server each time a not yet
retrieved message attribute is needed. Indeed, this drawback can
be overcome by using a "fetch profile", i.e. the progratruner can
persoralize data recovering by preparing a Fetchprofile object
and then use the Folder. fetch method; the latter retrieves, uiing
a single transaction for each message, all data iterns requested,
making thern available without needing any further interaction with
the server.

The following code is a brief example of what a Java program
using the JavaMail library program has to do to retrieve er¡ail
messages.

inport javax.nail,*;

// Get a Session object
Session session =

Session. getfnstance(properties, null) ;
// Cet a Store object
Store store = session.getStore(protocol);
store.connect(host, port, user, password) ;
/ / Open the Folder
Folder folder = store.getDefaultFolderO;
folder = folder. getFolder(nailbox_name) ;
/ / try to open the folder in read./write mode
folder . open (Folder . READ_hIRITE) ;
Message [J nsgs = folder.getMessagesO;
// Create a fetch profile
FetchProfile fp = new FetchProfileO;
fp . add (FetchProf ile . Iten . ENVEL0pE) ;
fp . add (FetchProf i1e . Iten. FTAGS) ;
// tetch ¡nessages using the profile
folder.fetch(nsgs, fp) ;

6.1 Java

Even if there are many IMAP solutions for Java, we selected the
JavaMail package [2], as it is the library officially released by Sun
Microsystems. This package provides a platform-independent and
multiprotocol frarnework which can be used to irnplement email
and rnessaging applications.

The philosophy behind JavaMail is interesting, as it allows
client prograrns to download rnessage(s) frorn the rernote IMAp
server and cache thern locally, bringing it closer to pOp3 than the
other IMAP4 approaches. This package is rnultiprotocol, in the
sense that it allows a transparent access to both IMAp and pOp3
servers. A client prograrn using this library rnust principally, create
a Session object, useful to retrieve the proper Store; the latter
determines the correct connection mechanism between client and
server depending on the speciflc protocol required (IMAP, pop3,
SMTP). Indeed the Store object models a message store and
its access protocol. The Store object has a connect rnethod to
establish the connection to the server, and by means of the IMAp
"LOGIN" command, supports a sirnple authentication rnechanism.

Once successfully authenticated, the client can access a rnailbox
by obtaining a Fo1der object from the Store. By rneans of the
Folder object, the client can open a mailbox in read,/write or read-
only rnode and retrieve data invoking the getMessages rnethod.
This rnethod retums a vector of Message objects whñh rnodel an
email message and provide a set of "getXXX" methods6 to retrieve
message data, such as text, flags, sender's and recipient's addresses,

6For example getFron, getFlags, gerAllRecipients, getRep1yTo,

Even if the policy of JavaMail is not the proper way to fetch
messages with respect to IMAP4 protocol, its perfonnances are
good enough as reported in Section 7.

6.2 C#

The C# solution we analyzed is the "Imaplibrary", available
at]nttp : / / ¡¡ut¡. codepro j ect . con / KB / IP / írnapl ibrary . aspx
and provided with the source code. This library exploits the doñet
platfonn, using the framework's native packages such as the socket
library and the XML data handling packages. This solution has pe-
culiar retum values in some object's rnethods; in some cases, the
output of the parsing activiry is identified by an XML ûle, where
each node of the XML tree represents a portion or a section of an
ernail message. The library contains three main source files:
t ImapBqse.cs; it defines the base class to handle low-level

client/server comrnunication, data transmission and reception
to/from the socket channel.

. Imap.cs; it irnplernents the IMAP4 protocol; it is in charge of
preparing client queries, sending the equivalent IMAp4 com-
mand and parsing server's response. The ftnap class defined in
this source flle is derived from the InapBase class.

o ImapException.cs; it defines some exceptions to rnanage inter-
nal enors and protocol faults.

The basic entity ofthe library is the fnap c1ass, which defines
a set of methods, each executing a specific command of the IMApetc.

34

protocol. In detail, the togin method allows a client to perfonn donebytheclient. Indeed,thereturnvalueofallmethodsisatuple
both a connection with the server and user authentication. This with two elements: the first element isthe tagged response, repre-

rnethod verifies if the server is connected and if the client is already senting the outcome of the command, while the second element is

logged in. If so, it does not send another login command and choos- the untagged response containing the data sent back by the seryer'

ing the correct policy to manage this condition. After a login, the An interesting capability of this library is the authentication

client is requested to select a mailbox through the SelectFolder mechanism, which is provided through the 'AUTHENTICATE"
rnethod, requiring a string as a mailbox name. Subsequently, to ob- command. It does not use clear text, relying on a more flexible and

tain messagi datã, the client can use the following three methods: secure authentication model described in [14].

r FetchpartHeader. It retrieves the header of the email mes- -- -1 .ottnon
client prograrn which wants to connect to an IMAP4

sase or an encapsulated part (i.e un uttu,h-*e"uiä:Ii:i- ::î:lftîii::i: Aiffibiï;#::å'ållj; iil:iåliå];,t¡r:
ticular, implements the IMAP commands "FETCH BODY :;,:..'
rHEADER]" and..FErcH BoDy rsection **j ,ll.-::::, ;j'}ïïîr'*:::J!!,li'ffå',å:äå,î.'tr äå'iiiï:"Ïr'""i,ifi|,i:
the UID of the message to be retrieved, the section, and returns -: I --.
(by rererence) an Arraylist object; each "f.r¡1¡]'1r,!,tç ff:iiffiïå';J-T"ilì:Ëï:i"f;#Ji'"'låi3jå::Ïffi.1äi;ject is a string containing one of the lines of the header of the ãîirn¿ in the form ,,f i--rst nessagê number:last message
retrieved message' numbei, ,; the second parameter is a-string representing the com-

¡ FetchPartBody. It retrieves the body (i.e. text or attacllnent plete argurnent to be appended to the "pBfCH" command. The
data) of a part of a message by using the IMAP .command- code below shows a basic client prograln in python using the
"BODY[section]". The programmer has to specify the UID of irnaolib:
the message and the section number; the return value is a string
which contains the requested body data. irnport inaplib

. FetchMessage. This rnethod retrieves a1l the parls of a mes-

sage and prodluces, as output, an XML file, properly fonnatted, imap = inaplib ' IMAP4 (host)

co-ntained all message data. The rnethod requir.r thê Un otttr. result, data = inap ' login(usernane ' password)

message and an xniwriter object to be úsed for output writ- # The default ¡nailbox is 'inbox'
ing. result, data = inaP'selecto

The code below illustrates a snippet of a sirnple client program i ffi;"r:::";:"
t"*t and the urD of the

that uses the Imap library. result, rosg_data =
inaP.fetch(10, '(UID BODYITEXT]) ')

Inap olnap = ner¡ InapO; # Let's get the 'Fron' and tSubject' fields of

otroäp.Login(host, usär, password)' # the nessages from 1 to 5

olnap.selectFolder(nai1bôx-na¡e); r"ìill:räi!;?îl?r;,

irite*twriter oXmllJrirer = ,(body[header.fields (from subject)])')
new)knlrextl'lriter (sFileName ' The library provides additional features since offers other com-
systen ' Text ' Encoding ' urFS) ; , lnuJr, ,u"h är ¡ppENo, CREATE, DELETE, to modiff the se-

oXmlllriter.Formatting = Formatting.Indented; tecteà'mailbox, or UID, FLAGS, LIS! to retrieve infórmation
o)hlWriter. !'rriteStartDocument (true) ; about message ôr mailboi characteristics.
oXmllJriter . trrlriteStartElenent ("Message ") ;

oXnlllriter.lJriteAttributeString(''UID", sUid)t 6.4 Ruby
olmap.FetchMessage(1234, oXnllJrj-ter, true); ,
oXnt'riter . !,irite'ndEtenent () ; Ruby [1], like python, is an interpreted (scripting) language- Its ba-

o)Lnltrtriter. htritegndDocìrnent O ; sic library offers an IMAP module called netlinap which cornes

as part ofthe language distribution. This library is free and the code

is accessible to the develoPers.
As the description and the code above highlight, the library per- The library provides a class Net: : IMAP whose interface is sirn-

fonns a partial parsing ofthe reply as for the rnethods FetchPartHeader i1¿¡ to the module provided for the Python language. However, un-
and FetchPartBody, and a fu1l parsing in the method FetchMessage, like the IMAP Python irnplementation, the Ruby library performs a

but, in the la1ter method, the output is not directly usable by a client parsing activity and returns the server response to the client pro-
prograln: instead, the progratnrner is requested to re-intelpreter the grarn by means of proper language types which can be directly
XML flle in order to obtain the infonnation s/he needs. used. The code below illustrates a sirnple ruby client program:

6.3 Python

Python [16] offers an IMAP client module delivered with its stan-

dard library called "irnaplib". As with all rnodules of the Python
1ibrary imaplib is free and provided with its source code.

The basic cornponent of the library is the IMAP4 class, which
defines methods for all the comrnands of the IMAP standard, pro-
viding a I :1 mapping. All of the library rnethods have sirnilar inter-
faces; all ofthem require a string which represents the parameter(s)

for the command to be sent to the server, therefore the library cre-
ates the IMAP cornmand by simply appending the string received
as argument and adding the Tag. Similarly, the reply is retumed by
the rnethod "as is", without any parsing, which if required, rnust be

requi-re I'net/imap. rb"

inap = Net : : IMAP.neu(host)
inap. login(usernare, password)
inap . select (nailbox-nane)
info = inap.fetch(20,

'IBODYIHEADER.FIELDS (FROM SI'BJECT)] ")
nessage = imap.fetch(10..15, "80DYIHEADER]")

As the example illustrates, the client prograln must create a

Net: : IMAP object, specifuing the server address as parameter, and

then invoke the "1ogin" or "authenticate" method. Subsequently,
the client can select a rnailbox (select method) and manipulate it

35

through the proper commands defined in the library. As for rnes-
sage retrieving, the fetch method needs two parameters resem-
bling the fetch primitive of the python irnplementation, even if the
reply is properly parsed, Indeed, the fetch method returns server's
reply as a native Ruby type, i.e. a structured type composed of two
fields: seqno and attr, the fonner is the message sequence num-
ber while the latter is a hash table in which each item is a couple
{kqt, value}; here the lc4t is one of the arguments specified with
the "FETCH" command (e.g. "FLAGS,', ..BODYSTRUCTURE,,,

"UID", etc.) and value is the associated data. This data is generally
returned as is, without any parsing, unless one of the iollowing
arguments are passed: "BODYSTRUCTURE", ..BODY[TEXT]';,
"BODY[section]", "ENVELOPE". In such cases, the value fr,éld,
may be one of the following defined types:

o Net: : IMAP: : BodyTypeBasic, which represents the structure
of the body of a simple message;

o Net::IMAP::BodyTypeMultipart, which represents a mes-
sage composed of more than one part, that is a text and one or
more attachrnents;

o Net: : IMAP: : BodyTypeText, that contains the text of a rnes_
sage;

¡ Net_: : IMAP: :BodyTypeMessage, which represents a message
of the type MESSAGE/RFC822, i.e. a message encapsulated
in another message, as it happens in the case of for.waiding an
email.

There structured data types are very useful, as, by properly
navigating their flelds, a programmer can directly accesi all thê
information regarding thc fctchcd lnessages. A prupcr exception
is finally raised if the command does not succeed ãue to a protocol
emor or a bad pararneter.

6.5 Erlang

The client library we irnplernented in Erlang as part of this study
represents an interface between a front-end and an IMAp4 server.
It handles both TCP and SSL client/server connections. The library
is based on OTP and wo¡ks as a stand-alone Erlang application.
It manages the rnost irnportant IMAP4 command such ásLOGIN,
SELECT, FETCH, LIST, IDLE performing an analysis of server
responses in order to create an Erlang representation ofemail data.
Indeed, the library parses server response, verifles it correctness
according to IMAP4 standard, and produces an Erlang-native result
va1ue,

The library is mainly cornposed by three modules: irn_c1ient,
the interface between the f¡ont-end and the IMAP4 server, it irn-
plernents all the IMAP4 commands; scaaning, which perfonns a
lexical analysis of the reply recognizing and carrying ôut tokens;
parsing, that instead parses the output of the previous module by
generating an Erlang-native term for the server response.

The basic rnodule of the library is im_c1ient, which also pro-
vides the interface functions to execute IMAp comrnands. The
rnodule is a gen-server and the process' status data hold, together
with information such as the socket connection, the starc óf the
finite-state rnachine of the protocol (see Section 6.5) in order to
perform correct sending and handling of commands.

., The interface provided by in_client is simple and quite sim-
ilar to that of other described libraries. Starting the activities irn-
plies to activate the gen-server process managing the protocol
through the start-link function, which takes two parameters,
mail server address and connection type (..tcp', or.,ssl"). Subse-
quently, the client can invoke the login function to perfonn au-
thentication; it uses the basic authentication mechaniim is based
on usemaÍìe and password, and, like all other libraries (exclud-
ing the Py'thon implernentation) currently does not support the AU-
THENTICATE IMAP4 mechanism. The next step ii mailbox se-

lection, which is performed through function selêct; after this,
messages can be retrieved using the fetch function, which re-
quires two parameters, the message or the list of messages to be
retrieved and the additional arguments for the FETCH córnmand.
A flexible way to speciÛr such arguments has been implemented,
indeed messages to retrieve can be specified by providing a list of
their message numbers (or UIDs); moreover, if a range of mes-
sages is required, it is possible to specifu, as an element of the
list, a tuple in the form {f irst,last}. As for the arguments of
theIETCH command, they are provided as a list of stiings, such
as It tflags", (rbodystructure, , , (.sizer r], which are
then suitably interpreted by the library in order to prepare the
complete FETCH command. Therefore, these parameters are not
barely concatenated with "FETCH", as it happens for exarnple in
Ruby and P¡hon, but they express the precise information ihat a
programmer wants to obtain from a message; for example, to re-
trieve the sender, the recipient, the subject and the text of an email,
it.suffices to pass the tenn [{,,body,,, 1, 1}, (rfron,,,
'.'!o", ((subject"l:

the library is able to inierpret the pro-
vided information, prepare the proper cornmand, which in this ôase
is "(BODY.PEEKI1] BODYIHEADER.FIELDS (FROM To SUB-
JECT)])", and suitably parsing the received response.

A1l of the IMAP protocol functions of the in_client module
refurn a fuple containing two elernents: {ResultValue, parsed
Reply), the fonner is an atorn representing the server response to
the cornmandT, while the latter is the server's reply data, as pro-
vided by the parser modules. In functions select, fetch and
list, this second element of the return value is a ..proplist"8
({krydaø}), in which the /r4, is a syrnbol with expresses o lnessogc
data itern aiddata is the associated va1ue. As an exarnple, the func-
tion call, im-client:fetch (tS,6l, [,,bodystructure,,,, ,date, 'l), with generates the IMAp comrnand ,.FETCH 5:6
(BODYSTRUCTURE BODYIHEADER.FIELDS (DATE)]),', replies
(on success) the following data:

{ok,
[[{"seq-no",5},

{'rbodystructure" , "text/p1ain" , "7bit" ,"24,, ,"834"},
{"d"t"", {{2007, 3, 6}, {23,2,52}t}7,

[{'rseq-no",6},
{ "bodystructure rr, rrtext/plainrr, "7bit,",t 2ott," 577'r },
{"d"t"" , {{2007,3,6}, {17,9, o}}}l I }

The piece of code below illustrates the use of this library:

irn-client : start_link (Mailserver_nane, ssl),
{ok, -} = in-client:1ogia (Username, passr"rord),
{ok, MBoxInfo} = im_client:select ('rINBIX"),
{ok, MsgSetl} =

irn_client:fetch([{1,9}, 10],
[{"body" , 1, 1}, rrf ronrr ,rrtorr, rrsubject,']) ,

{ok, MsgSet2} =
in_client:fetch([{15, 20}],

["bodystructure"]) ,

7 It can assume the value 'ok', 'not' or 'bad,.
8In particulaç for the f etch command, it is a list of .,proplists',

The Erlang library also offers some interesting features. One
of thern is the ability to check the connection and re-instantiate
it, ifneeded; indeed the library avoids some protocol enors such
as the "brutal closure connection", which occurs when a login is
not perfonned within a tirneout after establishing the connection
or when, due to a long period of inactivity, the server unilaterally

36

decides to abort the connection. To this aim, before sending each
command, the library verifies if the user is just authenticated and
the connection has been set up. Another interesting feature is the
ability to support multiple client commands, since their sequencing
is then handled internally. Finally, since the library is based on OTP
concepts, it can be run as an OTP application embedded in a more
complex Erlang system, running in the same memory space as the
application using it.

7. Results
This Section compares software productivity measures of all IMAP
libraries evaluated in this work. The software metrics used for this
comparison are the followings:

c SLOC, which measures software size and exactly the number of
logical software lines;

c Functionality of primitives, which analyses the functionalities
of primitives provided by the IMAP libraries;

. Amount of memory, which measures the space cost of the li-
brary;

c Execution time, wbich measures the time required by different
libraries to perform protocol activities.

The following subsections will report all results that have been
collect during this work.

7.I SLOC

The SLOC is a software rletric that provides a measure of the
effort needed to create an IMAP library in a speciûc prograrnming
language. As discussed in Section 5, libraries analyzed in this
paper present different characteristic as they do not provide the
same number of functionalities, in tenns of both IMAP primitives
supported and parsing of server responses. For these reasons, we
decided to consider the pieces of code, of the various libraries,
which implement (more or less) common IMAP prirnitives.

Language Lines
-lirlang t,189
Python 4'/2
Ruby 1,6t2
C# 1,089
Java nla

Table 1. SLOC

Table 1 sumrnaries the lines of code calculated; the highest
nurnber of SLOC is that of Ruby irnplernentation, while the shoftest
library is the Python one. Erlang and C# feature a similar number
of SLOC, while, for JavaMail, this measure cannot be perfonned
since the source code is not released.

The srnall SLOC number featured by Python is justified by the
complete absence of any parser. With respect to the architecture
illustrated in Section 4, the Python library only possesses the Com-
munication Layer, the Low-level Protocol Handler and the IMAP
High-Level Layer.

On the other hand, Erlang and Ruby implementations support
a full parsing of servers replies, and as a result present a higher
number of SLOC. The parser in the Ruby library is however rnore
complex than the Erlang one due to the deflnition of data types
and an intensive use of cornplex regular expressions. The lines
devoted in Ruby to reply analysis were 1048 in contrast to the
818 from the Erlang irnplementation. The reduction in Erlang is a

result of rnaking use of function clause matches in order to directly
identif, reply tokens and perfonn the appropriate data extraction.

This aspect not only improves performances (see Subsection 7.4),
but also the comprehension and rnaintainability ofthe source code.

Finally, the C# irnplernentation presents a number of SLOC
comparable to that of Erlang. This is quite interesting even if C#
does not provide full parsing ofthe server replies. It does not parse
the (often complex) result of the SELECT command, sornething
Erlang does in full. It does not support the LIST command and
only some parts of the FETCH comrnand, both of which Erlang
also fully supports.

7,2 Functionality of primitives

In this Subsection, we will describe the functionalities offered by
the various IMAP libraries comparing and contrasting their char-
acteristics. In particular, we will focus on the prirnitives "LOGIN",
"SELECTÆXAMINE", "FETCH" and "LIST". Table 2 sumrna-
rizes and compares the results ofthis analysis.

7.2.1 Login

The first functionality we deal with is authentication; to this aim,
each library has method or function that perfonns the IMAP LO-
GIN command. Al1 of the implementations require the "user-name"
and "password" to authenticate client to the seruer. The Python and
Erlang irnplernentations return a result value indicating the success
or the failure of the login command; other libraries raise an excep-
tion in the case of failed authentication.

7,2,2 Select

The second functionality we analyzed is the selection of the rnail-
box. The client prograrn can access the desired mailbox by means
of the SELECT or EXAMINE comrnand: the former opens the
rnailbox in read/write mode, the latter in read-only mode. With the
exception of JavaMail, all the libraries feature a proper SELEC-
T/EXAMINE function or method. The Java implementation, how-
ever, uses a different approach as it provides an open rnethod in
the Folder object which represents the mailbox. This method re-
quires a parameter that indicates how to open the specified mailbox
(READ-ONLY or READ-WRITE). Once a folde¡/mailbox is open,
its mode cannot be changed, e.g. from read-only to read-write or
vice versa: the Folder object must be "closed" and then re-opened
with the new mode. This policy is due to the class hierarchy and
model used by JavaMail and could rnake the client more complex:
indeed, even if the IMAP4 protocol manages a SELECT command
followed by the EXAMINE comrnand (to change the rnode to read-
only), the Java library does not manage this condition and must
close the selected folder and re-open it.

As for the reply to the SELECTÆXAMINE comrnand, C#
does not perform any parsing while Java does it, but manages the
resulting infonnation internally.

Python returns the total number of messages in the mailbox
(which is given by the EXISTS keyword in one of the untagged
responses ofthe server) while Ruby uses a different approach; in-
deed, the reply to the select rnethod is bare text (with no pars-
ing) ofthe server responsee, but the parsing is intemally handled:
the responses attribute of the Net: : IMAP object is a dictionary
whose keys "EXISTS" and "RECENT" are the number of total and
new messages of the rnailbox, retumed as a result of the SELECT
comrnand.

The Erlang library provides the most cornplete parsing of the
SELECT command; the provided select/1 function retums the
fup1e {result-value, parsed-response} : the former parame-
ter is the outcome of the command (success or failure) and the latter

9In particular, the retum value is the Ruby structure
Net::IMAP::TaggedResponse, which contains othcr hvo structs,
Net: :IMAP: :ResponseText and Net: :IMAP: :ResponseCode.

37

Command/PrimitÌve Erlang Python Ruby C# Java
LOGIN Yes Yes Yes Yes Yes
SELECl' Full parsing No Darsrns Partial parsing No Darslnq lntemal WiUll parsing
¡T, I UH Paramehlc Query

Flexible expression of ranges
Full parsing

-t'aralnelers as stnng
Ranges ¿s string

No parsina

Parameters as stflng
Range or single messages

Partial parsins

Only some queries suppoÍed
Single messages

Partial parsing

Hncapsulâted Quenes
Single messages

Full parsins
.Llsl' tsull parslng No parsrng Full parsing nla, iìutl parsing

Supported in current context

element is a "proplist", i.e. a list of tuples of the form {keyword,
value). In this proplist, the keyword is an Erlang atom represent-
ing the status information of the mailbox such as f lags, exists,
recent etc., while the second tuple element is the related valuelo.

7.2.3 Fetch

The FETCH command is treated by Pfhon and Ruby libraries in
a similarway. As introduced in Sections 6.3 and 6.4,the method
provided requires two parameters: a sequence number or a range
and the string command to send to the server. The Ruby imple-
mentation parses the server response and generates a proper result
value by means ofRuby structured type. The Plthon library one
the other hand, only parses ofthe tagged response, interpreting the
outcoÍìe ofthe cotunand, returning the untagged response "as-is".

The Java library provides a f etch rnethod with the Folder
class that downloads locally rernote lnessages; once fetching is
complete, messages are internally cached so new requests stored
locally will not result in a query to thc scrvcr. Evcn if thc cachc
allows the client to pick up data quickly, it is not able to send a user-
defined fetch comrnand using this rnethod. Moreover, it can retrieve
only the fetch attributes provided defined in the FetchProflle class.

The C# implementation has three fetch rnethods that retrieve
different section of a message:

. FetchPartBody, which retrieves the body text of a message,
the text is returned to the client as string;

r FetchPartHeader, which picks up the header of a message
and returns its ûelds within an Anaylist;

. FetchMessage, which generates an XML flle containing the
field of header and body structure reply.

Therefore, the type ofthe reply and the support for parsing depend
on the method called; this is quite unusual because according to
good software design, methods of the same class with sirnilar
functionalities should behave similarly.

The Erlang library interface for the fetch prinitive is strongly
based on native data types. As detailed in Section 6.5, the pro-
gramrner can specifu both single messages and message ranges
within the single query and the data items to be retrieved by
tneans of proper list of pre-defined symbols. The reply orga-
nizes parsed data iterns in a "proplist", so it is quite easy, for
a programmer, to pick the requested item by means of a sirnple
proplists : get-value/2 function call.

7.2.4 List
The "LIST" cornmand aims at examining the hierarchy of the
folder/mailboxes. It is similarly supported by all libraries with the
exception of the C# irnplernentation, which does not provide this
functionality.

10It can be either a singlc value (for instance the value ofthe EXISTS un-
tagged response is only a number represcnting the total number of message
in the mailbox), or a list ofvalues ifthe untagged response contains many
value, as the FLAGS untagged response.

Table 2. Cornparison of Functionality of Primitives

The JavaMail package provides a list method in the Folder
class; therefore a client that has opened a mailbox can investigate
only its context.

The methods/functions provided by Python, Ruby and Erlang
have the same signature of the list function and require two argu-
ments; the reference name,which represents the context in which
to investigate, and the mailbox name, with possible wildcards. The
main difference is in the retum value. The Python library does
not perform any parsing and retums the (untagged) response as a
string for further analysis. The Ruby implementation instead parses
the response by returning an array of Net : : IMAP : : Mailboxlist
structures whose fields represent the attributes of a folder, retumed
by the cornmand. The Erlang implementation camies out, as result
ofa "LIST" query the tuple {result value, list}; the second
element is a list containing other lists; each inner list represents
a folder that matches the LIST pattern and its items are tuples of
the form {keyword, value}11 carrying the attributes associated
with this folder. An exalnple of the return value list function of
the Erlang implementation is reported below:

{ok, [[{nane,'rrnailbox-name-A" },
{separator, " , r'},
{noinferiors, false},
{noselect, false},
{marked, fatse} ,

{unnarked, false}l ,

[{nane, "roailbox-narng_8 " },
{separator, " , "},
{noinferiors , false} ,
{noselect,false},
{marked,false},
{unnarked, false}l I }

7,2.5 Discussion

The comparative outcome of the analysis of the functionality of
primitives is reported in Table 2. The Table highlights thar the most
featured and transparent irnplernentations are those in Erlang and
Java, while the most feature-poor irnplementation is the P¡hon
one. Erlang and Java solutions, however, differ in some aspects of
the software architecture because, while the Erlang irnplementation
provides a direct interface to the IMAP comlnands, JavaMail is
based on an object hierarchy with abstractions such as Fo1der and
Message; frorn this point of view, JavaMail suppolts a higher level
interface but undoubtedly introduces an overhead.

7,3 Amount of memory required

This rnetric evaluates the amount of memory required by an ap-
plication using the various IMAP libraries. The results provide the
memory irnprint cornputed for the various IMAP clients at run-time
while they are using these libraries. The second column in Table 3

contains the total mernory used by the program, the third one repre-
sents the memory taken up by the text code and the last one contains

38

ll It is a "proplist" again.

Table 3. Quantity of Memory Space Used (values are in KB)

It should be noted that this lneasure mainly reflects the usage of
the virtual rnachine and the library since al1 the tested languages are
interpreted. As reader can deduce, the highest amount of meriory is
required by the Java client program, which needs 212 MB of main
memory; indeed, since the code is only 14 MB large, the most of the
space is devoted to the class library which is loaded and cornpiled
(by the JIT) at the startup of the fVM.

Th: lighter platform, from the point of view of the total size,
is Python: the VM size is only 4 MB and also the library is quité
srnall.

Erlang provides very interesting perfonnances: its virh:al ma-
chine is very small and is the lighter arnong the tested languages
as it occupies only 2 MB. The size of data ipace (4.5 MB)-is ãue
to the Erlang/OTP runtirne which is acivated at the startup of the
system.

7,4 Executiontime/throughput

This Subsection compares the execution times of some prirnitives
of the IMAP irnplernentations described in this paper. Thè airn is to
evaluate the perfonnance of each library in order to compare and
contrast the throughput. These results will allow us to get Jsense of
which prograrnming languages and which architecture best meets
the productivity requirements and performance of a distributed sys-
tem. In general, perfonnances are determined by cornmunication
ald process management, therefore, for each library we measure
the tirne of the network interaction. Network interaciion is the time
required to send and receive protocol commands together with the
tirne taken to parse the server result.

All the tests have been conducted using the same mail server and
the same set of email messages. The testing platfonn (the client)
is a 2 GHz Intel Centrino PC, equipped wiitr t Ce of RAM aná
l-]buntu Linux 7. 10 (kemel 2.6.22). Client and server are connected
to the same fast-Ethemet LAN. The runtime systems used for the
languages tested are reported in Table 4.

Language 'lbtal Code Data/Stack
ErÌang 8,056 2,868 4,656
Python 6,748 4,400 r,6E4
Ruby t4,942 4 7?) 10,386
C# I 8,800 l l, t48 2,748
Java 212,852 t4,428 190,060

Language
Erlang RllB-5 r erts 5.5.5
Plthon 2.5
Ruby 1.8
C# Mono JIT 1.2.4
Java Sun's JDK 1.6

Table 4. Platform,/Runtirne Systems for the Libraries Tested

Table 5 reports the execution tirnes obtained for each command
on all the IMAP libr.aries. Unluckily, the Java and C# libraries do
not provide exactly the same functionality offered by other IMAp
libraries; indeed, JavaMail and Imaplibrary have a different policy
to retrieve data when compared with the other implementátioni.

the amount of memory used by the stack and heap of the program
to keep its datal2.

Furthermore, they present particular primitives which perform a
composite IMAP4 command which cannot be mapped to any of
the other commands generated by other libraries. Fòr instance, the
C# library offers the fetchMessage method to send the IMAp4
"FETCH BODYSTRUCTURE" and,,FETCH BODYIHEADERI"
commands, which produces an XML file as the outcome of iis
parsing activity. In addition, the high-level interface of the C#
irnplernentation does not offer primitives to directly perfonn a
basic IMAP4 comrnand; only JavaMail allows developeri to send a
user-defined command overriding the doConnand method of the
fMAPFolder class. This last function executes the user-defined
IMAP4 command and returns an array of Response objects which
contain the ASCII seryer response. As a result, this method does
not perfonn any parsing activity.

^ As_discussed in the previous Section, the JavaMail package of-
fers a large range of classes and methods to perfonn ttrlae4 p.o-
tocol activity. The retrieval of data and handling of the mailbox
are encapsulated within a Java object, hiding the whole mechanisrn
from the developers. Even ifthis policy simplifies the client pro-
gram, it made it hard to compute or compare the execution time of
some of the primitive, resulting the "not-available" for some mea-
sures.

Comparing the execution tirnes reported in Table 5, the reader
can notice that the Ruby irnplernentation provides the worst perfor-
lnances and also the C# solution does not present good exécution
tirnes. At first sight, the Python library seems the best; we should
remind that it does not perfonn any parsing activity, so the reported
trìeasures are (more or less) the times of the networVsocket com-
munication.

^ As for the Erlang and Java solutions, as the Table shows, they
feature- comparable performances for the comlnands providing thã
same functionalities (network transaction + parsing), which are
reported in columns 1,2,3,4,7 and 8: with the exception of
"FETCH BODYITEXT]", the Erlang solurion executes in Èss tirne
with respect to the Java libraryl3 . This is an interesting result, since
we should consider that the Java program is execuied in native
code (it is cornpiled by the JIT), while, in Erlang, execution is
mainly interpreted. This result is important as it confinns the ability
of_Erlang to fit the requirements of a distributed application, not
only in tenns of distribution and fault tolerance (handled by the
native mechanisms of OTP), but also for the performance aspects
concemed.

8. Conclusions
In this paper, we repofted the results of a comparative analysis of
five client-side IMAP protocol libraries implemented in di-fferent
programrning languages: Python, Ruby, C#, Java and Erlang. The
aim is to evaluate the performances of Erlang in order to get a sense
of the ability of this prograrnming languages and IMAp implernen-
tation architecture to meet requirements of productivity ând per-
fonnance for a distributed systern. We selected different parame-
ters to,perfonn our cornparison: number of Source Lines of Code
(S,LOC), which provides an assesslnent of effort needed;finction-
ality of primitives, which highlights the way in which IMAp proto-
col is supported and the quality of the interface to be then used by
the developer; amount of memory,whichmeasures the space cost of
the application; execution time, which Íìeasures the time required
to perfonn certain basic and critical IMAp activities.

_ ,Frorn the analysis, we can conclude that the Erlang library can
deliver the requirernents of functionality and perfonnance for a
distributed system. From the latter point of view, if we consider

13 The Erlang time in row 6 can be compared to the Java time in row 7 since
these two commands arc comparable in terms of both nefwork overhead and
rcply structure.

i.
I

12 Total Size also includes read-only data and other segments ofmemory
space, this is the reason why this value is gÌeater than the sum ofCode anã
Data/Stack columns.

39

Command/Primitive Erlang Python Ruby C# Java

I 2t4.6 45.7* 26.t 32.1 J0.7

z SELECT 2.5 2.1+ 44.3 t3.2 4.5

-t f.E'I'CH tsODY l Þ2t r 43.0 4l.l õ 80.2 40.u 40.2

4 T.E'I'CH IJODY HEADER] 2.5 o.24 44.5 5.3 2.9

5 T.-b'I'UfI BUDY HljltullK.t'lÞLljt 2.3 0.2õ 4J.U nla 1.3*

ó FETCH BODYSTRUCTURE l.E 0.¿* 80.2 nla 1.2ö

..) nla nla nla nla 1.9

8 LIST 0.'l 0.9* 52.1 nla 6.J

* : command executed without any parsing of the response

Table 5. Execution Times of Tested Commands (values are in milliseconds)

the implernentations with sirnilar functionalities (i.e' structured
parsing ofthe responses), the execution times ofthe Erlang solution
are high and comparable to those of Java, while the worst results

are featured by the Ruby irnplementation. And even if the best

results have been calculated for P¡hon, it should be noted that its
library lacks in-depth parsing activity and transparency offunction
signature. These results confirm that Erlang has signiûcant benefits

not only for the rapid production ofrobust distributed system, but
also for the achievement of desired performances without high
memory cost.

9. Acknowledgments
This work was a collaboration between Erlang Training and Con-

sulting, UK, and the University of Catania, Italy.

References

[1] http://www.rubyJang.org/en/.

[2] http://java.sun.com/products/javamaiVdownloads/index'html, 22oct.
200'7.

[3] J. Armstrong. A History of Erlang. In Proceeding of History Of
P rogramm ing L an guage s, 2007 .

[4] M. Crispin. INTERNET MESSAGE ACCESS PROTOCOL -

VERSION 4rwl. AWANET Requestfor Comment No. 3501,2003.

[5] T. DeMarco. Yourdon Press, New York' NY, USA, 1982'

[6] N. Freed and N. Borcnstcin. MIME (Multipurpose Intemet Mail
Extensions) Part One: Format of Intemet Message Bodies. ARPANET
Requestþr Comment No. 2045,1996.

t7] H. D. Garmus D. Function Point Analysis. Measurement practise for
successful software projects. ADDISON WESLEY, Nov' 2000.

[S] F. I. F. P. U. Group. Function Poínts Counting Practices Manual
(version 4.1.1), http: //uutw. iJpug' org./, WWW.2000.

[9] B. Hausman. Turbo Erlang: Approaching The Speed of C. In
Proceedings of the Implementations of Logic Programming Systems

Conference, 1993.

[10] D. Hubbard. The IT Measurement Inversion' CIO Enterpríse
Magazíne,1999.

[11] E. Johansson. HiPE: A High Performance Erlang System. In
Proceedings of the ACM SIGPLAN Conference on Prínciples and
Practice of Declorative Prcgramming, 2000.

[12] D. King, H. Nyshöm, and P Trinder. Comparing C# and Erlang
for Motorola Telecoms Software. ln Proceedings of the International
E r I an g U s er C o n-ference, 2006.

[13] T. J. McCabe. A Complexity Measure. IEEE Transaction on Software
E n gi neer i n g, 2(4), 197 6 -

[14] J. Myers. Simple Authentication and Security Layer (SASL).
AWANET Request for Comment No. 2222, 1997 .

[15] L. Prechelt. An empirical comparison of seven programming
languages. Computer, 33(10):2319, 2000.

[1 6] Python Software Foundation. http://wwwpython.org'

t17l QUALCOMM Incorporated. Intemet Message Format. ARPANET
Requestfor Comment No. 2822,2001.

[18] U. Wiger. Four-fo1d Increase in Productivity and Quaiity. In Pro-
ceedings of the FEnSYS, Deployment on Distributed Architectures,
2001.

40

Scalaris; Reliable Transaction al P2P Key/Value Store

Web 2.0 Hosting with Erlang and Java

Thorsten Schütt Florian Schintke Alexander Reinefeld

Zuse Institute Berlin and onScale solutions

sch uett@zib.de, schintke@zi b.de, reinefeld@zi b.de
t

Abstract
We present Scalaris, an Erlang implementation of a distributed
keylvalue store. It uses, on top of a structured overlay network,
replication for data availability and majority based distributed
transactions for data consistency. In combination, this implements
the ACID properties on a scalable structured overlay.

By directly mapping the keys to the overlay without hashing, ar-
bitrary key-ranges can be assigned to nodes, thereby allowing a bet-
ter load-balancing than would be possible with traditional DHTs.
Consequently, Scalaris can be tuned for fast data access by taking,
e.g. the nodes' geographic location or the regional popularity of
certain keys into account. This improves Scalaris' lookup speed in
datacenter or cloud computing environments.

Scalaris is implemented in Erlang. We describe the Erlang soft-
ware architecture, including the transactional Java interface to ac-

cess Scalaris.
Additionally, we present a generic design pattern to implement

a responsive server in Erlang that serializes update operations on
a common state, while concunently performing fast asynchronous
read requests on the same state.

As a proof-of-concept we implemented a simplified Wikipedia
frontend and attached it to the Scalaris data store backend. V/iki-
pedia is a challenging application. It requires-besides thousands
of concurrent read requests per seconds-serialized, consistent
write operations. For Wikipedia's category and backlink pages,

keys must be consistently changed within transactions. We dis-
cuss hów these features are implemented in Scalaris and show its
performance.

Categories and. Subject Descrìptors C.2.4 lDistributed Sys-

rernsl: Distributed databases; C.2.4 fDistibuted Sysrerøs]: Dis-
tributed applications; D.2.11 lSofuare architecturesl: Patterns;
E.l [Data structures]i Distributed data structures

Generøl Terms Algorithms, Design, Languages, Management,
Reliability

Keywords Wikipedia, Peer{o-Peer, transactions, key/value store

Permission to make digital or hard copies of all or part of this work for personaÌ or

classroom use is granted without fee provided that copies æe not made or distributed
for profit or commercial advantage and that copies beâr this notice and the full citation
on the first page. To copy olheruise, to republish, to post on servers or to redistribute

to lists, requires prior specific pemission and/or a fee.

Eilang')\, September 27, 2008, Victoria, BC, Canada.

Copyright O 2008 ACM 978-1-60558-065-4/08/09... $5.00

1,. Introduction
Global e-commerce platforms require highly concurrent access to

distributed data. Millions of read operations must be served within
milliseconds even though there are concurrent write accesses. En-
terprises like Amazon, eBay, Myspace, YouTube, or Google solve
this problems by operating tens or hundreds of thousands of servers
in distributed datacenters. At this scale, components fail continu-
ously and it is difficult to maintain a consistent state while hiding
failures from the application.

Peer-to-peer protocols provide self-management among peers,

but they are mostly limited to write-once/read-many data sharing.
To extend them beyond the typical ûle sharing, the support ofcon-
sistent replication and fast transactions is an important yet missing
feature.

We present Scalaris, a scalable, distributed key/value store.

Scalaris is built on a structured overlay network and uses a dis-
tributed transaction protocol, both of them implemented in Erlang
with an application interface to Java. To prove our concept, we im-
plemented a simple Wikipedia clone on Scalaris which performs
several thousand transactions per second on just a few servers.

In this paper, we give details on the design and implementation
of Scalaris. We highlight Erlang specific topics and illustrate algo-
rithm details with code samples. Talks on Scalaris were given at

the IEEE International Scalable Computing Challenge 2008t, the

Google Scalability Conference 2008 [15] and the Erlang eXchange

2008.
The paper is organized as follows. After a brief review of related

work we describe the overall system architecture and then discuss

implementation aspects in Section 4. In Section 5, we present a

generic design pattern of a responsive, stateful server, which is used
in Scalaris. We then present our example application, a distributed
Wikipedia clone in Section 6 and we end with a conclusion.

2. Related Work
Scalable, transactional data stores are of key interest to the com-
munity and hence there exists a wide variety of related work. Ama-
zon's key/value store Dynamo [3] and its commercial counterpart
SimpleDB which is used in the 53 service, are similar to our work,
because they are also based on a scalable P2P substrate. But in con-
trast to Scalaris, they implement only eventual consistency rather
than strong consistency. Moreover, Dynamo does not suppoft trans-

actions over multiple items.
The work of Baldoni et al. l2l focuses on algorithms for the

creation of dynamic quorums in P2P overlays-an issue that is of
particular relevance for the transaction layer in Scalaris. They show

that in P2P systems the quorum acquisition time and the message

latency are more important than the quorum size, which has been

41

I Scala¡is won the 1"¿ price at SCALE 2008, www.ieeetcsc.org/scale2008

AÞllhcêtron Lsy{tr

crash Leader

replicated
Transaction
Managers

(TMs)

Items at
Transaction
Participants

(TPs)recovery
modêl

crash stop
model

strong data ænsistency

implements ACID

improves availability
at the mst of ænsistency

implements
- scalabil¡ty
- evèntual consistency

1. Step

Prspsra

2.

3.

4.

5.

6.

unreliablê, distr¡buted nodes

majorlty

Figure 1. Scalaris system architecture. Àûk

Añer majorily

traditionally used as a performance metric in distributed systems.
This is in line with our results showing that an increasing replica-
tion degree r only marginally affects the access time, becauÀe the
replicas residing in the f(r + l)121 fastest nodes take part in the
consensus process.

Masud ef al. U}l also discuss database transactions on struc-
tured overlays, but with a focus on the consistent execution oftrans-
actions in the presence of failing nodes. They argue that executing
transactions over the acquaintances of peers speeds up the transac-
tion time and success rate. Scalaris has a similar concept, but here
the peer 'acquaintances' are realized by tho load balancer.

With Cassandra [8] and Megastore [4], Facebook and Google
recently presented two databases based on the p2p paradigm.
Megastore extends Bigtable with support of transactions and multi-
ple indices. Cassandra is more similar to Dynamo as it also provides
eventual consistency.

Figure 2. Adapted Paxos used in Scalaris.

routing performance, the fingers in the routing table are computed
in such a way that successive fingers in the routing table cross an
exponentia,lly increasing number of nodes in the ring.

Chord# uses the following algorithm for computing the fingers
in the routing table (the infix operator æ . A retneves g from the
routing table of a node r):

frngero:
successor
f,ngern_, . fingero_, J

0
0

3. System Architecture
Scalaris is a distributed key/value store based on a structured p2p
overlay that supports consistent writes. The system comprises three
layers (Fig. 1):

¡ At the bottom, a structured overlay network with logarithmic
routing performance builds the basis for the key/value store. In
contrast to many other DHTs, our overlay stores the keys in lex-
icographical order, hence efficient range queries are possible.

¡ The middle layer implements replication and ACID proper-
ties (atomicity, concurrency, isolation, durability) for conõur-
rent write ope¡ations. It uses a Paxos consensus protocol [9]
which is integrated into the overlay protocol to ensure low com-
munication overhead.

r The top layer hosts the application, a distributed key/value
store. This layer can be used as a scalable, fault-tolerant back-
end for online services for shopping, banking, data sharing, on-
line gaming, or social networks.

Fig. 1 illustrates the three layers. The following sections de-
scribe them in more detail.

3.1 P2P Overlay

At the bottom layer, the structured overlay protocol Chord# ¡t3,
141 is used for storing and retrieving key/value pairs in nodes
(peers)..that are arranged in a virtual ring. In each of the Iy' nodes,
Chord# maintains a routing table with O(log N) enries (fingers).
In contrast to Chord [17], Chord# stores the keys in lexicograph-
ical order, thereby allowing range queries. To ensure logarithmic

Thus, to calculate the i¿h finger, a node asks the remote node
listed in its (z - l)¿b finger to which node his (z - 1)¿h finger
refers to. In general, the fingers in level ¿ are set to the fingers,
neighbors in the next lower level ¿ - L. At the lowest level, the
fingers point to the direct successors. The resulting structure is
similar to a skiplist, but the fingers are computed deterministically
without any probabilistic component.

Compared to Chord, Chord# does the routing inThe node space
rather than the key space. This finger placement has ttilo advantages
over that ofChord: First, it works with any type ofkeys as long as
a total order over the keys is defined, and second, finger updates
are cheape¡ because they require just one hop instead of a full
search (as in Chord). A proof of Chord#'s logarithmic routing
performance can be found in [13].

3.2 Replication and Tþansaction Layer
The scheme described so far provides scalable access to distributed
key/value pairs. To additionally tolerate node failures, we replicate
all key/value pairs over r nodes using symmetric replication [5].
Read and write operations are performed on a majority of the
replicas, thereby tolerating the unavailability of up to l(r - l) lZ)
nodes.

Each item is assigned a version number. Read operations select
the item with the highest version number from a majority of the
replicas. Thus a single read operation accesses [(r + 1)/2'l nodes,
which is done in parallel.

Write operations are done with an adapted paxos atomic commit
protocol Il]. In contrast to the 3-Phase-Commit protocol (3pC)
used in distributed database systems, the adapted paxos is non-
blocking, because it employs a group of accepÍors rather than a

Scalaris: Kêy/Value Store 1= "i¡op¿"r0"*,

TËììa¡ìctìitn Lavor

Reglrcelrci¡l Laysr

PZP Layer

42

rêplic¡ group4 rePliø Sroupo

replicâ group3 rêpl¡o groupl

rõpliú Iroup2

nl

nl

nl

de

Figure 3. Symmetric replication and multi-datacenter scenario. By
assigning the majority ofthe 'de'-, 'nl'-, and 'se'-replicas to nodes
in Europe, latencies can be reduced.

single transaction manager. We select those nodes as acceptors
that are responsible for symmetric replication of the transaction
manager. The group of acceptors is determined by the transaction
manager just before the prepare request is sent to the transaction
participants (Fig. 2). This gives a pseudo static group of transaction
participants at validation time, which is contacted in parallel.

Write operations and transactions need three phases, including
the phase to determine the nodes that participate in the atomic
commit. For details see [1], 16].

In Scalaris, the adapted Paxos protocol serves two purposes:

First it ensures that all replicas of a single key are updated con-
sistently, and second it is used for implementing transactions over
multiple keys, thereby realizing the ACID properties (atomicity,
concurrency, isolation, durability).

3.3 Deployment in Global Datacenters

V/hile we also tested Scalaris on globally distributed servers using
Planetlab2, its deployment in globally distributed datacenters is
more relevant for international service providers. In such scenarios,
the latency between the peers is roughly the same and the peers are
in general more reliable.

When deploying Scalaris in multi-datacenter environments, a

single structured overlay will span over all datacenters. The 1o-

cation of replicas will influence the access latency and thereby
the response time perceived by the user. As Cho¡d# supports ex-
plicit load-balancing, it can-besides adapting to e.g. heteroge-
neous hardware and item popularity-place the replicas in specific
centers. A majority of replicas of German Wiki pages, for exam-
ple, should be placed in European datacenters to ¡educe the access

latency for German users.
Scalaris uses symmetric replication [5]. Here, a key 'de:Main

Page' is stored in five different locations in the ring (see Fig. 3).
The locations are determined by prefixing the key with '0', '1',
..., '5'. So the key of the third replica is '2de:Main Page' and the
third replicas of all German articles will populate a consecutive
part of the ring. By influencing the load-balancing strategy we
can guarantee this segment to be always hosted in a particular
datacenter.

Figure 4. Supervisor tree of a Scalaris node. Each box represents
one process.

4. Erlang Implementation
Tbe actor model l7) is a popular model for designing and imple-
menting parallel or distributed algorithms. It is often used in the lir
erature [6] to describe and to reason about distributed algorithms.
Chord# and the transaction algorithms described above were also
developed according to this model. The basic primitives in this
model are actors and messages. Every actor has a state, can send

messages, act upon messages and spawn new actors.
These primitives can be easily mapped to Erlang processes and

messages. The close relationship between the theoretical model
and the programming language allows a smooth transition from
the theoretical model to prototypes and eventually to a complete
system.

Our Erlang implementation of Scalaris comprises many compo-
nents. It has a total of 1 1,000 lines of code: 7,000 for the P2P layer
with replication and basic system infrastru ctvre,2,700 lines for the
transaction layer, and 1,300 lines for the Wikipedia infrastructure.

4.1 Components and Supervisor Tree

Scalaris is a disributed algorithm. Each peer runs a number of
processes as shown in Fig. 4:

Failure Detector supervises other peers and sends a crash mes-
sage when a node failu¡e is detected.

Configuration provides access to the configuration file and main-
tains parameter changes made at runtime.

Key Holder stores the identifier of the node in the overlay.

Statistics Collector collects statistics and forwards them to central
statistic servers.

Chord# Node performs all important functions of the node. It
maintains, among other things, the successor list and the routing
table.

Database stores the key/value pairs of this node. The current
implementation uses an in-memory dictionary, but disk store
based on DETS or Mnesia could also be used.

nl

i'
Lt'
t,'

ì'
i'i. - :
i
i

The processes are organized in a supervisor tree as illustrated
in Fig. 4. The first four processes are supervised by a one-for-
one supervisor []: When a slave crashes, it is restarted by the

supervisor. The right-most processes (Chord# Node and Database)
are supervised by an all-for-one supervisor which restarts ¿/l slaves

when ã single slàve crasLed. In Scalaris, when either ofthe Chord#
Node or the Database process fails, the other is explicitly killed and
both are restarted to ensure consistency.

Chord# Nods Roullng Tablo
On*foí.onê
superylalon

All.for-one
supev¡sion

Load BalencarDabbæo

Mod. Påxo3KsyHoldsr

Conflgurallon

Mânâgors

Fållur6 D€tsctor

http://www.planerlab.org

43

4.2 Naming Processes

In Erlang, there are two ways of sending messages to processes: by
process id or by addressing the name registered as an atom. This
scheme provides a flat name space. We implemented a hiera¡chical
name space for processes.

As described in Sec.4.1, each Chord# node comprises a group
of processes. Within this group, we address processes by name. For
example, the failure detector can be addressed as failure_detector.

Running several Chord# nodes within one Erlang Virtual Ma-
chine (VM) would lead to name clashes. Hence, we implemented a
hierarchical process name space where each Chord# node forms
a 'process group'. As a side-effect, we can traverse the naming
hierarchy to provide monitoring information grouped by Chord#
nodes.

For ihis naming scheme, every process stores its group id in
its own process dictionary. At startup time, processes announce
their name and process identifier to a dictionary inside the VM,
which is handled by a separate process in the VM. It can be queried
to find processes by name.or by traversing the process hierarchy.
Additionally, most Chord# processes support the {'$gen_cast',
{debug-info, Requestor}} message, which allows processes to
provide custom monitoring information to the web interface.

4.3 WAN Deployment

Erlang provides the 'distributed mode' for small and medium de-
ployments with limited security requirements. This makes it easy
to port the application from an Erlang VM to a cluster. In large de-
ployments, however, the network traffic caused by the management
tasks within the VM dominates the ovcrall traflìc.

_ In our code, we replaced the '!' operator and the self0 function
by cs-send:sendQ resp. cs-send:this0. At compile time we can
configure the cs-send module to use the Erlang distributed mode or
our own transport layer using TCP/IR which will be based on the
Erlang SSL library in the future.

This approach also allows us to separate the application logic
from the transport layer. Hence, NAT traversal schemes and firewall-
aware communication can be implemented without the need to
change Chord# code.

4.4 Transactionlnterface

Transactions are executed in two phases, the read phase and the
commit phase. The read phase goes through all operations of the
transaction and keeps the result of each operation in the transac-
tion log. During this phase, the state of the system remains un-
changed. In the commit phase, the recorded effects are applied to
the database when the ACID properties are not violated.

Read phase. For the read phase, we use a lambda expression
which describes the individual operations to be performeã in the
transaction (see Alg.4.1). The mentioned transaction log is passed
through all calls to the transaction API and updated accordingly.
Passing a function to the transaction framework allows us to easily
re-execute a transaction after a failure due to concurrency.

Commít phase. The commit phase is started by calling do_trans-
action (see last line in Alg. 4.1). The transaction is executed asyn-
chronously. The function spawns a new process and retums im-
mediately. The Processld which is passed will be notifled of the
outcome of the transaction. The SuccessFun resp. FailureFun are
applied to the result of the transaction before the result is sent back.
For the Scalaris implementation, we use the two functions to in-
clude transaction numbers into the status messages when a process
has several outstanding transactions.

We use the Jinteface package to enable Java programs to per-
form transactions. The transaction log is managedby the Java pro-
gram. On a commit the complete log is passed to Erlang and the

Algorithm 4.1 Incrementing thekey Increment inside a transaction

run-test-increment(State, Source_Pl D)->
% the transaction
TFun : fun(Translog) ->

KeY: "¡¡6t"'nun,",
{Result, Translogl} : trânsaction-api:read(Key, Translog),
{Result2, Translog2} :

if Result :: fail ->
Value : l-, % new key
transaction_api:write(Key, Value, Translog);

true ->
{value, Val} : Result, % existing key
Value:Val *1,
transaction_api:write(Key, Value, TransLogl)

end,
%o error handling
if Result2 :: ok ->

{{ok, Value}, Translog2};
true -> {{fail, abort}, Translog2}

end
end,
SuccessFun : fun(X) -> {success, X} end,
FailureFun :

fun(Reason)-> {failure, "test increment failed", Reason} end,

%o trigger transaction
transaction :do-transaction(State, TFun, SuccessFun,

FailureFun, Source-PlD).

Algorithm 4.2 Java Transactions

// new Transaction object
Transaction transaction : new Transaction0;
/ / start new transact¡on
tra nsaction.start();

//read account A
int accountA :
. . new lnteger(transaction. read(" accountA")).intValueQ

//read account B
int accountB :

new lnteger(transaction. read(" accountB")).intValue0

f fremove 100$ from accountA
transâction.write(" accountA",

new lnteger(accountA - 100).toString0);
/ /add 100$ to account B
transact¡on.write(" accountB",

new lnteger(accountB + 100).toString0);

transaction.commit0;

do-transaction function. Note that transaction descriptions in Java
are usually more compact because error handling is done using ex-
ceptions (see A1g. 4.2) while in Erlang, the error handling is done
in the actual code.

5. Responsive, Stateful Server in Erlang
In distributed server software, slow write operations often block
faster reads. A1g. 5.1 shows a generic server architecture (design
pattern) that manages reads and writes on a shared state separately.
This is done in such a way that read requests can be immediateiy
answered even though a concurrent write operation still blocks the
process. Two processes manage the shared state: a public asyn-

44

Algorithm 5.1 Responsive, stateful server

-mod u le(account).
-export([start/0,syncloop/2,slowbalance/2]).

newAccountQ -> 0.
startQ -> spawn(funQ ->

Account : newAccount0,
SyncloopPid : spãwn(account, syncloop, [selfQ, Account]),
asyncloop(SyncLoopPid, Account)

end).

% all requests have to be send to the asyncloop
To read from State via spawns, if its a slow read
%o forward wr¡tes to the syncloop
asyncloop(SyncloopPid, State) ->

receive

{updatestate, StateNew} ->
% for better consistency make a join for all spawned
% slow reads here
% for better security, only allow the syncloop
% process to update the state
asyncloop(SyncLoopPid, StateNew) ;

{balance, Pid} ->
Pid I State,
asyncloop(SyncLoopPid, State);

{slowbalance, P¡d} ->
spawn(account, slowbalance, [State, Pid]),
asyncloop(SyncLoopPid, State) ;

% all other messages go to the synchronous loop
Message ->

SyncloopPid ! Message,
asyncloop(SyncLoopPid, State)

end.

% internally use a syncloop to serialize all State changes
syncloop(AsyncloopPid, Stâte) ->

receive

{credit, Amount} ->
NewState : State + Amount,
AsyncloopPid ! {updatestate, NewState},
syncloop(AsyncLoopPid, NewState) ;

{draw, Amount} ->
NewState : State - draw(Amount),

AsyncloopPid ! {updatestate, NewState},
syncloop(AsyncLoopPid, Newstate) ;

syncloop(AsyncLoopPid, State)
end.

% functions, that take some time to be executed
slowbalance(State, Pid) ->

receive
after 60000 ->

Pid ! State
end.

draw(Amount) ->
receive
% the bank still works with your money for 10 seconds
after 10000 ->

Amount
end.

chronous receive loop asyncloop that performs the reads and for-
wards the write requests to a private synchronous receive loop syn-
cloop. By this means, write requests are serialized and there is a

local atomic point in time when the state changes.

Slow reads may still deliver outdated state. This can be over-
come by waiting for all outstanding reads to be completed before
changing the state in the asyncloop (not depicted in the algorithm).

Exømple. Alg. 5.1 shows the processing of states for a bank ac-

count. The server provides two read requests (balance and slow-
balance) and two write requests (credit and draw) for managing an

account. Clients send all their requests to the asyncloop. The server
is started by calling account:startO. This spawns a process, which
first initializes the account with zero, spawns the syncloop with a

reference to itself, and finally executes the asyncloop.
On a balance or slowbalance request to the asyncloop, the ac-

count balance is returned to the requesting process from the cunent
state. In case ofslowbalance the state is given to a spawned process,

which is then executed concunently in the background. In practice,
this spawning should be used when some calculations or other time
consuming tasks must be executed on the state before the request

can be answered. This way, other requests can be performed by the

server conculrently. Here, the corresponding function slowbalance
just waits 60 seconds before delivering the result.

In addition, the asyncloop handles updatestate requests as

discussed below. All other messages are forwarded to the syncloop.
The syncloop handles the write requests cred¡t and draw. All

other messages are ignored and dropped. The syncloop must not
spawn processes to calculate state changes, as all state manipulation
must be serial to ensure consistency. Here, the draw takes 10

seconds to be performed (the bank uses this time to work with your
money). This time has to be consumed synchronously. In practice
this could be a time consuming calculation which is necessary to
determine the new state. After having calculated the new state,

syncloop sends the state with an updatestate request to the async-
loop and works on the new state by itself.

When the asyncloop receives an u pdatestate message from the

syncloop it takes over the new state from the message. This is the

atomic point in time when the write request becomes active, as all
future requests will operate on this new state.

This leads to a relaxed consistency in the server that is sufficient
for updating the routing tables and successor lists. Here, relaxed
consistency does not harm, because these tables are subject to churn
and will be periodically updated with unreliable link information
anyway. If a stronger consistency model is needed, the transaction
mechanism of the Erlang Mnesia database package could be used.

6. Use Case: Wikipedia
To demonstrate Scalaris' performance, we chose V/ikipedia, the
'free encyclopedia, that anyone can edit', as a challenging test

application. In contrast to the public Wikipedia, which is operated

on three clusters in Tampa, Amsterdam, and Seoul, our Erlang
implementation can be deployed on worldwide distributed servers.

We ran it in two installations, one on Planetl-ab and one on a local
cluster.

The public Wikipedia uses PHP to render the Wikitext to HTML
and stores the content and page history in MySQL databases. In-
stead of using a relational database, we map the Wikipedia content
to our Scalaris key/value store [12]. We use the following map-
pings, using prefixes in the keys to avoid name clashes:

key value

¡

I
I

page content

backlinks

categor¡es

title

title
category nâme

list of Wikitext for
all versions
list of titles
list of titles

45

#'":x
i

'!ØrxrÞ¡r¡A

ð*ikl i be,:hrlrrr:h¡i : yrrrl^ v¡?rsnrñ¿'Èrto{rn

Hau

Grlåß Gott tn da boå¡¡schn wlklPedlat D' wihipe¡iì ,5 ¿ Projêkt ñim Aufba(vô àna freirì Er12,ti,ö|lådie, ¡n mehr w¡á 200 språchn. Dé Version
is ¡n do grrÚrì5ch¡ gfrråch g5chr¡èbm. Àlle.,.dé a¡ Dlðlekt redn, der då dðzuåghert tin Åiabeyan, osLnreictr und gú(t¡rol), derfn m¡lschre¡bm. Egàl,
obs auf Nord', Mitu' odõ Südboãdsch is, A¡s, wås d' schreibst. derf ire¡ top¡é,û uÍd wú¡ìðúeþm wÉrÍ. Då Àfåts js qånz á¡åcnt
. Eine kuaze Bes{hrê¡bung dieses Projekts in anderc¡ spràchen,
. A short des4¡it3t¡orì ôbout thls proJect ln other lðnguages.

{ { tluÀ'lufRÕFr\ÂTlCtfS} } Àrt¡kt: À bts Z und tjeie ,1fi¡kr. W'k'fiêd'r,P(!iÌal

¡ LÞtnêÃndênnìoê¡

hilf

¡ finåroielle H¡lf

¡ Urìke âut dê Seiur

. ilãilíådñ

.5pÈziå1.gê¡rn

¡ BirhràìrCige ußL
¡ þito ¡ifiêm

Gê0drÀfiÞ

Atrlkã - Amedkã - Aetetr - AuttHl¡çn - Europa: Bðysn . De¡tsckiårìd , f,rlnkreich .
üroßbrilürnìrn .Öslareìrh . lrlånd . ¡tùlieÍ. lurcÞä¡i(he Urr¡on. gloer'és¡etr.
f.ie{htretå . 8elÉieil . Sildtlroi

:'¡n^
Glãubm

BuddtrigÌus . HiÍduisrîus . Judntunl . Kristnturrì . ¡s¡èû . My8ìolú{¡e. Esotêtlk .
Naiclre R*¡iqiofiet

I'tij'
Ënort

Fislrurkey . l*:i'ìt!iri' t,å*rllÌåi' t*¡¿¡t¡ìthtetik . IéñÍre . âiilfk$st,ì,ilufûì
{Bl¿rlêet¡lùfrfr} . Schåfl(ltrf . Krår'n

,:l
Ð^

Vût- urrl frì;ì!l$rhi{ht . Ålt¿tum . i{ittlåitr . Fr¡åråre t{e¡3e¡t . ifi1Íìeriåitsmus índ
Vlöidkriåte . ?v/úáta $iò¡dkrilg

l'¡t''
Gc¿i¡..håf}

pc';Ì.ik .'¡Tirie,ii1,!li. Rêrht' fÌhih

1'âgÀ
Te*hnik

Vùkehr . Àt{h¡tek!.ilr I Hektraiè{hDik . {brìpuler . ÍðlÕaràlie

i"ÉA

i irl Kunst und l' ¡rA
wiaEnÈ.kåfi

8iàciið.g,êt{,ìtuÚì.spräch.Rú{kmur¡.Ëwåìd.¡vt(sìvcn1åo¡risùhñSljrårrri,jôrlvlàiliÈnìàtil'F}'5ik'ElhnolÐ?re.ÊécôEü{ik.Sùzlàle/ir5tr5chåft.
' " """' R--¿htç$ic(Fnrchåô

aC pl: ptì nr: rti ru: ru,sibì s{iìì ghr sj¡"rfjle: sk, 9l: go: 5a: 5v; flÌì ll, tt: uk: tåì ¿h: ¡lì,¿lãrriaõl: f,h_fiin,nôn: zl¡{uê;. s{rndârd l

¡ loè Ê€ìde.€r l

. ãdDog ÀusdNi!: :

Kôle0orie: Yriiiú?..tii

LrþõWalxpediâ ìn:F&ss0ni

Client

HTTP Load Balancer

Figure 6. Screenshot of the Bavarian Wikipedia on Scalaris. Images are not included in the dump.

Request for page A Page A

HTTP

Chord#,
repl ication,
and transåctions
written in Erlang

Webserver Q Replica of page A lr

Figure 5. Wikipedia on Scalaris

The page rendering of the Wikitext is done in Java in the web
servers (see Fig. 5) running jetty. Here, we modified the Wikitext
renderer of fhe plog4u project for our purposes.

Using this data layout, users may view pages by typing the
URL, they can navigate to other pages via hyperlinks, they can edit
pages and view the history of changes, and create new pages (see

the screenshot in Fig. 7). Since the Wikipedia dumps do not include
images, we render a proxy image at the corresponding positions
instead. Moreover, we do not maintain a full text index and there-
fore full text search is not supported by our implementation. This
could easily be performed by external crawling and search indexing
mechanisms.

When modifying a page, a transaction ove¡ all replicas of the
responsible keys is created and executed. The transaction includes
the page itself, all backlink pages for inserted and deleted links, and
all category pages for inserted and deleted categories.

Perþrmance. Our Erlang implementation serves 2,500 transac-
tions per second withjust 16 servers. This is better than the pub-
lic Wikipedia, which serves a total of 45,000 requests per second,
of which only 2,000 hit the backend of approx. 200 se¡vers. For
the experiments, we used a HTTP load balancer (haproxy) to dis-
tribute the requests over all participating servers. The load gener-
ator (siege) requested randomly selected pages from the load bal-
ancer.

7. Conclusion
We presented Scalaris, a distributed key/value store based on the
Chord# structured overlay with symmetric data replication and a
transaction layer implementing ACID properties. With Wikipedia
as a demonstrator application we showed that Scalaris provides the
desired scalability and effi ciency.

Our implementation greatly benefited from the use of E¡-
langiOTP. It provides a set of useful libraries and operating pro-
cedures for building reliable distributed applications. As a result,
the code is more concise than C or Java code.

Additionally, we presented an Erlang pattem that implements
responsive, stateful services by overlapping fast reads with concur-

46

rent synchronous (slower) write operations. This framework did not
only prove useful in our key/value store, but it can be used in many
other Erlang implementations.

We believe that Scalaris could be of great value for suppliers
of online services such as Amazon, eBay, Myspace, YouT[rbe,
or Google. Today, global service providers face the challenge of
ensuring consistent data access for millions of customers in a 24/7
mode. In such environments, system crashes, software faults and
heavy load imbalances are the norm rather than exceptions. Here,
it is a challenging task to maintain a consistent view on data and
services while hiding failures from the application.

Our P2P approach with replication and ACID provides a de-
pendable and scalable alternative to standard database technology,
albeit with a reduced data model. Each additional peer conributes
additional main memory to the system, hence the combined mem-
ory capacity resembles that ofcurrent (large) SAN storage systems.
If this is not sufficient, Scalaris can be easily modified to write its
data onto disk. For backup purposes, our ACID implementation al-
lows to take consistent snapshots of all data items during runtime.

Apart from distributed transactional data management, Scalaris
can also be used for building scalable, hierarchical pub/sub ser-
vices, reliable resource selection in dynamic systems, or intemet
chat services.

Acknowledgments
Many thanks to Joe Armst¡ong for commenting on our responsive
server code and to Nico Kruber for implementing the Java transac-
tion interface and adapting the Wiki renderer. This work was partly
funded by the EU project Selfman under grant IST-34084 and the
EU project XtreemOS under grant 15T-33576.

References

[1] J. Armstrong. Programming Erlang: Softwarefor a Concurrent World.
Pragmatic Programmers, ISBN: 978-1-9343560-0-5, July 2007

[2] R. Baldoni, L. Querzoni, A. Virgillito, R. Jiménez-Peris, and M. Patiño-
Martínez. Dynamic Quorums for DHT-based P2P Networks. NCA,
pp.91-100,200s.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon's Highly Available Key-Value SÍo¡e Proceedings of the 21st
ACM Symposium on Operating Systems Principles, Oct.2007.

[4] JJ Furman, J. S. Karlsson, J. Leon, A. Lloyd, S. Newman, and
P. Zeyliger. Megastore: A Scalable Data System for User Facing
Applications. SIGMO D 2008, Iun. 2008.

[5] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric Replication for
Structured Peer-to-Peer Systems. 3rd IntL Worl<shop on Databases,

Information Systems and P2P Computing,2l05.

[6] R. Guenaoui and L. Rodrigues. Introduction to Reliable Distributed
Programming. Springer-Verlag 2006.

[7] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. IJCAI, 1973.

[8] A. Lakshman, P. Malik, and K. Ranganathan. Cassandra: A Structured
Storage System on a P2P Network. SIGMOD 2008,Iun.2008.

[9] L. Lamport. Fast Paxos. Distributed Computing 19(2):79-103,2006.

[10] M. M. Masud and I. Kiringa. Maintaining consistency in a
failure-prone P2P database network during transaction processing.
Proceedings of the 2008 International Workshop on Data management
in peer{o-peer systems, pp. 27-34,2008.

[11] M. Moset and S. Haridi. Atomic Commitment in Transactional DHTs.
lst CoreGRiD Symposium, Alg.2007.

[12] S. Plantikow, A. Reinefeld, and F. Schintke. Transactions for
Distributed Wikis on Structured Overlays. 19th IFIP/IEEE Distributed
Systems: Operations and Management (DSOM 2007), Oct.2007 .

[3] T. Schütt, F. Schintke, and A. Reinefeld. Structured Overlay without
Consistent Hashing: Empirical Results. GP2PC'06, Iv4ay 2006.

ll4l T. Schütt, F. Schintke, and A. Reinefeld. A Structured Overlay for
Multi-Dimensional Range Queries. Europar, Aug.2007 .

[15] T. Schütt, F. Schintke, and A. Reinefeld. Scalable Wikipedia with
Erlang. G o o gle S c a lab ility C o nfe re nc e, Jun. 2008.

l16l T:M. Shafaat, M, Moser, A. Ghodsi, S. Haridi, T. Schiitt, and A.
Reinefeld. Key-Based Consistency and Availability in Structured
Overlay Networks. Third Intl. ICST Conference on Scalable
Information Systems, June 2008.

[17] I. Stoica, R. Monis, M.F. Kaashoek D. Karge¡ and H. Balak¡ishnan.
Chord: A scalable peer-to-peer lookup service for Intemet application.
ACM SIGCOMM 2001, Au'g.200l.

i-

i ,r ì

i.ì
i- ,r'

t.
i

:': I

l... 1

't .l

t:

47

High-performance Technical Computing with Erlang

Alceste Scalas Giovanni Casu Piero Pili
CRS4

Center for Advanced Studies, Research and Development in Sardinia
Polaris Scientific and Technological Park, Building 1, Pula (Cagliari - Italy)

{a lceste,giocasu, piero}@crs4.it

Abstract
High-performance Technical Computing (HPTC) is a branch of
HPC (High-performance Computing) that deals with scientific ap-
plications, such as physics simulations. Due to its numerical nature,
it has been traditionally based on lowlevel or mathematically-
oriented languages (C, C++, Fortran), extended with libraries that
implement remote execution and inter-process communication
(like MPI and PVM).

But those libraries just provide what Erlang does out-of-the-
box: networking, process distribution, concurrency, interprocess
communication and fault tolerance. So, is it possible to use Erlang
as a foundation for developing HPTC applications?

This paper shows our experiences in using Erlang for distributed
number-crunching systems. We introduce two extensions: a simple
and efficient foreign function interface (FFI), and an Erlang binding
for numerical libraries. We use them as a basis for developing
a simple mathematically-oriented programming language (in the
style of MatlabrM) compiled into Core Erlang. These tools are later
used for creating a HPTC framework (based on message-passing)
and an IDE for distributed applications.

The results of this research and development show that Er-
lang/OTP can be used as a platform for developing large and scal-
able numerical applications.

Cøtegoríes and Subject Descríptors D.1.3 ÍConcunent Pro-
grammingl: Distributed programming; G.4 lMathematical Soft-
warel'. Effrciency

General Terms Design, Languages, Measurement, Performance

Keywords Erlang, HPC, numerical applications

1. Introduction
With High-performance Technical Computing @PfC)we refer to
the use of parallel machines, or clusters of interconnected com-
puters, for executing massive scientific and numerical applications
(like physical simulations), possibly under real-time requirements.
Today, clusters assembled with PC-class hardware are the most
common HPTC solution, due to their low cost and increasing com-
puting power.

Pemission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided thât copies are not made or distributed
for profit or commercial advmtage and that copies bea¡ this notice and the full citation
on the first page. To copy otherwise, to republish, to post on sewers or to redistribute
to lists, requires prior specific permission and./or a fee.

Erlang'0\, September 27, 2008, Victoria, BC, Canada.
Copyright @ 2008 ACM 978- I -60558-065-4/08/09. . . $5.00

Distributed scientific applications are usually developed with
low-level or numerically-oriented languages (such as C, C++, For-
tran, etc.) that have no native concept of parallel execution and
interprocess communication. These languages are thus extended
with libraries like MPI (Message Passing Interface) 120, 2ll or
PVM (Parallel Virtual Møchine) [26] that implement communica-
tion primitives and allow to spawn and monitor remote processes.

In the context of a CRS4 research project, we have been re-
quested to build a framework for real-time HPTC, that should be
used by physicists and engineers. Our idea was to use Erlang/OTP
as a foundation for building distributed numerical applications, thus
exploiting its parallel nature and networking capabilities. In other
words, we wanted to replace the most common HPTC structural
"building blocks" (MPI, PVM, etc) with Erlang/OTP, in order to:

1. rely on what Erlang/OTP does natively (parallelism, fault toler-
ance, etc.);

2. use a highJevel and concurrency-oriented programming lan-
guage and platform for creating and extending our HPTC
framework, instead of building it on a lower-level ground using
C/C++/Fortran.

We also had to take into account that our target users do not
know Erlang, but are accustomed to numerical programming lan-
guages like MatlabrM ¡271.

The choice of the Erlang path led us to implement several novel
extensions and applications:

r a Foreign Function Interface for Erlang/OTP (section 3). We
include benchmarks and code samples showing its advantages
over the traditional Erlang linked-in driver interface;

t a BLAS (Basic Línear Algebra Subprograms) binding for Er-
lang/OTP (section 4), that guarantees native-speed numerical
computation, and allows numerical data (i.e. matrices and vec-
tors) to be easily managed using standard Erlang constructs;

¡ an imperative, MatlabrM-style language for numerical compu-
tation, called Matlang (section 5), compiled into Core Erlang. It
reduces the amount of code needed fo¡ numerical applications,
and allows Erlang-unaware physicists and engineers to exploit
the features of our Erlang-based HPTC platform;

o a model for distributed numerical applications in Erlang, and a

framework (called FLOW) based on that model (section 6);

o an IDE, called Clusterl, for building applications based on
the FLOW framework (section 7). It offers a visual approach
(reflecting tools like SimulinkrM [28] or LabVIEwrM ¡221; for
assembling distributed numerical applications, and its design
allows to handle large projects.

49

We also made some benchmarks in order to measure the per-
formance of our HPTC architecture in respect to the "classical"
C^4PIIBLAS combination, obtaining very good results (section 8).

2. Real-time HPTC
The development of HPTC applications with real-time require-
ments must face four main issues related to the distribution of com-
putation over a network of computers:

cluster assembly the clustering solution chosen for HPTC should
implement some sort of distributed virtual machine, that allows
processes to communicate in a network-transparent way. In-
terprocess communication may be implemented with message
passing or (network-transparent) shared memory, with all the is-
sues related to the "share-nothing vs. share-all" (i.e. "processes
vs. threads") approaches;

data copying the amount of data being copied in memory at run-
time should be minimized, thus reducing latencies and re-
sources usage. When adopting the message passing IPC ab-
straction, messages should be preferably sent as references to
shared memory buffers - but it also means that side effects
of each process/thread must be strictly controlled, in order to
avoid memory corruptions;

process migration when dealing with variable workloads and
long-running applications, processes may need to be migrated
from one cluster node to another: it allows both to balance
the computing load of the cluster and ensure that processes
exchanging high volumes of data are executcd on thc samc
machine (without wasting network bandwidth);

fault tolerance long-running distributed applications may have to
deal with hardware failures or software bugs that, starting from
one or more components, may influence the whole system. If a
complete failure is not allowed, then enors should be identified,
reported and handled in run-time.

A HPTC framework should help solving all these issues. Fur-
thermore, it must deal with existing numerical code: it is quite un-
common that low-level routines are developed from scratch, since
an enormous amount of well-tested mathematical functions is avail-
able. In particular, Iinear algebra packages such as BLAS [9, 10]
and LAPACK [2] are the foundation of almost all numerical ap-
plications; they also have several highly optimized implementa-
tions, either provided by hardware vendors (such as IntelrM ¡161
or AMDTM [1]) or available on the Web as open source soft-
ware (such as ATI,AS (Automatically Tuned Linear Algebra Sub-
programs) [30]). In addition, research centers and universities usu-
ally have relevant collections of home brewed numerical code. Any
good HPTC solution must allow to reuse existing software as easily
as possible.

3. A Foreign Function Interface for Erlang/OTP
As a direct consequence of the previous paragraph, one of the pri-
mary requirements of our Erlang-based HPTC solution is that ex-
isting numerical code could be reused without excessive complica-
tions. By solving this issue, it also becomes easier to (re)implement
performance-critical portions of an application in C, and call the
optimized routines from Erlang.

Unfortunately, the traditional Erlang/OTP solution for inter-
facing external code (i.e. developing a linked-in driver) shows
several shortcomings. It gives power and flexibility (like the ca-
pability to handle asynchronous execution)

- but the resulting
API is complex even for developers who just need to perform
some synchronous native function calls. This is the case with

numerical libraries: they are usually composed by tens or hun-
dreds of functions, and binding all of them with an Erlang linked-
in driver requires a relevant amount of boilerplate code for data
(de)serialization and type conversions. This code inflation, of
course, increases the possibility of introducing bugs. This issue
has been addressed with tools like EDTK (Erlang Driver Toolkit)
[13] and DTvERL [18] that autogenerate most of the glue code -but the procedure is still not straightforward. Furthermore, the glue
code itself may introduce latencies in native function calls.

For all these reasons, we developed an Erlang FFI (Foreign
Function Interface) that simplifies the creation of Erlang bindings
to native libraries. It does not offer the full potential of linked-in
drivers: it just performs synchronous calls with Erlang-to-C and C-
to-Erlang type translations - but it is done in a simple, automatic
and efficient way.

In order to use our FFI, it is necessary to load an existing shared
library, and obtain a port that will work as a handle for further C
function calls:

ok = erl_ddIl:load_Iibrary(r/Iib't, libc),
Portl = open-port("Iíbc").

It is now possible to perform direct C calls through that port:

Pointerl = ff i :raw_call(Port1,
{malloc,1024},
{pointer, size-t}),

ok = ff i :raw_cal1(Port1,
{free, Pointerl},
{void, pointer}).

The first tuple provided to raq¡_ca11/3 contains the C function
name and arguments, while the second one is the function signa-
ture

-
i.e. a tuple with the function return type followed by the

arguments types.
This FFI API is very easy to use, but introduces noticeable

overhead: each call must perform a C function symbol lookup and
build dynamic C call structures. In order to reduce such delays,
our FFI allows to preload functions and compile call structures in
advance:

ok = erl_ddll:load_library("/lib,,, libc,
[{Pre1oad,

l{Puts' {sínt' nonnull}},
{Putchar, {sint, sint}},
{malloc, {nonnul"I, size_t}},
{free, {void, nonnull}}l }l) ,

Port2 = open-port("libc").

The preloading mechanism allows to call C functions without spec-
ifying function signatures again:

Pointer2 = ffirraw_call(Port, {3, 1024}),
ffi:ra¡¡_call(Port, {4, Pointer2}).

The "3" and"4" occurrences above represent the positions of
mallocO and freeO in the preload list given as argument to
erl_ddll:load_library/3. Even ifthis API is less developer-
friendly, it can be used in the inner parts of an Erlang library
binding, possibly with the help of tools like SWIG t4l.

Since we are working on numerical applications, we have per-
formed a benchmarks on our FFI by executing a sequence of 5 ma-
trix multiplications. We called the BLAS function sgeronO (see
section 4) f¡om AILAS 3.6.0 in different ways:

o natively: C code with cblas-sgennO invocations;

50

N

o

O

,^Ó+<o
ãooo
Ê

@o
ci

5 BLAS multiplications (matrix type: single prec¡sion, iOxlO)

pffi eblas matlab octave numpy

BLAS interface type

o
o

cblas bif ff¡

o

ËËrËtlGã

ô

o

o o

r:+-rr..!!!!-.
o

-

-.:-o_

--

Figure 1. Box plot with benchmarking results of a sequence of 5 matrix multiplications (BLAS function sgenüO) performed in different
ways'. cblas (direct call in C through the CBLAS interface), bir (dedicated Erlang BIF, developed for resting pourposes), p7fi (Erlang FFI with
symbol preloading), eblas (highetlevel BLAS inrerface based on pffr), ffi (Erlang FFI, withour symbol preloading). The last three columns
show the timings of the same multiplications on MatlabrM Rl 4, GNU Octave 3.0.0 and NumPy 1.0.4 with Python 2.5. All the measurements
have been done by linking against the same BLAS implementation (ATLAS 3.6.0, optimized for ssE2) on the same platform (ubunturM
7.10, IntelrM PenriumrM 4,2800 Mhz). The box plot summarizes 20 repetitions of the benchmark.

'¡i

;

¡ in Erlang, with different strategies:

¡ using a dedicated BIF, developed for testing purposes;

. using our FFI, without function preloading;
r using our FFI, with function preloading;

¡ Matlabru R14 (by setting its environment variables to make it
load the required ATLAS version);

. GNU Octave [11] (linked againsr AILAS);
o NurnPy [23] (linked against AILAS).

The timings are summarized in fig. 1. We have chosen box
plots [29] for visualization, because they allow us to emphasize the
median value (bold line in each column) as well as the presence of
jitter and outliers (shown as isolated points above/below each pair
of "box and whiskers") among the repetitions of the benchmark.

The plots show that the FFVpreloading combination offers a
very good tradeoff: it introduces a small overhead compared to
native calls or dedicated BIFs, and its latency is still less than
MatlabrM. Furthermore, BLAS routines have been interfaced in
Erlang with just a few lines of code (mostly necessary for function
preloading): developing a linked-in driver for achieving the same
result would have required a greater effort (without guaranteeing
comparable performances).

Our Erlang FFI has been implemented as a series of patches
for OTP Rl1B-5 [25], and published as an Erlang Enhancemenr
Proposal [24].

4. A BLAS binding for Erlang/OTP
BLAS [9, 10] is the de facto standard for numerical computing.
It is a set of Fortran routines, also available for the C language
(under the name of CBLAS). Its functions are organized in lev-
els: level I (vector-vector operations), level 2 (matrix-vector) and
level 3 (matrix-matrix). A1l routines work on memory buffers con-
taining matrix or vector data, and support different numerical types
distinguished by the prefix of the function name: single precision
(s), double precision (d), and complex numbers with single (c) or
double (z) precision. This prefix will be indicated with <I> in rhe
examples below

The peculiar form of the BLAS API causes some issues when
designing language bindings and integrating existing code. The
following paragraphs summarize the problems, and, after listing
some additional requirements, present our solution.

Memory layout BLAS operations may access memory buffers in
different ways: when dealing with matrices, for example, function
parameters allow to use column-major (Fortran-style) or row-major
(C-style) modes, with or without transposition; furthermore, each
row/column may be separated from the others by any number
of unused values: a l0xl0 row-major untransposed matrix, for
example, could be accessed within a 10x20 one simply by passing
10 as row length, and 20 as the so-ca1led leading dimension (i.e.
the distance between the first elements of two consecutive rows).
These access patterns must be made available through the library
binding: they allow to integrate existing numerical routines even if
they follow different memory layouts for numerical data.

5l

tl--l---r---

I

I

I

-l-
I

I

ll
lì
ll

--f---T---

I

I

I---t ---ts-- _l_
I

I

I

I

---+---
I

I

I

---l---

t-
I

I

-t

lrl
ltl
l____r____l
ltl
ltl

I

---t---
Itl

tl
ts---t---
tl
tl

blas: i.nit O ,

T,"/, Cteate a 3x3 identity rnatrix
I = blas:eye(s, % Precision: 's'ingle or

3), 7. Ro¡¡s a¡d coLumns
V = blasrvector(s, 3, t1.0, 2.0, 3.01),

' d' ouble

l= øalt o Oytes

Figure 2. Example of matrix slicing: a 4x5 marix is indexed
within a binary containing the rows and columns of an 8x8 matrix.
Each cell contains a numeric value, sized between 4 and 16 bytes
depending on the matrix type.

Destructive API Most BLAS functions overwrite one of the argu-
ments with the result of their operations. Furthermore, basic oper-
ators may not be directly available - but they may be obtained by
calling more complex functions. For example, the contents of two
memory buffers A and B could be multiplied and stored in a bufler
C by calling the <X>gennO function

-
which, given the floating

point arguments o and B, performs the following operation:

C+aAB*þC
Thus, by passing o : 1.0 and B :0.0, we obtain C <- AB as we
needed.

As another example, there are no BLAS functions that imple-
ment matrix addition, and thus it is necessary to implement loops
of vector additions (one per row or column). But vector addition, in
tum, is only implemented with a function, called <X>axpyO, that
performs the following operations:

Y+aXIY
Since one of the operands is overwritten after the addition, we need
to make a copy if we want its value to be preserved.

API requirements An easy-to-use BLAS-based API for handling
vectors and marices in Erlang must satisfy several requirements:

1. matrices and vectors should be represented with standard Er-
lang terms, that could be sent between local or remote processes

using standard message passing. In-memory copies should be
avoided whenever possible;

2. new matrices and vectors are often created by slicing (for ex-
ample, a vector may be extracted from a column of a matrix).
This operation should be as efflcient as possible, minimizing
data copying and memory usage (and thus maximizing perfor-
mance);

3. there should be a functional, side-effect-free and Erlang-style
API for matrix/vecto¡ operations, that could be used without
caveats;

7.% Functional API exanple: blas:mu1/2
V2 = blas:nul(blas:rnu1(2.0, I), V),
VL = blas:to-list(blas¡transpose(V2)),
%% vL is:
7.7, t t2 . 00000,4.00000, 6. 000001 l

7,7. Procedural API exanple: blas:nu1/3
VTarget = blas¡vector(s, 3), % Ra¡dorn data
blas:nut(b1as:niul(2.0, I), V, VTarget),
VL = bLas:to-list(b1as:tra¡rspose(VTarget)) .

7.7. VTarget has be€n over!¡ritten, thus natching VL

Figure 3. Usage example of the Erlang BLAS binding.

4. there should also be a procedural interface, easier to use than the
underlying BLAS library, allowing to overwrite existing mem-
ory buffers - thus reducing memory allocations and garbage

collections;

5. lastty, there should be a one-to-one mapping between BLAS
routines and Erlang functions, in order to achieve the maximum
performance when necessary.

Implementation Facing all the requirements above, matrices
have been implemented with Erlang records:

-record(roatrix, {
type, 7, Atom: s, d, c, z
rows, % Nunber of rows
cols, 7. Nurober of columns
ld, 7. Leading dinension
trans, /, Transposi.tj-on indícator
offset, 7. Offset fron beginning of binary data
data 7. Refcounted binary with matrix data

J).

The same for vectors:

-record(vector, {
type, 7, Aton: s, d, c, z
length, 7. Nunber of e1e¡ûents
inc, % Distance betlreen elements
tÏans, 7. Transposition indicator
offset, % Offset from beginníng of bi"nary data
data % Refcounted binary with vector data

a\

These representations allow vector and matrices to be treated as

regular Erlang terms. The BLAS library binding ensures that bina-
ries assigned to the data field are always reference-counted, even
fo¡ small matrices or vectors: this is necessary in order to make the
procedural BLAS API work as expected (when small binaries are

copied instead of referenced, destructive updates may be "lost").
For this purpose, the binding always creates data binaries bigger
than the heap binary size limit (64 bytes on OTP Rl1B and R12B

It2l).
Matrix and vector slicing is obtained by adjusting the rows,

cols, 1d, length, inc and offset ûelds of the matrix/vector
records: they allow to use the same data binary to represent dif-
ferent matrices or vectors (see figure 2).

52

%% Function integration (4th-order Runge-Kuttâ)
Y = rk4(fn, 7. Function to integrate

3.0, % Initial value
[0.0, 0.7, O.2], % Integratíon points
Il); % Data (unused)

%% Integration result (on final point):
%11, Y = 1.64652

%7, Create a 3x3 identity natrix
I = eye(3);
%% The following expression ís equivalent to:
'/,'I V = blas:tra:rspose(
Y"T, blas:vector(s, 3, t1.0, 2.0, B,Ol))
V = [1.0, 2.0, 3.0],;

%% The fol-lowíng expression is equivalent to
'/,% V2 = blas:¡nul(b1as:mul(2.0, I), V)
v2 = 2 * I * Vi
%% Result:
'lT, V2 = [2.00000, 4.OOOOO, 6.OO0OO],

%% Fu¡ction definition
fuoction y = fn(x, t, data)

Y = -x * 3;
end;

There are also other minor differences, mostly due to unsup_
ported syntactic quirks (for an in-depth overview of the problems
in implementing a complete MatlabrM language parser, see [17]).

The main mismatch between Matlang (or any imperative lãn_
guage in general) and Core Erlang is the single-assignment seman_
tics. Since multiple assignments cannot be iranslatéd directly, we
followed a two-step strategy:

1. the Matlang parse tree is converted to SSA (Static Single As_
signment) form [8];

2. the SSA form is compiled in Core Erlang: Matlang íf state_
ments are converted into Core Erlang case switches, while f or
and while loops are tumed into letrecs.

In the second phase, @-functions inserted during the first step
are used to decide which variables must be retumed by each Corè
Erlang statement.

In its current incarnation, Matlang is a dynamically typed lan_
guage, and the compiler generates ¡elevant amounts of run_time
checks that ensure coffect typing of expressions. We are, however,
enhancing to the compiler in order to obtain a statically typed lan_
guage: mo¡e details are available in the conclusions (section 9).

6. An Erlang framework for HpTC
In section 2 we have seen four main issues that an HpTC framework
must solve: cluster assembly, process migration, minimization of
in-memory copies, fault tolerance.

In order to solve them, we defined a simple model that abstracts
a generic HPTC application:

A distributed numerical application is a set of looping nu_
merical processes connected by predefined communicãtion
channels (called b us e s)

We implemented this model in a framework , called FLOW, that
provides an API for building, running, monitoring and controlling
distributed applications. The developer only needJto define the bui
topology and the functions being looped by each process, while
FLOW takes care of distributing the computation loãd on a cluster
of-computers, dispatch communications and monitor the system
behaviour.

More in detail, a FLOW process is deflned by:

. an unique identifier;

. one or more input ports;

. one or moÍe output ports;
e a core function, with arguments and return values mapped re-

spectively to input and output ports.

Ports are cha¡acterized by an unique identifier and a signature
that speciûes which data types it handles. For example, an output
port may be called Outputl and produce three floating-point val_
ues, called æ,y and z.

Buses can connect one output port to one or more input ports,
provided that they have compatible type signatures (thebutputl
port may, thus, be connected to an input port that expects three
floating-point values as well).

As an example of FLOW application, we illustrate the simula_
tion of a mechanical system: a single-degree-of-freedom compound
pendulum (ng. 5), composed by a rod rtS with length I rhat oscil_
lates around point,9 constrained to O (the reference system origin).

The pendulum motion can be described with the followinf oí-
dinary differential equarion (ODE):

t -3o sin áo:-- tt -

Figure 4. Usage example of the Matlang language.

_. lh" resulting BLAS ApI for can be used as shown in fig. 3.
The benchmark results in fig. l, in the eblas column, show-that
the overhead introduced by the Erlang binding is moderate, and its
run-time checks do not eliminate the performance advantage given
by our FFI over MatlabrM or GNU Octave.

5. A MatlabrM-style language
At this point, Erlang and our BLAS binding are the basic elements
for assembling HPTC applications. But there are relevant draw_
backs:

1. the numerical code is verbose, expecially compared to equiv_
alent routines developed with mathematically-oriented lan_
guages like MatlabrM or GNU Octave;

2. even if the BLAS binding provides a procedural ApI with side
effects, it may be difficult to use efficiently: all the optimiza_
tions (and the risks of destructive updates on shared d^ata) are
left in the hands of the developer;

3. engineers and physicists (who, as we said in the introduction,
are the main target of our work) are not usually accustomed to
Erlang and functional programming: they expect to use some
procedural language, possibly with Matlab'rM_like data types
and syntax.

For..3ll these reasons, we decided to develop a procedural,
MatlabrM-like programming language that compiläs into Core Er-
lang [5, 6] by translating matrix and vector operations into BLAS
function calls (performed through our Erlang BLAS binding).

^ We called such language Matlang. A code sample is shówn on
figure 4.

The main difference between Matlang and MatlabrM is our
treatment of functions as flrst-class objects: in the code sample we
see how the fn variable (created when defining the homonym func_
tion) is passed to the integration routine rk4O. Since MatlabrM
does not support higher-order functions, the same behaviour could
be simulated by passing the ,f n) string to rk4 () - which, in turn,
would need to call eval O on its argument.

s3

I

I

a
able on the input ports, it is passed as argument to the core function;
after its execution, the return values are written on the output ports.

The core functions must respect the following signature:

core-fn(State, Params, Inputs) ->

{statel,0utputs}.lu

Figure 5. Schema of compound pendulum simulation: the rod -r?,9

falls subject to gravity g, but is constrained to O by artificial forces

f , and fn applied to its barycenter B.

By integrating such equation, we can obtain the pendulum angle 0

and its angular velocity 0 at any time instant.
But we could also follow a different approach:

¡ the rod is simulated as unconstrained and free-falling under
gravity g. Its position is indicated with barycenter B (with
coorcfinates (R,, Ro)) and angle á, whilç its horizontal, vertical

and angularìelocitles are indicated respectively with i)*, Bo

and 0;

¡ the pendulum constraint is simulated by two artificial forces (/'
and /r) applied to B. They are periodically recomputed so that,

every instant, the rod is moved to a position that makes point S
coincide with point O. In other words, /" and /, simulate the

pendulum constraint reactions.

The artificial forces are computed using well-known control the-

ory techniques: in a feedback-based loop, their intensity changes

depending on the current position, velocity and angle of the pendu-

lum. More details on this simulation scheme are available in [7]: it
allows to model complex constrained mechanical systems' achiev-

ing parallelization and numerical stability (even ifits benefits may
not be apparent from our simple compound pendulum example).

This kind of pendulum simulation can be modeled with two
processes:

. a process called Constraint that, given the rod state vector

(8,, Br, Bs,8u,0,0) as input, computes the constraint forces

f, and fy;
¡ a process called Rod that, given the current constraint forces and

the rod state vector, computes an updated state vector.

These processes should, thus, exchange the current state vector
and constraint forces. They should ¡emain idle until new inputs are

available. This model can be represented with a diagram, as seen in
fig. 6 (on the left).

This kind of diagram can be translated directly into a list of
FlowChildSpecs, i.e. a data structure that describes a FLOV/ ap-

plication in terms ofprocesses and buses (fig. 6 on the right).
The Fl0lJChildspecs in the example deflne two processes

and two buses. As anticipated above, the processes are character-

ized by an unique identif,er (Rod and Constraint), input/output
ports and a core function that is executed in an infinite loop
(core-Constraint,/3 and core-Rod/3). When new data is avail-

where State is a term representing the current intemal state,

Params contains constant parameters, and Inputs is a list contain-
ing all the values coming from the process input ports. The retum

tuple contains an updated intemal state (Statel) and a list of val-

ues that will be sent through the process output ports. When the

core function is called for the first time, the State parameter takes

the value of the stateO fleld from the process Fl0l'lChildSpec.
The Params parameter, instead, comes from the parans field.

Returning to our pendulum, we have two buses, B-state and

B-fxfy, which carry respectively the rod state and constraint
forces. The input-proces s'and output -Proces ses fi elds spec-

ify which VO ports get connected by each bus.

Since the pendulum simulation has a circular structure, both Rod

and Constraint have to wait until the other process writes some

values on its output port. In order to start the computational loop,

the Rod process has a field, outputO, with an initial value (i.e. the

initial rod state) that FLOW writes directly on the State port.

Lastly, the node field, found in both processes and buses, is

a hint that FLOW uses for load balancing: objects with the same

node value will be spawned on the same Erlang VM, while differ-
ent values will cause processes and buses to be clistrihuted among

different VMs.

6.1 Run-time services

At run{ime, the FLOW framework works like the Erlang/OTP

supervisor behaviour: it spawns, monitors and eventually restarts

FLOW processes when they die because of errors. The same hap-
pens for buses.

FLOW also provides several functions for the run-time manage-

ment of an HPTC application, allowing to:

¡ obtain the Fl0t'lChildSpec of a running application, in order

to reconstruct its topology;

. stop/resume processes or data dispatching over a bus;

¡ add, remove or replace processes;

¡ add, remove or replace bus connections;

o replace the core function of a process, or change its internal
state and parameters;

. migrate processes from one cluster node to another, without
halting the execution.

These functions allow, for example, to connect to a running
FLOV/ application, attach a monitoring process to a bus and ob-

serve the values being dispatched. The monitoring process can be

detached when needed. Returning to the pendulum example, we

developed an ESDL-based [14] real-time visualization tool that can

be attached to the B-state bus (flg. 7) with the following sequence

of Erlang statements:

Pid = spawn(pendulum-monitor, start, []),
ok = f low-bus : add-output-process (

{pendu}:m,'B-state'}, Pid)'

where pendulun is the identifier of the running FLOW application'
and the {pendulun, 'B-state '} tuple identifies the bus.

0

f*

s

54

Constraint

(Br, Bu Bo,8n,0,0¡

f*, fs

Rod

tilT FL0lir procêss specs
t
{type, process},
{id, 'Coustraint '} ,

{core, fria core-CoDstraint/3},
{node, n1},
{pææs, {1.0, 36.0, .,,I}, I Constraj.nt coeff icie¡ts
têtateo, oÌ,
{input-ports, [t'State', {vector}}]},
{output-polts, [{'Forces', {float, float}}]}

L
t
{type, process},
{id,,Rod,},
{core, fu core-Rod/3},
{node, n2},
{pææs, {9.80665, 1,0, ...}}, ./. Cravity, rod length.
{state0, {blas:vector(. . .)}},
{outputo, [{,State,, blas;vectot(...)}]},
{input_pÕrt6, [t,Forces,, {fIoat, ffoat}}]},
{output-ports, [{'Stats', {vector}}]}

L
'/,I FL0l4 bus apecs
t
{type, bug},
{id,,B-Btatê,},
{node, a2},
{input-procêss, {'Rod','State'}},
{output-processes, [{'Constraint, , , State, }J }

L
t
{type, bus},
{id,,B_fxfy,},
{node, n1},
{i¡put-process, {'Constraintr,'Forces'}},
{output-procêssês, [{'Rod','Forces'}J}

l
t.

Figure 6. Example of FLOW diagram with corresponding list of Fl0i./ChildSpecs. The communication channels are modeled with the
B-state and BJxfy buses.

When the monitor is not useful anymore, it can be detached by
executing:

ok = f Ior¿-bus : remove-output-process (

{pendulum,'B_state,}, Pid)

Running processes can also be migrated with a simple function
call:

{ok, NewPid} = flow-supervisor:nigrate-process(
{pendulurn,'Rod'},'vn@host.com')

It causes the Rod process to be moved from its current cluster node
to vro@host. coü, keeping its intemal state. Its input and output
buses are automatically redirected, without halting the execution of
the whole pendulun application.

il

:{

i
I

Figure 7. Real-time visualization tool for the compound pendulum
simulator. The barycenter is emphasized in the middle of the rod.
Since the screenshot was taken when the simulation was still con-
verging, we can see that the constraint is not completely satisfied:
the rod extremity is not centered in the reference system origin.

7. An IDE for HPTC applications
Even if the FLOW framework takes care of the low-level details,
modeling an large HPTC application could be a very long task: in
particular, specifying a list ofFl0lJChildspecs by hand is tedious
and error-prone. And we, as we wrote from the beginning, cannot
expect that our target users become proficient enough with Erlang
to handle it.

For these reasons, we developed an Integrated Development En-
vironment (IDE), called ClusterL, that allows to autogenerate and
run a FLOW application with a visual, point-and-click approach.

55

Eldt

tun

G¡Ftrrrûll!

Optm
goùal¡

stol

BüùlSt

(Mù,

Figure 8. Clusterl IDE workspace, with compound pendulum simulation diagram.

In its current form, it provides a workspace for placing FLOW pro-
cesses and buses, and a toolbar for editing them.

A screenshot of the interface can be seen in fig. 8: the simi-
larities between the contents of the workspace and the pendulum
diagram in fig. 6 are apparent.

Clusterl allows to program FLOW processes either using Er-
lang or Matlang. Code editing is performed with an editing dialog
shown in fig. 10. The GUI allows to define all the process fields
seen in the Fl0liChildSpec (section 6): VO ports names and types,
initial process state, initial outputs, clustering hints, etc. Processes
can be connected by adding buses - and, as one may expect, the
IDE checks whether the selected input and output ports have com-
patible type signanrres.

Clusterl also introduces some metaphors for representing par-
ticular types of processes:

. source processes, i.e. processes without input ports that only
generate output data. They can abstract extemal components
like read-only files or interfaces to hardware sensors;

r si¡rfr processes, i.e. processes that have input ports but no output
ports. They can be used to represent monitoring or logging rou-
tines, or interfaces to hardware devices that provide no input;

o nested processes, i.e. processes composed by several sub-
processes. This abstraction can represent reusable sub-systems,
and allows to assemble large distributed applications without
cluttering the GUI with tens or hundreds of objects.

When editing is done, the buttons on the toolbar allow to check
the consistency of the process graph, and autogenerate a FLOÌù/-
based application

- that could be run either from the toolbar, or
independently as a stand-alone product. The toolbar also allows to
configure a cluster of Erlang VMs, and decide how the application
will be distributed on the available nodes.

C

Figure 9. Schema ofparallel benchmarking application: the Head
process sends two matrices, A and B, to four worker processes,
which perform a sequence of BLAS operations (20 for each
worker) and dispatch results (matrix C), to Tail. When Tail col-
lects all four copies of C, it sends one of them to Head, which in
turn wakes up and sends Aand B again.

A, B

C

Head

Workerl Workêr2 Worker3 Worker4

56

. rk{(f¡t¡eÈltb!t!o, 10.0, bl. {ix, fy, I L b});
- {& y, thctù),

. rk4(fnr, x0, 10.0. hl, (fit el)¡

. rh'l(f¡y, y0, t0.0, bl, (fy, r gl),

h¡Ud oúþutr

r llsgrl(¿.0) / ¿1.0, 0.0I

y jþcrl(z.q /r.0, o.ol;

x ' v(2)¡
y . Dâtà{1}Æatå(2};

x
v

C$nîùt:

DefHthrs

code ok

thÞta llpl0 / 4.0, o.oÙ

rùnaouù F;ñ;- oer¡v' lã--

1

'*
(Bata{¡ }/2. 0) *si¡r

+e(2))))r(1)))

rêsu].t - fi. ylj

æ

Parãret8E
l€8,60665,1.0, 36.0, 0.0, 0.001ì

tlmd ¡râ¡a: l{f!.s, 0,01, f0.0, 0.0:, 10.0, û.0t

,[x,v€ clor_s],{y,rector_âJ,0hêtå,ve610r_sÏl

,l{t(,loat},{ry roafÍn

fny(v, t, Drt¡)

Í1] ;1jB"*,rr
* Dara{3})) ,/ DaLa{2};

hput port3 def:

û¡l¡utpütr dsf:

Figure 10. Clusterl IDE process editing dialog. The application is still in alpha stage, and some Erlang code snippets appear where a GUI
has not yet been defined (for example, in the text entries for deflning VO poft;).

Our experience so far shows that the Clusterl visual approach
helps Erlang-unaware physicists and engineers to develop dis-
tributed systems.

core PCs connected over a dedicated l-Gigabit Ethemet LAN. In
the latter case, each node ran three processes (two workers together
with either "head" or "tail").

Given this setup, we tried two different solutions for the Erlang-
based measurements:

1. we launched one SMP-enabled Erlang VM on each cluster
node;

2. later, we tried with two non-SMP Erlang VMs on each clus-
ter node. The VMs were bound to different CpU cores using
the LinuxrM taskset utility [19], and each VM ran a singlé
worker process.

For the MPI tests, we used MPICH2 [3] with its defaulr config-
uration, except for the --ncpus option ofnpd (which we used to
indicate the number of CPU cores in each node).

The benchmark results are summarized in fig. 11 and 12. The
plots show that, at least for this benchmark, our Erlang-based
HPTC solution can reach the same performance of an ad hoc ap-
plication written using C, BLAS and MPI (and thus lacking the
run-time services provided by the FLOW framework). Launching
several Erlang virtual machines per node (with taskset) instead
of a single SMP-enabled VM can reduce jitter and increase perfor-
mance predictability

- but multiple VMs also increase the amount

8. Parallel benchmark
In order to measure the performance of the FLOW framework and
our Erlang BLAS binding in respect to "classical" HpTC solutions,
we developed a simple parallel benchmark (shown in fig. 9): four
worker processes wait for two matrices A and B from a coordinator
process ("head"), perform a sequence of 20 BLAS operations each,
and send their result C to another process (..tail")

- which, in
tum, sends C to "head". The timing runs in the .,head" process,
and measures the number of milliseconds elapsed between -4 and
B are sent, and C is received.

We implemented this parallel benchmark in two ways:

¡ in Erlang, using Clusterl to generate an application based on
FLOW and our BLAS binding;

o in C, with an ad hoc program based on BLAS and MpI, us-
ing blocking functions for sending and receiving messages
(MPI-SendO and MPI_RecvO).

We deployed the benchmark on two hardware configurations:
a single dual-core workstation, and a small cluster with two dual-

57

Parallel benchmark (matrix type: single precision, 100x100)

flow-smp flow-taskset mpich2 flow-smp-dist

HPTC framework and environment

flow-taskset-dist mpich2-dist

Figure 11. Box plot with the results of the parallel benchmark in fig. 9, repeated 40 times with 100x100 matrix size. The first three

columns show the timings obtained on a single workstation (dual-core AMDrM AthlonrM 64 4200+ with 2GB RAM, Ubuntu 8.04 and

MPICH2 1.0.6p1); the latter three columns (with the -dist suffix in their label) show the results after distributing the benchmark on two
workstations (with the same hw/sw configuration above) connected over a dedicated 1-Gigabit Ethernet LAN. The FLOW benchmarks have

been performed both by running a single SMP Erlang VM on each cluster node (columns with -srnp), and by launching a non-SMP Erlang
VM for each CPU core (with the taskset utility).

ØEçôo
o
.9

\f

oo

oo

o
N

o
N

e

of data serialized and sent through sockets, possibly degrading per-
formance (as we can see in fig. 12).

There are, however, some "cheats" that guarantee the efficiency
of the FLO\ù/ benchmarks: the Erlang VM always tries to handle
and send binaries by reference instead of copying them (while
MPICH2 uses highly optimized in-memory copying, as required
by the MPI standard); furthermore, FLOW buses can automatically
detect if two or more target processes are running on a remote node:
if it happens, then data is sent only once to a remote dispatcher
process, which in turn handles multiple delivery to its local targets.
MPI does not implement these capabilities - but our "cheats"
are just some advantages that de¡ive from the choice of using a

very high-level language (Erlang) and framework (FLOW) that can
automatically perform such optimizations.

9. Conclusions and future developments
This paper illustrated how we extended Erlang/OTP, and then used
it, as a foundation for building High-performance Technical Com-
puting applications:

1. our Foreign Function Interface allows to interface native code
in a simple and efficient way;

2. our BLAS binding represents an use case of the FFI, and allows
Erlang to achieve native-speed number crunching capabilities;

3. the Matlang language allows to write Erlang-based numeri-
cal code with a concise and mathematically-oriented syntax,

familiar to physicists and engineers accustomed to tools like
MatlabrM;

4. the FLOV/ framework allows to define and control distributed
numerical applications in Erlang, freeing the developer from
low-level tasks;

5. the Clusterl IDE can be used for the rapid development of
FLOW-based applications, even by users that know nothing
about Erlang.

With these solutions, we were able to satisfy the fou¡ HPTC
framework requirements outlined in section 2. The parallel bench-
marks we've performed also show that the overall performance is
very good, and comparable to classical solutions based on lower-
level libraries.

The most important aspect from our point of view of frame-
work developers, however, is that the resulting HPTC toolkit has

been built, and can be extended, using an highJevel, conculrency-
oriented and fault-toierant language and platform

-
i.e. Er-

lang/OTP. It is an enormous advantage in terms of productivity,
that our final users can notice in terms of rapid development and
quick response to customization requests. We were prepared to
pay this advantage by losing some performance over "traditional"
HPTC solutions - but so far the price appears to be moderate.

Even if the results we've obtained are positive and encouraging,
there are still several enhancements we are working on. More in
detail:

IE
o
o

o

o

-

58

oov

oor)o

o6O
E
ooøo
=@¿N

oooN

Oo()

O
o
O

Parallel benchmark (matrix type: single precision, 500xS00)

mp¡ch2 flow-smp-dist flow_taskset_dist mpich2_dist

HPTC Íramework and env¡ronment

flow-smp flow-taskset

-

o

E J

-3--

Figure 12. Box plot with the results of the parallel benchmark in fig. 9, repeared 40 times with 500x500 matrix size. When the amount ofdata exchanged among processes increases, the SMP-enabled Erlang VM guarantees better performances, reaching the numbers of MpICH2.Separate non-SMP Erlang VMs, on the other are slowed down by the need to serialize and tran smit huge memory buffers, instead ofsimply sharing them among processes.
hand,

1. FLOW should be extended with the concept of nested processes
(that, as reported in section 7, are currently implemented by
the Clusterl IDE). We shou_ld, in orher wo.ãs, aád supporr for
entities similar [o SimulinkrM ..systems.';

2. the FLOW run-time control functions should be made avail_
able through an user-friendly graphical tool, allowing to con_
n€ct to a running FLOW-based application and managJit. Users
should be able to infer the connection graph of buses and pro_
cesses, instantiate and connect monitoring tools, migrate a þro_
cess around cluster nodes, etc. _ all without touchìng the Er_
lang shell;

3. the Clusterl GUI should be improved, possibly by using wxEr_
lang [15] or some othe¡ modern widgef toolkiq

4. since port signatures in FLOW processes are statically typed,
Matlang could be treated as a statically typed language, too.
This woutd allow to remove most of the run-time õheðks and
increase execution speed. Static type checks could also reduce
the amount of bugs, expecially in large projects;

5. static typing could also allow to optimize matrices and vectors
handling in Matlang, that (in its ¿urrent form) never uses the
procedural API provided by the BLAS binding. The compiler
should perform more static analysis, and decidJwhether certain
optimizations (1ike overwriting an unused matrix with the par_
tial results of a computation) are legal within some code blóck.

References

[1] Advanced Micro Devicesru, Inc. AMD Core Marh Library (ACML).
http : //developer . and. con/cpu/Libraríes/acml.

[2] E. Anderson,Z.Bai,J. Dongarra, A. Greenbaum, A. McKenne¡ J. Du
Croz, S. Hammarling, J. Demmel, C. Bischof, and D. Sorensen. LA_
PACK: a portable linear algebra library for high_performance com_
pute¡s. In Supercomputing'90: proceedings of thà tggO,lCunnnn
c,o-nference on Supercomputíng, pages 2_1i, Washington, DC, USA,
1990. IEEE Compurer Sociery.

[3] Argonne National Laboratory. MpICH2: an high_performance,
portable implementation of the MpI standa¡d. httl://www.rocs.
a.nI . gov/research/proj ect s /np!c]r;2.

[4] David M. Beazley. SWIG: an easy to use tool for integrating scripting
languages with C and C++. In TCLTK,96: proceeãings o¡ tnà in
conference on USENIX Tct/Tk Workshop. Berkeley, C¡, USl, tSSe .

USENIX Association.

[5] R. Carlsson. An introduction to Core Erlang. In proceedings of the
PLI'01 Erlang Workshop, September 2001.

[6] Richard Carlsson, Björn Gustavsson, Erik Johansson, Thomas Lind_
gren, Sven-Olof Nyström, Mikael petterson, and Robert Virding. Core
Erlang 1.0.3 language specification, 2004. lrttp / /wr¡w. it . uu. sel
resea¡ch/group/hipe/cer1/doc/core_eilang- 1 . 0. 3. pdf .

[7] M. D. Compere and R. G. Longoria. Combined DAE and sliding mode
control methods fo¡ simulation of constrained mechanical ,irt..r.
Journal of dyn¿mic systems, measurement and control, 122,691_697,
December 2000.

[8] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, andF Kenneth Zadeck. Efficiently computing sratic single aisignment
fo¡m and the control dependence graph. ÃCU Transãcfions on pro_
gramming Languages and Systems (TOpl,AS), 13(4):451490, 1991.

[9] Jack Dongana. Preface: Basic Linear Algebra Subprograms Technical
(Blast) Forum Standard L lnternationaljournal o¡ nígh performance
Applícations and Supe rc o mputing, I 6(1): 1_1 I 1, Spring ZOO2.

59

[10] Jack Dongana. Preface: Basic Linear Algebra Subprograms Technical

(Blast) Forum Standard II. International Journal of High Performance

Applications and Supercomputing, 16(2):1 15-199' Summer 2002'

[1 1] John W Eaton. GNU Octave numerical computation language' httP :

//wwn¡. gnu. orglsof tware/octave/.

[2] Ericsson ABrM. Erlang efficiency guide: Constructing and matching

binaries, 2008.

[13] Scott Lystig Fritchie. The evolution of Erlang drivers and the Erlang

driver toolkit. In ERLA'NG'02: Proceedings ofthe 2002 ACM SIG-

PI-AN workshop on Erlang,pages 34--44, New York, NY' USA' 2002'

ACM.

[14] Dan Gudmundsson. ESDL, a SDL and OpenGLrM driver for Er-

lang/OTP. bttp: //esdl . sourcef orge . net.

[15] Dan Gudmundsson. wxErlang, an Erlang binding to wxWidgets'

http : //www. erlang. orgl-dgud/wxertang/.

[16] IntelrM Corporation. Intelru Math kernel library' http¡
//¡¡w¡. intel . con/cdlsof t¡¡are/products/ae¡qe-¡¿/eng/
266858.htm.

[17] Pramod G. Joisha, Abhay Kanhere, Prithviraj Banerjee, U. Nagaraj

Shenoy, and Alok Choudhary' The design and implementation of
a parsi. and scanner for the MATLAB language in the MATCH

compiler. Technical Report CPDCTR9909017, Center for Parallel

and bistributed Computing, Electrical and Computer Engineering De-

partment, Technological Institute, 2145 Sheridan Road' Northwestern

Universit¡ IL 6020831 18, September 1999.

[18] Romain Lenglet and Shigeru Chiba. Dryverl: a flexible Erlang/C

binding compiler. ln ERI'ANG '06: Proceedings of the 2006 ACM

SIGPIA'N workshop on Erlang' pages 2l-31, New York, NY' USA'

2006. ACM.

[19] Robert M. Love. The taskset onJine manpage from the

LinuxTM User manual. httpl//www.linuxconmand' org/nan-
pages/taskset 1 . htnl'

[20] Message Passing Interface Forum (MPIF). MPI: A message-passing

interfaóe sþndard. Technical Report UT-CS-94-230' University of
Tennessee, 1994.

[21] Message Passing Interface Forum (MPIF). MPI-2: Extensions to the

message-passing interface. Technical report, University of Tennessee'

1996.

[22] National InstrumentsrM. The LabVIEWT Development environ-

ment. http : //l¡t¿w . ni ' con/labvier¡/,

[23] NumPy development team. NumPy, numerical package for python'

http: //nunpy. scipy ' orgl.

[24] Alceste Scalas. Erlang enhancement proposal 7: Foreign function in-

terface, September 2007' httP : //erla¡g. orgl eeps/eep- 0007'
Ìrtnl.

[25] Alceste Scalas. Home page of the foreign function interface (FFI) for
Erlang/OTP, 2008. http : / /rnuvara. org,/ c t s 4 / etl^ang / f f i /'

[26] V. S. Sunderam. PVM: a framework for parallel distributed computing'

Concurrency, Practice and Experience, 2(4):315-340' 1990'

l27l The MathworksrM. MatlabrM: the tanguage of technical computing'

http : //w¡¡w. nathworks . con/product s/nat1 abl.

[28] The Mathworksru. SimulinkN : Simulation and model-based design'

http : / /www' nath!ùorks . con/products/ simul ink/.

[29] John W. Tukey. Exploratory data analysis. Behavioral Science: Quan-
titative Methods. Addison-Wesley, Reading, Massachusetts, 1977'

[30] R. Clint Whaley and Jack J. Dongana. Automatically tuned linear

algebra software. Technical Report UT-CS-97-366, University of
Tennessee, 1997.

60

RefactorÍng with Wrangler, updated
Data and process refactorings, and integration with Eclipse

Abstract

Y.liT]:lr. a refacoring toot for Erlang, implemenred in Erlang.
r_nrs paper reports the latest developments in Wrangler, which iñ_
clude improved user experience, thè introduction of a number of
data- and process-related refactorings, and also the implementation
of an Eclipse plug-in which, togetñer with Erlide, provides refac_
toring support for Erlang in Eclþse.

?!lS_"!*: and Subject Descríptors D.2.3ISOFTWARE ENGI-
NEERINGI: Coding Tools and Techniques; D.2.6 ll: program_
ming Environments; D.2.7 []: Distributi,on, Maintenance, and En-
hancement; D.3.2 I?ROGRAMMING IANGUAGES]: Language
Classifi cations-Applicative (functional) I anguages; Con"u-o"ñt,
distributed, and parallel languages; D.3.4 []: È.o"_.rrom

tJenerøl lbnns Languagcs, Dcsign

Keywo.rds Erlang, Wrangler, Eclipse, Erlide, refactoring, tuple,
record, process, slicing

1. Introduction
Refactoring [10] is the process of improving the design of a pro_
gram without changing its extemal bèhavio-ur. Behaviour preìer_
vation guarantees that refactoring does not introduce (or re^move)
any bugs. While it is possible toiefactor a program by hand, tooí
support is considered invaruable as it is moìe ieliable and ailows
refactorings,to be done (and undone) easily. Refactoring tools [24]can ensurethe validity ofrefactorìng stepj by automati;g both thé
checking of the conditions for the reiactoringänO the appúcation of
the refactoring itself, thus making refactoriñg less fainful and less
erTor-prone.

Whilst the bulk of refactoring tools that have been developed
have supported object-oriented piogramming, there is an increas_
ing interest in refactorìng tools ior functioníi and concurrent ran-
guages. For Haskell there is HaRe [20, 14, ls],which is embedded
in both the Emacs [3] and Vim [4] editors. A-prororype of a refac_
toring tool for Clean is also available [2g].

^ .
We

_h,av_e
recently develop-edthe Wrangter tool for refactoring

Erlang [6, 5] programs t19,16,17, 181, and*in [21] we and rhe ream
from Eörvös Loránd Universiry, Buàapest ¡oìntiy reported work

Permission to make digital or hæd copies of all or part of this work for personal orclassroom use is granted without fee piovided tlut
"àpi"r-"

noi Ãade or distributedforprofit or commercial advmtage anà that copies beal ü,r"
"o,i."

à"0 ,t . l"ll ciration
on,the first page. To copy otherwise, to republìsh, to post on servers or to redistribute
to lists, requires prior specific permission and./or a fee^.

&Iang'qg, September 27, 2008, Victoria, BC. Ca¡ada.
Copyright @ 2008 ACM 978- t -60558_0ó5_4/08/09. . . g5.00

Huiqing Li and Simon Thompson
Computing Laboratory, University of Kent

{H. Li,S.J.Thompson}@kent.ac. uk

György Orosz and Melinda Toth
Eötvös Loránd University, Budapest,

Computing Laboratory, University òf fent
{G. Orosz, M.Toth}@kent.ac. u k

on our system and their RefactorErl tool [23, 25]. In this paper
we describe the latest developments in Wiangle¡ which include
the introduction of a numbei of new refacto"rings, and also the
implementation of an Eclipse plug_in which, togjher with Erlide,
provides refactoring support for Eilang in Eclipé.

.The
rest of the paper is organized as foiloïs. Section 2 gives

a short overview of the Wrangler tool for refactoring Erlang" ro_
grams. Section 3 ¡eports several improvements to the WranglJr user
experience. The next two sections describe the data_relatJd refac_
torings: Section 4 the tupting offunction arguments, and Section 5
the introduction of records. We move to disõussing process_related
refactorings in section 6. Th_e integration of wran!1er with Ecripse
and Frlide is the subject of Section 7. Finally, *"î.u* some con_
clusions nnd point to further wo¡k in Scction'é.

2. Wrangler
Wranglerìs a refactoring tool which supports interactive refactor_
rng tor Erlang programs. It is integrated with Emacs [3] and now
also-with Eclipse [1]. Snapshots oi Wrangler embeddèd in Emacs
and Eclipse are shown in.Figure I and Figüre l l. It uses Distel [12]to manage the communication between the refactoring tool ìná
Emacs, and on the other hand the Eclipse integration uses RpC
(Remote Procedure Call) to manage the ôommurication.

Wrangler supports mo¡e than a dozen refactorings: Rename
uariable/module/function, Generalise function definltion, Move
function definition to another module, Function ixtraction, Fold
expression against function, Tuple function parameters, From Íuple
to record, Rename a process, Register a process, Add a tag to mes_
s_ages, and Fromfunction to process. Thère are two functi,onalities
for duplicated code detection: expression search within a single
module and duplicated code detection across multiple modules.

2.1 Tool Structure

Every refactoring has two main parts: side_condition checking and
transformation. In most cases the side-condition checking is iore
complex than the transformation itself, because it requires a lot of
syntactic and semantic information to be collected ánd analysed,
in order, for example, to ensure that the binding structure of the
program is unaffected, or- the way in which melruge* are passed
between processes is unchanged. Figure 2 gives arì overview the
refactoring workflow in Wrangler.

Vy'rangler uses the standard Erlang parser, slightly modified to
ìnclude more layout information, to faise an Erlãng program into
"parse trees", and the SynraxTools tgi library to buíd thJAbstract
fyntalJreg^(AST) representation of the póg.urn from rhe parse
trees. The AST generated is then annotaté¿ riitn various kinàs of
syntactic and semantic information including Iocations, comments,
syntax category information, binding structure information, hence
becoming the term Annotated Abstrãct Syntax Tree (AAST). Both

f" . it:
r'.':!l

; .]

6l

l.,F:j,e [ús3
[i emcs@HL-LT

Re*¡me Vsriabl¿ Namc

Rename Function Name

ßÊnôme Module Nðme

Gene¡alÈe Fu¡ction Sefinitien

Mwe Funct¡ûnto Ânoth€r MEdule

Function Extrad¡on

Fold Erptøsion Against Fuñction

From'[uple To Record

Tuplt Function ÀrgumenG

R,en¿me o Þrere¡:

Add a Teg to Mesage

Êegister a Proresl

Frcm Functionto Proce¡:

Duplicated €ode in Current Module

ÞuÞlìratËd Codê in DiteËtcris

Exprusion Search

Undo

Cúçtomi:e

DÞE HK
Synta H¡ghlightirg

Ex:et¡d båekbrards./É, ex¿Êtd-f,etwårds/3 I)

qËÍd expr ->

)
x g

)

)

,

)

)

)

)

ti:*

(Ê-u)

Filc EdÌt Optiens Erffæ Took

eel}f9ïsbaa

íiû aCd. ränqe (;r': ':?, î i:.J ji)

; = ref ¿c_slliêx: case-erËl afgwssE (ì : :l

Ádd_reãçe {::ai¡:.":,r i'.;ll} -}

¡efac_trËà3, : ie!L_ÞüTP
{ok, !.ì{3} =

lndÊnt

Ed¡t

TAGS

Skeleten¡

Shetl

Compile

Di:tet

Rd¡etor

Verlion

-fliû{iä:.e l'-Ë3t} .

-¡sË5rÈ irefaN_uÈil. ¿çEc-

-ÊeÞo!E (âdd_f à-úgel zt '

t--.| i'! = refaÈ_sy3È#:
csBe rÊfaç_etnËås:

Eåge exÞt ->

{;:, el:} - EÈÈ_!æEe(},},
t-*q:, :il Ì - gsE_råage {.:"c) '::; - exCenct_f,OrrèrdttT;j!;f , ;ì1..' 'r:iì:')
12: - È¡icnd-bâcts{ãrd5{:!?:' -a:. 't 'j; }

-r: = g1å3ì{'':.Ì:::...,::- : l:.. :J':i..::::;i- :

í:l = refac-s1nEåx: çgld-Éxpr-rlagses {:::
::; = ghead{'r:;.1:'r:, ':.: -:--r:-"ì:ì :'-: , l
:.i = gLðg--|':rjr::'',::.. Ì.:....rl :.'r':"j. l':::r::i- 'l

{:::. -:-;
: gË¿_laege {::ì} ¿

1......, -'.) = E3t-raagel rì.
:..-: exterd.-tc:çaaÉ3{:;ir:i. :r:' ::' "'
.-:.-- = ext33d-bâc}f'Ierd5{î.:':it :r'. " ' :i'

rËfèe_-ryntÃx! adú-4nnI{rÃîge. {;: - . r: :

!
)

Figure 1. A snapshot of Wrangler in Emacs

Program
rendererRefactorerAST

annotatlon
Syntax
tools

Standard
parser

Program
source
code

Figure 2. The Wrangler workflow

side-condition checking and program transformation operate over

the AAST: during condition checking the conditions typically col-

late information gathered by walking the tree, and the transforma-

tions themselvesãre also typically accomplished by a tree-walking

algorithm.
To perform a refactoring, the refactoring engine first gathers the

necess;ry data and checks that all the side-conditions are satisfled'

and then performs the necessary transformation if the previous

check sucóeeds. Most of the refactorings need some user interaction

when the refactoring is initiated (typically, a prompt for a new

name), and/or during the refactoring process to allow the user to

guide the refactoring process' All the refactorings supported by

íVrangler are modulJ-aware, supporting the refactoring of multiple-

module projects.

Vy'rangler preserves the original layout of the program as much

as possibie, and functions/attributes that are not affected by a refac-

toring have the layout/comments unchanged after a refactoring'

More about layout presewation is given in next section'

In order foi useis to be able to undertake refactoring in a specu-

lative way as a part of their software development process, it is im-

portant tó be able to undo any transformatio¡. This. can be done in

b,rnu.t, but if any edits have been performed after the last refactor-

ing these will bé lost; in the Eclipse embedding, the undo streams

foi edits and refactorings are fully integrated.

62

3. Improved User Experience
To better meet its users, expectatìons, the infrastructure of Wran_gler has been modified in several ways, incluàing lmproveO pro_gram appearance preservation, support for refactoring code with
syntax errors, and enhanced efficiency in the refactorì'ng pro...r.
More derails follow in rhe reminder of t¡i, ,à.tìán.

3.1 Program Appearance preservation

By program appearance preservation, we mean that the refactoredproqlq should preserve_ the original program,s layout and com_
ment information as much as posiible.'prõg.ur.... would be re_luctant ro use a refactoring tôol wtric¡ reíormãis their code andmakes it unrecognisable to ihem. comment inroiÀat¡on is valuabrefor program understanding and long_term ,nuini.nun.", therefore
should never be discarded by the refa-ctorer. Wrun!t..,u, O.rign;ã
to preserve comments, but_not layout, from the ve-ry teginningi

Originally, we decided to uie a pretty_printer to fonnat thetransformed program hoping that the layóui produced would be
acceptable by Errang programmers; howåver, *" .oon discovered
rnar lnls was not ideal. Our own refactoring experience suggesteà
that sometimes the new layout produceO coñ¿ tïso different fromthe original one that we *ouid rather not to do the ,.fu.to¡ng,
hence we needed a better way to render the transformed program.

- With the current implementation of Wrangler, program appear_
ance preservation is achieved by making ur. of ¡åt¡ toten it.eumand AST. Erlang's standard toi..n r.uñn.. discards both whites-pace and comments from the source, however we have extendedit to keep both. Location information, *f,i.f, is kept in both token
stream and AST, is used to map the AST representation of an syn_tax phrase - such as a functioì, an attribuie and so forth _ to itstoken stream representation. After a r"facto.lng, only those func_
tions/attributes that are affected by the refactoriig process are f'or-
matted by a pretty-printer, and ari the other funcãon/attributes are

I*d:i.9 by extracting.the source from the token stream, therefore
nave tnerr tayout completely unchanged. The pretfy_printer used byWrangler respects the original layoñt, such ás line width, of eachfunction/.attribute to be printed, and in most cur., p.oOu.., u tuyouivery similar to the original layout of the functionämribute.

3.2 Refactoring Code with Syntax Errors
Wrangler has also been extended to accept Erlang prolrams that
con-tain syntax errors or macro definitions that cänot be parsed
by SyntaxTools. When the program under consideration has syntaxefrors or unparsable macros, functions/attributes to which ihese

:i:.::lit:l* Pelong.are nor refacrored by rhe refacroring process,

lo^t_lv^1 -*u*ings
asking.for

-manual
inspecrion of thosã parts oirne program will be given by Wrangler.

This feature was made possibìe in Wrangler by two facts.Firstþ, the Erlang parser is seÈrecoverable, i.e.,'a runction/attribute
that does not parse does not stop the pu.r.i frorn pursing the codefo.llowing it; secondly, location'informution f..fiin the AST and
roKen stream allows us to extract the source code for those syn_tactically erroneous functions/attributes from the token stream, andput them back into the program during the program rendering pro_
cess.

3.3 EfficiencyEnhancement

Ylt]_"^:l.-Ol.*r1m a.latVsis and transformation needed by eachreracronng may be different, all refactorings need to parse theprogram under consideration and annotate the AST proàuced, asshown in Figure 2. When refactoring a targe pro¡ea, a considerable

:ly:j "f llTe could be spenr on p.og.am pãrring and annorarion,
ano rnls could slow down the refactoring p.oc"is. Therefore, iiwould be preferable if we could avoid thJpärsinjlnA annorarion

process when it is possible, or parse and annotate the program when
the refactoring engine is idle.

With Erlang as the implementation language of Wrangler,
reusing of AAST is naturaliy achievable uslíg Ërtang pro..ír.r,
and indeed that is the approach we have aOo."pteA. Wth tn" Ut_est implementation of Wrangler, u g"o_""ru"i process, calledAST-server, is dedicated o eSt mãnagement. If an AAST isneeded, the refactorer engine will ask"AsT_s,erver for it. With
AS.T-syver,.an Erlang module is parsed onty *tren its AAST doesnot exist or is out-of-date. The reiactoring engine also informs theAST-senter when a module has been ,.fã.toi.à, which will thenupdate its AAST repository in the background. in a similar way,
the¡e is also a process in chãrge of maintai"nin! t¡e iunctionlmodule
callgraph in the background.

4. Tirple Function parameters
The refactoring Tuple Funuion parameters groups a number ofconsecutive arguments of a function into a tu;le. fnls r"fa"to.inl
also modifies-the arguments to the call sites ãf the f-unction, and
affects multiple modules if the function is exporteã, therefore has aglobal effect.

To apply this refactoring in Wrangle¡ the user first points the

:Tf:l l: a funcion parameter or an application argumenr in rheeortor. then s,elects Tuple Function Arguments from the Refoctor
menu, after that the refactorer will prompt for the number of ele_
ments that are to fo¡m the new tuple.

Tuple Function Arguments hai the following side_conditions:
¡ The indicated position in the editor must be a formal argument

of a function definition or an application argument.
o The desired length of the tuple (m, say) must be valid. If the

chosen parameter is the z_th élement of tíle runctìun argumenrs,
and then m+n-l should not be larger than the arìty of the
function.

¡ The new function produced with a reduced arity should notconflict with existing functions.
¡ The function must not be an OTp callback function.
r As a design decision, we ask the user to initiate the refactoring

from the module where the function is defined.

gx.amnle in Figure 3 illustrates an application of this refac_
toring which groups the first two parameters of function f /3 into
a tuple. Function f/3 is exported ùy its defining råàul" and usedby anorher modute, and in ihis case both the d;-fi;ili;" of f /3 andits application in the othe¡,module tup2 ur. .t un!.d. The export
attribution is also aflected by the refactoring.

Create tuple

-module (tup1) .

-export ([f/3])

f (A, B, C) ->
A+B+C.

-module (tup2) .

-export (lel31)

g(X, Y, Z) ->
tupl:f(X, y, Z)

Result

-nodule (tup1) .

-export (lf/21)

f({4, B}, c) ->
A+B+C.

-module(tup2).
-export (tgl31)

g(X, Y, Z) ->
tupl: f ({X, y}, Z)

+

63

Figure 3. Tirpling the first two arguments of the function f

Create record exPression

In the case that the function under consideration is used in an

¡^py";t f"" application or a meta-function application, Wrangler

wili issu"e a wãming message asking the user to check and modify

manually if necessary.

5. Introduce Records

Erlang's principal data structuring mechanism is the tuple' which

*.r.ípotia. to the C structure, or indeed to tuples in other func-

ilonui'ptogtutming languages. The Erlang record allows tuple

fr;i¡t å bã named,*allo*ing ptogtammers more flexibility in im-

plementation þ hiding some- of the data representation' One ex-

ãmple of this would bð to allow a programmer to add a field to an

existing record.-iÑ,
the process of tuming a tuple into a record is a natural

refactoring, *hi.h *. call From Tuple to Record' This has been

explored ty the RefactorErl team [22], but to date remains a proto-

työ.; th.i system. We have chosen to take a bottom-up approach

tô-implementing it in the work reported here'

ifecificallyîe have chosen tó implement the refactoring which

t.unr'ior., a nrple function parameter into a record expression'

ihis refactoring modifies boih the definition of the function and

iis application ãit.t u.tot, the program' If the given record name

¿oes not exist, a new record definition is created by the refactorer'--
tn ttre remainder of this section we report the design and im-

pleÃentation of From Tuple to Record, and then explore ways in

which this should be extended.

5.1 From TuPle to Record

To apply this refactoring in Wrangler, tirst mark a tuple ln the etl-

itor, ïhich should be a function parameter or an application argu-

ment, then select From Tuple to Record from the Refactor ment'

and after that the refactorór will prompt for the record name and

therecordfieldnames.Asadesigndecision,theusershouldiniti-
ate the refactoring from the module where the function is defined'

A number ofiide-conditions are necessitated by this refactor-

ing, and they are:

.Thestaftingandendingpositionsoftheselectedtextshould
delimit a tuþe, which iJ a function parameter or an application

argument.

o The given reco¡d name and field names should be atoms' and

the rãcord name should not have been used as a record name'

¡ The number of the field names given must be equal to the

selected tuple size and must be distinct'

The example in Figure 4 shows the application of From Tuple to

Recordto ìhe first argument of function I /2' Ã new record' named

rå", *lttt two fieldJhas been created, and both the definition of

f/3 and its application in g/1 have been changed-' Since f'l2 is not

exported ty iìs Oenning mãdule, this refactoring has a local effect;

*i.r.u, the example in Figure 5 illustrates an application of this

refactoring whichãffects multiple modules' In the latter example'

both the d"efinition of f /3 and its application in the other module,

recor¿2, are affected. A record definition is created in both mod-

ule recordl and module record2. The resulting program could be

further refactored by lifting the record definition into a 'hrl file'

5.2 Tlpes and the refactoring

The example in 6 illustrates refactoring a function which has

more the oni function clause, and can be applied to both tuples

and lists. In this case the refactoring needs to anaTyze the function

callstothetransformedfunctiontodecidewhetheranargumentis
a tuple (which will become a record) or not' In general this is not

decidabie, and so it will be necessary to add some run-time type

checking (using case for example) to decide whether the argument

-¡nodule (record) .

-export(tel11).
-record (rec , {f irst , second})

f (#rec{first=A, second=g},C) ->
A+B+C.

g(X) ->
f (#rec{f irst=X , secon¿=2*¡} ,3*X)

Figure 4. An example of From Tuple to Record affecting a single

-nodule (record)
-export(le/Ll).

f({A, B}, c) ->
A+B+C,

g(x)
f ({X, 2'¡X},3*X)

ResuIt

module

f({A, B}, c) ->
A+B+C;

f ([] ,c)-> 9.

Type exaroPle

h(x) ->
Y = {X, X},
f(Y,5),
s=tl
f (s, 3*x) ,
Z = nod:app(x),
f(2, x).

Figure 6. Function with multiple clauses

is a ¡ecord or not. This will clutter up the code, but serves as a

waming to the possible user of a refactoring like this'

5.3 Replace tuPle with record

In order to inform the next steps of our work, we have undertaken

a case study of the Erlang Standard Library in- order to discover

ift" rnott used patterns of record usage' The three that we have

discovered are

Replace tuple with record in a function body' Instead of access--
ìng u tuple literally, we can name the record in the function

argument and access it directlY.

Using record update. If a tuple expression is a variant of another
- --ffil..*p."siion,

the formèr can be defined from the latter using

record uPdate sYntax.

Record access. Access to components of a record can be given
- -ïy

un access expression, raiher than by a pattern match of the

whole record.

Used in combination, these transformations al1ow a user to hide

,t"..pr.t"nta,ion of a data type, thus giving a more abstract' and

thus mo¡e flexible, interface to the data' It remains a research

;;11;;g" to provide the appropriate interface to this collection of

;;f.;";"gr, so that a 'batôh' aþplication of them to a whole set of

64

-module (recordl)
-exporr (lf./n) .

f({A, B}, C) ->
A+B+C.

-nodule (record2)
-export(lg/ü) .

Create record expression
Result

-nodule (recordl) .

-exPort([f/2]).
-record(rec, {first, second})

f (#rec{first=A, second=!},Ç) ->
A+B+C.

(a)
f (Fun) ->

Pid = spa¡¡n(Fun),
g(Pid).

g(Píd) ->
Pid !nessage

+
-nodule (record2) .

-export([g/3]).
-record(rec, {first, second}) ,

g(X, Y, z) ->
recordl:f({X, y}, Z) g1J, Y, z) ->

recordl : f (#recl{f irst=X,
second=y], Z)

Figure 5. An example of application of From Tuple to Record affecting multiple modules

functions which operate over a given (conceptual) data type can be . The process name provided by the user should be an atom, anddevised'
shouid not have been used as a process name in the program
under consideration.

6. Process-related Refactor¡ngs
Built-in.support for lightweight processes is one of the strengths
that distinguish Erlang from othei programming languages. Erlang
programs are made oflots ofprocesses. These processes can com_
municate with each other. by sending messagès. In Erlang, pro_
gramming wjth processes is easy, needs only three new primitives:
spawn, send (!) and receive; however, undisciplined úse of pro_
cesses could make the program hard to understand and maintain.
For example, some typical process-related bad code smells include

. Cod_e for implementing a single process spans across multiple
modules, or code for more than one kind oi process exist in the
same module.

. Use process and message passing when a function call can be
used, or use sequential function calls to model parallel activity.

. Name of a registered process does not reflect its role or func_
tionality.

¡ Send/receive untagged messages.

¡ Non tail-recursive functions, especialy non tail-recursive servers.
. Register a process that only lives a short time, or not register a

process that lives a long time
. Not use generic OTp libraries, such as the generic server, when

doing so is more appropriate.

Most of the above bad code smells can be detected, and refac_
tored out step by step manually. However, after having examined a
few basic refactorings, such as regisÍer a process, add a tag to mes_
sages, we realised that the dynamic nature of the language and the
implicitness of process and communication structure ofãn Erlang
program present a challenge for tool support of automated pro""rrl
related refactorings, or at least some oftiem.

For example, the refactoring register a process registers a pro_
cess with,a name provided by the user, anã replaces ihe receiving
process identiñer in a send expression with the process name ifthe
process identifier refers to, and only refers to, the selected process.
An example application of this refactoring is shown in Figure 7.
For this refactoring to be behaviour preseriing, the followin-g side-
conditions are necessary:

o The selected process should not have been registered.
r Should multiple instances of the process exist during run time,

they should not co-exist at the same time.

+

(b)

f (Fun) ->
Pid = spawn(Fua),
regí ster (pnane ,

pid) ,
g(Pid) .

g (Pid) ->
pname lnessage,

Figure 7. Register a process

If all the side-conditions are met, we are then able to proceed
with the transformation. However. when replacing a proceis iden_
tifier in a send expression with the procesi nurnõ, *" must make
sure.that the process identifier only refers to the process selected.
For instance, in the example shown in Figure g, the pid in expres_
sio¡-Pidlnessage should not be replacðd by pname because this
Pid is associated with multiple proceis instanteì.

(a)
f (Fr¡n) ->

Píd = spar¡n(Fun),
c(Pid),
Pidl = spawn(Fua),
g(Pid1).

g (Pid) ->
Pid ! nessage

(b)
f (Fu¡) ->

Pid = spar¡n(Fu¡),
register(pnane,pid) ,
c(Pid),
Pidl = spar¡n(Fun),
g(Pídl) .

g (Pid) ->
Pid ! message .

+

Figure 8. Register a process

Even though this refactoring is very basic, neither its side_
condjtion analysis or its transformation ii straightforward to carry
out due to the dynamic feature of Erlang and thð design of Erlang;s
process system. Next, we summarise the major challènges that ive
have encountered when process-oriented refãctoring is concemed.
r Processes in-an Erlang program are syntactically implicit. Un_

like some other concurrency-oriented p.ogru*rning languuges,

65

such as Pictl27l in which processes and channels are syntac-

tically marked out, Erlang does not have a syntax category de-

signed especially to identify processes. In an Erlang program' a

pio..tt iJ created by the application of spavn/l or its variants'

spawn/ 1 itself is just an Erlang built-in function. For example,

the expression

Pid = sPawn(Fun)

creates a new concurrent process that evaluates Fun, and retums

a Pid whose value identifies the process.

¡ Implicit connection between a process identifier and the process

ideìtified. The spaltn expression above also reveals the fact that

what identifres a process is not the name of the process identi-

fier, but the achral value. Since a variable can take part in com-

putation, or pass its value to other variables, it is possible that

t*o ot mo.Jprocess identifiers have the same value, therefore

refer to the same process. Deciding whether two or more pro-

cess identifiers refer to the same process statically needs data-

flow analysis. Furthermore, as the Erlang type system only pro-

vides run-time rather than static type checking, even whether a

variable stands for a process identifier or not is not always clear

from the static view of the program.

While it is possible to name a process using the function

reglster/2 provided by Erlang, it is not always desirable

to ão ro esp"õially if a process only lives a short time' and

sometimes ii is not possible to do so as pointed out by the side-

conditions of ReSister (1 process.

¡ The process communication structure is implicit. Processes in

an Eilang program communicate with each other by message

passing. Þid!l'1""""g" sends Message to the process identi-

fied by Pid, and retums the message itself; receive ' " end

receives a message that has been sent to a process' Because

of the indirect connection between a process identifier and the

send/receive expressions of the identified process, trying

to establish a connection between a send expression in one

process and the corresponding receive expression in another

proces, is difficult, not even to mention the mapping between

particular messages senVreceived. This is particularly obvious

when the refactoring,Add a tag to messages is concerned' This

refactoring tries to add a tag to all the messages received (or

sent) by a particular process, and obviously it needs to find out

where these messages are sent from.

¡ Unlike functions or modules, a process in Erlang does not have

a clear syntactically specified body or scope. Statically a pro-

cess .oniists of the collection of functions that are reachable

from the entry function/expression ofthis process. But' it is pos-

sible for multiple processes to share code, even send/receive
expressions. Sharing of send,/receive expressions makes it
difficult to refactor messages senlreceived, since it potentially

affect all those processes sharing the code, as well as those pro-

cesses that communicate with them.

¡ Process context dependent evaluations. Erlang is a language

with side-effects. Some of the built-in functions provided by

Erlang depend on the context of the cuûent calling process'

A paiticuiar example is the function self /1, which ¡etums

the process identifier of the calling process. Hence, care has

to bè taken if a refactoring changes the execution context of
an expression. Examples of this kind of refactorings include

From function to process, From process to function, Spawn a

new process to execute an expressionetc.

As mentioned before, Wrangler uses annotated abstract syntax

tree (AAST) as the intemal representation of Erlang programs' The

annotation information includes binding information of variables

and functions, syntax category, location, comment information,

tokens, etc. Together with some fundamental functionalities for
function cail grãph construction, module graph construction, side-

effect analysñ, ètc, the existing infrastructure provides enough

information to proceed with most refactorings regarding to thepure

functional part of the language, but not with most process-related

refactorings because of the challenges presented above.

To support process-related refactorings, we have extended our

work in two aspects. Firstly, we have extended the existing AAST
representation of Erlang programs with process information; sec-

ondly, *" have exploited the use of slicing techniques to help the

refactoring process. As a design strategy, Wrangler always try to
extract as much necessary information as possible by static analy-

sis, and minimise the amount of information needed from the user'

The remaining of this section is organised as follows. We first

describe the annótation of AAST with process information, then

discuss program slicing and its uses within the refactoring context'

Finally, ã s,t*maty of the process-related refactorings supported by

the current implementation of Wrangler is given.

6.1 Annotate AST with Process Information

In an Erlang program, the only way to create a process is via the

application ãf spãwn, which creates a new concurrent process and

.ô¡r.nt u procesi identifier. But because process identifiers can be

passed to other functions as parameters or returned values, or even

passed to other processes by messages, sometimes it is not clear

*hi.h pto."rt an identifier refers to. With this analysis, we aim

to establith a static connection betwecn a proccss identifier occur-

rence and the process identified. Due to the syntactic implicitness

ofErlang p.o"èsset, we use the sPa¡rn expression to represent the

process ðreated. In Wrangler, a particular sParm expression is iden-

iin"O Uy the combination of the spawn expression itself, the enclos-

ing funôtion of the spawn expression and the relative location of the

.pã*n.*pt.ttion within the function. Location is needed to resolve

the cases when two or more lexically the same spawn expressions

occur in the same function.
As an example, given the sample code (a) in Figure 8, this

analysis will annotaté each occurrence of Pid in function f/0 with

{pid, l{spar.rn(Fun) , {nod, f , 1}, 1i}] '

in which pid means the variable represents a process identifier,

spawn(Fun) is the spawn expression that creates this identifier'

{nod,f,1} refers to the enclosing function of the spawn expres-

sìon, and ihe last integer 1 means that the spawn expression is

the first spawn expression in this function. Here we assume that

the name òf the module to which the sample code belongs is nod'

However, the occurrences ofPid in function g/1 will be annotated

with the following information because of the multiple application

sites of this function:

{pid, t{spawn(Fr:a) , {noct, f , 1}, 1} '
{spawn(Fur), {mod, f' 1}' 2}l}'

With this kind of annotation, we are able to check whether two

process identifiers refer to the same process or not by looking at

ih. *pu*n expressions associated with them. The basic annotation

algorithm used by Wrangler works as follows:

1. Construct the call graph for functions, and sort it topologically
based on the dependencies between functions.

2. Within each function definition, annotate every occurrence of
spawn application expression with process identifier informa-

tion as illustrated above.

66

3. Analyze the call graph in a bottom-up order to propagate pro-
cess information within each function definition through func-
tion application (when a function returns a process identifier),
pattern matching and the binding structure of variables when-
ever it is possible. In the case that a function retums a process
identifier, the return type of this function is also recordeà.

4. Analyze the call graph in a top-down order to propagate process
information from the call-sites to local function definitions.

5. Repeat from step 3 until a fix-point has been reached.

,A.qry from spa¡rn expressions, process identiflers retumed by other
built-in functions, such as self,/l, could also be annotatéd in a
similar way.

So far, this algorithm does not handle complex pattern matching
and message passing, therefore only partial process information ii
annotated into the AAST. However, methods have been taken to
indicate whether the information annotated to a process identifier
is complete or not.

User input is still needed when an undicidable situation occurs,
but we try to reduce this kind of situations by the use of slicing
techniques when it is possible.

6.2 Program Slicing

Apart from annotating AAST with process information, we have
also exploited the use of program slicing techniques to reduce the
number of uncertainties encountered by the refactoring engine by
marking out the scope of the program that needs to be analysed or
transformed.

The concept of program slicing was first introduced by Weiser.
In [30], Weiser defines a program slice .S as a reduced executable
program obtainedfrom a program P by removing statements, such
that S replicates part of the behaviour of p. The slicing process
generally sta¡ts for a slicing criterion, which represents the point
in the code whose impact is to be observed with respect to thè en-
tire program. A backward slice contains all parts of a program that
may have an effect on the criterion in question; by contrast, for-
ward slices contain all parts of a program that may be affected by
the selected criterion. Program slicing has its applications in many
areas, such as debugging, code understanding, reverse engineering,
program testing, etc. Program slicing itself could also be refactor_
ings. For example, a function returning a tuple could be sliced into
two functions, each of which returns an element of the tuple.

Within the context of refactoring Erlang programs, we have
mainly exploited the use of static program slicing to reduce the
scope of the program to be analysed, with the hope to reduce those
undicidable cases for which Wrangler needs to ask for user,s input
or issue warning messages in order to proceed with the refactor-
ing process. Both forward and backward inter-function slicing of
Erlang programs have been implemented. In this paper we are not
going into the details of the implementation, instead we focus on
benefits of slicing during the refactoring process.

6.2.1 Forward slicing

Given an expression or a subset of the arguments of an Erlang
function, Wrangler's forward slicer returns all parts of the program
that may be affected by the value of the selected expressioi or
arguments by employing data dependency analysis. The slicing
algorithm operates cross function borders if the returned value of
the function depends on the slicing criterion or any expression
that depends on the slicing criterion is passed as a parameter to
a function defined within the application in question. For instance,
the example code (b) in Figure 9 shows the slicing result for the
first spar"rn(Fun) expression in function f /1.

The major benefit of forward slicing is that it gives a clear scope
of the program which might be dependent on the selected criterion,

th-erefore a confined scope for program analysis if only the parts
of the program that depend on the slicing criterion is necessary to
be analysed. For example, to check whether a spawned proóess
has been registered by other processes, we only need to check
those registration expressions that belong to the slice produced
by taking the spawn expression as slicing criterion. Reducing the
analysis scope also reduces the number of undicidable situaiions
encountered.

(a)

f (Fu¡) ->
Píd = spawn(Fun),
g(Pid),
Pidl = spawn(Fun),
g(Pid1).

g(Pid) ->
Msg = "¡¡"tto r¡orld!"
Pid ! Msg.

(b)

f (Fun) ->
Pid = spawn(Fun),
g(Pid).

g(Pid) ->
Pid ! Msg

+

Figure 9. Forward slicing

6.2.2 Backward slicing

In contrast to forward slicing, backward slicing uses a backward
traversal of the data dependency flow from the point of interest
given in the slicing criterion, and returns the parts of the program
that could potentially affect the value of the selected expression.
Depending on the applications of the computed slices, sõme will
require that the retumed slice is executable, while others only need
the relevant expressions to be returned without checking whether
those expressions form a syntactically well-formed program or not.
With Wrangler, backward slicing has been used mainly with two
scenarios. More details follow.

o Slice in order to evaluate. In some situations, it would help
the refactoring process if Wrangler could know the possiblè
values of a specific variable or expression. One appioach is
to use the functionalities provided by the module erl_eval,
which def,nes an Erlang meta interpreter for expressions. For
example, the function erl_eval: exprs/2, or its variants, can
be used to evaluate a sequence of expressions in an abstract
syntax representation. First slice then evaluate could ensure
that only those expressions which could affect the value of
the selected expression will be evaluated. More than that, in
the case that the expression sequence to be evaluated depends
on some formal parameters of the enclosing function, inter_
function slicing provides more chances for the evaluation to be
successful.

For instance, with refactorings such as rename a registered pro-
cess, register a process, Wrangler needs to know the process
names that have already been used by the program, however
this is not always straightforward when a process name can
be dynamically composed as shown in the example code (a) in
Figure 10. Taking the variable processNane from the expres-
sion register(ProcessName, pid) as the slicing criterion,
Wrangler's backward slicer will retum the expression shown
in part (b) in Figure 10. If there are multiple applications of
the enclosing function of the slicing criterion, or functions that
call this function either directly or indirectly, the slicer will re-
tum a list of expressions, each of which corresponds to a non-
recursive call chain that leads to the function containing the
slicing criterion. Note that it is not always the case that the pro-
duced slices can be evaluated, because of the lack of bindings
for some functions for example, but again one strategy of Wran_
gler is to extract as much as information needed as possible.

i

67

(a)
startO ->

Pref ix = rrchl",
stare = [1,2]
start(Prefix, State).

start(Prefix, State) ->
ProcessName=list-to-aton (P¡slit(++" -proc "),
pi¿=sp¿r.m(chl, init, lProcessNane, State]) ,
register(ProcessNane, Pid).

(b)
fun(Prefix) ->

processNane = Iist_to_aton(prefix++"_proc,,),
ProcessNa.me

end (begin Prefix = "ch1", Prefix end).

Figure 10. Backward slicing

r Like forward slicing, backward slicing can also be used to refine
the scope of analysis. For example, taking a process identifier
as the slicing criterion, backward could help to locate where the
process is spawned, and even the initial function of the process

identified.

The cunent slicing algorithms implemented in Wrangler do not
handle process communication, and this aspect will be further in-
vestigated in the future.

6.3 Process-related refactorings supported by Wrangler

A number of process-related refactorings have been implemented
using the enhanced infrastructure of Wrangler, and they are:

e Register a process, which register a process identifier with a

user-provided name, and replaces the use of the process iden-
tifier in a send expression with the use of the process name

whenever this is safe. Registering a process with a name al-
lows any process in the system to communicate with the process

without knowing its Pid.

¡ Fromlunction to process, which tums a function deflnition into
a process, and all the calls to this function into communica-
tion with the new process. This refactoring provides potential
for memorisation of the computed results and adding new func-
tionalities.

. Rename a registered proces,ç, which renames a process' regis-

tered name to a user-provided new name. The main challenge

of this refactoring is to detect whether an atom with the same

name in the program presents a process name or not.

¡ Add a tag to the messages sent/received by a process, which
adds a tag to all the messages received (or sent) by a process.

This refactoring affects not only the process where the refac-

toring is initiated, but also the other processes which commu-
tate with it. The refactoring does not distinguish individual mes-

sages received (or sent) by a process, therefore all the messages

belonging to the processes involved will be added the same tag.

The tags added can then be renamed manually by the user to
distinguish different kinds of messages. While not ideal, this
refactoring still help to mark out a clear scope that needs in-
spection.

7. Eclipse integration
There are some imitations to the way in which Wrangler is inte-
grated into the Emacs editor, and so we have investigated inte-
grating Wrangler in Integrated Development Environment (IDE).

In doing this we aimed to make as few changes to Wrangler as

necessary, and to use it as a 'black box' to provide services to the

IDE. On the other hand, this integration work provides a perspec-

tive on the design of Wrangler (and indeed Eclipse and its refactor-
ing model) and we discuss this at the end of the section. Before that
we describe the background to the work, and then give an overview
of the integration work; full details of this work are given in the
project report, [26].

7.1 Emacs

Emacs [3] is an highly configurable text editor with syntax high-
light tool, debugger interface among many other features, but - as

its name says Editor MACToS - it is just an editor with additional
functionalities. What is more the fundamentals of the current ver-
sion were originally written in 1984, when the developers of the

tool, in a very understandable way, did not address refactoring sup-
port.

So the support provided by Emacs for various code transforma-
tion scenarios is not as good as it might be. To be more specific

. A typical refactoring will affect a complete project, rather than

a single flle. When integrating a refactoring tool with Emacs it
therefore becomes necessary to define a notion of project, by,

for instance, specifying a set of search paths.

o A number of refactorings - such as those which move a def-
inition from one module to another, or those which rename a

module - affect the way in which a project is built using 'make'
or other systems. Changes made within the editor-embedded
refactorer will not by clefault be reflected in the huild infras-
tructure of the system.

o Emacs has a notion of'undo', related to the editing operations;
a refactoring tool will also provide a separate 'undo' operation;
it is not at all clear how the two separate 'undo' operations can

be put together.

Taken together these arguments against editor-embedded refactor-
ing systems prompted us to investigate ways in which Wrangler
could be integrated with an IDE.

7.2 Eclipse

The best developed open source IDE is Eclipse tl, 131, which ls

an open source community whose proiects are focused on building
an extensible development pla{onn, ... fo, building, deploying
and managing software across the entire software lifecycle. Many
people know us ... as a Java IDE but Eclipse is much more
thnn [that] [1]. In particular Eclipse has a plug-in architecture [9]
which supports the integration of new functionality for Java and

other languages. Plug-in distribution and update is provided by the

Eclipse organisation.
For us, the most important thing is the refactoring support of

Eclipse. It provides a very well documented refactoring API, the

Eclipse Language Toolkit (UIK) t111, with fully support for inte-
gration into various aspects of the infrastructure of Eclipse, includ-
ing

¡ the refactoring menu,

. refactoring previews, and,

¡'undo' and'redo' support.

The LTK is described in more detail in Section 7.4 below, when

we describe how Wrangler refactorings are integrated into Eclipse.
Integration of this sort has already been developed for the Ruby
language [29].

Eclipse is designed to be a universal tool platform and provides
several extension points and APIs to extend it. The basis of Eclipse

68

r, Int: .i-. irirs ar):Èïrr nì,ir+hd s;f lðêtsiir¡e ìrirrB rjbrrj.r¡ ir¡4 !ir!ï srd ¿ì¿r *a.â:td t!er:
: ir;ifrr.ìr¡vr;r!n:) iit+ìl.ll*jj1 -, fi*jl

i lrscprooue¿¡orn(r.*,!ì:i,:,
-i t i"*! : r ll-i:, F.-FËl ,

d€d:^::

x i,)ii !,';:{ :t :.,

EÐ HÞ

fte5!ßtsñ I tu¡e¡r,itUÊEffi BCoE

Wfráb ffihprt 55¡ ¡l

ù: i!3rr !¡ i:'rl

i f uilliriÈs. êq[tËlsì. !;ÌiJ

#e I# ft d nodel ¿r¡dÈ_69HMhpdbû

:ì.
'iv €&R

* tjitè

e 4r¡drl? (LJR)

a 4$t31i (r,L,R)

s rqlrrtÐfurtr/z 0,R)
Ê þúce¡lz G,Â$)
a fEd¿ (il¡r)
€ t€*t/0

TAhf@bnÊM*s...

i LYEro4 ç e¡

:.-

,

a

is the kemel (or runtime), which loads plug,ins as needed. On top
ofthis are four components

Workspace, The Workspace component handles the resources, in_
cluding files, directories, projects, connections. Every moáifi_
cation of a resource is handled by the Workspace component; it
also stores the history of each reiource, letting the user undo or
redo changes.

Workbench. The Workbench is the graphical interface next to the
L"q:! t! is implemenred in Eclipsè,s own Standard Widger
Toolkit (SWT), giving OS native l,ook_and_feel. It rnunug"rãll
the views, editors, and user actions as well. Of course it is also
extensible using its extension points.

îbam.. This provides support for working with CVS / SVN reposi_
tories among other version -anage-ént systems.

Help. This supports the definition and contribution of many kind
of documentation.

Plug-ins can declare extension points, which can be used by others
to extend its functionality in^ a controlled way. The Wranglór plug_
in uses the following extension points:

org.eclipse.ui.editorActions: This allows plug-ins to add menus
and toolbars to the workbench, when the Jelected editor type
becomes active. In our case this was used to add the Refaótor
menu.

org.eclipse.ui.bindings: A binding is used to define relations be_
tween sets of conditions, commands and keybindings, and is
used to create shortcuts for refactorings.

org.eclipse.ui.commands: This is used to create commands and
command categories. A command is an abstract representation
of a semantic behaviour; in our case it makes the connection
between actions and bindings.

7.3 Erlide
The Erlide [2] plug-in provides an Eclipse-based development en_
vironment for Erlang, with features lniluding a built_in console,
automated build tool, syntax highlighting, codõ completion and de_

bugging support, outline and running processes view and live ex_
pression evaluation; see Figure 11. Tñe Erlide backend is a Java
interface for an Erlang node [7]. It provides thread safe RpCs (Re_
mote Procedure Call) to each node, and each project is linked to a
backend. This backend starts and stops when ttreþro¡ect is opened
or closed.

7.4 Integrating Refactorings using the LTK

Figure 11. Wrangler in Erlide

l

I'

I:

I

i.
Ì..

The LTK provides a toolkjt for integrating refactorings into Eclipse.
This has a number of advantages, suclia, integratìng them with
the preview mechanism and the undo/redo mechãnism, but it does
provide a somewhat different workflow for refactorings than that
assumed- by Vy'rangler. An initial problem was that furangler is
designed to modify source files, and we needed first to moãify it
so that it retums a new copy of the file. More fundamentally, theLIK workflow follows this pattem

1. The user initiates the refactoring.

2. An initial check is made of some of the preconditions.

3. User interactions (e.g. getting a new variable name).

4. According to the user input, another check is called; if no error
occurs, the changes are calculated.

5. A preview dialog appears (optionally), then the calculated
changes are applied if required.

while the Wrangler workflow is thus:

1. The user initiates the refactoring.

2. User interactions.

3. Applying the refactoring (within the Wrangler system)
(a) checking conditions

(b) calculating modifi cations

(c) applying them ro the AAST
(d) writing them back to a new source flle

Clearly, the Wrangler workflow will not allow the initial check(LIK 2) and so this stage becomes trivial, with user interactions

69

(UfK 3) preceding the call to Wrangler (LTK 4). This call will gen-

erate a nèw source flle, from which a set of differences, calculated

using an open source 'diff' tool, can be generated, as required by

lff +. fnis 'diff' set forms the input for the f,nal stage (LIK 5)'

This conespondence gives a high-level overview of the way that

a number of reiactorings, such as renaming functions and variables '
and tupling of arguments, can be integrated into Erlide and Eclipse'

We next tum-to some of the difficulties presented by the integration

exercise.

7.5 Integrationchallenges

The model presented in the last section allows information to be

gathered pribr to any further processing, and this supports certain

finds of iefactoring as discussed above. However, others require

a more fine grained interaction. This includes.f.rnction Seneraliza'
tion andfolding expressions against function definitions, which we

discuss now.
In function generalization, a user selects a sub-expression of the

function body, provides a new parameter name' and once this is

done the user will be prompted by Wrangler for further confirma-

tion in the case that the expression contains free variables or poten-

tially causes a side-effect. This extra interaction is accommodated

in the plug-in by means of Eclipse pop-up windows.
folOing instânces of a function body into a call to that function

will in general result in multiple instances of that body, and so

multiple requests to the user for confirmation. In order to integrate

this, it was necessary to change the Wrangler workflow for this

refactoring, to return all the candidates in a single step, then to be

iterated through within Erlide.
In both those cases, it was necessary to modify the refactoring

to fit the LIK model of a refactoring. Some refactorings appear to

go beyond the LTK model entirely. Any refactoringwhich modifies

Íre ntês used by a system - such as renaming a module, or creating

a new moduleby moving a definition to a non-existent module -
cannot be accommodated in the LTK model.'

Other 'refactorings' - like clone detection - are not quite refac-

torings, and it would be artiflcial to include them in the LTK in-

terfaðe; we are cunently investigating including them in a general

'search' interface.

7.6 Reflections on Wrangler

The LTK workflow presented in Section 7.4 suggests that the ar-

chitecture of Wrangler might be modified to fit more tightly into

Eclipse. In particular, it would be possible to refactor the pre-

conditions of refactorings into two parts.

. The first part could be checked independently ofthe user input:

in the example of 'rename function' this might include checking

that the curient position of the cursor is on a function identifrer'

¡ The second part will use the user input - in our example the new

name for the function - and check that, for instance, this name

is not already used in the module, or imported from another

module.

As we have noted earlier, the output of Wrangler after a refactoring

is a new file, from which we calculate a 'diff' set; it would be

possible to modify Wrangler to produce a 'diff' set directly' We

àim to investigate these modifications in the months to come, and

to continue our overall project to integrate Wrangler as tightly as

possible into Eclipse and Erlide.

8. Conclusions and future work
It is clear that as we look at more advanced refactorings - such as

those involving wholesale transformation of data representations,

or others which address inter-process communication - then more

complicated analyses are required. Indeed, we would contend that

for tlhese more advanced transformations it is impossible to make

them automatic, and that the ¡ole of the refactoring tool becomes

one of a refactoring assistant, which can provide support for var-

ious aspects of the refactoring process' rather than a completely

automaied process. Perhaps this should be no surprise, as this is

the case in machine proof, where theorem-provers and proof as-

sistants co-exist, and there is more than a little in common between

meaning-preserving refactoring and proof. We therefore expect that

our work will take us towards more complex, user-driven, interac-

tions.
We also see in the work that we report there is a substantial

investment in inf¡astructure in any tool building of this sort' While

it may not be evident from the high-level report of the Eclipse

integration that we provided, the project report [26] shows this was

notã trivial, or even a straightforwa¡d exercise, and considerable

work remains to be done. Nevertheless we expect to contribute our

refactoring tools to the general Erlide project, which shows great

promise.
On the same theme we and the team from Eötvös Loránd Uni-

versity hope to evolve a common infrastructure between our two

systems, sõ that user can take advantage of the two in a seamless

way. This common infrastructure will also allow us to test the two

systems against each other'
The Kènt team would like to acknowledge the support of the UK

EPSRC in funding work on Wrangler, as well as support provided

by Vlad Dumitreicu for his work on Erlide, the members of the

Erlide development mailing list' and the members of the Eclipse

JDT development mailing list for support provided in the port of
Wrangler to EcliPse.

References

[1] Eclipse - an open development platform' http: //r¡r¡w ' eclipse '
org/.

[2] Erlide - the Erlang IDE. http : / /erlide . sourcef orge' net/'

[3] The Emacs Editor. http : //www. gnu' orglsof ti¡a¡e/enacs/'

[4] The Vim Editor. http: //www.vim. orgl.

[5] J. Armstrong. Programming Erlang. Pragmafic Bookshelf,2007'

[6] J. Armstrong, R.Virding, C. Wikström, and M. Williams ' Concurrent

Programming in Erlang' Prentice-Hall, second edition, 1996'

[7] D. Byrne. Integrating Java and Erlang. http : //www' the serverside'
coú/tt/a-rt icles/art icle . t ss?1=Integrat ingJavaandErlalg'

[8] R. Carlsson. Erlang Syntax Tools' http: //www. erJ-ang ' org/doc/
doc-5 .4 . 72/Ilb/ sy*ax-tools- 1 . 4. 3, 2004'

[9] E. Clayberg and D. Rubel. Eclipse: Building Commercial-Qualiry

PIug-ins. Addison WesleY, 2006.

[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts' Re/ac-

toring: Improving the Design of Existing Cad¿. Addison-Wesley,

1999.

[11] L. Frenzel. The Language Toolkit: An API for Automated

Refactorings in Eclipse-based IDEs. 2006'

[12] L. Gonie. Distel: Distributed Emacs Lisp (for Erlang)' In The

Proceedings of Eiglrth Intemational Erlang/OTP User onference,

Stockholm, Sweden, November 2002'

[13] S. Holzner. Eclipse Cookbook' O'Rei1ly' 2004'

t14l H. Li. Reþctoring Haskell Program.s. PhD thesis, Computing

Laboratory, University of Kent, Kent, UK, September 2006'
I The Eclipse Java refactoring systems allows these file changes' but note

that it was implemented prior to the definition of the LTK.

70

[15] H. Li, C. Reinke, and S- Thompson. ,Tool
Support for RefactoringFuncrional p_rggrams. In Johan feuring, eãi-tãi" Ãcu StcpLtU

HaskeII Workshop, Uppsala, Sweden,eígurt ZOóà.
-

l1 6l H. Llald S. Thompson. A Comparative Srudy of Refactoring Haskell
1{. !!19 rrosrams. In M. ôi penta unà'1. rrìoon"n, edirors,scAM2006,2006.

tlTl I..Li jnd-S. Thompson. Testing Erlang Refacrorings with

-9::u^9n:_:l; I
D r aft p ro c e e d i n g sþ t he is t h- ili ; o t i o, a r s y mp o -stum on rmptemenrafion and Application of Functional Langíog:ri,IFL 2002, Freiburg, German¡ Septe_Uer y'OOZ.

t18l I..Li and_S. Thompson. Clone Detection and Removal forErlang/OTp within a Refactoring enui.onÁ.ni.- ln p. A.hr"n,
P. Koopman, and M. T. Morazn,-edirors , Oiãi'þr**¿¡ngs of theNinth Symposium on Trends in Functional piogram-ming(TFp), TheNethe¡lands, May 200g.

[19] H. Li and S. Thompson. Tool Support for Refactoring FunctionalPrograms. In partial EuaÌuation ài¿ progro.-Mán¡pulation,
SanFrancisco. California, USA, January 200g.

t20l H. Li' s. -Thompson,
and c. Reinke. The Haskell Refactorer, HaRe,

and its ApI. Electr. Notes Theor Comput. Sr¡., iil(ij,zg_34,2005.
[21] Huiqing Li, Simon Thompson, László Lövei, Zoltán Horváth,

Tamás Kozsik, Anikó Víg,,and n.a, Nugy.
'nliu"ìoring

ErlangPrograms. In The proceedings of l2th iliárniìioiãi naongrcrr
U s e r C onfe re nc e. Stockholm, Sw.¿.n, Nour_¡".-Zðó6.

[22] László Lövej, Zoltân Ho_rvárh, Tämás Kozsik, and Roland Király.lnrroducing Records bv Refactoring. n ertülnZ,'iroceedings ofthe 2007 sIGpr.A,N ,o,1r7oy
11, Ë,tàrl til")i,ri"i. pages r8_28,

New york. Ny. USA,2007. ÀCM. e '- '"r' r

l23l LászlóLöve|ZnltánU-orvátlr, Tämás Kozsik, Anikó Víg, and Tämás
fagy Refactoring Erlang programs. ruiåailà"Þoryt"cltnica _
Electrical Engineering (to- appeã1, 2007.

[24] T. Mens and T. Tourwé.
,4,

Survey of Software Refactoring. 1E¿,8
Trans. S ofiware Eng., 3}(2)tl2Çhg, 2004.

t25l 3TS Nagy and Anikó Víg^Ertang Refactor Tool. Masfer,s rhesis,ELTE,Budapest, Uungary,2007. -
[26] G. Orosz.- The Eclipse Integration of the Wrangler Erlang RefactorTool. Technical repoft, Computing t_aboratory-Uniiersity of Kent,uK,2008.

I27l B. C. Pierce and D. N. Turner.
-pjct:_A

programming Language Basedon the pi-Calculus. In G. plotkin, C, Srirl"i"t, il i4. Tofte, edirors,
lyg2fatansuage and Interaction: nrsoys in'íiiniu', o¡Robín Mílrrr.MIT Press, 2000.

[28] P. Diviánszþ R. Szabó-Na csa and Z. Horváth. prororype Environ_
ment forRefacroring Clean programs. nfne fiuiti Conference ofPhD Students in Computer Scíeice, Szeged,HiÃl*V,zOO+.

[29] L. Felber T. Corbat and M. Stocker. Refactoring Support for theEclipse.Ruby Developmenr.tools. Masterk iteris, ûniuersity ofApplied Sciences, Rapperswil, Swirzerland, 2106.-'
[30] M. We'*r. frogram Slicing. In ICSE,gt: proceedings of the SthInternational Conference

^on _sofrware eng ineeriig, pages a39449,
Piscataway. NJ. USA, l9g l . IEÉE p..rr. " '- - - 'o' '-

i.
i'
¡t
:
'.

t.
:
i.

:

I

:

71

Gradual Typing of Erlang programs: A wrangrer Experience

Konstantinos Sagonas Daniel Luna
school of Electrical and compuler Engineering, National rechnical university of Athens, GreeceDeparrment of Infonnation re.r.,îorogy, Up;;d" ü-;';#,r, t,í.0*

kostis@cs.ntua.gr daniel.luna@it.uu.se

Abstract
Currently most Erlans programs contain no or very little type in_formation. This somet-imesìnakes them unreliatl", hard to use, anddifficult to understand and rnainrain. l, ,f* päpåi*e describe ourexperiences from usins staric analysis ,ootriffiAuulv uãã rypåinformation to a medirim.siz;JErirö;;rÏc;ff rhat we did norwrite ourselves: the code base of W.aËgtãí wË'.äi.r"rry documenrthe approach we followed, trr.

"*u.i-iiãf.'î."iåon and discusspossibre difficulties thar one is expecred iå ¿*i*ìtrr and the effortwhich-is- required in the process. We also show the type of sofGware defecrs that are tvpically brought f";;;: the opportunitiesfor code refacroring
",íå

i,"fí""..i"i, ;jä;';oeued benefirsfrom ernb¿rking in-such
1 Rioject. W"'fruu. ;h";;, Wrangler forour experiment because the process is better ffiàin"O on a codebase which is srnall enough ro trtut t¡.lnt"är"åiå"0", can retrace

its steps, yet large.enougã t" T"k"-th. õ;rñ;; quite challeng_rng and the experiences.worth writing uUoul. Hîr""er, we havealso done something similar on 1".æ p:*,
"î¡.i""g/OTp. The re_sult can partly be seen in the ,orr""".Jj. ãf Erffiofr Rl2B_3.

l*:S7ri? and Subject Desøípfors D.2.4 [Sofnuare Engineer_rngl : SofrwareÆrosram Verifi cation_pr"e.J;;i;e by conrract;F.3.3 [Logics and"Meanings of programs]: Specifuing and Veri_fying and Reasoning aboutÞroþam

Generøl Terms Documentation, Languages, Reliabilify
Keywords Erlang, software defect detection, contracts, Dialyzer

1. Introduction
Almost all Erlang applications have so far been written withouttype infonnation beins explicitly pres.nt in t¡"i.

"ode.
Ofcourse,

*:'_': ::11y"-.urprisiñg erter årr, E,i;;; ;, ;;y*mically Çpedranguage where type informatjon is only implicii during p;"gå;;developrnent. prograrn resting typicalty un.du..r-rnàny rypos andtype errors and these ur"
"oo".t.d_in if," pro..r..^ìi ,ouny

"ur"r,type information in the fonn of (Edocl
"",ü"ã"i. i. added in pro_grams in order to document the intendód mt.rAå", å"f key functionsand modules which are parr of the Apl.

In our experience. this^.lnode of developing Erlang prograrnsis far frorn ideal. Even after extensive ;"-s;inf, äuìy typo, una

l,:T-t::l* ro make dìgital.or ha,rl copiesof all orparr of rhis work for personal orclassroom use is granted wìthout fee provid.a trot
"ãfi"r -"'""i'å"0. or dis'ibutedfor profit or comerciat advanrase anà trrut

"opi.,
u"áiüriJ*iiJ" uio ,r," ,rrr

"irurion
oD the first page To copv othentise, to repubrish, to post on seryers or to ¡edistributeto lists, requires prior specific pemission änd.¡or á feel "' "-' ''"

ft-tanq'fa ^S_e¡19mt
er 2i.2008, Victoria, BC, Canada.

Lopynghr (Ð 2008 ACM e7s_l_6055S_0ó5_4/0810s... is.oo.

type errors remain in the code. Often these errors appear in thenot so.commonly executed paths such as those frur,ifing ,"ìi"u,error situations. Arso, type inionnation i"irr. iã., of comments isofren unreliable as it is nãt checked ,rgrl;.it by äe compiler. Suchdocumentation sooner or later is bounä ,o ,íffJrïo_ code rot.For a number of vears now we have been trying to arnelio_rate rhis situation bv developing *¿ i.l."ri"ö åols rhat supporrand promore a oineienr inåé;-r;;;;*";iåiËrjo,"*, in Errang.Namely, one where most.typos, typ"-"oo.r, iniãi.fu., abuses andother soffware defects are identin"á àuto,";ì;;ii;;.rg whole pro_gram static analysis_rather than testing, un¿ *fr..á type infonnationts automatically added in theprograri
"ode,

becãrnes a part of thecode, is- perhaps manually ,.fin.ã by th;;;";;;;_er and is sub_sequently aurornaricallv checked foi uuf i,ilÇiit., p.ogram mod-ifications. What's inreres,ing in ou, upp.ãuJh iiìi,., all rhese areachieved without imposing ãny G*träì;;t;tåìiã ,yp" sysrem in
1i"."}:*lt: lnsread, programs can be typed as gradualty as de_stred and the programmer has total contiol of the"amouni of typeinformarion that she wishes to .*po.. unà fuUti.ii ¿o"r,n.nt.

During. rhe
-last

year we h1v9 be¡n ;;;ri.dg this approachon a considerably large part.of th.e_ErfuirglOif
-lyrtern.

Indeed,nowadays the entire codq_of_the Dialyzer
"iJTyp;. tools, a largepart of the code of the High p"rfo.rnun.. nuii'ui'"o0" compilerfor Erlalq_(HipE), and rnany modules o¡ tt

"
,iunãu.O libraries ofErlang/OTP Rl2B-3 come wlth expticitiyp.ìnîJrãution. The pro_cess has uncovered many

-softwarå ¿er"óÄ, i¿""iiÄ"d some dubi_ous interlaces and a significan, nrrnU.. oî'Oìiã."pun.1". betweenthe published docurneniation and the u.tuul U.tuîor of key func_tions of the standard libraries. rn t¡. .oa"åîr'rìuTË¡orp, tt. *lrol.process has often been slow and painful, puafy U.iuu." one has toworry abour mainrainins backwärds .oi"putiúifiÇ-and partly be_cause i 1 invol ves a consiã'erable ;;;"i;ï;;",iïl¡.ur i on wi rh rheErlang/oTp- developers. Nwertheless, ove;;äil;; been very re_

::idl".e and,clearly. worth its white. in. ,.r"l,iìgiode is cleane¡easler to understand and lnaintain, more robust,'and lnuch betterdocumented.
This paper aims to docurnent in detail the steps of the pro_gram development mode.we advocate unO ¡uu.'ú'".n practicingall this tirne; both on code produceJ b;;;;;ô and on codeof Erlang/oTP. By doing sq others *ho ur.

-p"*iuly
inferestedrn gradually typing existing Erlang applications'ãál explicitly see

ll1":ll""l*d in the p.o.i,,. r";"åi;;il;;;ilãy län ,". both theoenenrs and costs of using our tools as well u.rnuny pitfalls thatrhe rnore "rradirional" moã'e of Erlanc- ;"il ;;iönenr involves.We decided to starr wirh a handiJap: ;;;;;ñ¡';"periment oncode that we did not write ourselves anä fo, t¡ái.eur* possibly notfully-grasp. Also, for the experiment to u" itt"i.Jtiig, *" *un,.othat the code should Ue of signincan,,ir"
"Jp"Uii.ìv uuuilu¡1".o

th-at others can retrace ou. ,t-.p.. an.i r""r.ì"g'"rä""i at a handful
:Tn^:::l: E¡l^ane_nrojects, we opted ro. ñ" .tá. orWrangler,
a reraclonng tool for Erlang [3].

t-t

refac-aton-info.erl:715: Guard test length(M: :atoroo) can oever succeed

refac-batch-rename-nod'erl:161: The cali erlang:exit('error"t1"25,?""1) vilI fail

since Ít differs in argurnent po"îtiorr l fron the "o"""""
typiûg argunents: (pido I porto'anyo)

refac-utiI.ell:921: Ca]-I to ni'ssing or unexported fuûctioû refac-syntax:class-body/l

lliil:üii:ã-,;',;â;;, $j":;ll:lln::'n Jäf.:ì'i:"JîT:Í';ì,ä'lo:':l""ess rypins arsumenrs: (boolo,booro)

Figure 1. The main defects

The code of Wrangler has various interesting characteristics

with respeo to what rie want to do' First, it has been developed

Uvît.ä.h.tt who are experts io ty-!:d functionalprogramming'

For this reason, we .*p"åt.d that furangler's code base would

;;';;il;ì; a' type disciplined manner
-and.

would not contain

lmlanv fvpe errors. Second. we expected that its code base would

ä;;il
"áå-ini.t.tting

set of uses of higher order tunctions -
"ã..ìUlu

more than in most Erlang code bases out there - and

irrtTî.ílä'i," .it.ii""gi"g for our-iools and approach' Third' the

;thårJ;iw;";gler híveieen heavilv involved in a project related

to testing Erlang programs and have used Wrangler in conjunction

-ii1, .ooîirti.utãá tei-ting technology such as QuviQ's QuickCh-eck

iåäiläinir"* irl Ft*f.i, the authãrs of wrangler are aware of the

iããit ãr *t g".åup, ut thåy acknowledge in Wrangler's homepage

ih"" 'á"t. ir. ,o,t. of the ideas from Dialyzer" In short' we

.-Å.ä ã", titis *o"ld be a relatively easy task' Let's see what

we found.

2. Using DialYzer on Wrangler

We started our experiment with the first action we recommend to

;;; Ë;i;ú ptoj".i' use Dialvzer [4] .Dialvzer
is,a static prosrarn

analvzer that is really easy to use and is particularly good in identi-

i"må *f*.* defects *hich may be hidden in Erlang code' espe-

;1;ìì?;;;;; pìths which aré not exercised bv testing' Indeed'

ffi'";íl;;;;rã*, it it quite common that these defects remain

unnoticed for a long Period of time'

2.1 The first experiment: Dialyzer on Wrangler 0'1

To learn something about Wrangler's evolution' we started by ob-

*;t"g ,h" il-t veîsion of Wrarigler' which was publicly released

* üiJzi tt of January 2007' We eiecuted the following cornmands:

> wget httP : //l¡l¡w . cs . kent ' ac ' uk/proj ects/forse/l¡ralgler/
distetB . 3-r¡rangler/distel-nrangler-o' 1' tar' gz

> tar zxvf distel-wrangler-o'1'tar'gz
> cd distel-wrangler-0' l/wrangler
;' çq *. er1

2229 7247 73088 refac-aton-info'erl
.. . 24 rnore lines suPPressed " '

g4784 137281 1198955 total

As we can see from the output of the last comtnand' the main

;"dy;ilh" .ode of Wrangler 0'1 contains a total of 25 mod-

ri"r'""t"ptlrl"g of about ¡íooo tines of code' out of these rnod-

;il, tnaäy arJmodifled veisions of Erlang/OTP modules (of the

=u"i"*-a'""f" application, the conpiler' and two supporting

modules ofdialYzer)."*W;;";rp"".ã.*ing
the Wrangler system because we wanted

to shake its code flrst. Inãtead, *" *o Diuly'er vl'8'1 as follows:

> dialYzer --s¡s -q *'erl

This analyzed all Wrangler modules. and generated 67 warnings

in less than 2 minutes. Ãuout so of these warnings concemed.the

;;;;;-;pp module and were warnings of the form 'Fu¡ction
F/A ¡¡ill never be called'' Suchwamings aretypically-side-

"ff".t,
of rorrr. failing or contract-violating function calls earlier in

of Wrangler 0.1 as identified by Dialyzer

handle-calf(Call-, Definedvars, State) ->

cås" i"-"-aton(Mod) andalso is-c-aton(Fun) of

true ->
M = atom-va1(Mod),

å""" {u-r-o", Ca11-Loc} of

1{ri, ct1, {L2, c2}} ->
if (Lt < L2) or

((L1==L2) and ((C2-C1) > tength(M)))

Figure 2' Portion of the code of ref ac-aton-inf o' erI

the same module which in tum makes calls to these functions un-

t."rf't"tf". Indeed, these warnings were produced because Díalyzer

"itã
iã"t in.¿ twq calls to theiile: open/2 tunction which vi

;il.' üh
-ít'puUtitl"a

documentation at lil{w' erlang' org and

;Ë;pìütryñì"io*utio" which exists for this function in the

sorrr"e
"ode

óittt. til" module of Erlang/OTP R12B-3' We man-

;;i";;ìfi.d the two offending calls to ihis tunction by changing

them from the old-fashioned one:

file:oPen(Name, read)

whichisstillallowedforbackwardscornpatibilitytothemore
kosher and documentation-conforming one:

file:oPen(Name, [readJ)

In the process, we performed a sirnilar change to two calls to

function file:path-open/3' Doing these changes took about

;;;i"rt"t of our time and reduðed the number of Dialyzer

;'aliö;; rs. Àuout half of these wamings concern modules

tãtã"-""otpire, refac-sys-core-foId and refac-v3-core
ñi;h;. 'ctorres or the córresponding rnodules of Erlang/oTP

*iift o"fy minor modifications' These waruings arc genulne errors

ttt"t ftã"Ë been fixed in Erlang/OTP R12B' We concentrate on four

äi-itl" r"-ulnlng warnings thit are specific to the code of Wrangler'

These warnings are shown in Figure 1'-

The flrst of them concems a luard that will never succeed' This

tvoicallv signiûes a genuine bug or is a sign of severe programmer

Ï"iiliåt. il..¿,'i..v few Èrlang programmers fancv writing

"rär¿t
ift", alwavs fail.'In this case ihó Diuly'"t *arning identifies

;;Jgä;iüã'toi. itt" conesponding.code is shown inFigure 2'

À', ,o:r, U" ,".ã, M i. an atom uná th" call to length/1 will always

fail in this case. However, since this call occurs in a guard context

i ri"ifr.. is silenced and can easily remain undetected by testing'

The second warning identifles a call to the exit function with

the wrong arity. The conesponding code checks for an enor condi-

i'i*
""ãïf

tft. .ondition is met it wants to exit the Wrangler process

,*.t pioUuUfy with a tagged two tuple where the first element is the

atorn error. Instead, it constructs the call:

exit(error,trCan not infer new nodule names' "'")

This is a particularly nasty bug that is very hard to detect bytesting'

ifr" o.oUt.t. is thai this co¿Jwitt abort êxecution alright' but will

il tå *i,h a significantly different message than the prograrnmer

'74

expa¡d_files([Fi]-elLeftl, Ext, Acc) _>
case filelib:is_dir(File) of

true ->

false ->
case f ilelib¡ is_regular(FiIe)

f ilename : extension (FiIe)
true -> expand_files(Left,
false -) expa¡d_files(Left,

end

concat(L) concatenate the list representation ofthê elenents in L - the elements in L can be atoms,
numbers or strings. Returns a List of char.acters,

m
%y,

'/:/,

Figure 3. Portion of the code of refac_util. erl

-type coDcat_thingO ::
atono I integero I ftoato I srringo

-spec concat([concat_thingO]) _> stringO.

concat(List) ->
flatnap(fun thing_to_1ist/1, List) .

thing_to_1ist(X) ¡¡hen is_integer(T) _>

Figure 4. lists : con cat / L function annotated with a contract

and
== Ext of
Ext, [FílelAcc]);
Ext, [File])

end;

intended. (The erlang: exit,/2 function throws an exceptions and
exits a process in_Erlang but expects a different type oftãrm in the
first argulnent and will throw a different exceptio; if called with an
atom in the first argument.)

.The third warning is simple but quite common in Erlang. The
code contains a call to a .non-existing function qof an eiistint
module). One does not need Dialyzer tõdetect this error; the xref
tool would also have detected it.

The last waming is the most interesting one. The corresponding
code is shown in Figure 3. To somebody iot u.ry farniliar with thã
idiocyncrancies of the Erlang parser this code íooks correct. The
problern is that and binds stronger than == in Erlang and so the
case expression in the code is parsed as:

case (filelib:is_regular(Fi1e) and
filenane:extensíon(File)) == Ext of

that is, the code in Figure 3 effectively tries to test a boolean valuewith the value of Ext, instead of béing parsed the way that the
programme¡ intended:

case filelib:is_regular(File) and(filena¡e:extension(File) == Ext) of
This bug can be fixed either by adding explicit parentheses as above
or by using the andalso operator insteaå of a¡a.
. Overall, rve spent about half and hour understanding and fixing

the software defecrs of Wrangler 0.1 that were làentlãed by DiaI
lyzer. We started from this veriion of Wrangler becuu." *. wanted
to see which of Wrangler's defects are lon!_lived and managed to
survive from the first to the current release.

2.2 The second experiment: Dialyzer on Wrangler 0.3
At the time of writing this section (early June 200g), version 0.3
y1 t!: mosr recent snapshor of Wiangíer. It was released on the
/th_oÍ January 2008, almost ayear after version 0.1. The structureof Wrangler's source code hãs changed a bit and some of the
modules_of Wrangler 0.1 that werefrom Erlang/OTp are no longer
present. Howeveq many modules of the syntai_too1s application
are still present and some new modules hãve been added.ìncluding
those modules, wrangler's code consists of 25 rnoáures and about
27,000 lines of code. We run Dialyzer as follows:

> cd distel-l¡rangler-O. 3/¡¿ra¡g1e¡/erl
> dialyzer --src -I ../hrl -c *.erI

After about 50 seconds, Dialyzer produced wamings many of
which were in file refac_epp and^were due to usi-ng un ãtorn
rather than a list for the optións argument of calls to functions of
the f ile module. After manually fi-xing this issue, about 20 warn_
ings remained.

-, ,toT: of these wamings were due to confusing one library func_
tlon wlth another one and abusing its interface. The Lists mod_

ule provides a conca1-/I function. Its published documentation at
www. erlang. org reads:

concat(Things) -> stringo

Types:
Thíngs = lThing¡
Thing=atomO I integerO I ftoatO I stringo

Concatenates the text representatíon of the elenentsof Things. The elements of Things ca¡ be atons,integers, floats or strings.

However, the current imprementation of the concat/l function is
more liberal than its docurnentation clairns it is. For example, its
irnplementation in Erlang/OTp Rl2B_3 allows calls where each
Thing is a tuple:

Eshell VS.6.B (abort with ^G)
1> lists:concat(tt{a,1},{b,2il, tic,S}JJ).
t{a, r}, {u, z}, ic, s}i

Note that the result in this case_is not a string. The code of Wrangler
is relying on an undocumented behaviour o"fa library function.
. Misunderstanding or abusing the interface of some library func_

tion is a very common software defect in dynamically typóO tan_
guages such as Erlang. We consider this problem quitl severe be_

:aus:.an application mìght give the imprèssion of working alright
but this remains so only until the library has the same observable
undocumented behavior. Of course, thii is sornething that is not
guaranteed by the library developers. We have notic;d this ptre_
nomenon happening again and again _ even in our own code! _
rn Erlang applications. For this reason, we have designed and pro_
gos1d. a co1tract language for Erlang [l] and have ãlready anno-
tated key libraries of Erlang/OTp wit¡ inåir documented inte¡face.
Indeed, in Erlang/OTp R128, the corresponding code in the lists
module reads as shown in Figure 4. Due to thã presence of these
contracts,-Dialyzer careasily detect such interfacå abuses and wam
the user about thern.

,_-
In this particular case, the problem is easily fixed. The code of

Wrangler.can sirnply use the lists: append/í function which has
the behaviour that its authors are after. ihere are 13 calls in total tolists: concat/1 that should become calls to lists: append,/1.

After this flx, Dialyzer reports 10 wamings in total. The main
ones, those related to Wrangler files not fÃrn Erlang/OTp, are
shown in Figure 5.

The first and last ofthem are farniliar. They are identical to those
in Wrangler 0.I and have remained unaffecied bV co¿. evolution
a-nd undetected by testing and uses of Wrangler. is mentioned, it
rs not verysurprising that the first of them haJremained undetecied
since the defect appears in error-detection code which is notori_
ously hard to exercise.

tì :.

f'
?

75

refac_batch-rena¡[e-nod.erl:161: The call ertaûg:exit('error" [1-.255, '. ']) will faiL
since it differs in argument position I fron the success typi-ng argunents: (pídO I portO'Tyfìì

refac-dupricar"a-"o¿"."'-i'i¿-i;;;"-;"*;; {'";;;;'; -R"u"oo1 can never natcil túe t}pe 'falsel I {'value"tupreO}
refac-fo1d-expression.erL:97: The pãttern {'";;;;;,"t"""ott'i can never natch the tþe {'error"'none'} I {'ot<"-1
refac_nove-fu¡.erf:r¡z: frre p"ri"tl {,eror", neason} ""r

rr"uêt matc}r the type {'error',-}
refac-utiI.erl:921: Call to nissiDg or unexPorted fu¡ction refac-S}mtax:cIass-body/l

Figure 5. The main defects of 'Wrangler 0.3 as identified by D\alyzer

trin-clones(FileNames, Cs, Minlengtb, Minclones) ->

åase lists:keysearch(Filel, 1, An-nASTs) of

{value, {rlrer, AnnAST}} ->

i";;;t, -Reason) -> {false, {Range, Len, F}}
cnd

Figure 6. Portion of the code of ref ac-duplicated-code' erl

bulk of these annotations is in files that are minor modifications of
Erlang/OTP modules. Because for the more up-to-date version of
some'of these modules (the ones in Erlang/OTP R12B-3) we had

ut..uay performed a similar action to the one we will describe in

ttrl. ,ectiott, we decided to focus on the @spec annotations in mod-

ules that have been written entirely by Wrangler's authors' There

are 15 such modules but three of them (refac-module-graph,
wrangler-distel and wrangler-options). contain no aûnota-

tions."In the rernaining 12 rnodules there are 54 @spec annotations

in total. Their breakdõwn according to module is shown in Table 1'

The second warning is due to confusion about the possible

return values ofthe lists:keysearch/3 function' The offending

code is shown in Figure 6' We have seen similar defects in various

other Erlang code báses. The remaining wamings are sirnple typos

in error cnõting code. Similar defects have a tendency to remain

unnoticed for a long tine.
We manually corrected these problems but for the last one (the

call to the missing function) which we did not know how to fix'

The whole p.o..ti, including ret'erring to Erlang/OTP's documen-

tation and code to verify issues related to lists:concat/1 vs'

lists: append/1, took us a bit more than fwo hours' With an al-

rnost wuÅittg-free code base, we could start adding-contracts to the

code of Wra:ngler in order to robustify its API and in the hope of
identifying mõre defects and interface abuses' Let's see where this

got us.

ref ac-batchrenane-mod
I

refac-duplicated-code
I

refac-expr-search
1

ref ac -f old-exPress ion
refac-gen
refac-¡nove-fun
refac-new-fu:r
ref ac-renane-fu¡
ref ac-rename--mod

I r"fa"-teoat"-.rar
I refac-utí1
I wrangler

I
I
I
2
'7

2
1

2
2
3

21

11

3. Adding Contracts to Wrangler
The second action we recommend to any Erlang application is to

expose as rnuch type information about functions and modules as

;;';tU" un¿ *ut" ttti* infonnation part of the code' Typically, type

information is only irnplicit in most Erlang programs' Making it
more explicit can happen in the following two ways:

Add explicit type guards in key places in the c^ode' Such an ac-

tionïas thð ãdvantage that if exposes type information to static

analysis tools such as Dialyzer and at the same time ensures

thatialls to these functions will fail if they violate these type

tests during program execution. One disadvantage is that there

is a runtimè õost associated with this action, but this cost is typi-

cally quite small. A more serious disadvantage is that programs

may ttòt be prepared to gracefully handle such failures'

Ädd type declarations ând contracts. Type declarations can give

convenient nalrìes to key data structures which can then be

used to document function and rnodule interfaces' Such type

information can then be used by Dialyzer to detect interface

violations without occurring any runtime overhead' Quite often

such infonnation already exists in comlrents: either in Edoc

format or even in Plain text.

Of course, these two methods of exposing type information are not

mutually éxclusive and projects canemploy the cornbination that is

best suited for each situation in hand'

In the case of Wrangler 0.3' its source code already contains

a fair amount of @spec annotations (336 in total)' However, the

Table 1. Number of @specs in rnodules of Wrangler 0'3; rnodules

with no @specs and moãules frorn Erlang/OTP have been excluded

3,1 Turning @spec annotations into -spec declarations

At least syntacticly, convefting an existing @sPec annotation into a

-spec declaration is a rather straightforward procedure' For exam-

ple, in refac-batch-renaroe-¡od. erl the @spec annotation:

7.7. @spec batch-renane-mod (0ldNa-mePattern : : string ()'
y,,/, Ne!¡NamePatternl : stringO ,
,l"I SearchPaths::lstringOl) ->
"/,\ ok I {error, stringO}

can imrnediately be turned into:

-spe c bat ch-renane -noa < orlfffi :ï::i, ; llllTË i I :

SearchPaths: : lstringOl) ->
ro¡r | {,error,, stringO}.

The single quotes around the atoms are not really needed, but we

recomm;nd-their use so that it is clear to the reader what e'g' is

supposed to be the atom 'ok', which denotes a singleton type in

thå ianguage of types, rather the ok O type where the programmer

has mistakenly forgotten the parentheses.
-

Quite ofte;, onã also neeàs to make up names for types which

ur" nìt bnilt-in types. For example, refac-duplicated-code ' erl
contains the following @spec annotation:

7.7. Ospec duPlicated-code(FileNa¡ne : :filenaroeO '
%,A Minlines : :integerO '
T/, MinClones::integero) -> termO'

which, after making some educated guess' can be tumed into:

/t)

-type filena¡eO :: stringo.
-spec duplicated_code(FileNane : :filenaneO,

Minlines ::integerO,
MinClones: :integerO) _> anyO.

If one continues this. way, she is quickly faced with a problem.
B.ecause @spec annotationjare not ,åutinJly

"ir..ked
by the com_piler or any sraric¿¡alysis tool, rnu"y ;ilh;; hlve suffered fromsevere code rot and have become inacõurate, outdated, oa auan aorn_pletely wrong. For example, to b. "oo."iïäon. precise, theabove -spec declaration ihould actualþreáji-

*

-type filenaneO :: stringO.
-sPec duplicated_code(FileNames : : [fi]-enaneOl,

iliiåiï:"; ;,iíï81; _> aayo
Note that the problern is, not in the fype declaration that we intro_duced bur in rhat the original O"p"ã unnotuti* tïat the file con_tained is not correct.

Out of curiosity, we performed the following experiment. Weconverted all 54 @soec annotations of Wraffir ô.t to _"p""
declarations and added very loose ryp. O..turãi'i'oÃ for rype nameswhich were nor docurnenied in tñé

"o¿.,'*. ¡"ri"ully rn;;pJãmost of these types to any () . This makes the coiiracts containing

ll,:::9,f:,1: rggi.ving as possible. We rhen run-Dialyr". on th.wrangler tiles. Dialvzer-reported a total of 104 warnings! Recalithat this was on a seiof fires *hl;h ;;;;;;#;ä.. withoul any-spec declarations. This is not the first tirne wã experienced thisbehaviour: Edoc annotations need to be treaæd witlh caution.
,_ ll o". experience, the..converr all @spe;; åi'on.., approachls very crude. The user is sirnply overwhehned by the nurnberof warnìngs that Dialyzer ..ports. .We

recommenO ifr. f"if"*i"gapproach instead.

_ .ll* frorn sor¡e easy flles. Easy files are either those that donor contarn rnany @spec annotations or those that depend ";;"1,lêw other rnodules. This way, one has the chance io run Dialyzeron a single rnodule at a time ãnd ."*".lif_,ãi.iåts that Dialyzeridentifies on a moduleJocal b¿sis. f¡"" .ãrii"".îis way until a1lmodules. have been processed. Note that thtñ;;; guaranteed toresult with a ser of files which, *h.n .orrriã".ej'tågether, can beanalyzed,,byDialyzer without anywarnings. If the wámings that areproduced are too manv- then analyze td,r;ì;ù, ;y consideringthe strongly connecteá'cornponents that they to.m, nx warningsin the process, and expand ïn this .;i;;iií uli',no¿rle, .un b"analy zed warning- free.

^,,
al*i.lt wamings of only one or of a srnall set of modules is usu-alry qulte.easy._r'or exarnple, for the ref ac_renane_var module,one gets the following warning from Dialvzer.

11:1,. "l.lfd.l warnings rhar are quite clearly a side_effecr of some
'rnerrvarnrng.) rn any case,42 is a much more manageable numberthan 164. Most waminss were due t" .igf,ì

"Jaìiøîål
specs in rhecode of wrangler 0.3

"being
enoneous, which we also corrected.Their modules are indicated in the .gloúal, ;;i;." Jttuul. z. tr,.whole process took about sl* t ou..."Of co""r",îî;l¿ have takenus less time had we been familiar witf, W.unão ,'.oa..

| @specs local global

ref ac_dupl i cated_code
refac-expr_search
ref ac-f o1d_expression
refac-gen
ref ac--nove_fun
refac_ne¡¡_fun
refac-:'enane_fun
ref ac--r.enane_nod
ref acJena.me_va¡
refac_uti1

1

1

t

7
)
I
1

2
3

21

ll

1

I

2
6

I

5
2

Table2. Wrong @specs in Wrangler 0.3; blank entries denote 0

renane_va¡ (Fname , Line, Co1, NewName, Searchpaths) _>

3.2 Fixing defects exposed by _spec declarations
When -spec declarations becgme part of the code, interesting soft_ware defecrs are exoosed by Dialyzer. fo,

"*u,"piå,
rhe Wrãnglerfile ref ac-utir.

"rr ,onrán, #¡;ii"*;ä";""à annotation;
@spec pos_to_var_nane(Node-: :s]mta*TreeO, pos: :pos) _)

{,ok,, {atomo, {ros, p""}il ì' ...-
To ease exposition, let us drop the variable names for referring
l:, y=p:r, introduce a type detlaration for lrfrul1f," authors o?wrangter denote as pos, and fix this annotation so that its refurnfyp-e is actually correct. The intended .p".iÀ.ãtion for funcrionrefac_utiI : pos_to_var_name/2 shoulå read:

-type posO :: {integerO, integero}.
-spec pos_to_var_name(Node: :syotaxTréeO, pos: :posO) _>

{'ok,, {atonO, {poso, p""ijj,'".iìlli l'.....

¡yhere
cat() is.some.type. In refac_renane_var.erl this func_tron is used as shown in Figure 7. In this code, Dialyzer wams thatthe equality test between D.ef inepos, w¡ich ira tío tuple, and a

-singleton
list will always faìl. O"ce aeåin, this i, Ju..y Oim"uf, Uugto spot or discover by testing because it'is in code-which handles

exceptional_ cases. (Under tyþical execution., tt
"io¿e

goes to thetrue branch anyway.)refac_rename_var. er1 : 66 :
The call cond_check(..
brea-ks the contract (. .

, Nel¡Namel: : atonO)
, NewName::stringO)

where one can irmnediately see that there is something wrong in thelast argument of this tunctlon; eirher i" trri.áii'ãîiine 66 or in thecontract of rhe funcrion li.e., the _spec declarationJnat *.
"dà;J.Finding out which of these two is to Hu-. i, uïit rnore tricþ,especially if one is unfarniliar with the

""¿.. ôrlá often thoughthe module has some code part that gives-a stroì[inOicution utoutwhere to assign blame.

^,, Ij follg*ed the approach we describe above and convertedar {sspecs to -specs ending up with a set of modules for whichDialyzer gave no wamings .,'u=h.n run
"r

ã,ìrgl" ,"oule at a time.ln the process we had to fi"x a total often
".ronËor.'"p"cs out of,the54 original ones. The .local' column

"f
T;bl;t;h;å how rhese arepartitioned per modute. We rhen run Di"tt;;;;;ü;omplete set ofmodules, which resulted in a total

"f
42;;;;;. jú a",, only t7

case. refac_util:pos_to_var_nane(AST,
{Llne,CoI}) of{ok, {VarNane, {_, Derinepos}. c}i j> '-'--

if Definepos == I{O,O}l _>-

{error, "Renaming qf ,.. is not supported!,,};true ->
% code that renames the va¡íab1e herecase cond_check(¡,ST1, Definepos, Ne¡¡Name) of

Figure 7. Portion of the code of ref ac_rena¡e_var. erl

_.,
Onr",this problem gets exposed, Dialyzer also warns aboutother problems further down in the code. Éigu." ã ,f,o*s a smallportion of the code of the cond_check,/3 Iunction. The call tolists: any/2 demands that pos, which comes nÀ,n ¡"tio"po"

cond-check(Tree, Pos' NewNane) ->

;åv*" = lists:nap(fua(-, B, -) -> B end' "')'
C1ash = lists:arry(ful(bound, Bds) ->

F_Member = fun (P) -) ..' end,

lists:anY(F-Menber' Pos) and

end, BdVars) '

Figure 8. Portion ofthe code ofrefac-renalne-var erÌ

In short: like applications' types caî be gradual/y reflned and

.lr"nettt"tt.¿ up iò the point that the prograÛrmer wishes to expose

it f"t;;ä"l;oi t.tt or values anà impose constrâints on their

uses. This way, programs can protect themselves from accidentally

violating these constraints'
ó;cJ types are declared, often one-notices that the same type

o.n"ilio" äpp.ars in more ihun ott" file' For example' the above

wï"-ã."iur":ti"n for pos O was added and refined in a total of four

\iti;rcl* fiú;. rt it or course bad software engineering practice

aï"í. ,tt" same information in different places in the code' One

"".
.iitt"ipf".e this type definition in a comtnon header flle which

;;; rh;; be included Lv all flles that need it, or place it in only

;;; fii;,-r;y n ' err, ané then in all other files can use the notation

;;; ö ä;k;. to túis t O tvpe definition that module n contains'

Fo, \ìVrurrgl"t, since a "r.og'llr ' hrl file already existed' we opted

i* f".t".itllll type declaiæions that were used in more than one

module to this header flle'

3.4 Strengthening underspecified -spec declarations

The next step is to gradually strengthen some -sPec declarations'

ú*t. quite oftetimany óf thtm ary. u¡d9r1p1ified' For exam-

ot.. in tftË code of Wrangler about a third of all @spec annotations

"rp*tfy';.;ú type of-ternO for the corresponding functions'

óU,rioïrty, this retum type is not very precise; most of these func-

tions return terms with a statically known structure'

Luckily, when specs become part of.the.code' there is an easy

uuto-áìi"îuv to discover the underspecified ones among thern:

> dial-yzer -llunderspecs --src -I "/hrl- -c *'er1

Running this command revealed a total of 19 untlerspecified

-"oec decl-arations (out of the 54 ones)' This was after we strength-

.tåJitt. -tvp" deciarations; the number would have been 24 if we

had not done so.^'--¿;;;;ti.g
the underspecified declarations is quite easy' For

example, for one of thetn Dialyzer reports:

ref ac-duplicated-code' er1 : 53 :-
iype "pecitication

for duplicated-code/3 ::-"'i
ttli"r,"'"Ol , tbvteOl , tbvteOl) -> anvo

is a suPertype of the success tyPing:
(tstringOl , fuvt"ijl , tbvteOl)'-t {'ok" t1' '25s' ' "l}

andofcourseitisasimplemattertochangetherefumtypein
;h;-;p"; declaration of this function frotn anyO to either the

r"il* ,yp" which is reported by Dialyzer (denoting a two.tuple

-fr.." tí,è second element is a non-empty string) or to the slightly

unã".rp".ifi.d but much more readablê type { 'ok' '
string () }'

It is impofiant to note that the success typing information re-

ported by ihe -l'lunderspecs option of Dialyzer is a conser"¡ative

ñ;;;#"*" of the behäviout òf th" function which is safe to use

ãã'J;;ú" copied and pasted in the file as is' Its use will never re-

;l i;
";y

adäitional óidyr"t warnings'. Dialyzer does not really

n..O i,t pr.."n." because it is the one that it infers' But there is

;õ"ã;åaso;to explicitlv add-this information in the file: it pro-

viães useful docurnentatión and frorn that point on its consistency

*ittt ttt. code can be statically checked by Dialyzer'

Sometimes this search for underspecifled contracts uncovers

t.p;;;J;;"ms which ut"
'o "o'o-on

that they deserve their

"it-typ"'¿*faration.
For example, the Dialyzer call above re-

n"ut"¿ ìnu, many Wrangler fllés deflne an auxiliary fu-nction

aoolication-into/ r thãt retums a two tuple of the form {{- ' -}.'
;ã;;-;;;;;s;{i}. r,'-t out that the two underscores are al-

*uvt
"rãt"t

urrã ttt" rion-negative integer represents the arity of a

n í.tion. We thus added the following type declaration:

-type aPPl-infoO :: {{atomO,atonO}' arj"tyO}'

in Fizure 7. is a list' This code will surely fail if ever executed'

W. ;äìã noi¿..þft.t what exactly this lis-ts:any/2 call and

t*o ,irlrliut o.trr.."n"., further down in the code of cond-check/3

i* to d". so we did the best action we could think of: we simply

;'."pp;ã'ú; po" uariabtes in a list' This silenced all but one Dia-

iyr.lïu-ingt on the complete set of files of Wrangler 0'3'

3.3 Strengthening and factoring -type declarations

SincewewereunfamiliarwithWrangler'scode,whenaddingcon-
iracts we initially mapped most types mentioned in @spec annola-

üãr, drt. i"t "iu-pi.
ttt. tvpet "vott*rree

O.and cat O in the

.ì"i"ò1. of the previous sectiôn) tothe type. any.O ' This is the most

g"""tãi tvp" of the type system, representing the set of all Erlang

i".-.. fr,fäipi"g thesé ìypei to any Õ has the property that Dialyzer

will not ..pìtt u"y contract violations due to a mistake in the def-

t"ü;t oi'ttt"t. types. On the other hand, it is clear that in most

""ï"t
if..* ayp. nåio., denote only a subset of.all Erlang terms and

;õñ ,-h"íti iu *ry O is a grosõ overapproximation' we can and

should do better than that.*'"H;;;";t,
unless one is pretty certain about the values oftypes'

*"i..o.-É"d that initially oné is not overly zealous in constrain-

tõ Ã;. ih; teason is that over-constrained type declarations can

r.eiJ il
"

lot of wamings frorrr Dialyzer' As a result' it rnight be

;il'h;ã là n"¿ ttt. crilprits and correct thesgrvamings in con-

ilnction with enoneou, :"p"" declarations' We instead recom-

ï".t¿iftut "".
first tries to come to a state where the existing -spec

ã"rì*",i"r, do not result in any wamings from Dialyzer and_only

th;il constraining the types' Indeed, this is the approach we

followed when tYPing Wrangler'--
Sometimes, Ëão. otyp""annotations already exist in the files

unltft"." ,un ú" .hung"d io the corresponding -type declarations'

Some other times, type declarations are pretty obvious' as e'g' for

the case of the f ilenane O type that we mapped to stringO ' Fi-

nally, often infonnation about types exists in comments or types are

;;Jty;ì.;. frorr the structure óit"t-t and the names of variables'

äir'i, fo. example what we did for pos O ' In various parts of the

ä;, lt;"t rneintioned that this type denotes a pair of integers'

Thus, we initially added the declaration:

-type posO :: {integerO, integerO}'

and corrected the warnings reported by Dialyzer' None of them was

t.ìá"¿ t" this declaratioñ. Thèn, looking deeper in the code' we re-

;ii;.J th"t pos () denotes the line and iolumn numbers of a posi-

tion in the program source; the position {O'0} was used to denote

,it. ¿.f"tftit"tition or the ábt"ttt" of posiìion information' We sub-

;ñ"",1y räflned its declaration to exclude negative integers:

-type posO : : {non-neg-integerO, non--ûeg-integerO}'

For safety, a Wrangler prograrnmer rnight want to further constrain

;hir
-ú;i;

"ppropiiutó
inìóger ranges for.lines and columns that a

,orrt.. nl" mìghtìontain. Fãr exarnple, the above declaration can

be refined to:

-type poso :: {o''tooooo, o"2oo}'

'78

t-_tlP"t --show-expotted -f ,./hr1 refac_renane_var,erl
Unkno¡¡n functions: [{refac_syntax,get_a¡n,f}, ..,,

{ref ac_utiI, envs_bounas_tre"s, f },%'/, plle : "ref ac-rename'_var. erl_,,

) erlc +warn_missing_spec -
. ,/refac_rename_var. erL : 166 :

Figure 9. Finding missing contracts for

L, /hrI ref ac_rename_var. erl
ÌJarning: nissing specification for function pre_cond_check/4

-spec pre_cond_check(tupleO,_,_,atonO) _> boolO.
-spec renane (Tree : : syntaxTree O,Def inepos : :pos O, NewName : : aton0) _>
-spec renâ¡ne_va¡(FileName : : f ilenane O, . . .,Sãarchpaths : : [stríngi! j l _,

, {refac_util,write_refactored_fi1es, 1}i

{sy¡taxTreeO,booIO}.
{'ok',stringo} I {',error,,stringo}

"H,

'/,v,

t-_tlp"" --shot¡-exportgd -I ..,/hrl refac_reDane_var.erl -T refac_utilerlUnknown functions: [{refac_syntax,get_a::n,f}, ...,
{refac_ut i1 , parse_annot;t e_f ile , 4} , {ref ac_ut i1 , post_refâc_'/,'/, FiIe : "ref ac_rename_var. erL',

-spec pre-cond-check(tupleo,non-neg-integero,non-neg_integero,atomo)
-> bool().-spec rename(Tree::sJmtaxTree_o,Def ineRosi:poso,t'¡e¡¡rãne: ruioriij-lr i"*.*ir""ìj ,uooroÌ.-spec renane-va¡(FireNane::filenaneo,'..,säarchpatns::IstringiiÍl -t 1,ok,,stringo) r {;err6¡,,stríngo},

check, 3)J

of module ref ac_¡enane_var using Typer

module present m¡sstng

ref ac-dup1 icat ed_code
ref ac-expr_sear.ch
ref ac-f old_expression
refac-gen
ref ac-lodule_graph
¡efac-nove_tuo
refac-new_fu:r
refac-rename_fun
refac-rena¡ue-mod
ref ac-rename_va¡
refac-uti1
wrangler
wra.ngler_distel

I
I
2
)

2
I
I
I
2

21

1l

ons

I
2

4
I

I

2t

13

I

exported functions

in the header file of Wrangler although we could refine the twoatonO types even further.

, With the help of Dialyzer, tnany underspecified contracts can
De strengthened rnore or less automatically. However, one should
þe

awa¡eJla! Dialyzer does not repoft all underspecified contracts.
Instead, Dialyzer only reports thôse -spec deålarations that are
Iound stnctly lnore general

lhan 1!g co,rresponding success typings
that it infers forthese functions [5]. Iftheie

""irti "u"n
one argu_

rnent posirlon in the -spec declaraiion which is more specific tËan
the-corresponding success_typing, Dialyzer will not report these
declarations as underspecifi.¿ pó. this ieason, one rnigirt want to
manually inspect all -spec declarations to spoi argurnents and re_
tyln^val_u_gs whose types are underspecified. fn factithis is what we
did for Wrangler 0.3. After we cotrected underspécified contracts
which Dialyzer reported, we used grep to det.ót _"p"" declara_
tions with an occuûence of tne terin(j or anyO type and rnanu_
ally corrected these. There were an additionaily niiä such _sp."
declarations. The whole process described in this subsection took
aDout two hours to complete.

i^-\ .

,'
:

jl

Table 3. Number of existing and missing specs for all exported
functions of Wrangler 0.3 mõdules; blank-entiies denote 0

3.5 Adding -spec declarations for exported functions
To ease development and maintainability of Erlang applications,
we recotrrmend that modules contain _spec decla-ratións for alí
their exported functions. This way, at least their public inte¡face

5^9^ïül:î.:d and Dialyzer can deiect possible vioiations. To help
detect rnodules whose public interface is not docurnented, we in_
troduced a new cornpiler option in Erlang/OTp Rl2B_3, called
r¡arn_missjng_spec, which wams about rnissing _spec declara_
tions fo^r all exported functions of a rnodule. Weîseå this option
on the flle^s of Wrangler 0.3 which are not from Erlang/OTp. The
number of existing and missing specs for exported functions for
these modules is shown in Tlble 3. As can be seen, only half of the
exported functions have a publicly docurnented iníerfaðe.

lVith the help of this new^cornpiler option and of the Typer
tool the rnissing function specificatións can also be generated semi_
automatically. For example, Figure 9 shows the threãcommands we
used^to find the missing cont¡ãct of module ref ac_renane_var.
The first comrnand uses the new compiler option to see the exported
functions^without specifications; theìe is onty one-ãf them in this
lnodule. Subs^equently, Typer is used to geneiate speciflcations forall exported tunctions in this module. For all functions with ex-
isting specifications (e.g. functions renane/3 anã renane_.rarlb

in this case) Typer is printing them as these appear in the ûle.
But Ty^per also generates conservative upp.o"i*aiiãns of specifica_
tions for the remaining functions.-As cån be seen, the firsi attempt
to generate such a specification for function pre_cond-check/4
was only partly successful. The generated specification contains no
type infonnation for the second and third argument of the func_
tion be-cause Typer also complained that it doei noi tno* anything
about functions ofmodules refac_syntax and refac_util that
the ref ac-¡enare_var module-is using. ny instructing Typer to
Írust the exîsting function specificationJof file refac_util .erl
(but recall thar this module has specifications for ãn1y half of its
functions), Typer is able to infer an accurate specification for func-
tion pre-cond _ch.e ck / 4.

, ,A.T?lly.,in this particular case, we happened to be somewhat
lucKy. Module refac_util contained type speciflcations which
are sufficient for Typer to infer a relativeiy accr.rate type infonna_
tion for pre-cond_check/4. However, often this is not the case. In
those situations, we recolnmend that the user starts from leaf mod_
ules (i.e., modules which do not call functions f.o- oih".,r,ódul"rj,
use Typer to annotate their exported functions with contracts, and
continue bottom up in the module dependency graph until all rnod_
ules are annotated with contracts.

79

One can even be brave and use the --ânnotate option ofTyper'

which will automatically insert the generated -sPecs in the source

code ofthe file(s) on which Typer is run.

Of course, ùã must alwayskeep in mind that the specifications

that Typer generates are coniervative approximations (in fact, they

ut" tuå""ti typings) and will never contain any constraints that

are not p..tént oi enforced by the source code of the moduie'

In other words, these automatically generated specifications are

correct but possibly imprecise' In most cases, the user needs to

refine them manuali¡ bóth in order to strengthen them and in order

to use appropriate tfre names for their arguments' For example, the

o."o.r"n.. åf t"pié f > in the specification of pre-cond-check/4
denotes a syntaxTree O.

4. Contacting the Authors of Wrangler

At this point, instead of proceeding on our o'wn-' we decided to get

in toucú with the authoriof Wrangler. We sent them our paper with

the information it contains up to this point.

In the beginning of July 2008' the code of Wrangler had b-een

extended unà'to."lhut
"hânged

compared with the version of Jan-

uary 2008 that we were looking at, but most of our steps could eas-

ily be retraced even in the development version of Wrangler' The

Wrangler authors confirmed our findings. They also added -spec
declaräions for most exported functions of Wrangler rnodules' Un-

fortunately, they added ihese specifications in one go and were sub-

sequentlylonfionted with many Dialyzer warnings that they could

noi ngui" out their cause' So, they asked for our help' Of course'

the cõlprit was that some of the -specs that they added were in

conflici with the functions' uses. In other words' the Wrangler au-

thors did not only confirm our findings but also corroborated our

opinion that converting all @spec annotationsinto. -spec declara--

tions in one go is something not recornnendable in code bases of
significant size.

With our help, the erroneous function speciflcations which were

resulting in wamings from Dialyzer were corrected' There were

eight oíthem in a îotal of about 150 -spec declarations' In the

p.ã."rt, some of the speciûcations written by the authors of Wran-

!t". *".. tightened and a few more were added by us' The-end

i.sult *u, a"Wrangler code base which was totally free from Dia-

lyzer wamings, mõre robust, and with better documentation about

iis main funciions. The Wrangler authors were happier but we were

still not fully satisfied..'

5. Testing Contracts of Wrangler
What troubled us was the following. Because Dialyzer's analysis is

conservative and based on approximations' Dialyzer never repofts

a code discrepancy if it is not absolutely certain that there is some-

thing wrong *itn in" code. In particular, all -spec declarations are

trusted and are assumed corréct unless Dialyzer discovers a clear

conflict between their definitions and uses' For functions with no

calls, for functions whose calls are with arguments whose types are

not precise enough, or in cases where the retum value is not in-

volved in any expiicit pattem matching, contract violations will not

be detected or rePorted.
For this ,.urótt, *" have created yet another tool that, given a

testsuite,dynamicallychecksthevalidityof-specdeclarationsin
a set offilei. This tool is not yet publicly available and its interface

is subject to changes so we will only describe its rnain idea here'

Cunently, the tool starts with a set of 'beam flles and a test

suite which can be called from some topJevel function (e'g'

nytest : run/N) possibly with some arguments'.For all files which

häve been cornpilid with debug-inf o on (and thus whose -sPecs

are retained in the byte code), it will employ runtirne monitoring

to check the validity of their contracts and record all violations it

detects while the test suite is running. The recording of all contact

violations happens using the Erlang error logger and can be saved

in a file, if sò'desired. ihe contract checker is straightforward to

us" fo. code bases with an already existing test suite' The only

drawback, albeit a serious one, is that the test suite will run sig-

nificantly-slower.Howeve¡becauseallcalls.tocontract-annotated
functions originating from non debug-compiled modules will not

be checked, ti. ,rt"i"un fully control which parts of the code base

will be coníract checked andihe amount of runtime overhead to the

test suite.
The authors of Wrangler provided us with a small test suite

that we used to test the uãliAlty of -spec declarations in files that

.r".o."ho "touched" by ihis test suite. These files contained

a total of 106 -specs out ofwhich 55 were checked at least once;

the remaining 5i concerned functions that were not called by the

test suite. Tñe contract checker detected a total of six contract

violations: two in calls to functions and four cases where functions

retumed a value of different type than promised'

Two of the contract violaiiôns involved functions get-toks/1
and concat-toks/l of the heavily called refac-util module'

itt"y *.t. both due to an erroneous declaration of the tokeno

ryd by the Wrangler authors. This type was declared as:

-type tokenO : : {'var', posO, atoroO}
I i'itteg"i', PosO, integerO)
I i'ftoat', posO, floatO)
I i'ch"t', PosO, cnarO)
I i'sttittg', PosO, stringOÌ
I {'atom', PosO, atomO}
I {atonO, PosO}

but faile<l to al:cüurt for the fact that the lexical analyzer also

returns white spaces and comments as tokens' We extended this

declaration by including the following two cases:

I {'whitespace', PosO, whitespaceO}
I i'"ott"tti', posO, stringO)'

and added an appropriate definition for the whitespace O. type'

The refac-util module contained another contract violation'

The function get-bound-vars/1 was declared as:

7.% @¿oc Beturn the bor:nd variables of al AST node '

-spec get-bound-vars(Node: :syntaxTreeO) -> latonO]'
get-bound-vars(Node) ->" gãt-uourd-va¡s-1 (refac-syntax I get-ann(Node)) '

failing to account for the fact that a variable annotation can oc-

casioãally be a two tuple containing an atom and a position (e'g'

{,setf',{77,11}}).' The forìh violitíon concerns function fold-expression/3 of
the refac-fold-expression module. Its contract reads:

-spec fold-expression(f ilenaneO,integsrO,integerO) ->

{lok", [f ilenaneOJ] I {'error', stringO}

butitisclearfromthecode,showninFigurel0,thatthisfunction
retums something different than a list of fllenames (strings) when

the last utgorn"ttito the fold-expression/ function is emacs'

A sirniìar, though not the same violation, concerned the return

fype of ref ac-no,ieJun:roove-Jun/6' Finally, the last violation

wäs detected in the contract offunction refac-gen: generalise/5
whose last argument was erroneously specifled as being a dlr o
when in fact iishould be ldirO] (i.e. a list ofdirectories)'

After the corresponding changes, the contract checker reported

no violations when runniig Wringler's test suite' Of course, this

does not mean that Wrangler's contracts were not erroneous any-

more. Instead, it just rneans that contracts which were exercised by

the test suite accurately reflect their comrìon uses'

80

fold_expression(FíleNane, Line, Col) _>
fold_expressioo(FileName, Line, Col, enacs).

fold_expression(FileNane, Line, CoL, Edítor) _>
case. refac_util:parse_a¡notate_fi1e(FileNane, true, []) of

{ok, {AnnAST, _rnfo}} ->

Candidates = search_ca¡d.idate_exprs (AnnAST, FunNane, FunClauseDef),case Ca¡didates of
[J -> {error, "No expressions that are suitable for folding against ...,,};_ -> RegioDS = case Editot of

enacs ->
lists:nap(fun({{{StartLine, Sta¡tCol}, {nnatine, EndCol}},NewExp}) _>

{Srartline, SrartCol, Íir,¿iio", EndCol, ¡ei,Éxp, {r.r:åCtauseoef, Clauselndex}}end, Candidates);
eclipse -> Candidates

{or, n"gioiSl' ,, o, {ok, FuncrauseDef, Regions}? cHEcK THrs.end;
{error, Reason} -> {error, Reason}

Figure 10. Portion of the code of refacJold_expression. er1

6. Concluding Remarks
In this paper we described in.detail the steps needed to gradually
type the code base of an existing Erlang application. We-carefully
documented the methodology we advJcaiË, tne effort that is re_
quires, and-the pitfalls that ii rnay involve. In most code bases the
process is far from s.traightforward, but with the help of the static
and d¡marnic analysis tools we have developed it can at least be
perfonned semi-automatically.

__-
In gut experience, what we have described for the code base of

Vy'rangler in n9 way refects on its quality as an application. In fact,
it is_ quite typical for mosr Erlang ãppliðations oui the¡e on which
¡ve þav9 applied Dialyzer. Type infãrmation is nor a panacea, but
havlng lt as part ofthe code helps in catching sorne eãsy to detect
prograrnming errors, documents intended uies of funótions and
results in code which is easier to understand and whose coffectness
is easier to maintain.

Acknowledgements
The research of the second author has been supported in part by
a grant from the Swedish,Research Council ivetenskapsrådetiWe.thank Huiqing Li and Simon Thompson fòr connnning oúr
flndin^gs, giving us access to their repository and sending us ã test
suite for Wrangler.

References
[1] M. Jiménez, T. Lindahl, and K. Sagonas. A language for speci$,ing

type contracts in Erlang and its interaction withiuccess typings. fã
lyocrydings of the 2007.ACM SIGpLAN Ertang Workshoþ, f,agesl1-17, New York, N! USA, Sept. 2007. ACM piess.

t2l y.!i and S. Thompson. Testing Erlang refacrorings with euickCheck.In P re-proceedings of Implementation-of Functioial Languages, Sept.
2007.

[3] H. Li and S. Thompson. Tool support for refactoring functional
programs. In proceedings of the 2008 ACM SIGZLAñ Symposium
on Partiol Evaluation and Semantics_Based program Minþutation,
pages 199103. ACM press, Jan. 200g.

[4] T. Lindahl and K. Sagonas. Detecting software defects in telecom
applications through lightweight static ãnalysis: A war story. In C. Wei-
Ngan, editor, Programming Laryq!?g"! ond Syrt"^r, proieedìngs of
the Second Asian Symposium ¡Ãft2S'Ol¡, vãlume 3302 of tñCSi
pages 9l-106. Springer, Nov. 2004.

[5] T. Lindahl and K. Sagonas. practical type inference based on success
typings.. ln proceedings of the gth ¿ôU SrcpU¡V Symposium on
!:h"!ll? qy! P_ryctXe of ,Declarative

programming, pages 167*178,
New York, NY USA,2006. ACM press.

81

Lâszló Lövei

* Supported by ELIE IKKK and Ericsson Hungary.

Refactoring Modute Structure *

Csaba Hoch Hanna Kölló Tamás Nagy Anikó Nagyné Víg
Róbert Kitlei Roland Király

Department of programming Languages and Compilers
Eötvös Loránd University, Budapest, Hungary

{lovei' hoch, khi, n-tamas,viga niko, dan ier-h, kitrei, kira ryroland}@inf.erte. h u

Dániel Horpácsi

Abstract
This paper focuses on restructuring software written in Erlang. In
large software projects, it is a common problem that intemal siruc_
tural complexity can grow to an extent where maintenance becomes
impossible. This situation can be avoided by careful design, build_
ing loosely coupled components with stri¿tly defined interfaces.
However, when these design decisions are nôt made in the right
time, it becomes necessary to split an already working softwãre
into such components, without bieaking its functionatt!. There is
strong industrial demand for such transformations in iefactoring
legacy code.

A refactoring tool is very useful in the execution of such a re-
structuring. This paper shows that the semantical analysis required
for refactoring is also useful for making suggestions on clustôring.
Existing analysis results are used to Cou"i t¡e whole process õf
Tgdyl. restructuring, starting with planning the new structure, and
finishing by making the necessary source códe transformations.

lat_eryríes and Subject Descríptors D23 [sofnuare Engineer_
ingl : Distribution, Maintenance, and Enhancement-Restruðturing,
reverse engineering, and reengineering

General Tþrms Design, Languages

Keywords Erlang, refactoring, clustering modules

1. Introduction
In a large software, there are many interconnected program enti_
ties such as modules, functions, records, macros thai form a com_
plex graph. Sometimes this graph grows to the magnitude that no
programmer is fully aware of the structure of the program code.
Such code is hardly maintainable, therefore the entitiès must be
grouped into smaller sets, called clusters, so that each cluster is
small enough to be maintained effectively.

.Refactoring [4] is a disciplined technique for restructuring an
existing body of code, altering its intemal structure without chãng_
ing its extemal behavior. A refactoring tool is the perfect meañs
to analyse the connections between the entities and then automati_
cally suggests one or more clusterìng solutions for the user of the

tool. After this, the code can be restructured according to the sug_
gested clusters. The restructuring of the code can be do-ne manualiy
or preferably by using the refactoring tool for this task.

_ Earlie¡ papers [8, 9, I 1] have reported on the design and im_
plementation of two refactoring tooli developed in cooperation by
Eötvös Loránd University, Budapest, and Unìversity of Kent, Can_
terbury for the functional programming language'Erlang and the
OTP middleware.

Our refactoring tool, named RefactorErl [6], creates a formal se_
mantical graph model from Erlang source code and stores the graph
in a relational database. The graph contains semantical anatyJs re_
sults, it can be modified on the syntax tree level, and the original
source code is reproducible from there. The tool has a user inteiface
provided as an Emacs minor mode to help performing refactoring
steps.

This paper presents the design of an analysis and restructuring
method gf]arge Erlang programs using the existing framework oÍ
RefactorErl.

1.1 Overview of Erlang
Erlang/OTP [3] is a functional programming language and environ_
ment-developed by Ericsson, designed for buildingtoncurrent and
distributed fault-tolerant systems with soft real-tim:e characteri stics
(like telecommunication systems). The core Erlang language con_
sists of simple functional constructs extended with itessage passing
to handle concurrency, whereas OTp is a set of design

-priicipleî
and libraries that support building fault-tolerant systems [21.

The structural elements of Erlang are relativély simpló. fnere
are no classes and inheritance, no complex type definiìions, and
no global variables. program code consiits oflunctions which are
organized into modules. Modules have a list of exported functions,
these can be called from other modules; non-exported functions can
only be used locally. Variables are always local to a function, they
have no type declaration, and they get a value once which can,t bê
changed.

. The only complicating factor is the presence of a preprocesso¡
which handles ûle inclusions, macro substitutions, anã cònditional
compilation. Macros are the only means to create global named
constants (which are essential in protocol descriptions), and they
are usually placed in header files to be included in more modulei.
During_restructuring, when functions are moved between modules,
these file inclusions have to be taken care of to make n"..r.ury
macro defi nitions available.

There is one more language construct that is worth mention_
ing. Although Erlang is a weakly typed language, there is one rype
declaration construct: records are widely uied to describe p.oó"ì,
states, act as database table rows, and in many other places to sim_
plify usage of large data constructs. Their impact on ...t-.tu.ing
is the same as of macros, they must be made visible using file inl
clusion at every place of usage.

Permission to make digital or hard copies of all or part of this work for personal or
class¡oom use is granted without lee piovided that còpies tre not made or distributed
for profit or comercial advantage md that copies bear this notice and the full citation
on-the first page. To copy othemise, to repubùsh, to post on servers or to redistribute
to lists, requires prior speciûc pemission ãnd/or a fee.
Erlang'08, September 27, 2008, Victoria, BC, Canada.
Copyright O 2008 ACM 978-t-60558-065-4/0S/09... $5.00

83

1.2 Module restructuring workflow

Now suppose we have a large software written in Erlang, with too

many intemal dependencies. How can we split it into a few smaller,

more maintainable parts based on module functionality?
First, we need to explore every single dependency in the soft-

ware. This is where RefactorErl excels, see Sec. 2. for a summary

of our previous work, an overview of the refactoring tool which

hosts the analysis and restructuring tools, and introduction to the

call graph analysis work that was done to support clustering.

Ùsing these dependencies, we can group modules which show

similar functionaliiy. Existing clustering algorithms are used in this

phase, Sec. 3. analyzes the possibilities and arising problems.

When we have several different clusterings, we need to choose

the best one. A frtness function is used for this purpose, which gives

a higher score for better clusterings - details are in Sec. 4.

ihere is one last design step. Those parts of the software which

can't take part in clustering-typically library modules and header

files, which are used in too many modules-need to be distributed

into the clusters. This is done by splitting these files, moving every

part into the cluster which uses it, as described in Sec. 5.

This last part requires code transfoffnation, which can be sup-

ported by a réfactoring tool. The refactoring steps necessary for this

work are collected in Sec. 6.

2. RefactorErl for analysis and refactoring

From the refactoring point of view, the most important characteris-

tic of a programming language is the extent of semantical informa-

tion available by static analysis. As Erlang is a functional language,

most language constmcts can be analysed easily. Side effects are

restricted to message passing and built-in functions, variables are

assigned a value only once in their life, and the code is organised

into modules with explicit interface definitions and static export

and import lists.
However, Erlang has certain features that make it hard, or even

impossible to understand the behaviour of a program by static anal-

yrñ. Many rules of the language (for example the typing rules) fall
into the category of dynamic semantics. In some cases the mean-

ing of certain constructs can only be found out during runtime. A
prõminent example is the dynamic dispatch of functions, and run-

ning dynamically constructed code is also possible. These features,

forãxãmple make it impossible to give a complete analysis of the

call structure of an Erlang program statically.
In order to deflne a refactoring, one has to define the side-

conditions (the conditions that are necessary for the safe execution

of the refactoring), the transformation (the intended change on the

code) and possibly the compensations (further transformations that

should be performed to keep the refactored code consistent and

preserve its behaviour). The operation of a refactoring is based on

different sorts of static analysis that collect syntactic and semantical

information. The obtained information can often be used by many

refactorings. For example, all variable-related refactorings (rename

a variable, eliminate a variable, merge subexpression duplicates

etc.) require scope and visibility information on the variables.
\üe developed a refactoring framework [7] which is able to anal-

yse and store any kind of Erlang source code, even code which con-

tains non-parsable macros in a way that makes it possible to restore

the original files, retaining whitespace and comments. We have im-
proved the preprocessor in order to enable it to handle all macro

itructo."t en.onntered. Now industrial code can be processed while

sti1l retaining the full sou¡ce code. Support of file inclusion allows

of specifying multiple include file search directories, and appli-

catión diiectories for supporting include-Iib directives. Condi-

tional compilation support is supported, too. The actual conditions

are stored in a kind of semantic node called envi¡onmental node'

These can also hold other kinds of configuration information such

as include directories. Macro and record definitions are stored but

not expanded, unlike include files.
There are several semantical analyses implemented. For exam-

ple, when the tool loads a record definition into the graph (a form

iith typ. r""ord), the analyzer module creates a semantical record

objeci ãs child of the containing file (with link record) and links

the definition to the semantical object with label recdef .

The records can be referred by expressions. When an expression

refers to a record and there is no existing semantical object for this

record, it is created automatically. The reference is represented by

a link between the expression and the record with label recref.

2.1 Call graph analysis

Call graph analysis aims to give the exact function dependency

relatiónJin a given amount of code' This means that if the scope

of the analysis is wider the result will be more accurate, but the

smaller scope's call graph can never be invalidated by the new data'

Just new edges can appear.
Data flow graph on the other hand aims to give back the flow

of data through ihe functions. It shows how parameters, global

variables are used and passed around the system.

In Erlang to have an accurate call graph, data flow analysis

has to be doìe. This is the result of the highly dynamic nature of
the language, a result of how functions are treated. It is possible

for example to call functions from data we receive from different
parts of tñe system using the erlang : apply built-in function' The

iource code of such data does not clearly show that it will be used

in a function ca1l. In different pafis of the system, it can be used

for a different purposes. This is because t'unctions are identified by

atoms. AtonJ can be created dynarnigally with for example the

erlang : list-to-aton lunction.
Thele are a subset of function calls which do not need data flow

analysis. These are the static function calls. Where every element

of the function call are known at compile time.
The dynamic calls - where the called function is not known at

compile tlme - can be further categorized based on how much in-

formation is present at compilation time. Naturally, the less infor-
mation given, the harder the analysis is. There are some edge cases

where tñe analysis is impossible. In these cases the analysis' aim is

to limit the possible functions which the call could refer to.

2.1.1 Static call analysis

The static analysis aims to create the function call graph of the

static calls. This analysis is straightforward if we use the results

of the semantical analysis which is incorporated in our refactoring

system [8]. Collecting the function calls, and then sorting them

bãsed on which function they are in and which function they call is

essentially the work that has to be done to create the call graph for
the static calls.

By creating a different interface to retrieve the existing data, the

clustering algorithm's data collection part can be easier. Of course

this interface will be used to retrieve the dynamic function call data

as well. By providing a common interface for the two different
data we further ease the clustering algorithm's initial data collection

complexity.

2,1.2 Dynamic call analYsis

While building the static call graph is a relatively lightweight job'

the dynamic call graph building takes significantly more time and

resource. By default this part of the analysis is not done. The data

retrieval does not change whether this part of the analysis is done

or not. Of course the dynamic analysis possibly adds more data to

the graph resulting in a more accurate call graph.

84

The analysis method is based on the Observer design pattem.

It means that we have entities (variables, atoms, tuples etc.) which
are loosely connected to each other. During the analysis, new con-
nections and entities are created as well. Connections represent the
dependencies between certain entities.

When an entity finds out more information about itself (for
example a variable finds out its possible values), it sends this

information to the other entities which are connected to it. Because

connections can be created to an entity after its analysis is finished'

the entity is not deleted after its analysis is finished.
Entities are modeled with Erlang processes, and data propaga-

tion with message sending. This approach creates the opportunity
of parallel computation, because there is no strong order how the

entities should processed. There is one further advantage which is
re-computation after changes happen. If there are changes in the
underlying code, the graph can be adjusted to it with creating and

deleting entities and edges. In other words there is no need to re-

compute the whole graph.
To start the analysis we need initial entities which will be further

analysed. These are the dynamic calls unknown values. For exam-
ple the values of the erlang: apply/3 function's parameters. Fur-

ther analysis is done by investigating entity types and surroundings.
This could result in new edges and new entities which have to be

further analysed and so on. When the value of the initial entities is

found out with the analysis, it is made available through the same

interface as the static call graph data.

3. Clustering modules and functions
The clustering algorithm sorts entities into groups. The entities can

be modules or functions in the current implementation. The groups

are called clusters.
We have chosen the hiera¡chical clustering algorithm [1] as the

one which gives the most practical result: the user does not have to

determine the number of clusters in advance, but can choose among
the results with different cluster counts.

The main concept of the clustering method we use is the

attribute matrix. The rows of this matrix are the entities, and

the columns are the attributes of the entities (e.g. functions and

records). One element of the matrix describes the relation between
an entity and an attribute.

The clustering algorithm works on the attribute matrix. The

algorithm can be parametrized with functions, which describe the

distance of two entities and the properties of new clusters. This
property can be either the distance of the new cluster from the
existing clusters, or the attributes ofthe new cluster. The clustering
algorithm works in the following way: In the beginning, each entity
forms a separate cluster. Then, in each step, the two closest clusters
are selected and unified. This process continues until there is only
one cluster. The intermediate states contain a possible clustering of
the entities. The output of the algorithm is the list of these possible

clusterings. If the number of entities is r¿, this output contains r¿

clusterings, and the zth clustering contains rz - i clusters.

3.1 Using the clustering algorithm

To obtain the result of the clustering algorithm, the following steps

have to be done:

1. The attribute matrix has to be created.

2. The attribute matrix can be filtered.

3. The atffibute matrix has to be transformed in certain cases.

4. The actual clustering has to be done.

Each of these steps is described in the following sections.

3.2 Creating the attribute matrix

Before running the clustering algorithm, the atÍibute matrix is cre-

ated. The matrix describes the relation between the entities and at-

tributes. The entities are either modules or functions. Attributes can

be functions, records and macros. There may be also attributes such

as size, which indicates the number of other entities represented by

the entity. It becomes important when performing the clustering'
because the clusters are represented as entities, as well, and these

entities contain many modules.

3.2.1 Filtering the attribute matrix

The attribute matrix can be filtered before clustering the entities.
During the filtering, the entities and attributes that are not wanted

to take part in the clustering algorithm are removed from the ma-

trix. Tlpically, library modules are removed from the entities and

module internal functions are removed from the attributes. Filtering
is done by a function that is parametrized with filtering functions,
which describe which entities and attributes should be removed.

The two mentioned filtering algorithms are implemented, but

the user can define filtering functions and fun expressions, as well.

3.2.2 Transformation of the attribute matrix

The clustering algorithm works with attribute matrices whose ele-

ments are numbers that describe the weight of the connection be-

tween the entity and the attribute. If an attribute matrix does not

satisfy this condition, it has to be transformed to that form. A gen-

eral transformer function can be used for this operation, which is
parametrized by the transformation function that transforms one el-

ement of the marix. Various transformation functions were tested,

e.g. a function, with which the weight of the connection is that how
many times the attribute is used by the entity.

3.3 Running the clustering algorithm

After creating the attribute matrix that contains weights, the clus-
tering algorithm can be started.

Two clustering algorithms are implemented in the tool. Both
algorithms work the way described in the beginning of section 3,

but their exact ways of calculation are different. The first algorithm
uses entity marix in each step, the second one uses attribute matrix
in each step. (They both use attribute matrix as a basis.)

The entíty matrix user algorifhm Using this algorithm the entity
matrix needs to be created from the attribute matrix. The rows and

columns of the entity matrix are entities. One element describes the

distance between the two entities.
The entity matrix can be created from the attribute matrix using

a function of the tool. The way of calculating distances needs

be specified when calling this function. Functions are provided

that can be used for this calculation, but the user can define own
functions, as well.

The function that implements the rest of the algorithm is also

paramefized: it is parametrized by the function that is used to

calculate the distance of new clusters from the existing clusters'
Functions that can be given as parameters are provided, but the user

can also use own functions.

The attríbute matrìx user algorìthm This algorithm does not

use entity matrix, only attribute matrix. Two functions have to
be specified as arguments: a function that calculates the distances

between two entities, and a function that calculates the attributes of
new clusters. The same distance calculator functions can be used as

in the entity matrix user algorithm. For calculation of the attributes
of new clusters, there are functions provided and the user can define
own functions, too.

85

Distance calculator functíons The distance calculator functions
are used in both clustering algorithms. They calculate the distance
of two entities based on the attribute matrix. Their arguments are
the names and the attributes of the two entities.

We have implemented more than l0 distance calculator func_
tions. There are some based on the literature, e.g. the .Jaccard'

distance calculator function, which is a generic dlstance calcula_
tor function based on the number of common attributes. There are
others, based on function call strucnrre and record usage. A kind
of antigravity has also been implemented, because othérwise big
clusters tend to grow more easily than small ones, and a few hugã
clusters will come to existence next to a lot of small ones.

4. Fitness function
We have implemented various clustering algorithms, some of them
with various parametrization possibilities, and the need to automat_
ically

^compare
these algorithms has arisen. The informal descrip_

tion ofa good elustering was that elements logically close to eaôh
other should be in the same cluster and independent or loosely
connected elements should be in different clusters. We assumeâ
that logical closeness can be approximated by elements ofprogram
code such as function calls between modules, joint record uiage
and possibly macro usage.

We have constructed a fitness function that, from a result of a
clustering (a list of clusters), computes the fitness value _ a real
number so that a better clustering gets a higher fitness value.

4.1 MQ metric

In the clustering literature, there is a widespread method for mea_
suring the fitness of a given clustering, namely the Me metric [5].
This metric is independent of the entities of the clustering task, iì is
based on only graph-theoretical notations.

4.lJ First approach of implementing the Me metric
Cluster factor Assume that there are n clusters, numbered from
1 to n. For each cluster i we compute the cluster factor, C,q, as
follows:

ltD 2t"n

zPn - Li-, G¿¡ * e¡¿)

where e¿; is the number of connections between cluster i and
cluster j. (Each pair of modules is either connected or not.) /_¿¿ is
the number of connections inside cluster z. (Each pair of moáules
is either connected or not.)

After this, the MQ is defined as the sum of cluster factors for
each cluster.

MQ:Ð"',

Ngte: if we compure the Me ållr,. * a very disadvanrageous
clustering, it is possible that there will be far more external con_
nections than intemal ones, and this will lead to negative clustering
factors. This is unwanted because it distorts the füness-space, i.e-.
out of two disadvantageous clusterings the better can havè less fit_
ness value than the worse. To avoid this, we set the cluster factor to
0 whenever it would be negative.

Range of fitness values The Me metric (in this approach) is a
nonnegative number lor every possible clusf.ering.

Special cases:

r There is only one cluster, and every module belongs to it. The
fitness value fo¡ this clustering is 1.

¡ Each module is in a separate cluster. The fitness value for this
clustering is 0, because there are no internal connections at all.

In general, the fitness value is a nonnegative number, with no
upper border.

Dìsadvantages There is a large group of clusterings which have
thei¡ fitness value 0. Usually all of these are very diiadvantageous
clusterings so we do not have to deal with this, since wè are
interested in the few most fit clusterings. But there are cases in
which we might want to compare even these very bad clustering
results and therefore we need a fitness function which gives usefuì
information on these clusterings, too.

4.1.2 Second approach of implementing the Me metric
There is another version of the Me metric in literatu¡e which gives
the same fitness-space as the previously defined one, i.e. ii one

Cluster dístance cølculator functions The cluster distance cal_
culator functions are used in the entity matrix user algorithm. They
are used to calculate the distance of new clusters tiom the existing
clusters.

Their arguments are:

r Size ofthe first original entity.
. Size ofthe second original entity.
¡ Size of the other entity.

o Distance of the two original entities.
. Distance ofthe first original and the other entity.
. Distance ofthe second original and the other entity.

We have implemented 7 distance calculator functions. The one
called r¡a¡d,/6 seems to be working in the most sensible way.
The advantage of this function is that it can prevent the clustering
algorithm from creating one dominant buffer while there are a lot of
clusters with very few elements (typically one). Instead, unification
of large clusters is slowed, and unification of small clusters is
quickened.

Cluster afirtbufu calculator functions The cluster attribute cal_
culator functions are used in the attribute matrix user algorithm.
They are used to calculate the attributes of new clusters.

There are simple functions, e.g. in which an attribute of the new
cluster is the sum of the same attributes of the original clusters.
There are also more sophisticated ones, in which theialculation of
the.att¡ibute may depend on the type of the attribute. The original
attributes can be summed, merged, the average can be calculãted,
etc.

3.4 Experiences

Parametrizøtíon of clusteríng It seems to us that the attribute
matrix user algorithm is better than the entity matrix user algorithm.
It works better with our little, specific examples, where thé correct
clustering is easy to see.

_ Without taking into account the size of the clusters explicitly,
the results show that usually one dominant cluster is created and
many small ones around it. With using an appropriate weighting
function, the results are satisfactory

In the case of the entity matrix user algorithm, the distance cal-
culator function ¡¡ard/6 succeeds to prevent creating one dominant
and many small buffers.

Speed 9f clustering Clustering the modules of our refactoring
tool (22 modules with 342 functions) takes 6 seconds. Clustering
an industrial software with approximately 100 modules and 500ó
f'unctions takes two minutes. However, clustering the functions of
our tool takes 37 minutes. This indicates that the run-time complex_
ity of clustering is quadratic in the number of entities.

86

clustering is better than the other in the first version. then it will
be better in the second too, and vice versa.

Intraconnectivíty of ø cluster For each cluster we calculate the
intraconnectivity value, which, for a given cluster z is the following:

^þ¿oo:
M

where pt is the same as before, and ÀI.¿ is the number of modules
in cluster i.

InterconnectívÍfy of two clusters For each pair of clusters noted
with i and j, the interconnectivity value is:

The algorithm calculates how to split the graph, but it does not
make the actual changes. It only renrrns the suggóstion for splitting.

5.1 An example of using the library
Let us suppose that these are the test files:

% a1. er1
-nodule(al).
-export(lf./0J).
-include("h.hrl")

f o ->
lib:f2O, #r_a1t], #rh1{}

'/, a2.erl
-nodule(a2).
-export (tfl01)

fO -> lib:f1O, 1ib:f2O, Iib:fSo

7" a3. erl
-nodule(a3).
-exPort (lr. / ol) .

-include ('rh. hrI")

rO -> lib:f4O, lib:f5O.

% t.hr1
-record (rh1 , {sonething}) .

-record (rh2 , {sonething}) .

-record (rh3 , {sonething}) .

-record (r_a1 , {something}) ,

% lib.erI
-module(1ib).
-export (lf L/0,f,2/O,fB/O,f 4/o ,f,s/O ,f.6/O,fT /ol)
-record (r1 , {sonething}) .

-record (r2, {sornething}) .

-record (r3 , {sonething}) .

-define (MAC1, a) .

-define(MAC2,b) .

-include("h.hrl") .

f1() ->
f2(), f30, f6(),
#r1{}, #rhl{}, #r2{}, #rh2{},
?MAC1, ?MoDULE.

f.2O -> f3O, #r1{}, #rhl{}.

f3() -> f7().

f4() ->
f60, f7(), #r2{}, #rh2{}, #r3{}, ?MAC2

fsO -> #rh3{}.

f6O -> ?MODULE

f7() ->
length(lt,2l) ,
spawn(funO -) ok end),
fBO.

o

Bti: 0

At
1 \-n Á.

-k ZJi:l ' 'x

0:J
otherwise

n:I
Di:, Eo¡ otherwise

zN;4
y\ere eq is the same as above, and N¿, N7 is the number of

modules in cluster i, and clusterj respectively.

Fínally, the MQ metric is defined as:

MQ:
{

This version of the MQ metric gives a real number between _ 1
and 1 for every possible clustering. 'lhe A¿ and E¿¡ parameters
are always between 0 and 1, representing the number òf existing
connections out ofall the possible ones.

4.2 Towards an evolutionary algorithm
The fitness function can serve as the key component of some
evolutionary algorithms to do find an optimal cluitering. We plan
to implement several evolutionary algorithms based on ihis ntness
function, such as steepest-ascent hill clímbing, simulated annealing
and genetic algorithm.

5. Splitting modules and header files
Library modules and header files usually cannot be sensibly put
into one cluster, because their contents are used in more clusters.
However, if we look at their contents one-by-one, we often flnd
that th^ey are used only in one cluster, so it makes sense to split up
these ñles using this information.

The splitting algorithm sorts functions, records, and macros
of modules or header files into smaller files depending on their
relations. Functions, records and macros will beìalledãbjects in
this section.

The algorithm implemented in the Refactorerl tool is based on
which clusters use which objects, and which objects use which
objects. Each of the given modules and header files will be split
independently from each other, so let us consider only one ofìhe
modules. Splitting header files works in the same way as splitting
modules.

After the clustering, there are r¿ clusters. Each cluster contains
one or more modules, but none of the clusters contain the module
to besplit. The aim of splitting is that those objects that are used by
one cluster only should be placed into a new module that belongs tó
it. More precisely, if an object is not used by any other cluster, õven
indirectly, it can be placed in this new module. With this method
the number of dependencies outside the clusters can be reduced.

The number of new modules may vary between 1 and n f 1.
If.-every object is used by more than one clusters, the splitting
will leave everything in its place. However, if every clusìer hai
objects in the library module which are only used by it, and there
are objects which are used by more than one clusteis, then a new
module will be created for each cluster and the original module will
remain with the remaining objects.

87

fBO -> ok

The splitting function retums the following result:

[{"/erlang/lib. er1" ,

{ l{fun-attr , lib , f5 ,0} ,

{fun-attr,lib,f6,0},
{fun-attr , 1ib, f7 ,0} ,

{fun-attr , lib , f8 ,0} ,

trec-attr, "/erlang/lib. erl", r2)],
t{o '[al,a2J,

[{rec-attr, " /erlang/lib. er1" , r1},
{rnacro-attr, " / erlang/ Llb . erl rr,

"MAC 1 rr },
{fun-attr,Iib,f1,0},
{fun-attr,lib, f2,0},
{f un-attr, lib, f 3, 0}l },

{r,
[a3],
[{fun-attr , }ib , f4 , 0} ,
{rec-attr , " /erlaag/lib . erI " , 13} ,

{macro-attr," / erlang/Líb. erl'r, "MAC2"}] }] }},
{"/erlang/h.hrl",
{ [{rec-attr, "/erlang/h. hrI",rh3},

{rec-attr, "/erlang/h.hrl'r,rh2}1,
[{0,

[a1, a2] ,
[{rec-attr , " /erlang/h . hr1 " , r-al} ,

{rec-attr, " /erlang/h. hrl" , rhl}l }l }}l

Each element of the main list specifies how to split a concrete

file. The first element specifies how to split "/erlang/Lib'er1",
the second does the same with "/erlang/h;hrl".

Let us focus on how "/erlang/Iib. erI" should be split. Af-
ter the file's name in the tuple there is a list of elements that should

not be moved: f5 / O, f.6 / 0, f7 / 0, f.8 / O and the record' the name of
which is 12 and which is defined in the flle "/erlang/}ib.erl".
Then the elements that should be moved into the new flle which
will belong to cluster 0 follow, after the list [a1 , a2] , which states

that cluster 0 consists of these two modules.

rejected in the list, the whole transformational step is rejected by

the system.

Parameters

¡ The module from which the functions are to be moved.

e The name and arity of the functions to be moved.

¡ The name of the module where the functions should be moved.

Síde condítíans

¡ The names of the selected functions should not conflict with
other functions in the target module, neither with those im-
ported from another module (overloading). Furthermore, the

name should be a legal function name in all modules.

¡ Macro name conflicts must not occur in the target module, that

is, macro names used in the functions must refer to the same

macro deflnition in the source and in the target module. This
applies to macros used in these macros too.

¡ Record name conflicts must not occur in the target module, that

is, record names used in the functions must refer to the same

record deflnition in the source and in the target module.

r If header file inclusions have to be made during the transforma-
tions, these inclusions must not introduce name clashes between

macros and records.

Transþrmatíon steps and. compensatíons

1. The function bodies to be moved are deleted from their original
places with all their clauses.

2. The moved functions are placed at the end of the new module.

3. Functions that appear in the export lists ofthe original module

a¡e removed from there, and a new export list is created from
them in the target module right after the last export list in that
module.

4. The functions, which are called in a moved function but remain

in the original module, are put in an export list in the original
module.

5. Moved functions that called from other functions in the original
module are exported in the new module and the calls in the

original module are changed to include a module qualifler that
refers the target module.

6. Moved functions that are referred by qualified names in the

moved functions are changed to use the new module name.

?. Moved functions that appear in an import list of the target

module are removed from that import list.

8. Moved function that appear in an import list of any module are

removed from that import list, and a new import list is created in
that module which refers to the moved function using the target

module name.

9. Qualified names referring to a moved function in any module

are changed to use the name of the target module.

10. Records and macros used in the moved function have to be

made visible in the target module, either including the header

file in which they are defined (but only when no record or macro

name clash is introduced by the inclusion), or copying their

definition.

6.2 Move record

This transformation moves a record definition between two files.

Source and target files can be either modules or header files, the

conditions are slightly different in every case. The goal of the

6. Tfansformations for module restructuring
Clustering modules is really a logical operation which does not

involve changing the code itself, but consequently, splitting library
modules and header flles into parts that are used in the clusters is

a typical refactoring operation. This section introduces the basic

refactorings that are requìred to apply the results of clustering and

splitting.
These refactoring steps will be available in RefactorE¡I, mov¿

ftutction is already completed, and the other two is partially imple-

mented.

6.1 Move function

Move function refactoring enables to move an arbitrary set of
functions between modules. Selected functions are copied to the

given target module (each clause of each function), deleted in the

original module, and export lists are updated accordingly. Calls to

these functions are updated by changing module qualifiers to use

the new module name.
The refactoring takes care of the proper handling and moving

of macros, records and function calls, and ensures their visibility in
the previous and new place of the functions. It tries to avoid code

duplication as much as Possible.
With the help of transformation several functions, which are

collected in a list by the tool, can be moved in one step. By
examining the content of the list, it can reject functions or make

recommendations for creating a proper list' When any function is

88

transformation is to make the record deñnition available in every
place where it is used after the move.

Parameters

o The module or a header file in which the records are defined.

. The name of the records to be moved.

. The name of the module or header file where the records should
be moved.

Síde condítíons

¡ Record names do not clash with existing record definitions in
the target file.

¡ Modules files cannot be included in other files, so moving to
a module file is permitted only if no other modules use the
records.

r If header file inclusions have to be made during the transforma-
tion, these inclusions must not introduce name clashes between
macros and records.

Transþrmatíon steps and compensatíans

l. The record definitions are removed from the source file.

2. The record definitions are placed at the end ofthe target header
file, or before the first function of the target module file.

3. If a record is moved into a header fiIe, then every module that
uses the record is changed to include the target header file. This
is not an issue when the target is a module file.

6.3 Move macro

This refactoring moves macro definitions between modules and
header files. It is similar to move record,but it is a little more com-
plex, because macros can refer to each other. Macros can also refer
to records and functions, but this does not affect the transformation,
because only the definitions are moved, and the context of macro
applications remain unchanged, the same records and functions re-
main accessible everywhere.

Parameters

¡ The module or a header file where the macros are defined.

. The names of the macros to be moved.

o The name of the module or header file where the macros should
be moved,

Sìde condítions

o Macro names must not clash with existing macro names in the
target file.

o Macros can be moved into a module file only if no other module
refers to them.

r If header file inclusions have to be made during the transforma-
tion, these inclusions must not introduce name clashes between
macros and records.

¡ If a compensation refactoring is necessary (see the next para-
graph), it must fulfil these requirements too.

Transþrmation steps ønd compensatìons

o The macro definitions to be moved are removed from the source
module or header fi1e.

r The macro defrnitions are put into the target file. They are
placed before any function definition in module fi1es, and if the
target file refers to any moved macro in a non-macro definition,
the moved macro definitions are placed before these usage

points. In header files, if there are no references to the macros,
the definitions are placed at the end of the file.

. If the target is a header file, every module that refers to any of
the moved macros is changes to include the target header file.

. If the macros to be moved refer to other macros, an availability
check is done for every module that uses the moved macros.
Every referred macro is made available using the following
rules:

. Macros which are already visible in the module don't need
further steps.

. Unavailable macros defined in a header file are made avail-
able by including their defining header file in the module.

. Unavailable macros defined in module files are made avail-
able by moving them into the same place as the originally
moved macros, using the same move macro lransformaTion.
The failure of this compensation means the failure of the
whole transformation.

7, Conclusions
The components introduced in the paper are rather lightly con-
nected, some of them work with clusters of modules, and the refac-
torings are completely stand-alone. Their power lies in using them
together: different clustering solutions can be produced, the best
one can be selected, the list of neccessary transformations can be
generated, and this list can be automatically executed. Extended
with the possibility of manual intervention and editing, this covers
the whole process of restructuring large systems into smaller ones,
and proved to be helpful in industrial applications.

References

[1] Anquetil N., Fourrier, C., Lethbridge T. C.: Experiments with
Hierarchical Clustering Algorithms as Software Remodularization
Methods Working Confe¡ence on Reverse Engineering (1999).

[2] Armstrong, J.: Making reliable distributed systems in the presence
of software errors. PhD thesis, The Royal Institute of Technology,
Stockholm, Sweden (2003)

[3] Armstrong, J.: Programming Erlang, Software for a Concur¡ent
World Pragmatic Bookshelf (2007)

[4] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberrs, D.: Refactoring:
Improving the Design of Existing Code. Addison-Wesley (1999)

[5] Harman, M., Swift, S., Mahdavi, K.: An empirical study of the
robustness oftwo module clustering fitness functions. GECCO'05:
Proceedings of the 2005 conference on Genetic and evolutionary
computation (2005), 1 029-1 036

[6] Horváth, Z. et a1.: Refactoring Erlang Programs.
http: //plc . inf . elte . hu/erlaìg/

[7] Kitlei, R., Lövei, L., Nagy, T., Nagyn, V. 4., Horvth, 2. Csmyei,Z.:
Generic syntactic analyser: ParsErl. Intemational Erlang/OTp User
Conference (2007).

[8] Lövei, L., Horváth, 2., Kozsik, T., Víg, 4., Nagy, T.: Refacroring
Erlang programs. To appear in: Periodica Polytechnica - Electrical
Engineering (2007) 19 pages.

tgl Li, H., Thompson, S., Lövei, L., Horváth, 2., Kozsik, T., Víg, 4.,
Nagy, T.: Refactoring Erlang programs. In: The proceedings of
12th International Erlang/OTP User Conference, Stockholm, Sweden
(2006) hup://www.erlang.se/euc/06/, 10 pages.

[10] Lövei, L., Horváth, Z.,Király R., Kitlei R.: Static rules for variable
scoping in Erlang. To appear in: The 7th International Conference on
Applied Informatics, Eger, Hungary, 2007.

[11] Nagy, T., Víg, A.: Erlang refactor tool. Masrer thesis, Eötvös Loránd
Universit¡ Budapest, Hungary, 2007.

i

b;;' :

tl:...

i.
¡

I
f:

i.

ì

¡

I

89

Author Index

Arts, Thomas

Boberg, Jonas

I

9

1Castro, Laura M.

Casu, Giovanni .

Cesarini, Francesco

49

29

83

83

Hoch, Csaba

Horpácsi, Dániel

Hughes, John .

Király, Roland

Kitlei, Róbert.

Köllö, Hanna .

I

Li, Huiqing

83

83

83

61

83

t3

Lövei, Lâszló

Luna, Daniel

Nagy, Tamás

Nagyné Víg, Anikó

21,83

21,83

Orosz, György 6l
29

49

4t

t5

29

49

4t

4t

6l

6l

Pappalardo, Viviana

Pili, Piero

Reinefeld, Alexander

Sagonas, Konstantinos

Santoro, Corrado

Scalas, Alceste .

Schintke, Florian

Schütt, Thorsten

Thompson, Simon

Tóth, Melinda

90

