b < w X
)
! :
|4 .

__, e —

nnn F

b

u

Conference Proceedings

e — : :- __-_‘:‘
={le—

16th International Erlang User Conference

STOCKHOLM, SWEDEN
16th November 2010

-
RLANG

16th International Erlang User Conference

Conference Programme

;. §:30 - 9:00 Registration, Tea and Coffee Page
| g
Welcome and Introduction 1
=90 Bjarne Dicker
Tools@Klarna 3
208 20 Jia Wang, Tobbe Tornkvist, David Evans, Jordi Chacon, Tobias Lindahl
RefactorErl: a source code analyzer and transformer tool 23
9:30=10:20 Zoltan Horvath, Melinda Té6th
20 loso Using Erlang to Test non-Erlang Products 37
o Graham Crowe
10:50- 11:10 TM(_)n_]ipg Break R] <
110 1140 PikkoServer, how to scale game servers and enable player density 39
' ' David Almroth
Hibari - Key Value Bigdata Store 41
A0S B Joseph Wayne Norton
Agile is Everything 51
7. _ 5
11071240 M arcus Kern
I . TR T s, 1
| 12:40-13:40 Lunch
I L k- ===
1340 14110 Let's ProTest: Update from the Erlang and property based testing project 53
B Simon Thompson
Testing what should work, not what should not fail 77
14:10 - 14:40 .
Samuel Rivas
Testing automotive software with Erlang 79
14:40 - 15:10 Thomas Arts
Mission Critical with Erlang And QuickCheck: Quality Never Sleeps 95
(S50 SIS Raghav Karol, Torben Hoffman
ll 15:450- 16:10 Afternoon Break
o Continuous integration for Erlang/OTP, enhancing its quality and ease-of-use. 111
. Tino Breddin
1640 1710 A prototype state machine “MadCloud” for distributed applications 113
' ' Jacoby Thwaites
Masterless Distributed Computing with Riak Core 115
17:10-17:40 Rusty Klophaus
A deep dive into some aspects of the multicore support in the Erlang VM 117
17:40 - 18:10 .
Rickard Green
w10 1805 leatest News From the Erlang/OTP team at Ericsson 127
' ' Kenneth Lundin
| 18251830 e Closing from Bjame Dicker | |

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Bjarne Dacker i
Manager of the CSLab at Ericsson 3 o é
- the birthplace of Erlang 7 3
Welcome and Introduction -
Abstract

Dear Erlang friends,

It is with the greatest pleasure that | wish to welcome you to the Sixteenth International
Erlang/OTP User Conference. Erlang started as a programming language in the
telecomms domain but with developments like the Internet, multicore,and Cloud com-
puting, it has found a much wider applicability. Also the combination of concurrency and
functional programming has proven to be extremely fruitful opening further areas such
as testing, refactoring, databases.

In 2008 we outgrew the Ericsson conference facilities and had to move to the Astoria. This
year we have filled it so next year, who knows!

| have heard many times that the talks are but an excuse for Erlang enthusiasts to meet
and mingle and exchange experiences at intervals and at the following dinner party. That
might be true, but it is also unfair to the speakers who keep telling us of new unexpected
applications and of explorations at the very front of current Computer Science research.

So once again, | wish you welcome to a conference that is sure to widen your views of the
computing world where Erlang is becoming one of the most significant players.

Biography

Bjarne Déacker joined Ericsson in 1966 as programmer and systems analyst.In 1984 he set
up the Computer Science Lab together with Mike Williams to explore, develop and intro-

duce new software technology in Ericsson often in collaboration with university research.
The CSLab pioneered things like Unix, A.l., Lisp, Prolog and workstations in Ericsson.

Erlang was created at the CSLab by an initial team of Joe Armstrong, Mike Williams and
Robert Virding. Bjarne organised the first Erlang User Conference in 1994.He has had
various external committments such as chairman of the steering committee of the Swed-
ish national research programme in Computer Science 1987-1992 and member of the
Evaluation Committee of European Union's ICT-Prize.The CSLab was closed in 2002 in the
IT crash.

Page 2

Conference Proceedings Tuesday 16th November 2010
16th international Erlang User Conference stockholm, Sweden

Tools@Klarna

Abstract

Klarna (currently) operates in six countries.We need to handle translations of PDF's,
GUI, Emails, etc. The basis of our i18n system is built around the gettext Erlang
app\ication.To help us coordinate the translation work with the development pro-
cess, we have developed a web-based tool named POlish.With POlish, translators
can do their work from anywhere while still cooperating with a particular devel-
oper.POlish is released as Open source and will be described in this talk.

As part of its transformation to agile, Klarna is enhancing its testing toolbox to
better support Acceptance—Test-Driven Development (ATDD) and Continuous
Validation.Origina\\y working only with Yatsy and Eunit, we are NOW also utilising
Common Test Framework, Fitnesse&, Selenium and QuickCheck.The Klarna code
base has grown organically for some years NoW, and so has the code dependencies.
In order to create order out of chaos, W€ resorted to building a tool for dependency
analysis and automatic code move.While this is not rocket science, W€ will share
some experiences (and possibly also the actual tool).

v

David Evans . : : :

Agile Services Jordi C.ha.\con ':;obrt\)e Torr}kVIst JiaWang

Director,SQS serendipitous nthusiastic Uncommon tester
Erlang user Erlang user

Tobias Lindahl
Another Erlang enthusiast

i

Code
Management

Tools @
“klarna

Simpler Safer More Fun

Page 4

9 |

Code
Management

Tobias Lindah]

Code
Management

Paaa &

The Problem

. Organically growh code.
. Ad-hoc application structure.
. No clear cuts in functionality.

Our solution
.« Move existing modules to new applications.
. Group applications in clusters (layers).
« Put constraints on cluster dependencies.
. Refactor code t0 satisfy constraints.

- Profit!

The Analysis

encies between modules.
ns and layers
to a file

. Find depend
. Divide into applicatio
« Write boring statistics
. Make extremely cool graphs

The Action

. Generate shell scripts for
« Creating new applicatio
. Moving the code
. Patching include pa

n structure

ths, Makefiles, etc

OAano A

Business Layer' :)/ 120

e %
// e 13
/ / LR
.

o \ -‘ : \
L
\
Y\ 1
o
ol _\\-\
mn e

T
3 (‘Data Layer') 1
7 1
12 ?_éy-stem Layer'
Utll|t|es B
A 1
-
\'OTP interface’ 3

‘—-_____‘_-_._‘- =

'Obsolete stuff Layer'

i /
\ /)
=
System Lay‘ef

'Ohsolete stuff Layer'

Page 7

[gy -)
_— — RN
s - & <72 N
B 5 \
customer_care Vd
,':;—][—- /(1
rl‘_’l 1 > 3
PO 2 Jpemn—
1efund / Yueies b \‘~_
") —E_‘ j = _i"-’ “\
1 s / NOE SN t_ 1 R M v
{ i bt
e S ‘\1 ; \
L - ., \
7 ¢ accounting { ktm) N 4 L 1 {]
/ T AVRVES b1 \
T O V. T A | | v L 1
£ "7 / NN % \ |
PRV /2 / rigntly 2N N \
g / gntly \ N 1
\ ’ ‘;)< | ¢ A _:,-1“ - e o N } \]II
NN [/ fm AT) \
: ~f N VP Ve S o 4 \ NN BNE N / /
/4 § _[J» . 7/ \ONLE NOTTSAL / /
P N AP ar] Fabi I W N \,f / /
& .l.' t’ settlement / / 4 43 W dunning Y 1 7 | / /
N £ \\\ N N '_ﬁ_-:\/ . P v e
/ .\ o ';’ : /\ N 4] __’_,\
: / NN N X NAX
P X Sy MR N TN] A \
\4 NI ., accounts ’_ﬁ'\ & subscriptions -‘_\ \
L 2 S =
z VLo b N 1 !
/

\ j
" I\ N \‘{
\ / . : N,
\ ; A

< b . \‘\ '/’T —."{/,‘
/A [s L2k

P
/ T

policy_engine

policy_server .

policy_rules

policy_data policy_lint

policy_eval

policy_parse

Page 8

¥

Code

Management

£
4‘[.:: L

Tools @

>
A
T o
P 4 77

Jordi

. Translation
. % "POliSh"

=z &
< ¢ i
N
<&
]
(43
%
3 C".,,_ |
N w @Q.
5}
| o
\ 75)
| : Y Q\J
r~ 5, n&/‘.’ N \
al ")
) . S i oo
g The Solytioy, ™
L
..?;“ ::f/?

Teae

Page 9

Background

o Klarna produces ~50 different PDF documents

» Klarna is serving ~5000 Estores + our own customer care

« We have about ~5000 texts that need to be translated
from Swedish to: Norwegian, Finnish, Danish, German,
Dutch, English...

« On average, one person working 100% on text changes

Using Get'Text

-include("gettext.hrl").

parse transform + make setup

?TXT("Hello world"). >

OFFLINE l

Translated PO files PO template file

[]

Manual translation

-define(?TXT(S), gettext:key2str(S, get(gettext_language))).

ONLINE

Page 10

The Problem

« manually editing PO files is a source of problems

« 25.000-line PO files emailed back and forth

« unfriendly for translators to work on these huge
po files

« texts always ended up being taken live with only
the Swedish version available

« our customers weren't really happy about that...

The Solution

A developer is hacking in his/her branch.
Adds a *TXT macro containing a new Swedish text.

1t should be translated to all languages!

What should the developer do?

Page 11

About POlish

« POlish is a utility developed by Klarna

¢ Web-GUI built on top of gettext to easily access PO-
files

e Provides a simple and friendly interface for translators

» Log in via OpenlD

 Keeps track of what is untranslated

« Allows translators to search for texts

» Ensures correctness of translations

« Started with a simple commands

« Has been used for the last three months

DEMO TIME!

Page 12

New features
coming... or not

 Translation memory
e Spell checker
e Online service

Code

Management °
Tools @
“klarna
2
| ‘%:6
3ﬁé} ¥

Page 13

Testing

Unit GUi
Testing Testing
~ i Yy
* o s
Continuous
Integration
Acceptance

Testing -

Unit GUI
Testing Testing

LElnic (authored by Richard Carlsson) \ E‘g Sclenium
r‘{ Hudson /

Contmuous
lntegratlon

|

Acceptance
Testmg , o

_YATSY. '—'—» Tes
T ek

<2 Hudson

Contmuous
lntegratlon

Unit
Testing

EUnit (authored by Richard Carlsson)

Page 15

GUI
Testlng

| Selenium

Acceptance

oooooo

A T S Y ; e —_—) @ eeeeeee

rrrrrrrrr
B it et e s _je>t

e 'l] SEerver automates test execution at Ar'l 1evel

FitNesse
& Slim

e FIT implemented in Java, .NET, Ruby, Python

AT | HTML | AT
Client ' Server 7l
Customer-readabie _ !
tests delining HTMLAT _ g
business iogic ¥
'3
D
FitNesse %
wiki '8
pages o
Wiki Text l '
[_] Application specific Sy R
I:J Standard tools Runners SLIM instructions
What is Slim?

Standard
FIT
Fixtures

Exlure
calls

Custom
Fixtures

Test

fixture
calls

SLIM
Executor

AP
Calls

Ap
Stz

SUT

e SGimnle Fitneccee tect mPR@AATF nrantnrnl ta renlare FIT

- v

What is Fitnesse?

Framework designed for agile acceptance testing
 Supports 'Specification by Example'
« Mix plain-language documentation with test data
Wiki-based test authoring wrapper for FIT
 FIT server automates test execution at APl level

« FIT implemented in Java, .NET, Ruby, Python

Gustomer-readable
tests delining
business logic

FIT HTML
Client
HTM‘LT &
L=
L
A
=]
@
FitNesse | : §
2
O
FrontPage.

A n JE] ML nTd

ErlangTriangleDemo s

FIT
Server

Standard
FT FiT
Fixtures

Fixlire
calls

Custom

Fixtures |

biwbseres *

Test
AP
Calls

SUT

| Test
v

Edit

ton =

Properties

Retactor

Where Used

Search
Files

Versions

Recent Changes

User Guide

| WANT A FUNCTION THAT RETURNS THE TYPE OF TRIANGLE PRODUCED,

GIVEN THE LENGTHS OF THREE SIDES (A, B AND C)

The valid types are:

All sides equal: Equilateral
Two sides equal: Isosceles
No sides equal: Scalene

For example:

another_type_fixture

a bicltype?

2 | 3 |Isoscelese

2|2 1: Equilateral

) N!N

3|4 | Scalene

Plain text (ignored)

Page 18

executed)

What is Fitnesse?

Framework designed for agile acceptance testing
 Supports 'Specification by Example’
« Mix plain-language documentation with test data
Wiki-based test authoring wrapper for FIT
« FIT server automates test execution at APl level
e FIT implemented in Java, .NET, Ruby, Python

v Standasd
ctae e | Sorver {|ET | IIET
Fixtures
Customer-reagabie "y _
tests defining HTMLT g lg:;ﬁrse l
business logic e
=
o
= ' o Custom
FitNesse % Fixtures E" SUT
s
‘a AP
liwkisro + Calls
: Standard
cient [T server | FT | _FI0
Fixtures
Customer-readabie , ' o
tests defining HTW‘T & 'g;ﬁ;e l
business logic 2
B
(+h]
FitNesse % Eulstom ——| SUT
pages a API
) Calls
foxture
W"akiTextl ' calls T
D Application specific SLIM) SLIM
L:I Standard tools Runners SLIM instructions Executor
What is Slim?

« Simple Fitnesse test runner protocol to replace FIT
» Does not parse HTML tables or compare test data

o Much simpler to port to new languages (e.g. SlimErl)
Page 19

: ' emacs@hundhaj f Birth Date: Ihe
Fite Edit Opticns Buffers Tools Erang Heip "

ﬂ . o pho
SiaPno-s[B004

-module (triangle_type_ flffule;.

Callback Punctions

ne
&
2 aaesrt funotions
]
s
i t
1.
v o fizture, | a
)=t
, 0
bi
Tallbach functicns for FitHesss
e _towpa_ figture{].
dFunctlon(cHrrisngle type fizrarel{a = &4})
';’1"?’ ¥ :. -2
VOldFunctlon(sftriangle _type fizture{b = 1)),
setlik o, &) -2
voidFunction{& cftriangle _type fixiurs{e = U})).
) execute (Becoid) -» voidFunction(keoord). %% TOLDD do

fizture{a = &,
b =L,
o =0} = -

t 1dngle type typel(l, ©», O,
echoStrlng([SHIR

THIS SLIGHTLY MORE COMPLEX EXAMPLE CREATES A NEW PERSOM, THEN RETRIEVES THEM

Nme that in [hES test we need to referto:

. C (.,'T}RT_ "}';.Té";r{a,n I
—_— e =
| setup_person
Nationality | Age First Name | Last Name | Street IZip Code'City Country | pno?
2 [30 |Jia]IWang Skt. Eriksgatan 112 | 54321 Steckholm | 209 $iaPno<[800414-0920]

Now fookup this person and check that we stored the correct details and that we concatenate the names and address
elements correctly.

Pacc: By default, a new person will not have a Personal Account {pacc).

Birth Date: The first 6 digits of the Pna determine the date of birth of the person.

get_person
pno | has_pacc_account? | birth_year? | get_address?
SiiaPno->[800414-0920} false 1980 Skt Eriksgatan 112 54321 Stockholm Sweden

Page 20

Evans L4
i

i

Testing

Unit GUI
Testing Testing
Ry + JRH s s

\'d a4 Hudson ‘/
Continuous
Integration

Q

!

Acceptance
Testing -
e Y - %5 e
. - ot

Tools @
Wklarna

Simpler Safer More Fun

Page 21

Page 22

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

RefactorErl:a Source code analyzer and transformer tool

Abstract

RefactorErl is a source code analyzer and transformer tool aimed at refactoring
Erlang software.The tool itself is written in Erlang with a unique approach: seman-
tic analysis results are stored in a Mnesia database to avoid repeated analysis of the
same source code, and simple, syntax-based manipulations are available that hide
the details of handling separators, comments, and code layout.

Beside the 24 implemented refactoring transformations the tool has a complex
analyzer framework. For example, it provides data flow analysis, dynamic function
call detection, side-effect analysis, etc and a user level query language to query
semantic information or structural complexity metrics about Erlang programs.

Zoltéan Horvath
Professor and supervisor of RefactorErl

Zoltan Horvath is Professor at,and Head of, the Department of Programming
Languages and Compilers and Vice-Rector for International Affairs at EGtvos
Lorand University in Budapest, Hungary. He defended his habilitation thesis in
2004; the title of his thesis was "*Verification and Semantics of Mobile Code
Written in a Functional Programming Language". Current topics researched
under his supervision include language design, construction of programming
language processing tools, formal methods and scheduling in grids. He has been
supervising the RefactorErl project since 2005.

Melinda Téth
Researcher at ELTE and RefactorErl project leader
E6tvos Lorand University, Budapest, Hungary

Melinda Téth is a second year PhD student at the E6tvos Lorand University of
Budapest, Hungary. She has been working with Erlang since 2007 with the
RefactorErl project. Melinda received her master's degree in Computer Science i
2009 from E6tvos Lorand University. Both her bachelor and master theses were
based on Erlang and function related refactorings. In 2008 she spent five months
at University of Kent where she worked with Wrangler. Melinda teaches Parallel
Programming and Functional Languages at the University: Haskell and Erlang.
Her PhD research field is about data and control flow graphs for functional
languages, and impact analysis of refactorings.

antic Qaery Lin

RefactorErl: a source code analyser and transformer
tool *

Melinda Téth and Zoltan Horvath

Department of Programing Languages and Compilers
Faculty of Informatics
E6tvos Lorand University

November 15, 2010

1Supported by KMOP-1.1.2-08/1-2008-0002, ELTE IKKK, and Ericsson Hungary

Melinda Toth and Zoltan Horvath RefactorErl: a source code analyser and transformer tool

© RefactorErl
@ Framework

@ The tool

@ Erlang Semantic Query Language
@ Path expressions
® Language elements
e Syntax
@ Examples

© Summary

Melinda Téth and Zoltan Horvath RefactorErl; a source code analyser and transformer tool

Page 24

RefactorErl Erlang Semantic Query Language Summary Eramework The tool

RefactorErl

@ Semantic Program Graph: lexical layer + AST + semantic
layer

o Efficient information retrieval

@ New semantic analyser framework

o Incremental analysis

Modular structure

Asynchronous parallel execution

7 times faster initial loading (Intel Core2 Quad, 2.4 GHz)
Side effect analysis

Melinda Téth and Zoltan Horvath RefactorErl: a source code analyser and transformer tool

RefactorErl Eil Semantic Quure Lan ¢ Sursitnary ffraniessork The tool

The tool RefactorErl

@ Store semantic information — Mnesia
@ Ul: Emacs, Eclipse, Erlang shell, Web based, Command line

@ Platform for source code transformation
@ Rename
e Move definition
e Expression structure
e Function interface

Non-refactoring applications — different analysis

o Call graph visualization
e "Bad smell” detection
o Clustering

Query Language

Melinda Toth and Zoltan Horvath RefactorErl: a source cade analyser and transformer tool

Page 25

RefactorErl Erlasig Semantic Query Languaga Summary tfranigviark . The tool

Example graph

oroke.

test

Melinda Té6th and Zoltan Horvath RefactorErl: a source code analyser and transformer tool

yizit Erlang Semantic Query Language = any Path expressions Lusviguage

Path expressions

e Support information gathering for refactoring
@ Depends on the representation
path() = [PathElem]

PathElem = Tag | {Tag, Index} | {Tag, Filter} |
{intersect, node(), Tagl}

Tag = atom() | {atom(), back}

Index = integer() | {integer(), integer()} | {integer(), last}

Filter = {Filter, ’and’, Filter} | {Filter, ’or’, Filter} |
{’not’, Filter} | {Attrib, Op, term()}

Attrib = atom()

Op = d==2 | /=2 | =0 | =2 | igr | >

Melinda Té6th and Zoltan Horvath RefactarErli a source code analyser and transformer tool

Page 26

RetactorErl Erlang Semantic Query Language Summary Path expressions Language elements Syontax Examples

Path expression example

@ List the defined functions:
path(Module, [{form, {type, ’==’, func}}])

Melinda Té6th and Zoltan Horvath RefactorErl: a scurce code analyser and transformer tool

Re Lr} Erlang Semantic Query Language Suiiiriiae Path expressions

Path expression example

@ List the defined functions:
path(Module, [{form, {type, ’==’, func}}])

@ Set of library module

@ Extended evaluation framework

Melinda Téth and Zoltan Horvath RefactorErl: a source code analvser and transformer tool

Page 27

RefactorErl Erlang Semantic Query Language Summary Path expressions Languuge cliemestls Syntas I

Path expression example

List the defined functions:
path(Module, [{form, {type, ’==’, func}}])

Set of library module

Extended evaluation framework

exec(Module, modlib:function())

Melinda Téth and Zoltan Horvath RefactorErl; a source code analyser and transformer toal

oitirl Erlang Semantic Query Language Sureriaes Fath expressison Language elements Svatex &

Semantic query language

@ A user level query language to get information about the
Erlang source

e Language concepts:

a Entities
o Selectors
e Properties
e Filters

@ Custom query or predefined query

Melinda Téth and Zoltan Horvath RefactorErli a source code analyser and transformer tool

Page 28

RefactorErl Erlang Semantic Query Language Summary Path ex:pressions Language elements Syntax Examplas

Syntax of the queries

@ semantic_query ::= initial_selection [’.’ query_sequence]

Melinda Téth and Zoltan Horvath RefactorErl; a source code analyser and transformer tool

Erlang Semantic Query Language & -. Patl ans Log Syntax Ex

Syntax of the queries

@ semantic_query ::= initial_selection [’.’ query_sequence]
@ initial_selection ::= initial_selector [’[’ filter ’]°’]

@ query_sequence ::= query [’.’ query_sequencel

@ query ::= selection | iteration | closure |

property_query

Melinda Toth and Zoltan Horvath RefactorErl; a source code analyser and transformer tool

Page 29

Refactorrl Erlang Semantic Query Language Surnmary Pail: exoressions Language elamants Syntax Exzmpias

Syntax of the queries

@ semantic_query ::= initial_selection [’.’ query_sequence]

@ initial_selection ::= initial_selector [’[’ filter ’]’]

@ query_sequence ::= query [’.? query_sequence]

@ query ::= selection | iteration | closure |
property_query

@ selection 1:= selector [’[’ filter *]’]
@ iteration ::= ’{’ query_sequence ’}’ int [’[’ filter ’]°’]
@ closure :i= ’(’ query_sequence ’)’ int [’[’ filter ’]°’]

’(? query_sequence ’)+’ [’[’ filter ’]’]

@ property_query ::= property [’[’ filter ’]°]

Melinda Téth and Zoltan Horvath RefactorErl! a source code analyser and transformer taol

Erlang Semantic Query Language S:iinias Path ex; % slemenis Syniax Examples

Semantic query examples

test(...)->
Calc = calc(...),

ey

{First, ... } = Calc,
First.

run() ->
some_value = test(...).

Melinda Toéth and Zoltan Horvath RefactorErl: a source code analyser and transformer tool

Page 30

RetactorErl Erlang Semantic Query Language Summary Path cicpressions Language elements Syntarz Examples

Semantic query examples

e Value of a variable
{A, =als Q@expr.origin

test(...)->
Calc = calc(...),
{First, ... } = Calc,
First.

run() ->
some_value = test(...).

Melinda Téth and Zoltan Horvath RefactorErl: a source code analyser and transformer tool

Retucrorizrl Erlang Semantic Query Language Susiimary F A TR ax Exampies

Semantic query examples

A= ...,
e @ Value of a variable
{4, ...}. Qexpr.origin
test(...)-> e Call chain
Calc = calc(...), @fun.{called_by}+ or
ce, @fun.{calls}+
{First, ... } = Calc,
First.
run() ->

some_value = test(...).

Melinda Téth and Zoltan Horvath RefactorErll a source code analvser and transformer tool

Page 31

RefacteeEirl Erlang Semantic Query Language Summary Pally expiessions Lang eI fits ax Examples

Semantic query examples

o Value of a variable
{4, ...}. @expr.origin

test(...)-> @ Call chain

Calc = calc(...), @fun.{called_by}+ or
e @fun.{calls}+
{First, ... } = Calc, e Side effect
First. i
@fun.dirty
run() ->

some_value = test(...).

Melinda Toth and Zoltan Horvath RefactorErl; a source code analyser and transformer tool

i Erlang Semantic Query Language ol : oy L viitax Examples

Dynamic function calls

sum([]1) ->
0;
sum([H|T]) ->
S = sum(T),
H + S.
testi(List)->

Fun = sum,
test2(7MODULE, Fun, List).

test2(Mod, Fun, List)->
apply(Mod, Fun, [List]).

Melinda Téth and Zoltan Horvath RefactorErl; a source code analyser and transformer tool

Page 32

RefaccorErl Erlang Semantic Query Language Summary Path expressions Langiage elements Syntax Examples

Dynamic function calls

sum([1) ->

0;
sum([HIT]) ->

S = sum({T},

H + 3.

@ Function references

test1(List)-> Ofun.refs

Fun = sum,

test2(7MODULE, Fun, List).

test2(Mod, Fun, List)->
apply(Mod, Fun, [List]).

Melinda Toth and Zoltan Horvath RefactorErl: a source code analyser and transformer tool

| Erlang Semantic Query Language Susit

ynamic function calls

test1(List, Arglist)->
Fun = sum,
test2(?MODULE, Fun, [List]),
test2(7MODULE, other, Arglist).

test2(Mod, Fun, Args)->
apply(Mod, Fun, Args).

sum([]) -> ...
other(A) ->

other() ->

Melinda Té6th and Zoltan Horvath RefactorErl: a source cade analyser and transformer tool

Page 33

Retacrorrl Erlang Semantic Query Language Summary Fath exzprassions Language elemernis Svatsx Examples

Dynamic function calls

test1(List, Arglist)->
Fun = sum,
test2(?MODULE, Fun, [List]),
test2(7MODULE, other, Arglist).

test2(Mod, Fun, Args)->
apply (Mod, Fun, Args).

sum([]) -> ...

other(A) -> ...

@ Dynamic function references
Qexpr.dynfunref

other() > ...

Melinda Téth and Zoltan Horvath RefactorErl: a source code analyser and transformer tool

21 Erlang Semantic Query Language £ Prih exn. Lerguags elements Syntex Examples

ldentifying callback functions

request_add () ->
gen_server:call(Module, {req_add, {Phone, Name}}).

handle_call({req_add, {Phone, Name}}, From, LoopData) ->

Callback functions

@ mods [name == "gen_server"].
fung [name == call and arity == 2].
refs[type == application].
param[index == 3].

Melinda Toth and Zoltan Horvath RefactorErl; a source code analyser and transformer tool

Page 34

RefactorErl Erlang Semantic Query Language Summary Fath ex sions Langiage elements Svatas Examples

Identifying callback functions

request_add()->
gen_server:call(Module, {req_add, {Phone, Namel}}).

handle_call({req_add, {Phone, Name}}, From, LoopData) ->

Callback functions

e mods[name == "gen_server"].
funs[name == call and arity == 2].
refs[type == application].
param[index == 3].
® mods [name == "CallBackMod"].
funs [name == handle_call and arity == 3].

args[index == 1]]

Melinda Téth and Zoltan Horvath RefactorErl; a source code analyser and transformer tool

vl Erlang Semantic Query Language 5 e < Examples

Checking coding conventions

e mods[line_of_code > 400],
mods.funs[line_of_code > 20]

@ @file.funs[max_depth_of_cases > 2],
@file.max_depth_of_cases
mods [max_depth_of _cases > 2],
mods . funs[max_length_of_line > 80]

@ mods.funs[no_space_after_comma > O]

e mods.funs[is_tail_recursive == 0]

Melinda Téth and Zoltan Horvath RefactorErl: a source code analyser and transformer tool

Page 35

RefactorErl Erlang Semantic Query Language Sirmmary Patli axpreasions Langusgs gleaneiits Svarax Examples

Embedded queries

Without: With:
@file.functions. @file.functions
variables[name=="File"]. [.variables[name=="File"]]

function_definition

Other example:

mods [name==mydb]
.funlexported]
.refs
[.sub[index==1 and type==tuple]
.sub[index==1 and value==mykey]]

Melinda Toth and Zoltan Horvath RefactorErll a saurce code analyser and transformer tool

Summary and Future work

RefactorErl: source code analyzer and transformer

Query language:
e understand source code
a debug information
@ maintenance

e Save and reuse query

Extend the language: recursion, if, variables

https://plc.inf.elte.hu/erlang

Melinda Toth and Zoltan Horvath RefactorErl; a source code analyser and transfermer tool

Page 36

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stgckholm, Sweden

Graham Crowe
Ericsson AB

Using Erlang to test non -Erlang products

Abstract

Complex products such as Radio Base Stations require complex Test Environments
to achieve test automation with high test coverage.There are many compelling
reasons for selecting Erlang/OTP for this task, even if the product itself is not devel-
oped with erlang.

Biography

Graham Crowe has been working for Ericsson since the mid 90s, mainly testing
Mobile Telecommunication Systems, including GSM, WCDMA and LTE. His main
focus in recent years has been Test Automation. He didn’t discover Erlang/OTP until
2005 but has been an active user of it ever since.

Page 38

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

David Almroth
Server side game architect and
founder of PikkoTekk

PikkoServer, how to scale game servers
and enable player density

Abstract

The dream to build a game server in Erlang has been around for many years. Erlang
has been used in games on the server side in some projects but it is not common,
not yet.In the gaming industry, C++ has been the favorite tool for most developers
when they need performance.This is now changing rapidly. Game programmers
are learning and using new technologies, and Erlang is one of them.

In this talk David Almroth will present an ALG product for the gaming industry
based on Erlang. It is a middleware product to be used on the server side and
where the architecture is transformed from single-core to many-core.The product
is used by server side programmers without having to learn any Erlang, which
makes it easy to both embrace in the organisation and integrate in the game
engine. Allowing a wider use of the power of Erlang.

Biography

After ten years of work with Enterprise Java consulting in banking and finance, David has
switched to Erlang and the gaming industry. Games has always been at the forefront of techno-
logical advancement and it is in the game industry we can expect some very advanced many-
core applications in the near future

He started the company PikkoTekk and has been the leader of a team building an Erlang
application-level gateway (ALG), called Pikko Server, for massive multiplayer games. How to
utilize a manycore architecture on massive game servers has been Davids area of focus and his
team has successfully developed a unique solution that allow for this. Allowing for new types of
transaction intensive virtual worlds.

Page 40

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Joseph Wayne Norton
Erlang Enthusiast

Hibari - Key Value Bigdata Store

Abstract

Hibari is a production-ready, distributed, key-value, big data store. Hibari uses chain
replication for strong consistency, high-availability, and durability. Hibari has excel-
lent performance especially for read and large value operations. Hibari is imple-
mented in Erlang. As of July 2010, Hibari is open-source software under the Apache
2.0 license.

We'd like to talk about Hibari's major features and how Hibari has been deployed as
part of large commercial Webmail system in Asia. We also intend to share recent
benchmarking results (gathered by Yahoo!'s YCSB benchmarking tool) of Hibari and
a few other open source key-value stores.The target audience are developers.

Biography

Joe Norton is a technical manager, system architect, developer, and Erlang enthusi-
ast active in the mobile industry. Based out of Tokyo, Japan, he works for Gemini
Mobile.

November 2010
Gemini Mobile Technologies

Hibari Open Source project: http://sourceforge.net/projects/hibari/

Gemini Mobile Technologies

Founded: July, 2001
Offices: San Francisco, Tokyo, Beijing
Investors:
— Goldman Sachs, Mitsubishi-UFJ, Mizuho, Nomura, Ignite, Access, Aplix
Accomplishments:

— Messaging Products
e Provide MMSC to 3 out of 4 Carriers in Japan (DoCoMo, Softbank, eMobile)
e Largest MMSC in the world (Softbank Japan)
» OEM to Alcatel-Lucent and ByteMobile
— NOSQL / Big Data
e 2006: First Mobile 3D SNS (Softbank, China Unicom, iPhone App)
» 4/2010: WebMail, Japanese Mobile Carrier & Internet Provider
e 7/2010: Hibari Open Source

Page 42

t]
)‘ 4
e’
GEMIN

1

i -~
-

g

Customers
5

byte X mobile Alcatel-Lucent
(Ghabal CEM) Glabal DEM)

BELGIUM =, vedalone

3
* SPARKLE
mrrm.m T J— ddcomo Ni_::
S ® & s &m:.n q SoltBank Noxtelntarational
vodatone ESHomeasmee - Ao

vodotone PGS . &N s S NEXTEL

" o 2 =
o v st () UGANDA HONG KONG
' Al o &)
SN KIRIBATI NBPEKRIUEL

What is Hibari?

Hibari is a production-ready, distributed, key-value, big
data store.

— China Mobile and China Unicom - SNS
— Japanese internet provider - GB mailbox webmail

— Japanese mobile carrier - GB mailbox webmail

Hibari uses chain replication for strong consistency, high-
availability, and durability.

Hibari has excellent performance especially for read and
large value operations.

Hibari is open-source software under the Apache 2.0
license.

Environments

Hibari runs on commodity, heterogeneous servers.

Hibari supports Red Hat, CentOS, and Fedora Linux
distributions.

— Debian, Ubuntu, Gentoo, Mac OS X, and Free BSD are coming
soon.

Hibari supports Erlang/OTP R13B04.

— R14B is coming soon.

Hibari supports Amazon S3, JSON-RPC-RFC4627,
UBF/EBF/JSF and native Erlang client APIs.

— Thrift is coming soon.

GEMINI

Page 44

Why NOSQL?
We needed to build a scalable, high performance
web mail system

e Big Data

— A few million end users from the start

— A few billion messages in a few month

— Hundreds of TB data
e L ow Cost requirements

— Customer’s business model (Freemium)

— Distributed >50 PC servers

— No need for rich and expensive functions of SQL
e Continuous growth of data in the storage

— Elasticity to expand capacity due to increasing data (&

GEMINI

What were customer’s needs?

Durability
— Data loss (e.g., messages, metadata) is not acceptable
Strong Consistency
— Because of interactive sessions, consistency is required
Low Latency
— <1 sec response time for end user transactions
High Availability
— As a branded service to the end user, service must always be
available.

Read Heavy
— Many more read than write operations
Big Data and Data size highly variable
— Large GB mail box as service differentiator was required

— Mail messages range from a few bytes to many MB
attachments

Page 45

How does Hibari address these needs?

Durable updates
Every update is written and flushed to stable storage (fsync() system call)
before sending acknowledgments to the client.

Consistent updates

After an update is acknowledged, no client can see an older
version. “Chain Replication” is used to maintain consistency across all
replicas.

High Availability

Each key can be replicated multiple times. As long as one copy of the key
survives, all operations on that key are permitted.

Lockless API

Locks are not required for all client operations. Optionally, Hibari supports
“test-and-set” of each key-value pair via an increasing (enforced by the
server) timestamp value.

Micro-transactions

Under limited circumstances, operations on multiple keys can be given (@

transactional commit/abort semantics. 9

Why Erlang?

e Concurrency and Distribution
e Robustness
o Efficient garbage collection
e Hot code and incremental upgrade
e Online tracing
e Efficiency and Productivity
— Small teams make big impact
e FEricsson’s support of Erlang/OTP is wonderful

Everything you need to build robust, high performance
distributed systems 4

10
Page 46

Chain Replication for Strong Consistency

Key Values

Data Model 0.0

Key 1l | Key 2 | Key 3 - . ' - Key n
Key Value Table i | ‘ . ' ‘

Go to Chain A Go to Chain B

L

Consistent Hashing

PC1 (&5 PC2 PC3 @& PC1 PC2 PC3
T %o &
& ®

&S
| Middle| &
Chain A N
" Middle| 3
. ChainB - G
A\ N/
Concept of “Chain
Evenly distributed load in multiple nodes
(Case of 3 replications/6 chains)
PC1 PC2 PC3 PC4 PC5 PC6
‘ ;l B (]
Chain A Head Middle: Middle| BREL Chain D

§ iR
Chain B ,! SI Middie Tail
Chain C Middle Tail Middle| @Rl

Middie Chain E

Chain F

©
GEMITL

12
Page 47

Chain Replication for High Availability
and Fault Tolerance

PC1 PC2

I

Middle

Middie

Failover mechanism

PC3

PC1

Node down

Service continuation

e

13

“Applications / Customer first” approach

leads to mutual complements

Data model

Column-oriented

Key-value
Data partitioning | Consistent hashing Consistent hashing
Data consistency | Configurable Yes

Data replication

Preference lists

Chain replication

Elasticity Admin operations, Gossip, Chain migration
Data redistribution
Node health Peer-to-peer monitor, gossip | Admin server monitors
detection
Oo&M nodetool, JMX Admin UI with brick, chain
health, statistics
Performance write-optimized

read-optimized

Implementation |Java Erlang
API get/put/delete, scan, get/put/delete, micro-
map/reduce, atomic row ops | transactions

Page 48

“Not Only Hibari” Roadmap

2010 2011~
A
- -’ Erlang 14A Erlang 14B
OPEN SOUICE s — >
4 A s A 4 |
P t X ! { : . ,
Red Hat | | gzﬁsog) | <X i Enterprise i
ns Cent os E I; Debian E :; Cassandra E i ?
Fedora | ! ; : E i :
P Larzzossé ' cassjlllﬂl‘a ; §
Integration - -+ Thrift —- Haioop Map/Reduce
Application | UBF -~ , "
tools 5 -------- sa T
; i Java :
< Erlang I ! Python
Client API Amazon S3 > Ruby
JSON-RPC-RFC4627 ' Perl ;
} Google Buffer Pratocol ; Monitoring tool E
YCSB «Based on customer needs Configuration tool c:%’il
Bashe Bench « Expect Open source contribution Management tool 15
Hibari Open Source project: http://sourceforge.net/projects/hibari/
Twitter: http://twitter.com/hibaridb
Hashtag: #hibaridb
Slideshare: http://www.slideshare.net/geminimobile
(&)
GE;I{INI
16

Page 49

Page 50

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Marcus Kern
Integrated mobile and digital
communications

Agile is Everything .

Abstract

Working together across three different countries was challenging. Working with a
language and data storing technology we never touched before seemed outright
madness. Experiencing the joy to see it working on the day of our brick-wall dead-
line was only possible through working together as an Agile Team.

In this talk Kern will attempt to provide you with an insight to MIG's ambitious
Mobile Gateway project.The good, the bad and the ugly.

Biography

Marcus Kern started his telecom career in 1998 when he co-founded voicelT com-
munications,a company re-selling voicemail services. Over the years that followed
he became a Senior Technical Architect in Mobile Telecoms working for 02 and
T-Mobile. As one of the founding members of Mobile Interactive Group, Kern has
been with MIG as CTO since 2005. Over the last 12 months Kern lead the develop-
ment of MIG's mobile messaging gateway. New to Erlang, MIG has combined estab-
lished and new software development, storage and delivery concepts.

Page 52

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Simon Thompson
Creator of Wrangler and co-author of
Erlang Programming

Let's ProTest: Update from the Erlang and
property based testing project

Abstract

Update from the Protest Project

Biography

Simon Thompson is Professor of Logic and Computation in the Computing Labora-
tory of the University of Kent, where he has taught computing at undergraduate
and postgraduate levels for the past twenty five years, and where he has been
department head for the last six.

His research work has centered on functional programming: program verification,
type systems, and most recently development of software tools for functional pro-
gramming languages. His team has built the HaRe tool for refactoring Haskell pro-
grams, and is currently developing Wrangler to do the same for Erlang. His research
has been funded by various agencies including EPSRC and the European Frame-
work programme. His training is as a mathematician: he has an MA in Mathematics
from Cambridge and a D.Phil.in mathematical logic from Oxford.

He has written four books in his field of interest; Type Theory and Functional Pro-
gramming published in 1991; Miranda: The Craft of Functional Programming (1995),
Haskell: The Craft of Functional Programming (2nd ed. 1999) and Erlang Program-
ming (with Francesco Cesarini, 2009). Apart from the last, which is published by
O'Reilly, these are all published by Addison Wesley.

Test

property based testing

Simon Thompson, Clara Benac Earle

University of Kent, Universidad Politécnica de Madrid

Test

annpenly hased Lesting

f | Tha
- University
et of
L Shelfield.

ERICSSON

United
; o Kingdom
Sille Erlang Solutions Ltd o o
riang Solutions Ltd.
j— i\orvmﬂyﬁ.ratm Training and Ctmm?ﬂup i — Nedariand o " g ! o Beflffb'l‘:h b,
Q WU o it larids . —_— Polska
LUniversity of i Belaw Deutschiand o T
k@’rlt ~ Belgique Germany _# ‘ " °
Lornpiilmig Betpisn (-1 ; " Cesks Rﬂp‘ --_o o
e o Q p ‘. Crech Hey .
Caltic Sca 1 0 =4 dr " Slovenska EpaTHa
] t 1+] Shivakiy ’ Uurzne
o e Osltlmlﬁhl r Mo‘l.clgva
France ¢ o . Austre s Mngynr:lrsznn ~
Bay of © o © . Romania
/ ° -] Hrvatska o Qastart TN
L] Cinabs My - o
Y] > CpOwja
>, lambdastream VBT SN e T N ST M
s A KAy O Buarapun
o o [+] B ey .
o _ @ L ! o
; Tyreheman) bk
Portugal) i EAMag e
o E Fiiros.. s
© o

) FOLTECKICA! ° : 2

¢ “Ingeniamos «l fulura

Test

srapeily boaed tesliog

Page 54

ProTest goals

Integrate property-based testing into the
development life cycle:

* Property discovery

« Test and property evolution

» Property monitoring

» Analysing concurrent systems

aroperly hased Lesting

Property-based testing

Describe the required behaviour of a
system using logical properties ...

... or abstract state machines.
Test the properties against random data.

Test machine compliance by random
execution sequences.

oraperty bascd Lesling

ProTest tools

PULSE

McErlang E

Onviso

QUVIQ State Chum
QuickCheck

atoperty based lesting

Focus for this talk

McErlang ._/ J

State Chum

aroperty Uased lesting

Page 56

Wrangler

Interactive refactoring
tool for Erlang

Integrated into Emacs Clon_e Improve
and Eclipse / EIDE ~ detection module

. + removal structure
Multiple modules

Structural, process, Basic refactorings
macro refactorings

aroperly based Lesiing

Refactoring and testing

« Clone detection and elimination in test
code

« Property extraction through clone detection
and FSM inference.

« Refactoring code and tests: frameworks.
« Refactoring tests in a framework.

oroperty based tesling

Refactoring and testing

« Clone detection and elimination in test
code

oroperly hased (esling

(X+3)+4 4+ ({5-(3*X}))

The anti-unification gives the (most specific)
common generalisation.

oroperly based esting

Step 1

The largest clone
class has 15
members.

The suggested
function has no
parameters, so
the code is
literally repeated.

enn “erl-autput®

. - .)
" b3 L ‘:" >~ - u
New Open Heoenl Sawe Undo Eede e Couy Paste Heilp

Sisiler detection finished with *** 43 ** clonefs) “ound.

Bagrasin ._-l.I.I s ._-.|,...
as been cloned 15 times:
th
o
| La%

The cloned expression/function after generalisotion:

new_fun(} -»
SetResult = 7SMM_IMPORT _FILE_BASICC?SMM_RULESET_FILE_1, ne),
?TRIAL(ok, SetResult),
AmountOFfRuleSets = 7SMM_RULESET_FILE_1_COUNT,
70M_CHECK(Amount0FRulebets, ?MP_BS, ets, info, [sbgRuleSetTable, sizel),
70M_CHECK(AmountDfRuleSets, ?8GC_BS, ets, info, [swoRuleSet, size]),
Amount0OfRuleSets,

-:%% *erf-output® 9% {237.0) (Fundamental Compiiation

Test

araperty based Lesting

The general pattern

|dentify a clone.

Introduce the corresponding

generalisation.

Eliminate all the clone instances.

So what’s the complication?

Test

oraperly based testing

Page 59

What is the complication?

Which clone to choose?

Include all the code?

How to name functions and variables?
When and how to generalise?
'Widows' and 'orphans'

aroperly bosed Lesling

Clone elimination and testing

Copy and paste ... many hands.

Shorter, more comprehensible and
better structured code.

Emphatically not “push button” ...

Need domain expert involvement.

araperty based 1esling

Refactoring and testing

- Property extraction through clone detection
and FSM inference.

aroperly based lesting

Property discovery in Wrangler

Find (test) code that Example:

is similar ... Test code from

... build a common Ericsson: different
abstraction media and codecs.
... accumulate the Generalisation to all
instances medium/codec

... and generalise the combinations.

instances.

areperty based 1esting

Refactoring and testing

- Refactoring code and tests: frameworks.

aroperly based lesting

Testing frameworks

EUnit, Common Test and Extend refactorings
Quick Check each give a while observing

template for writing tests - Naming conventions
and a platform for - Macros

performing them. . Callbacks
- Meta-programming
» Coding patterns

Want to refactor code
and test code in step.

oraperly based 1esling

Quick Check example

Callbacks, macros and meta-programming.
-export(.., command/1l, postcondition/3, .. ,prop/0]).

command({N}) when N<10 ->
frequency([{3,{call,nat _gen,next,[]1}},
{1,{call,nat gen,stop,[]1}}]); -

postcondition({N}, {call,nat gen,next, },R)-> R == N; ..

prop() ->
?FORALL (Commands , commands (?ZMODULE) ,
begin { H, S,Result} = run commands(?MODULE,Commands),

Result == ok end).

Test

aroperty based lesting

Quick Check example

Callbacks, macros and meta-programming.
~export(.., command/l, postcondition/3, .. ,prop/0]).

command({N}) when N<10 ->
frequency([{3,{call,nat gen,next,[1}},
{1,{call,nat gen,stop,[1}}1); .

postcondition({N}, {call,nat gen,next, },R)=-> R == N; ..

prop() ->
?FORALL (Commands , commands (?MODULE) ,
begin { H, S,Result} = run_commands(?MODULE,Commands),

Result == ok end).

Test

oraperly based 1esting

Page 63

Refactoring and testing

- Refactoring tests in a framework.

araperly based lesling

Refactoring within QuickCheck

FSM-based testing: Property refactorings:
transform state

variable from simple Introduce local

value to record. definitions (LET)
Stylised usage Merge local defini-
supports robust tions and quantifiers
transformation. (FORALL).

Spinoff to OTP libs. [EUnit too ...]

Page 64

www.cs.kent.ac.uk/projects/wrangler/
— GettingStarted

aroperly based (esling

Inferring QuickCheck state
machines from Eunit test sets

Thomas Arts, Simon Thompson

Chalmers University, University of Kent

groperty based testing

Server for mobile frequencies

(lients Server
Client interface

2y allocate
] >
o

¥ ‘{ok, Frequency}

Test

aroperly hased Lesting

Server for mobile frequencies

Glents Server
livat interfocy

State-based system allows fir—
allocation and de-allocation of
frequencies from an initial list,
once system is started.

-spec start([integer()]) -> pidQ).

-spec stop() -> ok.

-spec allocate() -> {ok,integer()} |
{error, no_frequency}.

-spec deallocate(integer()) -> ok.

Test

oraperty based testing

Page 66

Testing start/stop behaviour

EUnit is a unit testing
framework for Erlang.

Test start / stop behaviour.

startstop_test() ->

?assertMatch(.. ,start([])), stop start
?assertMatch(ok,stop()),
?assertMatch(.. ,start([1])),

?assertMatch(ok,stop()).

Test

aroperly based Lesling

Final test set

startstop_test() ->
?assertMatch(.. ,start([]1)),
?assertMatch(ok,stop()), i
7assertMatch(.. ,start([1]1)), AN
7assertMatch(ok,stop()). ' i

stop_without_start_test() ->

?assertException(_,_,stop()). \ stop
start_twice_test_() ->

{setup, start
fun() -> start([]) end,
fun() -> stop() end,

fun() -> ?assertException(_,_,start([])) end}.
Test

oraperty bascd 1esting

Page 67

Improved testing through
Inductive machine inference

Neil Walkinshaw, John Derrick

University of Sheffield

Test

oroperly based lesting

FSM-based testing

1. Paris and T. Arts,
Automatically Testing TCP/AIP Implementations using QuickCheck,
8th ACM SIGPLAN Workshop on Erfang, 2009

Lh""""’ Erlang
0?{‘ £ Test cases TCP Interface
""" ——
QuickCheck S——
T Linux TCP Stack

f'-"\\ Network i
P ao P packets ¢ T
O - -

Page 68

a
NMNhaAarmiAn AR~ AviAaAIIbiANA

Erlang Observations of
' Test cases VCPiInterface test executions
QuickCheck - =
Linux TCP Stack StateChum
Network
P packets

é‘.z

— —

Network Node

and improve the FSM

/d

ﬂ Erlang Observations of
}'-‘ 29 Test cases TCF Interface test executions ¥
& ‘k‘ - > __ﬁ? J
i W ¥
QuickCheck . E{

Linux TCP Stack StateChum
Walkinshaw, Bogdenoy, Derrick, Paris -

Network
packets
*ncreasing Functional Coverage by

] Inductive Testing: & Case Study”
’ ICTSS 2010 (to appear)
Network Node

Page 69

QuickCheck and McErlang
Integration

Clara Benac Earle, Lars-Ake Fredlund.
Hans Svensson

UPM, Chalmers

groperly hased testing

McErlang

McErlang is useful for checking concurrent software, not
for checking sequential software.

The Erlang runtime system for processes &
communication is replaced with a new runtime
system written in Erlang (for example, send, spawn...
have been re-implemented).

A concurrent program is checked under all possible
schedulings.

McErlang is open source, available under a BSD
license.

Test

oraperty based lesting

Page 70

How do the state space
traversal methods relate?

Execution path

State space

g

Faulty part of state space

: 3

ondest
B gl
s 3 Fe
£ 3 "
QuickCheck QuickCheck + PULSE
Test

oroperty based lesting

Page 71

Repeat test N times — 2ALWAYS macro

= Sl
L o
: =
QuickCheck QuickCheck + PULSE
o est
e il
L
e
QuickCheck + McErlang QuickCheck + McErlang
optimal case more common case

Test

oroperty based esling

Page 72

Which verification method to use?

How large is the state space?

What is the density of faults?

How critical is the application?

What resources (memory/time) do we have?

. Is it better to generate many test cases?

... or to run the same test case many times?

... or explore more of its state space?

« We want to do more experiments and compare!

aroperly hased tesling

QuickCheck and McErlang integration

« The goal is to provide easy access to the power
of model checking to QuickCheck users

. And to make McErlang more accessible through
QuickCheck (generators, commands)

. We focus on the QuickCheck state machine
library egc_statem

« The parallel commands is a suitable first
functionality to integrate

oroperly based lesling

Parallel commands

(1 C1 |

v v v

(C @ @
(2 Sequential 63 63 63
5 prefix th Cha c}b
Ch o G O Ch
CvSa C'5b C:ﬂ) Cv5a C'Sb
Parallel C'Sb (;v5|, C'Sa
execution

Is there a linear execution “equivalent” to the parallel one?
(such that all command results are the same)

Implementation - basic QuickCheck

prop testsomething() —

?FORALL(PCmds, parallel commands(?MODULE),
begin
{H,S,Res} =
run_parallel commands(PCmds),
?WHENFAIL(io:format(...),
Res == ok)
end) .

Test

aroperty based lesting

Page 74

Implementation - PULSE

prop testsomething() —
?FORALL(PCmds, parallel commands(?MODULE),
?PULSE (
[<instrumented-modules>], %Optional?
{H,S,Res},
begin
run parallel commands(PCmds)

end,
?WHENFAIL(io:format(...),
Res == 0k))).
Test

oroperly based testing

Implementation - McErlang

prop testsomething() —
?FORALL (PCmds, parallel commands(?MODULE),
?MCERLANG (
[<instrumented-modules>], %Optional?
{H,S,Res},
begin
run parallel commands (PCmds)

end,
?WHENFAIL(io:format(...),
Res == 0k))).
Test

areperty based testing

Page 75

Conclusions

« Next release of QuickCheck will ship with
McErlang integrated

» Benefits to QuickCheck: finding more bugs
« Benefits to McErlang: more users

https://babel.ls.fi.upm.es/trac/McErlang/wiki/QuickCheck/McErlang

oroperly based Lesling

Page 76

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Samuel Rivas
Erlang Hacker at LambdaStream

Testing what should work, not what
should fail

Abstract

When evolving software we may introduce new corner cases that can pass unno-
ticed through the test cases in our automated test suite. Since developers rely on
other's test suites when changing their code, the more developers work on a
module, the more likely it is they slip a bug trough the test suite; that's something
we though we had to live with. However, property based testing is emerging as a
new hope, our last experiences say that it helps to create test suites more robust to
software evolution without forcing us to write tons of "just-in-case test cases."

Biography

Samuel Rivas has been working with Erlang since his last years as a student in the
University of A Coruia (Spain). After graduating, he started to work with the MADS
(Models And Applications of Distributed Systems) research group, joining to Lamb-
daStream shortly afterwards where he is still working today.In LambdaStream, he
has been working in projects about video coding and streaming where he usually
has to mix Erlang code with low level C programmes.

Currently, Samuel is leading leading R&D projects, is involved in the quality
improvement group, and is the main architect of a number of LambdaStream solu-
tions.

Page 78

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Thomas Arts
Professor and co-founder of QuviQ AB

Testing automotive software with Erlang

Abstract

Modern cars are filled with software.The software for cars is normally written in C
and the specifications are at least as bulky as those known from the telecommuni-
cation industry. Different from Erlang software, it has some hard real-time require-
ments, where tasks definitely need to meet certain deadlines. Nevertheless, it is
beneficial to test this software by using Erlang as a test framework.

We report on a project of testing an AUTOSAR component by using a combination
of Erlang and QuickCheck. We tested the network management module of the Can
bus.This network management module is specified as a state machine plus a lot of
other details.The most challenging part is dealing with the timers that cause spon-
taneous transitions from one state to another when time progresses.

Biography

Prof Thomas Arts is the co-founder and CTO of Quviq, a small company that produced
QuickCheck, as testing tool for Erlang.Thomas has over 30 publications in various
journals and has experience refereeing conferences and workshops. He has success-
fully introduced some new technologies to the industry, the latest being QuickCheck, a
tool for property based testing and aims to support test driven development.Thomas
is also a professor at Chalmers University of Technology in Gothenburg, Sweden.

Thomas was one of the members of Ericsson's computer science lab where he worked
on program verification and the development of the Erlang programming language.
He has also worked in the broad spectrum theoretical computer science, formal meth-
ods and industrial case-study research, mainly applying all kind of techniques to
systems written in Erlang.

QuviQ

Testing Automotive Software
with Erlang

Thomas Arts
Chalmers / Quviq AB

in collaboration with
Juan Puig, Anders Kallerdahl and Ulf Norell

Erlang Solutions Mentor Graphics Quviq

Software in modern cars

500

450

400

350

Binary size [Mbyte]
[\%] =] [#%]
=2 o (=]
(=) L] [=]

=
(4]
o

100

50

S/W size in new car moc

1998 2000 2002 2004 2006 2008 2010 2012

Yeal

[myvehicle B Infotainmen]

source: Ulrik Eklund

Page 80

2014

Software Platform Q

Many components that need to communicate with
each other

More diversity, faster time to market, higher
complexity....

We have seen this before ©

Solutions:

- Standardization of components

- Standard platform (operating system)

Erlang User Conference QuviQ
2010
AUTOSAR a consortium standard Q
Commumicatiun Bendoes source: www.autosar.org
Do Gananc NM
AUTOSAR Diagnoste Intertace
COM Com —_—
Manager
cad |
St |
PDU Houwar o |
[{1 1
PoU CAN NM
muk- \
pa CAN Trainsson - o il
| — .
L]
Comerunication Hamdware Abstrection ici sreaien
CAN Intnrtaco | :-M:'.: ‘.; » -~
CAN Taracanar Ditver for e, B ST Pt
____'_Dﬂ\‘llr ; FAE&S!E_ TRF o el . e o
_.m R i — -
..‘o A g 3 ‘:-“ Wl Mm e .
2y iy -
10 Dinvar SDE" tandiee CAN Driver ' s ——————
CAN Lo W “:4;
— - " . IT. T
Erlang User Conference QuviQ

2010

Interoperability Q

AUTOSAR specification open for interpretation.

Even if a component follows the standard, there is
no guarantee at all that it will work in
combination with other standard components

nothing new... we have seen that before ©

The evil is hidden in configurations: each Node in
the car has typically its own set of options, and
software supplier

Erlang User Conference QuviQ
2010

Interoperability Q

AutoSAR specification open for interpretation.

Even if a component follows the standard, there is
no guarantee at all that it will work in
combination with other stan Solution:

-

Spend your budget
nothing new... we have seen # on testing instead

The evil is hidden in conﬂgv °f development
its own set of options that is usec

Erlang User Conference QuviQ
2010

Page 82

Message Q

Software systems more complex every day...
... more components
... more possible configurations per component
... more component interactions

Traditional testing insufficient to keep up with this
We need to change our testing methods!

Erlang User Conference QuviQ
2010

Erlang to test C Q

Using Erlang to test C software
- High level language: easier to write test code
- Good tools to support testing

but... we need to connect to C code

Erlang User Conference QuviQ
2010 a

Page 83

Quvig’s C link Q

All information you need to write marshalling code
is in the C (header) files.

Thus, write a C parser in Erlang, extract all type

information and generate the link between C and
Erlang.

Erlang User Conference QuviQ
2010

Example Q

Suppose we have C file example.c

// Sum an array of integers
int sum (int *array, int len) {
int n;
int sum = 0;
for (n = 0; n < len; n++)
sum += array[n];
return sum;

Erlang User Conference QuviQ
2010)

Page 84

Example Q

Erlang shell used to communicate with C

1> egc c:start (example) .
ok

2> P = egc_c:create array(int, [1, 3, 3, 8]).
{ptr,int, 1048864}

3> example:sum (P, 4).
15

4> eqgc c:free(P).
ok

Erlang User Conference QuviQ
2010

Example Q

Erlang shell used to communicate with C

~

* parse example.c

» create a ¢ program that
ok listens to a socket

« create example.beam and
example.hri with all functions

1> eqc c:start (example) .

2> P = egc_c:create array(int from example.C

{ptr,int, 1048864} « start C program in a
separate thread

3> example:sum (P, 4). h

15

4> eqgc c:free(P).
ok

Erlang User Conference QuviQ
2010

Page 85

Example Q

Erlang shell used to communicate with C

1> egc c:start (example) .

ok
2> P = egc_c:create array(int, [1, 3, 3, 8]).
{ptr,int,1048864}

) ‘m“f:f““jénmmybcmmmﬂnme\
3> example:sum(P, 4). T~ C thread and the pointer
15 returned points to

memory in that thread
4> eqc c:free(P). J
ok
Erlang User Conference QuviQ
2010 N
QuickCheck Q

From test case to property

Instead of specifying one or two test cases to
demonstrate that the software fulfills a certain
property, we specify {1¢ praperiy and have the

tests automatically generated!

Model based testing with controlled random
generation of test cases

Erlang User Conference QuviQ
2010)

Page 86

Testing hard real-time C Q

How difficult is it to test real-time C code?

Mentor Graphics hosts master student thesis
project to test CanNM with QuickCheck using
this C link.

Erlang User Conference QuviQ
2010

| o CevimAlgoring__#

L I :
- Canblra —
i

AUTOSAR component — W O
o Canter, 7
1 PliugrCr
as UML State maChIne | N “.;"\‘.. Mods == B Wt Bus See Tinwy fues pguren #7 "
| ey \ . £ BusSiesgMadel f Prapars Bus-Bleap Modo
Jes— — ———— |
13
CAN Ny . > ;
”l‘-‘“l "';_ N PRy - [
asPwalaritiL ~ Cadim T paciis
Cantin Rl sur | S5 e ’ ~ |
Network Management - s SRR i e ke ,/ ;
T e Me ~ e
hon S £ K Sseaoni
’ |
Slan sk Tmacat frees (o lirest’. N Y-
(el pstiegl o v
P .
. 1] L {
i HtAmsatess | Natwork Mote LR w T l
Sart AT Tmamial Y emans | 2 g Ed;r:'rt_n;m Tromaut Trmoe |
N Vi LV |
N Prnal Frrertas meprmg. =" Hopast Masasge Slate 1 l
Sran SAL-Temeost Timar "
|
4 ":I I
' A\ |
wopanrs Manasgy Tever o e b |
| Canidies m:«r\w.@‘mw;vm: . :
Cantir Iepesikioagsontinaal) | Cardiry nves Yersagalli i acears |
Staet Raxwal Waesiahe Tiewr J S e s liiust |
| Lanhie Brpliusl Sastoouction |, i St Clvomin: Muleagit Tomas
' Gppeyl Vods I"‘ |
" .. N\ b {
| / [— Y
i/ Blar) S Laa Hincuckon \ X
' A\
[(= Temar hevs expend sk Rt \
S s S g e S A \
l /R vdemTreattomes,
1 /
| o Al —— | Il. ___}»"' Camlire Sutanmblog ety ‘\I. — __ —1
i.-' Notyié! Operation State Nz —— L St e Lot Fleinze: Handy Sleap Yiate "\
| \
|
|

[9 ¥ Bl Bus Lo Reduair, W M

Erlang User Conference ! L | /
CaariNeti TaGort st Candm fcrdessianty Camtim. Hxinocatong, SN, TaCeetrousen
201 0 ¥t NS T Titnee, # Beart Nbd-Yimonut Vi, s Start NM Ssmamd Tener, £ S0A HAL Trmacud Taues

Page 87

Scheduling Q

CanNM is scheduled as one of many tasks

CanNm invoked by calling
C function CanNM_Main()

Erlang User Conference QuviQ
2010

Scheduling Q __

CanNM is scheduled as one of many tasks

R

Assumption:
One time unit elapses before CanNm_Main() is called

(In fact, C implementation handles the timers, not the scheduler)

Erlang User Conference QuviQ
2010

Page 88

Scheduling

Q

CanNM is scheduled as one of many tasks

| CanNm_NetworkRequest() |

/ ‘CanNm_RxIndication()]
I W SN SN NG S S S

“r

e Other tasks communicate by calling CanNM interface functions
" ‘b‘—__ __';"h
% { These update data structures in memory

Assumption: Only one interaction in each slot

Erlang User Conference
2010

QuviQ

| ¥ CankimAlgoranm /

AUTOSAR component | romor (@) S (@) pomeror
i NEE
as UML state machine LT B Spes i e e
| i' et D ieephtade ! []
. J !)
CAN "‘_J S =
Network Management eiretuirt g SO ThREETR.
S

< A A Limaout Beens Griet Dinstst

> =
-,--,.w-w-/ -

! =
S Camhim_TrCurfraion| B

| Sipr R0 Tareendt Timnr

Now... make a
QuickCheck model from

Cantim _Rimdhzstes || [~
Z1art NN Tirraalel Yorww

. N I rd
thls State maChIne MK el | mer Fag oxoong ‘_._'-“. - R_-oumn‘nm j
Sean NV T e L L ’i
ba — <

Camter _HepoarVoeracginnacsson |
Casslr HmpeasttinagsgnHos on'

1 St Hrseal Mgl Tirwe

o Sl gyt

[gtacr u..&‘un:i

\n
1 \
/ , J ¥ Cantire Nestmambannts |, p | Se——. E— |

{ HNormdl Operation State T_-_ 2 St B |t firmpciir I, Anady Glesn State N
| |

|)
\]‘ B j CanMim_Neleoe flesans | > ~ T T '.

4 /i « Shop Buk Lode Rdisittas n T
Erlang User Conference L) I L)

2010

[
Cardim TeCordrruie |,

Cantern Hitndeanon)
Start NAS Tierswondt Tir*

¢ Saan W Tiwecer Terer,

.

Caarion Munsealon | Cantim Talpepemaseniy
Rtnm KWL Tvmood Timar 5107 MBS Tuameout Timer,

-

Page 89

QuickCheck model Q
State transitions as Erlang data structure

bus_sleep mode() ->
[{power off, {call, ?MODULE, powerOff, []}},
{bus_sleep mode, {call, ?MODULE, main, []}},
{bus_sleep mode, {call, ?MODULE, 'CanNm_RxIndication', [id(),u8()]1}},
{repeat message_state, {call, ?MODULE, 'Nm PassiveStartUp’', []1}},
{repeat message_state, {call, ?MODULE, 'CanNm NetworkRequest', []}}].

repeat_message_state() ->
[{normal operation_state, {call, ?MODULE,main, [1}},
{ready sleep_state, {call, ?MODULE, main, []}},
{repeat_message_state, {call, ?MODULE, main, []}},
{repeat message_state, {call, ?MODULE, 'CanNm_RxIndication', [id(),u8()]1}},
{repeat message_state, {call, ?MODULE, 'CanNm_TxConfirmation', [1d()]}}].

Erlang User Conference QluﬁviQ
2010 '

QuickCheck model Q

Model how additional state data changes:
timers, network status, ...

next_state_data (repeat message state,repeat message_state,S5, V,{_, ,main,_}) ->
S#can_nm{repeatMessageTimer = S#can nm.repeatMessageTimer-1,
nmTimeoutTimer =

case S#can_nm.nmTimeoutTimer of
0 -> ?NMTIMEOUT;

N -> N-1
end};
next_ state_data(repeat message_state,repeat message_state,S, V,{ , , , }) ->
S#can_nm{repeatMessageTimer = S#can nm.repeatMessageTimer-1,

nmTimeoutTimer = ?NMTIMEOUT};

Erlang User Conference QuviQ
2010 /

Page 90

Testing hard real-time C Q

How difficult is it to test real-time C code?

Master student thesis project to test CanNM with
QuickCheck using this C link.

Result: - we know how to do it
- it is not that much work
- we found ambiguities in the specification

Erlang User Conference QuviQ
2010 a

Testing real-time C Q

CanNm was modeled using a state machine.

Not all AUTOSAR components are specified as
state machines... can we do the rest as well?

Sep/Oct 2010: Experiment (with Mentor Graphics)
- Test COM/PDUR with QuickCheck

- In parallel manual testing of same software
(estimated 20 weeks)

approx 8000 lines of C code, representative
component

Erlang User Conference QuviQ
2010 ’

Page 91

Testing COM/PduRouter Q

* We have built a model for testing COM and
PduRouter

o o QuickCheck B ; Stubs W
XML =
config || R _ S
d ' 1

AUTOSAR
| implementation
|

Test

case J
Erlang User Conference QuviQ
2010 '
QuickCheck for automotive Q

We created a model
The model is configurable with an XML config file

Marshalling code is automatically generated from
header files

C stub is only a 400 lines of code
QuickCheck model is 800 lines of code

Total: 2 person weeks work

Erlang User Conference QuviQ
2010)

Page 92

Testing Automotive software

Conclusions:

We gain productivity
- Erlang less lines of code
- QuickCheck model instead of test cases

We have a scalable solution for AUTOSAR

In the future...
buy a car that has been tested with Erlang!

Erlang User Conference QuviQ
2010

Page 93

Page 94

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Mission Critical with Erlang And
QuickCheck: Quality Never Sleeps

Abstract

How do you integrate a new component into a mission-critical, legacy system with
the key requirement that existing functionality must not be affected? We used
QuickCheck to specify the behaviour for the existing system and then we attached
our component to validate its behaviour.

In this talk we highlight how property based testing using QuickCheck was benefi-
cial and fun for our project where we lacked full documentation and understand-
ing of the legacy behaviour. Using QuickCheck we were able to produce and vali-
date that our component had the high quality requested as well as allow us to
focus our testing into specific areas with very little effort.

Raghav Karol, software engineer at Motorola since 2006.
Worked with network management before becoming an
Erlanger in 20009.

Torben Hoffmann, Erlang Priest at Motorola
since 2006.

e

-

A

s

Mission Critical with Erlang
And QuickCheck
Quality Never Sleeps

Setting the stage

Overview

What did we have to do?

What did QuickCheck help us with?
How is it to use Erlang?

How productive is Erlang/OTP?

What did we have to do?

ISI Project

* Gateway to interconnect two TETRA systems
» Migration for TETRA

o State-full protocol conversion
» Motorola Proprietary Call Control and Mobility

ISI — ITSI InterSystem Interface open standard

« QSig, HDLC, LAPD, E1
» Mobility and Resource Management

e High concurrency requirement

* High reliability — required to connect to live customer
system

Motivation and Background

Working prototype to be delivered as a product
« Existing codebase created for I0P certification

Connect to live system
« Main requirement — Should not crash existing system
» Specification of legacy protocols not complete

Small team, 5 members, no dedicated test resources

ISI application Erlang + C
* Enter Property based testing and QuickCheck

Scprembrr 2mp

Romania .

Don’t KILL the
emstmg SYSTEM

m Romama.

And he’s just the requirements guy ©!

ISI Stack

ISI
IZ QSIG QsIG
FLM RTP HDLC
NETCOM LAPD LAPD
TCP ubP UDP El El El

_ Unit test versus Property based
testing

Testing using xUnit like tools

¢ Setup Fixture, execute test case, Teardown Fixture
» Works well --- Used with good success before using property based
testing
Important to have good test cases
+ Test cases and scenarios easily overlooked
Maintenance and refactoring of test cases also always required
¢ How is property based testing different
= Specify rules of generating a test case
+ Specify pre-conditions when above rules can be valid
= Model expectations once a rule executes
» Check post-conditions once a rule executes

e What!?! Can this even work?

Quickcheck

QuickCheck

¢ Generators

* Properties

» Stateless testing
Symbolic test cases

e State full testing
State machines based

* Shrinking
* Also available for C --- Not used in our project.

Testing a resource manager

The rm_ds is a data structure that manages a range of
integers representing unigue resources

API:

¢ lock_next(RM) -> RM

« Get the next available resource based on the policy for finding the
next avaiable

e release(N,RM) -> RM
« Release the resource id’ed by N.

 lock(N,RM) -> RM
» Locks a specific resource (the one id’ed by N)

10

Creating a random resource manager

rm[Size) ->

TLET({From, Length, Policy},
fint (), nat(), onecf([up, down, high, low])),
TLAZY(
treqgquency ([

1
|
{
{2, <, 0
{2,1mall, ?MOLCULE, rels , [nati{), rm(Size

{call, ?MODULE,

]
)

b

|
)

1, rm(0, From, From+Length, Policy)!,
2,1{c¢all, ?"MODULE, lo< 2xt, [rm(Size-1)]1}},

I
rm{Size-1;1}1},
=137t

You create an RM by using a random sequence of commands
from its API

Example: random resource
manager

lock next

lock 17

release 13

lock next

lock _next

release 4

new [-11,6,up]
Lower FERahge = -11
Opper Range = G
Allocation Policy = up

Example property for the resource
‘manager

Locking a specific resource:

prop locki) y->
"FORALL A{ SvIRM, j, icreate rmi), int()},
begin
EMO =
= RMO,
case rm _ds:lock(MN, RMO) of

{invalid_rescurce, BMO} -

not 1r ange (N, Range);
; =, RMO} —=>
di(N, RMO:;

ked (M, RMIL)

13

Property based testing in ISI

Unit Level

* Queue data structure

* Resource management and allocation server
Component level

¢ NetComm Layer
Black box — Box test level

14

Black box testing of the ISI GW

Simulated sites and mobiles

« Implementation of the ZC-Site protocol
¢ Pseudo Air Interface protocol

Stmalated,
et B bl
\ \
AA A A A A
/ \ /

o I)
A /

3000001, {7,231]
J00ooon, |_l 3

T 7y
_'|,|

I

L]UIIFIEIL, i T L5110 1 ‘

M fsimplax duplex, zimplexz))]}
: 5 = 'Z; 1 1

The test cases are expressed in terms of actions taken by the
mobiles

16

Handling Concurrency in QC

In many cases the success of an operation required
several messages to occur

Enter...
* hooks

A hook spawns a listener processes for each message that
is expected

Hook Example S
. stated
. message
£% M1 is answering the call from M2. . recived
do_snswer_call(Ml,M2,51) ->
?TRACE (do_answer_call,[M1 ,M2,51]),
Pidl = spawn{?MODIULE,listen for_d m3g,[HMl,
o

PidZ = spawn|?MIDULE,listen for_d_ndyg,[M2,
2TIME

Pid3 = spawm(?MIDULE,listen_ for_site_msd,

[%1,

w3y _type(subscriber tx_detected_icp), . =t

FTTHEOOT ,M) Erati n
nobilesanswer vall (M1), ¥ Y NT S}
Results = collect results([Pidl,Pidz,Pid3]),—— o (zw T
pause(), ' Gatherresults

~from listeners

Res=check_resulis (Results),
?LOG({do_answer_call,[M1,N2,351]} ,Res), —

Resz.

plun eyl oyendioei)

File Viewer Collector Filter Help

W Frezze Cetaill Level

® Hide From=To o
W Hite Unknown
e imabal L
| | |
| | wimee priul I
— LA e SR T
. | —
. susoduting ‘ .
| '
— - |
L L
‘ i-l— I:\)_
| | | |
| S re ko
| | L
| AT P
o —_—
: ™
{015
[]
| v e
-
- -
on
ls = —
| IR AT) »
e

QuickCheck Quality Never Sleeps

So you made a testing framework — I can do that!

Yes — every software department in our company,
including us has
Why QuickCheck

* More thinking, specify, specify, specify, less work

¢ Randomness

$1S9] O1he 3uizijensip

— .J.lﬂ.x./

72 A3LSNOW F1H00D Iy

a. - - \\..\..//f;/tl\]-.“\.u;,r.
‘.. .w JJ“.‘I» _“_____. N«.\wl\nl vl

$1S91 O1ne guizijensip

Erlang/OTP Quality never sleeps

Auto-enforcement of a coding standard with Erlang/OTP
Semantics of framework uncomfortably simple

Ease of Distribution

Supervisors - error handling and reliability

Common case ALWAYS works

Understanding software behavior

Resolving Issues
¢ Resolving issues in the field

* Integration issues with other vendor forces: panic, stress,
our reputation

Evaluation of performance

The eternal problem:
* Which approach is better?

Key problem:
* What is the size of the problem?

One of the best size measures for software:

* Function Points
< Measures input and output and treats the software as a black box

« Not widely used since it is time consuming to generate FP
estimates for a system and even harder to check how many the
final system has

Backfiring

Backfiring:

e Counting Function Points by looking at the actual code
Our approach:

» Use epp_dodger to extract incomming messages

+ Use xref to extract outgoing messages

» Post-process in Excel to ensure counting the correct
messages

Comparing with others

Function Points are often used by estimation tools
¢ Construx Estimate
e COCOMO Il
Basic project estimation:
* Inputs:
» Function Points
« Programming language
< Type of project (Telecommunications)
* Output:
+ Staff Months (SM) to complete the project

Erlang vs X

Java 3x (2.3-3.9)
C++ 4x (3.4-5.3) :
C 7% (5.9-9.3)

So for a telecommunications project Erlang/OTP seems to be the right choice...

Conclusions

Challenged with increased complexity
e Concurrency, distribution, reliability
Delivery of features
- Lowering Costs, Development O&M,...,
- Losing track of what the customer really wants

Erlang solves, technical, communication and cost
reduction problems

QuickCheck

e Leverages Erlang language features
* Future of testing

Page 110

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Tino Breddin
Embedded Erlanger from Dresden

Continuous integration for Erlang/OTP,
enhancing its quality and ease-of-use.

Abstract

Swarm is a continuous build server implemented in Erlang which presents a inno-
vative twist to software quality assurance.The two core concepts, multi-platform
build execution and automatic package generation, give projects the ability to
provide users with exceptional support while requiring little manual effort. This talk
describes how Swarm is used to enhance Erlang/OTP's development process. Fur-
ther, the upcoming pre-build and tested packages of Erlang/OTP binaries for many
free and commercial operating systems are discussed.

Biography

Tino Breddin is a Systems Engineer at Erlang Solutions Ltd where he spends quality
time on building scalable, highly-reliable systems for messaging and data storage.
When not using Erlang he prefers using Python or Ruby for anything which needs
to be automated. Previously Tino worked at the research labs of SAP Labs LLC in
Palo Alto and SAP AG in Dresden focusing on massively scalable systems develop-
ment.

Page 112

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Jacoby Thwaites
Inventor, designer and implementer

A prototype state machine “MadCloud”
for distributed applications

Abstract

Distributed applications often use client-server techniques across a TCP/IP infra-
structure. This talk presents a prototype infrastructure that abstracts the client out
of programmers’ code and can optimize inter-server traffic across datacenters. It is
written in Erlang with an admin Ul that is quite pretty because
HTML5+CSS3+XSLT+JQuery rocks actually.

Whatever.The infrastructure is very simple, and works by sequencing calls on
application-level servers following some initial event. It does this by collecting sets
of fields, sending subsets to servers and collecting replies where appropriate, until
no further work can be done.The result is, application backends that are declara-
tive.

My feeble hope is that this opens up pathways including applications constructed
by search, mutable applications that change many times a second, large-scale
caching of server operations, applications that self-render and other things I've not
thought of.

Biography

Since 1990 Jacoby Thwaites ran his own company in the UK architecting large-scale
networks and enterprise messaging systems. Around 2000 the company got into
writing and selling insurance systems in the London Market. He then co-founded a
Silicon Valley Web 2.0 startup which folded a couple of years later,and most
recently joined Google in 2008 to set up the London AdSense engineering team.
He has spent the last 6 months inventing, designing and implementing this state
machine as his Google 20% project.

Page 114

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Rusty Klophaus
Senior Engineer at Basho Technologies

Masterless Distributed Computing
with Riak Core

Abstract

In this talk, Rusty will explain why Riak Core was built, discuss what problems it
solves and how it works, and demonstrate how a developer can leverage Riak Core
to quickly build their own masterless distributed application.

Biography

Rusty Klophaus is one of the core engineers at Basho Technologies where he
focuses on building distributed, fault-tolerant applications to store and retrieve Big
Data. He is currently on the core engineering team of Riak Search. Before joining
Basho, Rusty launched an Erlang-based startup (which spawned the Nitrogen Web
Framework); before that he managed multi-million dollar technology products and
guided multiple project teams at an Internet advertising company based in New
York City. When he's not hacking, Rusty plays guitar and organizes the Hacker News
Meetup Group of Washington, DC.

Page 116

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Rickard Green
OTP Team Member and VM Committer

A deep dive into some aspects of the
multicore support in the Erlang VM

Abstract

The first Erlang virtual machine capable of utilizing multicore and

multiprocessor hardware, i.e. the Erlang VM with SMP support, first appeared in
2006. Since then work has been ongoing on improving performance and scalability.
The increasing number of cores on common processors makes scalability issues
very important.The scalability of the first VM with SMP support was quite modest,
but has since then improved immensely and will continue to be improved in the
future. During this talk we'll look closer at some scalability issues and how they
have been addressed.

Biography

Rickard Green is a senior specialist in muticore/multiprocessor utilization and
scalability at Ericsson AB.He works with the development of Erlang's virtual
machine at Erlang/OTP and has done so for the past ten years.The development of
an Erlang VM capable of utilizing multicore/multiprocessor hardware, i.e. the SMP
support of the Erlang VM, begun about five years ago. He has since then been the
main developer of the SMP support, and has designed and implemented major
parts of it.

A
= |

= What Made us Look at RWlLocks?

Testcase failed

—Pthread rwlocks on Linux with reader preferred strateqy caused
starvation of witers

—Solved by using owr writer preferred fallback implementation instead
Customers complained about poor performance of the
falihack implemeantation

—-Solved by tetling them enable the reader preferred pthread rwiocks
implementation

Y - That is. something needed to be done... 2]
Rickard Green
rickard@etlang.org

ERLANG

RWLocks in Er

ang/OTP-R14B

What is an RWLock? NPTL Pthread RWLocks
s Read/Write Lock ‘Why ook at NPTL RWLocks?
—Write locked ~NPTL {Native POSIX Thread Library) is the thread library used on
) ist
Exclusive access for one thread n?oder‘n SRS ros
—Read locked —Linux is our most important platform
Multinle reader thieads The vast majority of our customers run on Linux
NG w?itér threéds o A lot of the other {perhaps most of the other?) users run on Linux

>Strategy used during contention
~Defaults to reader preferred

As lang as the lock is read locked or readers are waiting for the lock,
writers have to wait

—Can be configured as writer preferred

As lang as the lock is write locked or writers are waiting for the lock,
readers have to wait

~Both strategies suffer from starvation issugs
Writer preferred is, however, not as problematic as reader preferred

g Z
RWLocks Used in ERTS ERTS RWLocks
SETS tables »Doesn't use a writer or reader preferred strategy
»Internal tables >Interleaves readers and writers during contention
—Atom table

»Fair against readers as well as writers
—Registered names

~Distribution tables

Page 118

ERTS RWLocks - Enqueue Writer ERTS RWLocks — Dequeue Writer

Writers always enqueue at
the end of the queue

Writer at the head of the
queue takes over the lock

4w

/ﬁmwr—!Tth—vﬁawl //—ATzR!-—:'_mR.:-—
S ! -

A > N
‘RWJ n.-,-.r— oW, ‘RW' .}('I-.i—— T W

T

T3 W r—i T4 W

//“-
<10 !
e/

ERTS RWLocks - Enqueue Reader ERTS RWLocks — Dequeue Readers
-Readers enqueue on other TS_R] s All readers at the head of
readers : the queue take over the
At the end if ho other lock

readers exist

. . —
|

/’T1W“_’T2R“—T3W"—T4W ///_/——‘T_’:W“—T“vw
A\ (™ S
\ _ : \ o
IRWLock——— TO W IR\‘\chc;kr—{_— - ﬂ\/ B ==
| _ {T2R L ,

N

j

ERTS RWLoc_k_s_- Queue . ERTS RWLocks . Quege

-Ensures that all waiting threads eventually will get the lock

> Able 1o execute readers as much as possible in parallel

»Writers wont be punished too much by readers going past
them

—~Writers wont be punished at all in the case where there are as many
threads on the systermn as cores and each thread read locks for the
same amount of time

:All readers will accumulate
at one place in the queue

1 T g
|

/-—T1 WHET T2R— TSR+ T3IWpF— T4 W

A

[RWLock—— TO W

—_

Page 119

FRTS RWLocks - Default

Data structure
—integer flag field
—Cueue (double linked list of waiting thraads)
—Queue lock
Uncontended case
—=ALOMIC operations on the integer flag field
Contended case
~Atomic operations on the integer flag Heid
—l.ocked operations on the queue

ERTS RWLocks — Flag Field (defauit)

ERTS RWLocks — Reader Optimized

Data struciure
—integer lag field tnodified;
—Queue (double linked list of waiting threads)
—Queye lock
—Reader groups (integer counters in separate cache-lines)
Uncontended cases
-Write {fock/untoch
Atomic aperations on the integer Hag field (not completely rue}
-Read lockiuniock
Atomic operations in the readers greups (mostly)
Contended case
—Atomic operations on the integer flag field
-Atomic onerations in the reader groups
—lLocked operations on the queue

ERTS RWLocks — Flag Field (reader optimized)

write locked

wnite locked —
v

Read locked

{(29-bit integer)

Write waiters

Read waiters

ERTS RWLocks — Perforrnance_

: An improvement compared to NPTL RWLocks, but

uncontended read lock case is still a bit disappointing

~Conceptually only reads of memory. however...

—Writes to the RWLock cache line is ping-ponged between processors

—in ETS also other stuff is ping-ponged
Meta table lock cache-line
Table reference counter cache-line
> Would be nice to avoid this cache-line ping-ponging

—Modified reader optimized RWLock implementation using reader

groups
—ETS modifications:

Rewrite of the meta table locking to use the riew reader optimized

rwiocks
No use of table reference counter when read locking

v
| Pending read unlack

| Arite w: o
ISR (28-bit integer) |

Read waiters

Perhaps read locked

-
E -
e

ERTS RW_Locks - Reader Optimiz_ed

Integer flag field

-Uncontended read-lock
—Increment reader group counter
~Read flag field.

Verify no “W-locked”, “W-waiter”,
nor "Pend R-unlack”

Vockag

|Pene R-omack |

| ot

| Froualaiiy

| Pooexac?

Set “R-locked?” if not already set -

Reader groups

Cacle ik
alfined

Uncontended read-uniock
-Decrement reader group counter “ .' } .
—If reader group counter reached)

zero, read flag field
Verify no “{W,R}-waiters” nor
“Pend R-unlock”

il

Hotel We e
nolrasar
SR ki

Page 120

ERTS RWLocks — Reader Optimized

inleqger flag field

Uncontended write-lock TN AT T

~Read integer flag held

~Verify no “W-locked”,. “{W R}~
walters”, nor "Pend R-untock” [w

=Set "W-lacked” unless “R-locked?” is
set, then check readet groups:
Verify that all groups are zerg =
Increment "Pend R-unlock”
Verify that all groups are zero
Reset "R-locked?”, decrement
“Pend R-unlock™, if zero set “W-
lacked” |
Uncontended write-unlock | e e
—Reset "W-locked” I dieludtil i) A
=Verify no “(W R}-waiters”

ERTS RWLocks — Reader Optimized

Inteqer flag field

-Contended cases
—When a lock operation fail, the =
thread continues spinning —
trving to lock actively (a few Wi
times); then
engueue and spin passively (on
ancther structure): then
biock
~When eqtreueing the "{W.R}-waiters”
flag ts set while holding the queue

Tl

Reader groups =

R4 acerm
couniens

jock: then one last effort to acquire :

the fock is made %
~After this the thread depends on %’

another thread transterring the lock

to it and waking it up | —

ERTS RWLocks - Reader Optimized

Integer flag field

>Contended cases (continued)

—Write locking when “R-locked?” is
set is the complicated case since it
can be interrupted by modifications —
in reader groups WAl

—A thread medifying reader groups
aborts or continues its operation if
“Pend R-unlock™ is set and then tries
to complete a read unlock (this
operation can also be interrupted:
which also...)

JPene R-urinch)

Readergroups
e U

[Padding

~The amount of interrupts is limited _——
when doing blocking operations E
since threads eventually will end up . —
in the queue i;
—Non-blocking operations aren't [= . |

allowed to loop indefinitely

Benchmarking

The benchmark used can be downloaded from
www.erlang.org/~rickard/euc-2010
1000 processes accessing a common public ets table of
type set
Accesses consists of et s lookup () (read) and
ets:insert (O {(write) in different mixes
‘Run with the thread spread scheduier bind type
R14B NPTL-rwiocks and R14B ERTS-rwlocks only differs in
rwlock implementation used
—R14B NPTL-rwlocks: /configure force_pthwead rwlocks=yes
When benchmarking with NPTL-rwlocks
~No read_concuriency run has been made - same as default

—No combined read _concurrency and write_concurrency has been
made - same as wiite_cancurency

ERTS RWLocks — ETS Options

> The default

-0One table global normal (non-reader optimized) rwlock
sread_concurrency

—One table global reader optimized rwlock
Swrite_concurrency

—One table global reader optimized rwlock (normally read locked), and
multiple normal rwlocks protecting different parts of the table

>read_concurrency and write_concurrency combined

—One table global reader optimized rwlock, and multiple reader
optimized rwiocks protecting different parts of the table

ETS Table with write concurrency E
Option (before R14B)

A\

| RWl.ack

7\,

RWicck | ftWiock

A\

RWLock

‘ RWLeock

‘ RWiock |

Page 121

ETS Table with write concurrency g g
Option (R14B) Benchmark Results — Machine A

A|A|A | A n|
|R‘."~/LG¢‘r;I {WL:}w,I PwLock |R.‘J‘JLOCk I.I{'\f\’uw.k‘ Lo
- I\A@ i ¢
ETS Table with write concurrency and E E
read concurrency Options (R14B) Benchmark Results — Machine A

Reader Reader | [‘lll.'nl_h'l' |' estiier 1 i
npltm-rr'n| optimized| | [opbmezad] aphmized} 1 | |
WtWilock RWWLlock LW Lock Lotk 1 |
\ . X . ! .
LA L
Benchmarking Benchmark Results — Machine A
>Machine A >Machine B " ' i
~SLES 10.2 —Ubuntu 9.10
—Kemnel 2.6.16.60-0.39.3-smp ~Kernel 2.6.31-22-server "
~-NPTL 2.4 ~NPTL 2.10.1
-x86_64 -x86_64 ol
—-2x Intel Xeon L5430 @ 2.66 —~2x intel Xeon <unknown id> @
GHz 2.8 GHz i
i "
i
?i.frlanqzs"ste 1>

Page 122

Nt i

b s L it

[T —

Benchmark Results — Machine A

BV s ey — Bt b | G e i S b § B8 o B

v bbbt s

Benchmark Results — Machine A

F i
i

.

Benchmark Results — Machine A

O pina s oo P o b bt 448 L e 4 o4 b §

S I dinty S b} waeht B ormans by S i st | W ot w68 S

[y —

3

Benchmark Results — Machine A

“

B i o

Benchmark Results — Machine A

P s mans by o it B4 B g4 il B g
o
Trm e e

— o b

Benchmark Results — Machine A

0% provems dolne TR operatlems eachs WA atcrlosupt} and WX alxtinnert()

. .
i aF b 4

S e by P ap b sih kbl e B 114 i b

e e P —
e s et ey £ S

— bt

Page 123

’'S

Benchmark Resulis — Machine A

e e e

Benchmark Results — Machine A

o kit bl

]

Benchmark Results — Machine B

1008 proxemiac dolmy #0008 alaslewinpt) arch

RBenchmark Results — Machine B

S gy o g — b h ot

Pt v e i

— bttt |

Benchmark Results — Machine B

8 e bibah i e b BT ek | e B S e fd bt B9 Wi b | w0 0 LS 41T

Benchmark Resuits — Machine B

TR ——— e e g T

ot Tt |

e

it b ot

Benchmark Results — Machine B

Mot et e gy S o LS b el 4 b4 i

b o8 pbanbrbid 5

Benchmark Results — Machine B

Benchmark Results — Machine B

0% frocaLcas dulmy POD08 omer st fonel 302 atatleckun(t md S0% sLiilover 163

e

Benchmark Results — Machine B

et L R LTI

Benchmark Results — Machine B

iy g ot b | S 44 ot | o e

Benchmark Results — Machine B

e

- ’— = y owrms ey
o e
- -r
- g "
3
1
) i
;

Page 125

ERICSSON

Page 126

Conference Proceedings Tuesday 16th November 2010
16th International Erlang User Conference Stockholm, Sweden

Kenneth Lundin
Manager of the Erlang/OTP dev team

Latest News From the Erlang/OTP team at
Ericsson

Abstract

Kenneth gives an update of the Erlang/OTP team's work at Ericsson - their current
projects and plans for future.

Biography

Kenneth Lundin has been working with SW development since the late 70s. As a
curiousity it can be mentioned that Kenneth was one of the pioneers in the use of
C++ at Ericsson. Unsurprisingly Kenneth's interest for OO languages has been
slighty revised since then. He joined the Erlang/OTP project in it's early stages 1996
and has been working both with application components and the runtime system
since then.Has been managing the team for about 10 years now.

2010-11-05

CRLANG USER CONFERENCE 2010
Kenneth Lundin

CONTENTS

» Some highlights from the recent R14B release
» Coming releases and other work
» Positive Statistics on usage and contributions

Ericsson AB 2010 Page 128 1

SOME HIGHLIGHTS FROM THE R148 &Y |

RELEASE

New optimized implementation of rwiocks in the Erlang VM
New auto imported BiFs

The new SSL implementation is now the default (since
R14A), A number of bugfixes and improvements have been
made thanks to feedback from Open Source users.

- All together quite a lot of new things in R14A + B

» R14B was the first release we made directly from GIT (no
Clearcase involved from now on).

OPTIMIZED RWLOCKS

» New optimized implementation of rwiocks in the Erlang VM
> There is one variant of rwlocks which is “reader optimized” and which
gives huge performance improvements when the parallel read
operations are dominating. Examples are:
— When sending messages using a registered name
—When having many multiple readers of an ets-table (the new table option
read_concurrency’ must be used when creating the table),

A simple benchmark with many parallel readers of an ets-table ona 2 x
quad-core machine showed a speedup factor of 5.

> There also a variant that is neutral {i.e not "reader optimized").

» Both variants interleaves readers and writers during contention as
opposed to NPTL (Linux Thread Library) which uses a reader/writer
preferred strategy which can cause starvation.

T

Ericsson AB 2010

Page 129

2010-11-05

il

NEW AUTO IMPORTED BIFS

in R14A the semantics changed so that local functions will
override auto imported BlFs
A change to what it should have been from the beginning

. The change makes it possible to auto import more
functions without infroducing incompatibilities.

. We have now made a number of BiFs from the erlang
module auto imported.

s monitor/Z, monitor/3, demonitor/Z,
denonitor/3, ervor/l, error/2,

integer to list/Z, list to integer/2.

THE NEW SSL IS NOW THE DEFAULT

» The new SSL is now the default.

.« All communication is written in Erlang using gen_tcp
(earlier there was a separate port program written in C built
on top of the OpenSSL code) and using the crypto module
built on liberypto from OpenSSL.

» Advantages with the new solution:

- Can use Erlangs SMP support for parallel execution

- Support for upgrade and downgrade from TCP 1o TLS and vice
Versa.

- Uses less number of ports and file descriptors
- Efficiency
-~ Easler to maintain

[

Ericsson AB 2010

Page 130

2010-11-05

RELCASE PLANS

Preiminary

+ R14B01 to be released on December 8:th
Very Preliminary

> R14B02 in March 2011

+R15B in Q3-Q4 2011

&l

=]

WHATS COOKING FOR R14B01

» New function inet :getifaddrs which returns all network
interfaces and their addresses

» All test suites converted to CommonTest format.

» Compression flag for ets-tables
(ets:inew(...,[compressed,..]) , compression ratio depends
on data. But 50% or more for complex data. Of course

there is a performance penalty for this.
erl +ec, will compress all ets-tables.

[&4

Ericsson AB 2010

Page 131

2010-11-05

POSITIVE STATISTICS

= |

Nov (roughly a year)
: From 582 different contributors
» 7 contributors with more than 5 contributions

. 155 approved contributions from R13B03 until beginning of

: The activity in the Erlang community is really increasing, a
great help in making the Erlang/OTP distribution even
better
[ol
is1anG |

WIDESPREAD INCREASING INTEREST

Ericsson AB 2010 Page 132

2010-11-05

— =, T
o W Ea

