8th International Erlang/OTP
User Conference

Stockholm, November 19, 2002

Proceedings

EUC’2002 http://www.erlang.se/euc/02/
Ericsson AB

P.O. Box 15_95 A
SE-125 25 Alvsjo Stockholm
Sweden

ERICSSON = ERLANG

\\

Erlang/OTP User Conference 2002

Conference Programme
08.30 Registration

Applications I
09.00 Yaws.
Claes Wikstrom, Alteon WebSystems.
09.30 Implementing the Mobile Location Protocol: A Tale from the Trenches.
Magnus Eklund, Fredrik Linder and Thomas Lindgren, Cellpoint.

10.00 The BLIS4 Platform and Development Experiences.
Thomas Verner, BluePosition.

10.30 Coffee
Applications IT
11.00 HELGA - A Call Load Generator Written in Erlang/OTP.
Anand Balagopalakrishnan and Bagirath Krishnamachari, Lucent Technologies.

11.30 The AXC 105 Fibre Switch.
Hans Nilsson, Ericsson.

11.50 Mobile Arts High Performance Telecom Platform.
Johan Blom and Géran Bage, Mobile Arts.

12.10 Developing for the Web in Erlang: Why and how ?
Mickaél Rémond, erlang-fr.org.

12.30 Lunch
Technology 1

14.00 On Reducing Interprocess Communication Overhead in Concurrent Programs.
Erik Stenman and Konstantinos Sagonas, Uppsala university.

14.30 Distel: Distributed Emacs Lisp (for Erlang).
Luke Gorrie, Alteon WebSystems.

15.00 Static Analysis of Communications in Erlang Programs.
Fabien Dagnat, ENST, Bretagne.

15.30 Coffee

Technology 11

16.00 Stand Alone Erlang.
Joe Armstrong, SICS.

16.30 Use of Erlang in System Test of AXD 301.
Karl Olsson, Ericsson.

17.00 The Erlang/OTP R9 Release.
Kenneth Lundin, OTP Unit, Ericsson.

17.30 Close (and pub evening)
Demonstrations (during intermissions)

BluePosition demonstrates their innovative Bluetooth Location Information System -
BLIS4.

.

Yaws - Yet Another Web Server

Claes Wikstrom
klacke@hyber.org

11th November 2002

Contents

1 Introduction
1.1 Prerequisites

1.2 A tiny example

2 Compile, Install, Config and Run
2.0.1 Compile and Install
2.0.2 Configure

3 Static content

4 Dynamic content
4.1 Introduction
42 EHTML
4.3 POSTs e e e

4.3.1 Queries
4.3.2 Forms
4.4 POSTing files

5 Mode of operation
5.1 On the fly compilation

5.2 Evaluating the YAWS code

6 SSL

10

11
11
11
16
16
17
18

20
20
21

22

CONTENTS

7 Applications
7.1 Login scenarios
7.1.1 The session server
71.2 Argrewrite . . .
7.1.3 Authenticating .

7.1.4 Database driven applications

72 Appmods
7.3 The opaque data

7.4 Customizations

7.4.2 Crash messages .
7.5 Stream content

7.6 All out/1 return values .

8 Debugging and Development

81 Logs

9 Security
9.1 WWW Authenticate . .

10 Embedded mode

11 The config file - yaws.conf
11.1 Global Part
11.2 Server Part

23
23
23
25
26
28
28
29
29
30
30
31
31

33
33

34
34

36

Chapter 1

Introduction

T —

YAWS is an ERLANG web server. It’s written in ERLANG and it uses ERLANG as its embedded
language similar to PHP in Apache or Java in Tomcat.

The advantages of ERLANG as an embedded web page language as opposed to Java or PHP are
many.

e Speed - Using ERLANG for both implementing the web server itself as well as embedded script
language gives excellent dynamic page generation performance.
e Beauty - Well this is subjective

e Scalability - due to the light weight processes of ERLANG , YAWS is able to handle a very large
number of concurrent connections

YAWS has a wide feature set, it supports:

1. HTTP 1.0 and HTTP 1.1

Static content page delivery

Dynamic content generation using embedded ERLANG code in the HTML pages
Common Log Format traffic logs

Virtual hosting with several servers on the same IP address

I

Multiple servers on multiple IP addresses.

CHAPTER 1. INTRODUCTION 4

7. HTTP tracing for debugging

8. An interactive interpreter environment in the Web server while developing and debugging the
web site.

9. RAM caching of commonly accessed pages.
10. Full streaming capabilities of both up and down load of dynamically generated pages.
11. SSL
12. Support for WWW-Authenticated pages.
13. Support API for cookie based sessions.
14. Application Modules where virtual directory hierarchies can be made.
15. Embedded mode

1.1 Prerequisites

This document requires that the reader:

e Is well acquainted with the ERLANG programming language

e Understands basic Web technologies.

1.2 A tiny example

We introduce YAWS by help of a tiny example. The web server YAWS serves and delivers static
content pages similar to any old web server, except that YAWS does this much faster than most web
servers. It’s the dynamic pages that makes YAWS interesting. Any page with the suffix “.yaws” is
considered a dynamic YAWS page. A YAWS page can contain embedded ERLANG snippets that are
executed while the page is being delivered to the WWW browser.

Example 1.1 is the HTML code for a small YAWS page.

It illustrates the basic idea behind Yaws . The HTML code can contain <erl> and < Jerl> tags
and inside these tags an ERLANG function called out/1 gets called and the output of that function
is inserted into the HTML document, dynamically.

It is possible to have several chunks of HTML code together with several chunks of ERLANG code
in the same YAWS page.

The Arg argument supplied to the automatically invoked out/1 function is an ERLANG record that
contains various data which is interesting when generating dynamic pages. For example the HTTP

CHAPTER 1. INTRODUCTION 5
<html>
<p> First paragraph

<erl>
out (Arg) ->

{btml, "<p>This string gets inserted into HTML document dynamically"}.
</erl>

<p> And here is some more HTML code

</html>

Figure 1.1: Example 1.1

headers which were sent from the WWW client, the actual TCP/IP socket leading to the WWW
client. This will be elaborated on throughly in later chapters.

The out/1 function returned the tuple {html, String} and String gets inserted into the HTML
output. There are number of different return values that can be returned from the out/1 function
in order to control the behavior and output from the YAWS web server.

Chapter 2

Compile, Install, Config and Run

This chapter is more of a “Getting started” guide than a full description of the YAws configuration.
Yaws is hosted on Sourceforge at http://sourceforge.net/projects /erlyaws/ . This is where the
source code resides in a CVS repository and the latest unreleased version is available through
anonymous CVS through the following commands:

export CVS_RSH=ssh

export CVSRO0T=:pserver:anonymous@cvs.erlyaws.sourceforge.net:/cvsroot/erlyaws
cvs login

cvs -z3 co .

Released version of YAWS are available either at the Sourceforge site or at http:/ '/yaws.hyber.org/download.

2.0.1 Compile and Install

To compile and install a YAWS release one of the prerequisites is a properly installed ERLANG system.
YAwS runs on ERLANG releases OTP R8 and later. Get ERLANG from http://www.erlang.org

Compile and install is straight forward:

cd /usr/local/src

tar xfz yaws-X.XX.tar.gz
cd yaws

make

make install

There is no configure script (yet) since there are no items to configure.

CHAPTER 2. COMPILE, INSTALL, CONFIG AND RUN 7

The make command will compile the YAWS web server with the erlc compiler found in $PATH.

make install - will install the executable - called yaws in / usr/local /bin/ and a working configuration
file in /etc/yaws.conf

make local _install will install the executable in $HOME/bin and a working configuration file in
$HOME /yaws.conf

While developing a YAWS site, it’s typically most convenient to use the local_install and run Yaws
as a non privileged user.

2.0.2 Configure
Let’s take a look at the config file that gets written to SHOME after a local _install.
first we have a set of globals

logdir = .
ebin_dir = /home/klacke/yaws/yaws/examples/ebin
include_dir = /home/klacke/yaws/yaws/examples/include

and then a set of servers

<server localhost>
port = 8000
listen = 127.0.0.1

docroot = /home/klacke/yaws/yaws/scripts/../www
</server>

Figure 2.1: Minimal Local Configuration

The configuration consists of an initial set of global variables that are valid for all defined servers.

The only global directive we need to care about for now is the logdir. YAWS produces a number
of log files and they will - using the Configuration from Figure 2.1 - end up in the current working
directory. We start YAWS interactively as

~/bin/yaws -i
Erlang (BEAM) emulator version 5.1.2.b2 [source]

Eshell V5.1.2.b2 (abort with ~G)
1>
=INFD REPORT==== 30-0ct-2002::01:38:22 ===

CHAPTER 2. COMPILE, INSTALL, CONFIG AND RUN 8

Using config file /home/klacke/yaws.conf
=INFO REPORT==== 30-0ct-2002::01:38:22 ===
Listening to 127.0.0.1:8000 for servers ["localhost:8000"]

1>

By starting YAWS in interactive mode (using the command switch -i we get a regular ERLANG
prompt. This is most convenient when developing Yaws /http pages. For example we:

o Can dynamically compile and load optional helper modules we need.

e Get all the crash and error reports written directly to the terminal.

The configuration in Example 2.1 defined one HTTP server on address 127.0.0.1:8000 called "local-
host". It is important to understand the difference between the name and the address of a server.
The name is the expected value in the client Host: header. That is typically the same as the fully
qualified DNS name of the server whereas the address is the actual IP address of the server.

Since YAWS support virtual hosting with several servers on the same IP address, this matters.

Nevertheless, our server listens to 127.0.0.1:8000 and has the name "localhost", thus the correct
URL for this server is hitp://localhost:8000.

The document root (docroot) for the server is set to the www directory in the YAWS source code
distribution. This directory contains a bunch of examples and we should be able to run all those
example now on the URL http://localhost:8000.

Instead of editing and adding files in the YAWS www directory, we create yet another server on the
same IP address but a different port number - and in particular a different document root where
we can add our own files.

mkdir ~/test
mkdir ~/test/logs

Now change the config so it looks like this:

logdir = /home/klacke/test/logs
ebin_dir = /home/klacke/test
include_dir = /home/klacke/test

<server localhost>
port = 8000
listen = 127.0.0.1
docroot = /home/klacke/yaws/yaws/www

10

CHAPTER 2. COMPILE, INSTALL, CONFIG AND RUN 9

</server>

<server localhost>

port = 8001

listen = 127.0.0.1

docroot = /home/klacke/test
</server>

We define two servers, one being the original default and a new pointing to a document root in our
home directory.

We can now start to add static content in the form of HTML pages, dynamic content in the form
of .yaws pages or ERLANG .beam code that can be used to generate the dynamic content.

The load path will be set so that beam code in the directory ~/test will be automatically loaded
when referenced.

It is best to run YAWS interactively while developing the site. In order to start the YAWS as a
daemon, we give the flags:

yaws -D -heart

The -D flags instructs YAWS to run as a daemon and the -heart flags will start a heartbeat program
called heart which restarts the daemon if it should crash or if it stops responding to a regular
heartbeat.

Once started in daemon mode, we have very limited ways of interacting with the daemon. It is
possible to query the daemon using:

yaws -S

This command produces a simple printout of Uptime and number of hits for each configured server.

If we change the configuration, we can HUP the daemon using the command:
yaws -h

This will force the daemon to reread the configuration file.

11

Chapter 3

Static content

YAWS acts very much like any regular web server while delivering static pages. By default Yaws will
cache static content in RAM. The caching behavior is controlled by a number of global configuration
directives. Since the RAM caching occupies memory, it may be interesting to tweak the default
values for the caching directives or even to turn it off completely.

The following configuration directives control the caching behavior

e maz_num_cached_files = Integer YAWS will cache small files such as commonly accessed
GIF images in RAM. This directive sets a maximum number on the number of cached files.
The defanlt value is 400.

e maz_num_ cached_ bytes = Integer This directive controls the total amount of RAM which
can maximally be used for cached RAM files. The default value is 1000000, 1 megabyte.

e maz_size_ cached_file = Integer

This directive sets a maximum size on the files that are RAM cached by YAws . The default
value i 8000, 8 batters.

It may be considered to be confusing, but the numbers specified in the above mentioned cache
directives are local to each server. Thus if we have specified max_num_cached_bytes = 1000000
and have defined 3 servers, we may actually use 3 * 1000000 bytes.

10

12

Chapter 4

Dynamic content

Dynamic content is what YAWS is about. Most web servers are designed with HT'TP and static
content in mind whereas YAWS is designed for dynamic pages from the start. Most large sites on
the Web today make heavy use of dynamic pages.

4.1 Introduction

When the client GETs a a page that has a .yaws suffix. The YAWS server will read that page from
the hard disk and divide it in parts that consist of HTML code and ERLANG code. Each chunk of
ERLANG code will be compiled into a module. The chunk of ERLANG code must contain a function
out/1. If it doesn’t the YAWS server will insert a proper error message into the generated HTML
output.

When the YAWS server ships a .yaws page it will process it chunk by chunk through the .yaws file.
If it is HTML code, the server will ship that as is, whereas if it is ERLANG code, the YAWS server
will invoke the out/1 function in that code and insert the output of that out/1 function into the
stream of HTML that is being shipped to the client.

Yaws will (of course) cache the result of the compilation and the next time a client requests the
same .yaws page YAWS will be able to invoke the already compiled modules directly.

4.2 EHTML

There are two ways to make the out/1 function generate HTML output. The first and most easy
to understand is by returning a tuple {html, String} where String then is regular HTML data
(possibly as a deep list of strings and/or binaries) which will simply be inserted into the output
stream. An example:

<html>

11

13

CHAPTER 4. DYNAMIC CONTENT 12

<h1> Example 1 </h1>

<erl>
out(4) ->
Headers = A#arg.headers,
{html, io_lib:format("You say that you’re rumning ~p",
[Headers#headers.user_agent])}.

</erl>

</html>

The second way to generate output is by returning a tuple {ehtml, EHTML}. The term EHTML must
adhere to the following structure:

EHTML = [EHTML]{TAG, Attrs, Body} {T AG, Attrs}|{T AG}|binary()|character()
TAG = atom()

Atirs = [{ Htmil Attribute, Value})

Html Attribute = atom()

Value = string()|atom()

Body = EHTML

We give an example to show what we mean: The tuple

{ehtml, {table, [{bgcolor, grey}],
L
{tr, 01,
L
{td, [0, "1"},
{td, [0, "2"},
{td, [, "3"}
1,
{tr, 01,
[{td, [{colspan, "3"}], "444"}1}}1}}.

Would be expanded into the following HTML code

<table bgcolor="grey">
<tr>
<td> 1 </td
<td> 2 </td>

14

CHAPTER 4. DYNAMIC CONTENT 13

<td> 3 </td>
</tr>
<tr>
<td colspan="3"> 444 </td>
</tr>
</table>

At a first glance it may appears as if the HTML code is more beautiful than the ERLANG tuple.
That may very well be the case from a purely aesthetic point of view. However the ERLANG code
has the advantage of being perfectly indented by editors that have syntax support for ERLANG
(read Emacs). Furthermore, the ERLANG code is easier to manipulate from an ERLANG program.

As an example of some more interesting ehtml we could have an out/1 function that prints some
of the HT'TP headers.

In the www directory of the YAWS source code distribution we have a file called arg.yaws. The file
demonstrates the Arg #arg record parameter which is passed to the out/1 function.

But before we discuss that code, we describe the Arg record in detail.

Here is the yaws_api .hrl file which is in included by default in all YAWS files. The #arg record
contains many fields that are useful when processing HTTP request dynamically. We have access
to basically all the information which associated to the client request such as:

e The actual socket leading back to the HTTP client

All the HTTP headers - parsed into a #headers record.

The HTTP request - parsed into a #http_request record

L]

clidata - Data which is POSTed by the client

querydata - This is the remainder of the URL following the first occurrence of a ? character
- if any.

docroot - The absolute path to the docroot of the virtual server that is processing the request.

-record(arg, {

clisock, %% the socket leading to the peer client

headers, %% headers

req, %% request

clidata, %4 The client data (as a binary in POST requests)
querydata, 4% Was the URL on the form of ...?query (GET regs)

appmoddata, %k the remainder of the path leading up to the query

15

CHAPTER 4. DYNAMIC CONTENT 14
docroot, %% where’s the data
fullpath, %% full path to yaws file
cont, %% Continuation for chunked multipart uploads
state, %% State for use by users of the out/1 callback
pid, 4% pid of the yaws worker process
opaque %% useful to pass static data
b.

-record(http_request, {method,
path,
version}).

-record (headers, {
connection,
accept,
host,
if_modified_since,
if_match,
if_none_match,
if_range,
if_unmodified_since,
range,
referer,
user_agent,
accept_ranges,
cookie = [J,
keep_alive,
content_length,
content_type,

authorization,
other = [] %% misc other headers
.

There are a number of advanced fields in the #arg record such as appmod, opaque that will be
discussed in later chapters.

Now, we show some code which displays the content of the Arg #arg record. The code is available
in yaws/www/arg.yaws and after a a local_install a request to http://localhost:8000/arg.yaws
will run the code.

16

CHAPTER 4. DYNAMIC CONTENT

<html>
<h2> The Arg </h2>

<p>This page displays the Arg #argument structure
supplied to the out/1 function.

<erl>

out(4) ->
Req = A#arg.req,
H = yaws_api:reformat_header (A#arg.headers),
{ehtml,
[{b4,[1, "The headers passed to us were:"},
{br},
{01, [1,1lists:map(fun(8) -> {1i,[], {p,[],S}} end,H)},

{h4, [1, "The request"},

{u1,101,
[{1i,[], f("method: ~s", [Req#http_request.method])},
{11, (1, f£("path: ~p", [Req#http_request.path])},
{11, 1, £("version: ~“p", [Req#http_request.version])}]},

{hr},

{h4, [], "Other items"},

{u1,01,
({1i,[1, f("clisock from: ~p", [inet:peername (A#arg.clisock)])},
{1i,[1, f("docroot: ~s", [A#arg.docroot])},
{11,01, f£("fullpath: ~s", [A#arg.fullpath])}]},

{hr})

{h4, [1, "Parsed query data"},

{pre,[], £("“p", [yaws_api:parse_query(A)1)},
{hr} >

{h4,[], "Parsed POST data "},

{pre,[1, f£(""p", [yaws_api:parse_post(A)]1)}1}.

</erl>

</html>

17

CHAPTER 4. DYNAMIC CONTENT 16

The code utilizes 4 functions from the yaws_api module. yaws_api is a general purpose www api
module that contains various functions that are handy while developing YAwWs code. We will see
many more of those functions during the examples in the following chapters.

The functions used are:

e yaws_api:f/2 alias for io_lib:format/2. The £/1 function is automatically -includeed in all
YAWS code.

® yaws_api:reformat_header/1 - This function takes the #headers record and unparses it,
that is reproduces regular text.

e yaws_api:parse_query/1 - The topic of next section.

e yaws_api:parse_post/1 ~ Ditto.

4.3 POSTs

4.3.1 Queries

The user can supply data to the server in many ways. The most common is to give the data in the
actual URL. If we invoke:

GET http://localhost:8000/arg.yaws?kalle=duck&goofy=unknown

we pass two parameters to the arg.yaws page. That data is URL-encoded by the browser and
the server can retrieve the data by looking at the remainder of the URL following the ? char-
acter. If we invoke the arg.yaws page with the above mentioned URL we get as the result of
yaws_parse_query/1:

kalle = duck
goofy = unknown

In ERLANG terminology, the call yaws_api:parse_query(Arg) returns the list:
[{kalle, "duck"}, {goofy, "unknown"}]

Note that the first element is transformed into an atom, whereas the value is still a string.

hence, a web page can contain URLs with a query and thus pass data to the web server. This
scheme works both with GET and POST requests. It is the easiest way to pass data to the Web
server since no FORM is required in the web page.

18

CHAPTER 4. DYNAMIC CONTENT 17

4.3.2 Forms

In order to POST data a FORM is required, say that we have a page called form.yaws that contain
the following code:

<html>
<form action="/post_form.yaws"
method="post"

<p> A Input field

<input name="xyz" type="text">
<input type="submit">

</form>

</html>

This will produce a page with a simple input field and a Submit button.

=] Mozilla N il
i Q» v '& L 4 'gﬁ F, files) 5 ;’:‘; =
| Back Forward Reload l& file:///nome/klacke/yay - z{Searr!:h Print

A Simple form

AnInput field , Submit Query
f 5 @ Z- (8 &Z Document: Done (0.071 secs) D= |

If we enter something - say “Hello there “ - in the input field and click the Submit button the client
will request the page indicated in the “action” attribute, namely post_form.yaws.

If that YAWS page has the following code:
out(4) ->
L = yaws_api:parse_post(A),
{html, £(""p", [LD}
The user will see the output

[{xyz, "Hello there"}]

The differences between using the query part of the URL and a form are the following:

19

CHAPTER 4. DYNAMIC CONTENT 18

o Using the query arg only works in GET request. We parse the query argument with the
function yaws_api:parse_query(Arg)

e If we use a form and POST the user data the client will transmit the user data in the body
of the request. That is - the client sends a request to get the page using the POST method
and it then attaches the user data - encoded - into the body of the request.

A POST request can have a query part in its URL as well as user data in the body.

4.4 POSTing files

It is possible to upload files from the client to the server by means of POST. We indicate this in
the form by telling the browser that we want a different encoding, here is a form that does this:

out(A) ->
Form =
{form, [{enctype, "multipart/form-data"},
{method, post},
{action, "file_upload_form.yaws"}],
[{input, [{type, submit}, {value, "Upload"}1},
{input, [{type,file}, {width, "50"}, {name, foo}l}]},
{ebtml, {html,[], [{h2,[], "A simple file upload page"},
Form] }}.

The page delivers the entire HTML page with enclosing html markers. It looks like:

=] Mozilla

Q - -k - 3 2%; I& http:/flocalhost:8080/a v -B_Search F .

¢ Back Forward Reload Print

A simple file upload page

Upload }':E/home/klacke/yawsf'yaw Browse... -

i 3% &3 Z E) @ Document: Done (0.08 secs) P

The user get an option to browse the local host for a file or the user can explicitly fill in the file
name in the input field. The file browsing part is automatically taken care of by the browser.

The action field in the form states that the client shall POST to a page called file_upload_form.yaws.
This page will get the contents of the file in the body of the POST message. Here we have one easy

20

CHAPTER 4. DYNAMIC CONTENT 19

case and one hard case. YAWs will read the data from the client. However if the file is large the
entire contents of the file will not be part of the read operation. It is not acceptable to let Yaws
continue to read the full POST body and then when that is done, invoke the POST page. YAws
must feed the page with the chunks of the file as they arrive.

First the easy case:
Not YET Written fill this in later

21

Chapter 5

Mode of operation

5.1 On the fly compilation

When the client requests a YAWS page, Yaws will look in its caches (there is one cache per virtual
server) to see if it finds the requested page in the cache. If YAWS doesn’t find the page in the cache,
it will compile the page. This only happens the first time a page is requested. Say that the page is
400 bytes big has the following layout:

100 bytes of HTML code

120 bytes of Erlang code

80 bytes of HTML code

60 bytes of Erlang code

140 bytes of HTML code

The YAWS server will then parse the file and produce a structure which makes it possible to deliver
the page in a readily fashion the next time the same page is requested.

When shipping the page it will
1. Ship the first 100 bytes from the file

20

22

CHAPTER 5. MODE OF OPERATION 21

2. Evaluate the first ERLANG chunk in the file and ship the output from the out/1 function in
that chunk. It will also jump ahead in the file and skip 120 bytes.

3. Ship 80 bytes of HTML code
4. Again evaluate an ERLANG chunk, this time the second and jump ahead 60 bytes in the file.
5. And finally ship 140 bytes of HTML code to the client

Yaws writes the source output of the compilation into a directory /tmp/yaws/$UID. The beam
files are never written to a file. Sometimes it can be useful to look at the generated source code files,
for example if the YAws /ERLANG code contains a compilation error which is hard to understand.

5.2 Evaluating the YAWS code

All client requests will execute in their own ERLANG process. For each group of virtual hosts on
the same IP:PORT pair one ERLANG process listens for incoming requests.

This process spawns acceptor processes for each incoming request. Each acceptor process reads
and parses all the HTTP headers from the client. It then looks at the Host: header to figure out
which virtual server to use, i.e. which docroot to use for this particular request. If the Host: header

doesn’t match any server from yaws.conf with that IP:PORT pair, the first one from yaws.conf is
chosen.

By default Yaws will not ship any data at all to the client while evaluating a YAWS page. The
headers as well as the generated content are accumulated and not shipped to the client until the
entire page has been processed.

23

Chapter 6

SSL

SSL - Secure Socket Layer is a protocol used on the Web for delivering encrypted pages to the
WWW client. SSL is widely deployed on the Internet and virtually all bank transactions as well
as all on-line shopping today is done with SSL encryption. There are many good sources on the
net that describes SSL in detail - and I will not try to do that here. There is for example a
good document at: http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/ which describes how
to manage certificates and keys.

In order to run an SSL server we must have a certificate. Either we can create a so called self-signed
certificate ourselves or buy a certificate from one of the many CA’s (Certificate Authority’s) on the
net. YAWS use the otp interface to openssl.

To setup a YAWS server with SSL we could have a yaws.conf file that looks like:

logdir = /var/log/yaws

<server www.funky.org>

port = 443

listen = 192.168.128.32

docroot = /var/yaws/www.funky.org

<ssl>
keyfile = /etc/funky.key
certfile = /etc/funky.cert
password = gazonk

</ss1>

</server>

This is the easiest possible SSL configuration. The configuration refers to a certificate file and a key
file. The certificate file must contain the name "www.funky.org" as it "Common Name".

The keyfile is the private key file and it is encrypted using the password "gazonk".

22

24

Chapter 7

Applications

Yaws is well suited for Web applications. In this chapter we will describe a number of application
templates. Code and strategies that can be used to build Web applications.

There are several ways of starting applications from YAWS .

o The first and most easy variant is to specify the -r Module flag to the YAWS startup script.
This will apply(Module,start, []1)

® We can also specify runmods in the yaws.conf file. It is possible to have several modules
specified if want the same YAWS server to run several different applications.

runmod
runmod

myapp
app.number2

e It is also possible to do it the other way around, let the main application start Yaws . We
call this embedded mode and that will be discussed in a later chapter,

7.1 Login scenarios

Many Web applications require the user to login. Once the user has logged in the server sets a
Cookie and then the user will be identified by help of the cookie in subsequent requests.

7.1.1 The session server
The cookie is passed in the headers and is available to the YAWS programmer in the Arg #arg

record. The YAWS session server can help us to maintain a state for a user while the user is logged
in to the application. The session server has the following 5 api functions to aid us:

23

25

CHAPTER 7. APPLICATIONS 24

1. yaws_api:new_cookie_session(Opaque) This function initiates a new cookie based session.
The Opaque data is typically some application specific structure which makes it possible for
the application to read a user state, or it can be the actual user state itself.

2. yaws_api:cookieval _to_opaque(Cookie) This function maps a cookie to a session.

3. yaws_api:replace_cookie_session(Cookie, NewOpaque) Replace the Opaque user state in
the session server.

4. yaws_api:delete_cookie_session(Cookie) This function should typically be called when
the user logs out or when our web application decides to auto logout the user.

All cookie based applications are different but they have some things in common. In the example
that follow we assume the existence of a function myapp:auth(UserName, Passwd) and it returns
ok or {error, Reason}

Furthermore - let’s have a record:

-record(session, {user,
passwd,
udata = [1}).

The following functlon is & good template function to check the cookie.

get_cookie_val(CookieName, Arg) ->
H = Arg#arg.headers,
yaws_api:find_cookie_val(CookieName, H#headers.cookie).

check_cookie (A, CookieName) ->
case get_cookie_val(CookieName, A) of

a -»>
{error, "not logged in"};
Cookie ->

yaws_api:cookieval_to_opaque(Cookie)
end.

So what we need to do is the following: We want to check all requests and make sure the the
session_ server has our cookie registered as an active session.

26

CHAPTER 7. APPLICATIONS 25

If a request comes in without a working cookie we want to present a login page instead of the page
the user requested.

Another quirky issue is that the pages necessary for display of the login page must be shipped
without checking the cookie.

7.1.2 Arg rewrite

In this section we describe a feature whereby the user is allowed to rewrite the Arg at an early stage
in the YAWS server. We do that by specifying an arg_rewrite_mod in the yaws.conf file.

arg_rewrite_mod = myapp

Then in the myapp module we have:

arg_rewrite(Arg) ->
DurCookieName = "myapp_sid"
case check_cookie(4A, OurCookieName) of
{error, _} ->
do_rewrite (Arg);
{ok, _Session} ->
Jreturn Arg untouched
Arg
end.

4% these pages must be shippable without a good cookie
login_pages() ->
["/banner.gif", "/login.yaws", "/post_login.yaws"].

do_rewrite(Arg) ->
Req = Arg#arg.req,
{abs_path, Path} = Req#http_request.path,
case lists:member(Path, login_pages(}) of
true ->
Arg;
false ->
Arg#arg{req = Req#http_request{path = {abs_path, "/login.yaws"}},
state = {abs_path, Path}}
end.

Our arg rewrite function lets all Args go through untouched that either have a good cookie or belong
to a set of predefined pages that are acceptable to get without being logged in. If we decode that

27

CHAPTER 7. APPLICATIONS 26

the user must log in, we change the path of the request, thereby making the YAWS server ship a
login page instead of the page the user requested. We also set the original path in the Arg state
argument so that the login page can redirect the user to the original page - once the login procedure
is finished.

7.1.3 Authenticating

Now we're approaching the login.yaws page, the page that displays the login prompt to the user.
The login page consists of two parts, one part that displays the login data as a form and one form
processing page that reads the data the user entered in the login fields and performs the actual
authentication.

The login page performs a tiny well known Web trick where it passes the original URL request in
a hidden field in the login page and thereby passing that information to the form processing page.

The page login.yaws:

<erl>
out(A) ->
{ehtml,
{btml,],
({2, [J, "Login page"},
{hr},
{form, [{action,"/login_post.yaws"},
{method,post}],
[{p,[], "Username"}, {input, [{type,text}, {name,uname}]},
{p, [1,"Password"}, {input, [{type,password}, {name,passwd}]},
{input, [{type,submit},{value,"Login"}1},
{input, [{type,hidden},{name,url},
{value, A#targ.state}]1}]}1}}.
</erl>

The form processing page which gets the POST data from the code above looks like:

<erl>

-include("myapp.hrl").
4k we have the session record there
%% we must set the include_path in the yaws.conf file

28

CHAPTER 7. APPLICATIONS 27

%% in order for the compiler to find that file

kv(K,L) ->
{value, {K, V}} = lists:keysearch(k,1,L),
V.

out(4) ->
L = yaws_api:parse_post(4),
User = kv(user, L),
Pud = kv(passwd, L),
case myapp:auth(User, Pwd) of
ok ->
S = #session{user = User,
passwd = Pud,
udata = [J]},
%% Now register the session to the session server
Cookie = yaws_api:new_cookie_session(S),
[{redirect_local, kv{url, L)},
yaws_api:setcookie ("myapp_sid",Cookie)]

Err ->
{ehtml,
{html, [],
{p, (1, £("Bad login: ~p", [Err])}}}
end.
</erl>

The function returns a list of two new previously not discussed return values: Instead of returning
HTML output as in {html, Str} or {ehtml,Term} we return a list of two new values. There are
many different possible return values from the out/1 function and they will all be described later.

1. The tuple {redirect_local, Path}. This particular redirect return value will make the
YAws web server return a 303 redirect to the specified Path.

2. yaws_api:setcookie("myapp_sid",Cookie) generates a Set-Cookie header

Now if we put all this together we have a full blown cookie based login system. The last thing we
did in the form processing code was to register the session with the session server thereby letting
any future requests go straight through the Arg rewriter.

This way both YAWS pages as well as all or some static content is protected by the cookie login
code.

29

CHAPTER 7. APPLICATIONS 28

7.1.4 Database driven applications

We can use code similar to the code in the previous section to associate a user session to entries in
a database. Mneisa fits perfectly together with YAWS and keeping user persistent state in Mnesia
is both easy and convenient.

Once the user has logged in we can typically use the user name as key into the database. We can
mix ram_tables and disc_tables to our liking. The Mneisa database must be initialized by means
of create_table/2 before it can be used. This is typically done while installing the web application
on a machine.

Another option is to let the application check that Mnesia is initialized whenever the application
starts.

If we don’t want or need to use Mnesia, it’s of course possible to use a simple dets file or a text file
as well.

7.2 Appmods

Appmods is mechanism to invoke different applications based upon the URL. A URL - as presented
to the web server in a request - has a path part and a query part.

It is possible to install several appmods in the yaws.conf file as:

appmods = foo myapp

Now, if the user requests a URL where any component in the directory path is an appmod, the
parsing of the URL will terminate there and instead of reading the actual file from the disk, Yaws
will invoke the appmod with the remainder of the path inserted into Argitarg.appmoddata.

Say the user requests the URL http://www.funky.org/myapp/zz/bar.html YAWS will not ship the
file bar.html to the client, instead it will invoke myapp: out (Arg) with Arg#arg.appmoddata set to
the string xx/bar.html. Any optional query data - that is data that follows the first "?" character
in the URL - is removed from the path and passed as Argi#arg.querydata.

Appmods can be used to run applications on a server. All requests to the server that has an appmod
in the URL will be handled by that application. If the application decides that it want to ship a
page from the disk to the client, it can return the tuple {page, Path}. This return value will make
YAWS read the page from the disk, possibly add the page to it’s cache of commonly accessed pages
and ship it back to the client.

The {page, Path} return value is equivalent to a redirect, but it removes an extra round trip - and
is thus faster.

Appmods can also be used to fake entire directory hierarchies that doesn’t exists on the disk.

30

CHAPTER 7. APPLICATIONS 29
7.3 The opaque data

Sometimes an application needs application specific data such as the location of its data, files or
whatever. There exists a mechanism to pass application specific configuration data from the Yaws
server to the application.

When configuring a server we have an opaque field in the configuration file that can be used for this
purpose. Say that we have the following fields in the config file:

<server foo>
listen = 192.168.128.44
<opaque>
foo = bar
somefile = /var/myapp/db
myname = hyber
</opaque>
</server>

This will create a normal server that listens to the specified IP address. An application has access
to the opaque data that was specified in that particular server through Arg#arg.opaque

If we have the opaque data specified above, the Arg opaque field will have the value:

[{foo, "bar"},

{somefile, "/var/myapp/db"},
{myname, "hyber"}

]

7.4 Customizations

When actually deploying an application at a live site, some of the standard YAws behaviors are not
acceptable. Many sites want to customize the web server behavior when a client requests a page
that doesn’t exists on the web server. The standard YAWS behavior is to reply with status code 404
and a message explaining that the page doesn’t exist.

Similarly, when YAws code crashes, the Reason for the crash is displayed in the Web browser. This
is very convenient while developing a sit but not acceptable in production.

31

CHAPTER 7. APPLICATIONS 30

7.4.1 404 File not found

We can install a special handler for 404 messages. We do that by specifying a errormod_404 in the
yaws.conf file.

If we have:

<server foo>

errormod_404 = myapp

</server>

When YAWS gets a request for a file that doesn’t exists on the hard disk, it invokes the errormod_ 404
module to generate both the status code as well as the content of the message.

Module:out404(Arg, GC, SC) will be invoked by YAws . The arguments are

o Arg is a #arg record
e GC is a #gconf record (defined in yaws.hrl)
e SC is a #sconf record (defined in yaws.hrl)

The function can and must do the same things that a normal out/1 does.

7.4.2 Crash messages

We use a similar technique for generating the crash messages, we install a module in the yaws. conf
file and let that module generate the crash message. We have:

errormod_crash = Module

The default is to display the entire formated crash message in the browser. This is good for
debugging but not in production.

The function Module:crashmsg(Arg, SC, Str) will be called. The Str is the real crash message
formated as a string.

32

CHAPTER 7. APPLICATIONS 31

7.5

Stream content

If the out/1 function returns the tuple {content, MimeType, Content} YAWS will ship that data
to the Client. This way we can deliver dynamically generated content to the client which is of a
different mime type than "text/html".

If the generated file is very large and it not possible to generate the entire file, we can return
the value: {streamcontent, MimeType, FirstChunk} and then from a different ERLANG process
deliver the remaining chunks by using the functions:

1.

7.6

yaws_api:stream_chunk_deliver(YawsPid, Data) where the YawsPid is the process id of
the YAWS worker process. That pid is available in Arg#arg.pid

. stream_chunk_end(YawsPid) This function must be called to indicate the end of the stream.

All out/1 return values

{html, DeepList} This assumes that DeepList is formatted HTML code. The code will be
inserted in the page.

{ehtml, Term} This will transform the ERLANG term Term into a stream of HTML content.

{content, MimeType, Content} This function will make the web server generate different
content than HTML. This return value is only allowed in a YAWS file which has only one
<erl> </erl> part and no html parts at all.

{streamcontent, MimeType, FirstChunk} This return value plays the same role as the con
tent return value above. However it makes it possible to stream data to the client if the YAWS
code doesn’t have access to all the data in one go. (Typically if a file is very large or if data
arrives from back end servers on the network.

{header, H} Accumulates a HTTP header. Used by for example the yaws_api:setcookie/2-6
function.

{allheaders, HeaderList} Will clear all previously accumulated headers and replace them.
{status, Code} Will set another HTTP status code than 200.

break Will stop processing of any consecutive chunks of erl or html code in the Yaws file.
ok Do nothing.

{redirect, Url} Erase all previous headers and accumulate a single Location header. Set
the status code.

{redirect_local, Path} Does a redirect to the same Scheme://Host:Port/Path as we cur-
rently are executing in.

33

CHAPTER 7. APPLICATIONS 32

e {get_more, Cont, State} When we are receiving large POSTs we can return this value and
be invoked again when more Data arrives.

o [ListOfValues] It is possible to return a list of the above defined return values.

34

Chapter 8

Debugging and Development

YAws has excellent debugging capabilities. First and foremost we have the ability to run the web
server in interactive mode by means of the command line switch -i

This gives us a regular ERLANG command line prompt and we can use that prompt to compile
helper code or reload helper code. Furthermore all error messages are displayed there. If a .yaws
page producees any regular ERLANG io, that output will be displayed at the ERLANG prompt -
assuming that we are running in interactive mode.

If we give the command line switch -d we get some additional error messages. Also YAWS does
some additional checking of user supplied data such as headers.

8.1 Logs

YAws produces various logs. All log files are written into the YAwS logdir directory. This directory
is specified in the config file.

We have the following log files:

e The access log. Access logging is turn on or off per server in the yaws.conf file. If access_log
is turned on for a server, Yaws will produce a log in Common Access Log Format called
HostName:PortNumber.access

e report.log This file contains all error and crash messages for all virtual servers in the same file.

e trace.traffic and trace.http The two command line flags -t and -T tells YAWS to trace all traffic
or just all HTTP messages and write them to a file.

33

35

Chapter 9

Security

YAWS is of course susceptible to intrusions. YAWS has no (yet) abilities to run under a different user
than root - Assuming we need to listen to privileged port numbers. Running as root is generally a
bad idea.

Intrusions can happen basically at all places in YAWS code where the YAWS code calls either the
BIF open_port or when YAWS code does calls to os:cmd/1.

Both open_port and os:cmd/1 invoke the /bin/sh interpreter to execute its commands. If the
commands are nastily crafted bad things can easily happen.

All data that is passed to these two function must be carefully checked.

Since YAWS is written in ERLANG a large class of cracks are eliminated since it is not possible to
perform any buffer overrun cracks on a YAWS server. This is very good.

Another possible point of entry to the system is by providing a URL which takes the client out
from the docroot. This should not be possible - and the impossibility relies on the correctness of
the URL parsing code in Yaws .

9.1 WWW Authenticate

Yaws has support for WWW authenticate protected directories. The access rights to different
directories is controlled by directives in the yaws.conf file.

We can specify several auth groups in a server configuration. If we have the following in the yaws.conf
file:

<server foo>

34

36

CHAPTER 9. SECURITY 35

<auth>
realm = secretpage
dir = /var/yaws/www/protected
user klacke:gazonk
user jonny:xyz
user ronny:12r8uyp09jksfdged
</auth>
</server>

YAws will protect all files in the specified directory by means of WWW-Authenticate access. If
a user requests a page in the directory, and doesn’t have the correct WWW-Authenticate header,
Yaws will reply with a proper status code that makes the browser pop up a login window.

37

Chapter 10

Embedded mode

YAwS is a normal OTP application. It is possible to integrate YAWS into another - larger - appli-
cation. The YAWS source tree must be integrated into the larger applications build environment.
YAws is then simply started by application:start() from the larger applications boot script.

By default YAWS reads its configuration data from a config file, the default is " /etc/yaws.conf". If
YAWS is integrated into a larger application that application typically has its configuration data
kept at some other centralized place. Sometimes we may not even have a file system to read the
configuration from if we run a small embedded system.

YAWS reads its application environment. If the environment key embedded is set to ttrue, YAWS
starts in embedded mode. Once started it must be fed a configuration, and that can be done after
YAws has started by means of the function yaws_api :setconf/2.

It is possible to call setconf/2 several times to force YAWS to reread the configuration.

36

38

Chapter 11

The config file - yaws.conf

In this section we provide a complete listing of all possible configuration file options. The configu-
ration contains two distinct parts a global part which affects all the virtual hosts and a server part
where options for each virtual host is supplied.

11.1 Global Part

® dir = Directory - All YAWS logs will be written to files in this directory. There are several
different log files written by Yaws .

— report.log - this is a text file that contains all error logger printouts from YAWS .

— Host.access - for each virtual host served by Yaws , a file Host.access will be written
which contains an access log in Common Log Format.

trace.http - this file contains the HTTP trace if that is enabled
trace.traffic - this file contains the traffic trace if that is enabled

® ebin_dir = Directory - This directive adds Directory to the ERLANG search path. It is
possible to have several of these command in the configuration file.

® include_dir = Directory - This directive adds Directory to the path of directories where
the ERLANG compiler searches for include files. We need to use this if we want to include .hrl
files in our YAws ERLANG code.

® max_num_cached_files = Integer - YAWS will cache small files such as commonly accessed
GIF images in RAM. This directive sets 2 maximum number on the number of cached files.
The default value is 400.

® max_num_cached_bytes = Integer - This directive controls the total amount of RAM which
can maximally be used for cached RAM files. The default value is 1000000, 1 megabyte.

37

39

CHAPTER 11. THE CONFIG FILE - YAWS.CONF 38

e max_size_cached_file = Integer - This directive sets a maximum size on the files that are
RAM cached by Yaws . The default value i 8000, 8 kBytes.

e cache_refresh_secs = Integer The RAM cache is used to serve pages that sit in the cache.
An entry sits in cache at most cache _refresh _secs number of seconds. The default is 30. This
means that when the content is updated under the docroot, that change doesn’t show until
30 seconds have passed. While developing a YAWS site, it may be convenient to set this value
to 0. If the debug flag (-d) is passed to the YAWS start script, this value is automatically set
to 0.

e trace = traffic | http - This enables traffic or http tracing. Tracing is also possible to
enable with a command line flag to Yaws .

11.2 Server Part

YAWS can virthost several web servers on the same IP address as well as several web servers on differ-
ent IP addresses. The on limitation here is that there can be only one server with ssl enabled per each
individual IP address. Each virtual host is defined within a matching pair of <server ServerName>
and </server>. The ServerName will be the name of the web server.

The following directives are allowed inside a server definition.

e port = Port - This makes the server listen on Port

e listen = IpAddress - This makes the server listen on IpAddress When virthosting several
servers on the same IP /port address, if the browser doesn’t send a Host: field, Yaws will pick
the first server specified in the config file

e rport = Port This forces all local redirects issued by the server to go to Port. This is useful
when YAWS listens to a port which is different from the port that the user connects to. For
example, running YAWS as a non-privileged user makes it impossible to listen to port 80, since
that port can only be opened by a privileged user. Instead YAWS listens to a high port number
port, 8000, and iptables are used to redirect traffic to port 80 to port 8000 (most NAT:ing
firewalls will also do this for you).

e rscheme = http | https This forces all local redirects issued by the server to use this
method. This is useful when an SSL off-loader, or stunnel, is used in front of YAWS .

e access_log = true | false Setting this directive to false turns of traffic logging for this
virtual server. The default value is true.

e docroot = Directory - This makes the server serve all its content from Directory

e partial_post_size = Integer - When a YAWS file receives large POSTs, the amount of data
received in each chunk is determined by the this parameter. The default value is 10240.

40

CHAPTER 11. THE CONFIG FILE - YAWS.CONF 39

e tilde_expand = truelfalse - If this value is set to false YAWS will never do tilde expan-
sion. The default is true. tilde_expansion is the mechanism whereby a URL on the form
http://www.foo.com/ username is changed into a request where the docroot for that partic-
ular request is set to the directory ~“username/public_html/ The default value is true.

e appmods = [ListOfModuleNames] - If any the names in ListOfModuleNames appear as com-

ponents in the path for a request, the path request parsing will terminate and that module
will be called.

Assume for example that we have the URL http://www.hyber.org/myapp/foo/ bar/baz?user=joe
while we have the module foo defined as an appmod, the function foo:out(Arg) will be invoked
instead of searching the file systems below the point foo.

The Arg argument will have the missing path part supplied in its appmoddata field.
e errormod_404 = Module - It is possible to set & special module that handles 404 Not Found
messages.
The function Module:out404(Arg, GC, SC) will be invoked. The arguments are
Arg is a arg record
GC is a gconf record (defined in yaws.hrl)
SC is a sconf record (defined in yaws.hrl)

The function can and must do the same things that a normal out/1 does.

e errormod_crash = Module - It is possible to set a special module that handles the HTML
generation of server crash messages. The default is to display the entire formated crash
message in the browser. This is good for debugging but not in production.

The function Module:crashmsg(Arg, SC, Str) will be called. The Str is the real crash message
formated as a string.

e arg _rewrite_mod = Module - It is possible to install a module that rewrites all the Arg arg
records at an early stage in the YAWS server. This can be used to do various things such as
checking a cookie, rewriting paths etc.

® <ssl> </ssl> This begins and ends an SSL configuration for this server.

— keyfile = File - Specifies which file contains the private key for the certificate.
— certfile = File - Specifies which file contains the certificate for the server.

— cacertfile = File File If the server is setup to require client certificates. This file needs
to contain all the certificates of the acceptable signers for the client certs.

~— verify = 1 | 2 | 3 Specifies the level of verification the server does on client certs. 1
means nothing , 2 means the the server will ask the client for a cert but not fail if the
client doesn’t supply a client cert, 3 means that the server requires the client to supply
a client cert.

41

CHAPTER 11. THE CONFIG FILE - YAWS.CONF 40

— depth = Int Specifies the depth of certificate chains the server is prepared to follow
when verifying client certs.

— password = String - String If the private key is encrypted on disk, this password is the
3des key to decrypt it.

— cciphers = String This string specifies the ssl cipher string. The syntax of the ssl
cipher string is a little horrible sub language of its own. It is documented in the ssl man
page for "ciphers".

— </ssl> Ends an SSL definition

e <auth> ... </auth> Defines an auth structure. The following items are allowed within a
matching pair of <auth> and </auth> delimiters.

— dir = Dir Makes Dir to be controlled bu WWW-authenticate headers. In order for a
user to have access to WWW-Authenticate controlled directory, the user must supply a
password.

— realm = Realm In the directory defined here, the WWW-Authenticate Realm is set to
this value.

— user = User:Password Inside this directory, the user User has access if the user supplies
the password Password in the pop up dialog presented by the browser. We can obviously
have several of these value inside a single <auth> </auth> pair.

— </auth> Ends an auth definition

11.3 Configuration Examples

The following example defines a single server on port 80.

logdir = /var/log/yaws
<server www.mydomain.org>
port = 80
listen = 192.168.128.31
docroot = /var/yaws/www
</server>

And this example shows a similar setup but two web servers on the same IP address

logdir = /var/log/yaws
<server www.mydomain.org>
port = 80
listen = 192.168.128.31

42

CHAPTER 11. THE CONFIG FILE - YAWS.CONF 41

docroot = /var/yaws/www
</server>

<server www.funky.org>

port = 80

listen = 192.168.128.31

docroot = /var/yaws/www_funky_org
</server>

An example with www-authenticate and no access logging at all.

logdir = /var/log/yaws
<server www.mydomain.org>
port = 80
listen = 192.168.128.31
docroot = /var/yaws/www
access_log = false
<auth>
dir = /var/yaws/wwu/secret
realm = foobar
user = jonny:verysecretpwd
user = benny:thequestion

user = ronny:havinganamethatendswithy
</auth>

</server>

And finally a slightly more complex example with two servers on the same IP, and one ssl server on
a different IP.

logdir = /var/log/yaws
max_num_cached_files = 8000
max_num_cached_bytes = 6000000

<server www.mydomain.org>
port = 80
listen = 192.168.128.31

docroot = /var/yaws/www
</server>

<server www.funky.org>

43

CHAPTER 11. THE CONFIG FILE - YAWS.CONF

port = 80

listen = 192.168.128.31

docroot = /var/yaws/www_funky_org
</server>

<server www.funky.org>
port = 443
listen = 192.168.128.32
docroot = /var/yaws/www_funky_org
<ssl>
keyfile = /etc/funky.key
certfile = /etc/funky.cert
password = gazonk
</ssl>
</server>

42

IMPLEMENTING THE MOBILE LOCATION
PROTOCOL: A TALE FROM THE TRENCHES

Thomas Lindgren Fredrik Linder
Magnus Eklund
Cellpoint AB
e-mail: first.last@cellpoint.com

Abstract

We describe the first commercial implementation of the Mobile Location
Protocol version 3.0.0. The complexities of finishing the development of a
feature-rich protocol in a tight time frame led us to an approach of rapid
redevelopment, exemplified below.

INTRODUCTION

Location services are and will remain a distinctive feature of wireless data services
in 2G and 3G applications. No dominant standard to access location information
has emerged until now: the Location Interoperability Forum, LIF, has recently
released version 3.0.0 of the Mobile Location Protocol, MLP. Cellpoint is an active
LIF participant, and has developed an implementation of MLP 3.0.0 for use in its
mobile location platform. This is the first generally available MLP implementation.

We give an overview of Cellpoint’s implementation of MLP and how it fits to
the mobile location platform, CMLP, developed by Cellpoint. We conclude with a
discussion on development issues.

BACKGROUND

Location services are implemented by interrogating the GSM network on the posi-
tion of subscribers (or rather, their mobile terminals). This is done by a location
server, which provides the service to a collection of clients. A client can be, e.g.,
a portal deployed by an operator, or a third-party application. Cellpoint has two
main products: the mobile location server, MLS, and the mobile location broker,
MLB. They are also known as the Cellpoint Mobile Location Platform, or CMLP.
The task of the MLS is to provide location information. The MLB acts as an aggre-
gator of location requests and location information by acting as a proxy for multiple
MLS:s.

Upon receiving a request, the MLS interrogates the GSM network, using one
of several available methods (e.g., cell ID, enhanced cell ID, assisted GPS, or oth-
ers) [3GPP]. The method used depends on the requested quality of service: some
application users require a quick answer, others a precise one. If the subscriber is
roaming into another mobile network, the MLS contacts the counterparty MLS, a
process known as MLS roaming. For the purpose of implementation, the MLS thus
has to act as both client and server.

The MLB has a slightly different role. Each MLB knows of a collection of MLS
nodes. When receiving a request, the MLB is responsible for dispatching the request

to the right MLS. (This is similar to MLS roaming, but normally occurs inside
an operator’s network.) The MLB also handles issues such as security, subscriber
anonymity, and subscriber privacy, leaving the MLS nodes to act with the MLB as a
trusted counterparty. Subscriber anonymity is used to hide the subscriber identity
from third parties. Subscriber privacy is used to check whether the subscriber
permits the positioning operation.

THE PLATFORM

Each of the CMLP products runs on Solaris and is primarily written in Erlang [2]
with supporting code in C and scripting languages. A number of software packages
are sourced in to provide the configuration that operators require, e.g., an Oracle
database for subscriber information, and Veritas redundant disk software.

When booting, the system first starts an internally developed system for clus-
tering. The clustering system handles failover very quickly (on the order of a few
seconds) and provides redundancy for disks [4]. As part of this process, a collection
of Erlang nodes are started. When all cluster nodes are operational, the Erlang ser-
vice software is started as a collection of processes, aka components, that implement
the desired functionality. Examples of components are protocol service frontends,
subscriber management, database management, the charging subsystem, a WWW-
based GUI, the positioning software and the SS7 network interfaces. When all
required components are available, the system is ready for service.

THE MLP PROTOCOL

MLP is a complex protocol based on HT'TP/1.1 and XML, which has evolved rapidly
during the spring of 2002. (As an example, the February 2002 book by Hjelm (6]
uses a syntax which is now obsolete.) MLP is being standardized by a committee of
operators and equipment providers known as the Location Interoperability Forum,
or LIF. At the time of writing, the MLP 3.0.0 standardization process is being
finalized [1].

The basic capability is to serve a location request. The client sends a request as
follows:

<7xml versiomn ="1.0" 7>
<IDOCTYPE svc_init SYSTEM "MLP_SVC_INIT_300.DTD">
<svc_init ver="3.0.0">
<hdr ver="3.0.0">
<client>
<id>application_4</id>
<pwd>secret</pwd>
</client>
</hdr>
<slir ver="3.0.0">
<msids>
<msid type="MSISDN">46702711038</msid>
</msids>
<geo_info>
<CoordinateReferenceSystem>
<Identifier>
<code>4326</code>
<codeSpace>www.epsg.org</codeSpace>
<edition>6.1</edition>

</Identifier>
</CoordinateReferenceSystem>
</geo_info>
</slir>
</svc_init>

The client sends its identity, password and service ID for authorization. The
client can also use a <subclients> tag, much as a HTTP proxy, to tell which
location servers have participated in the request. Several applications, portals,
MLBs and MLSs may be involved in a request, generally for administrative reasons,
and must be tracked for correct billing. The subscribers to be positioned are then
identified with <msid> tags, in this example a single ID of type MSISDN, indicating
an ordinary cell phone number, followed by information on the desired quality-of-
position (accuracy, timeliness and so on) and the coordinate system to use. Many
parameters are optional; in the example, no explicit quality-of-position is given. The
coordinate system tells the server how to format the response. Client and server
agree on coordinate system by consulting a database maintained by the European
Petroleum Survey Group, EPSG, which is the final authority [5].

The server returns a response, e.g., as below.

<?xml version ="1.0" 7>
<!DOCTYPE svc_result SYSTEM "MLP_SVC_RESULT_300.DTD">
<svc_result ver="3.0.0">
<slia ver="3.0.0">
<pos>
<msid>46702711038</msid>
<pd>
<time utc_off="+0200">20020623134453</time>
<shape>
<CircularArea srsName="www.epsg.org#4326">
<coord>
<X>20 30 5.4uW</X>
<Y>0 0 3.5N</Y>
</coord>
<radius>570</radius>
</CircularArea>
</shape>
</pd>
</pos>
</slia>
</svc_result>

The response is a position for the indicated MSID, in the shape of a circle
centered at the specified coordinate with the given radius. The position was acquired
at the time 13:44.53 on 2002-06-23 in time zone +0200.

If there was an error in the request, or the request could not be fulfilled, an error
response is returned instead.

This basic functionality is extended by several extra features.

e There is a class of emergency requests with a slightly different format, which
are treated with different priority, privacy settings, and so forth by the location
server.

e Client-assisted positioning permits the client to send GSM information to
another node. This is used to ask a server to map a cell ID (enhanced with,
e.g., timing advance information provided by the client) to an actual position.

e Triggering and zoning permits the client to register an interest in a certain
subscriber (pending the approval of the subscriber, known as subscriber pri-
vacy). When some event occurs, e.g., the subscriber moves into or out of
a certain area, the location server contacts the client with this information,
inverting the client-server relationship.

THE SIMPL2 PROTOCOL

Before the current product release, Cellpoint used a small, proprietary protocol
named SIMPL for positioning requests. Cellpoint decided to use a subset of MLP,
extended with some Cellpoint-specific features, as the next version of SIMPL, named
SIMPL2.

Cellpoint’s SIMPL2 protocol [8] restricts the MLP protocol in several ways, and
does not support some of its features. For example, triggering and zoning are not
supported, nor are some lesser features concerning format. SIMPL2 reports all such
deviations from MLP as errors or unsupported features.

Cellpoint’s extensions to MLP concern DES-encryption of requests and responses,

and the capability of sending charging information to the charging subsystem of the
location server.

DESIGN AND IMPLEMENTATION

The initial specification and implementation proposal for SIMPL2 was written in
August-September 2001, based on a preliminary version of MLP 1.1. Business events
put the actual implementation on hold until January 2002, with a new development
team (the authors) implementing the SIMPL2 version of MLP 3.0.0. The first
commercial release of SIMPL2 was in June 2002. Total development time until
final delivery was thus roughly 18 man months.

The final development schedule for SIMPL2 was quite aggressive, with proto-
typing starting quite some time before the standards were even close to finalization.
During six months of development (January to June 2002), there were no less than
fourteen releases of the SIMPL2 specification, often driven by changes to the un-
derlying MLP being standardized by LIF. Even as late as May, there were major,
incompatible changes and extensions in how to specify such things as the coordinate
system being used.

At the same time, there was a considerable learning curve for the developers
involved: none of us were experienced in the ways of geographical information
systems, and the MLP and SIMPL2 standards mainly specified the syntactic formats
of requests and responses, rather than the semantics. Thus, we also had to learn how
to interpret the requests and translate the intentions to the underlying positioning
system.

The CMLP itself furthermore evolved rapidly during this period of time, adding
numerous features that required support or changes in the protocol modules. Parts
of CMLP were also redesigned to support SIMPL2.

We began by building a basic prototype implementation, integrating the freely
available xmerl and inets subsystems into CMLP and using them for HTTP and
XML processing. We then used existing CMLP code for interfacing to the rest of
the positioning system, and wrote the code to convert XML to the internal format.

The responsibility of the validation code is to check that the incoming values
are valid according to the protocol, and to turn the values into a suitable data
structure for the positioning system. A second task is to manage the MLB and
MLS roaming functionality, i.e., to act as a client to some other SIMPL2 or MLP

server, which requires validation and conversion of responses similar to what was
done on requests, and to convert internal data into SIMPL2 positioning requests.

The method of development initially was that of exploratory programming. As
the implementation matured, we realized that there were a number of as-yet poorly
defined features in MLP and SIMPL2, which, along with changes to the specifica-
tions, made necessary continuous fixes to the protocol code.

As an example of the latter, the final draft of SIMPL2 was released on May 12,
with seven subsequent drafts released between then and June 7. During the entire
development period, there were also extensive mail conversations and revisions in
between drafts.

This imposed a considerable burden on us, since Cellpoint also works with a
system of weekly formal code freezes that are tested by a separate group of testers.
The internal goal was to release a working version of SIMPL2 every week, while
tracking changes to specifications, external change requests and protocol bug fixes
and clarifications. This proved to be difficult just by patching and debugging the
existing code, and we found that our calendars were filled with reacting to such
events.

We realized that we needed to retool the code to rapidly react to changes. We
decided to implement what we called rapid redevelopment to enable us to respond
very quickly to changes and trouble reports. This was done as follows.

Abstraction and refactoring

Modularity, macros and abstract data types were used extensively in development.
As the implementation matured, we tried to refactor the code further.

We found that Erlangs records were a source of errors. Records are useful
because they make changes in data representation easy. The record notation is also
handy because it can be used in pattern matching as well as expressions. However,
there are also complications:

e There are often constraints between the fields, e.g., when user name has been
filled in, then user data fields must be consistent with the name. These con-
straints are frequently undocumented.

e When new fields are added, every existing record creation in the code must
be verified and perhaps updated.

These properties slow down code changes. We opted to throw out explicit use
of records and deploy abstract data types instead®.

As a further benefit, abstract data types also made the code clearer, since the
operation is named.

Data driven design

A major source of change in MLP was the format of XML data, both in what
attributes were available and their format. Initially, we used a straightforward
design to validate formats, structured roughly as follows?:

check([sve_init, hdr, client, id], ID, State) ->
check_client_id(ID, State);

1For readers unfamiliar with this concept, an abstract datatype encapsulates the representation
of a data structure inside a module; a well-known Erlang example is the dict module. Object
oriented programming also uses encapsulation, though with objects instead.

2This is not the actual code.

check([svc_init, hdr, client, pwd], Pud, State) ->
check_client_pwd(Pwd, State);

This turned out to be a source of problems. The reason was that all aspects of
the XML code changed: tag and attribute names, contents, locations in the request,
as well as data format names and data format definitions, which quickly became
confusing. Not all changes in specification were correctly introduced, and it was
difficult to keep track of all the versions.

We refactored validation into an interpreter. The XML attributes and formats
were specified as a term:

-define(tag_specs,
[{’svc_init’, blank,
[{’ver’, {’or’, [{member, ["3.0.0"]1}, {unsupported, ver}13}}1},

1.

In the case above, the tag svc_init has an attribute ver which must have
the value "3.0.0" or the request will get an ‘unsupported’ error. Furthermore,
svc_init must not have data content itself.

Each SIMPL2 data type was also defined in a rule engine:

apply_rule(blank, Value) ->
[1 == strip_whites(Value);
apply_rule({’or’, Rules}, Value) ->
lists:any(fun(Rule) -> apply_rule(Rule, Value) end, Rules);

When checking data, the refactored program first locates the rule to use from
the specification term, then invokes the correct rule in the rule engine.

We call this a data driven design. The net effect is to separate the adminstrative
aspects from the specificative aspects of checking.

Ensuring that we followed the current specification was simplified immensely,
since the specification part changed most rapidly, and this was now much easier
to verify quickly. In the first part of the project, testers found most of the data
format bugs. As we neared delivery, the rules engine approach had overcome this
problem and we could instead turn to fine-tuning the definitions in the SIMPL2
specification.

Testing framework

As we have described, SIMPL2 is a very flexible protocol with many features to
implement and test.

To improve internal quality assurance at releases, we implemented a testing
framework, also in Erlang. We decided to implement an external testing frame-
work, but not one for unit testing. The reason was that automated unit testing
seemed harder to get right and Erlang’s purity and natural interactive bottom-up
development at the same time made reasonable manual unit QA more straightfor-
ward than one might expect.

Our testing framework generates requests and the expected responses, sequen-
tially tests every case, and signals any deviant responses. At present, there are
roughly a hundred test cases. We also implemented a regression testing framework
to ensure that old bugs did not reappear: when there is a bug report, we write a
test case that triggers the bug and re-run the test at subsequent releases.

The testing framework is data driven: each test request is specified as an Er-
lang data structure, which is translated into XML text. Specifying a series of test
requests looks like:

test_series(l, 1) ->
Clients = [{"service_a", "secret", ?0K}, ...],
MSID = "...",
[{Expect,
?svc_init(?hdr_client (Name, Pwd), ?slir(?msids(MSID),
?default_geo_info))
| {Name, Pwd, Expect} <- Clients];

This generates one test case per client, with an expected outcome Expect and
a request to be sent. The list of Clients consists of cases that should pass or be
rejected, as specified by the programmer.

The testing framework sends each request to the server under test, awaits the
response and notifies the user when there is an unexpected response (ranging from
socket errors to XML validation errors).

Social aspects

Our development methods have also made extensive use of pair programming, brief
coordination meetings (sometimes several per day) and the use of instant messaging
to keep developers synchronized, even though there were only three main developers
(along with half a dozen developers working with related items and three testers).
This has improved code quality by keeping all developers “working in the same
paradigm”. The discussions have also turned out to help with finding and resolving
the grey areas of SIMPL2 and MLP; at least one of our findings has led to changes
in the MLP standard specification.

DISCUSSION

How did rapid redevelopment work out in practice? Quite well.

Since the XML tags, attributes and validation rules changed very frequently, the
rules-based approach to validation was extraordinarily helpful: the rules are easy to
read, understand and change compared to code. Verifying that the implementation
conforms to the specification is much easier.

A second improvement is that using abstract data types meant we could control
how data was manipulated, we could validate inputs and outputs and we could
change representations easily. By not exposing record datatypes, we ensure disci-
pline in how crucial data is created, used and accessed?.

Because of the many features of SIMPL2 and their potential interactions, our
testing framework has been invaluable. As a trouble report appears and is fixed,

3This requires programmers not to break data abstractions, rather than prohibiting them from
doing so as do, say, SML:s abstypes.

we add a regression test case. Prior to each weekly release, we check that the code
passes all the tests. We then hand it off to the testers for formal quality assurance.
To improve on this, it would probably be useful to have a dedicated tester to
add more test cases. While doing this full time for just SIMPL2 would be overkill,
it might be a very useful part-time effort.
One can view rapid redevelopment as a form of extreme programming [3]. Here
is a comparison. The item bullets are taken from the reference, page 54.

Small releases. We incrementally released code every week once the system was up
and running. However, the QA organization had problems in tracking what
could be usefully tested. Serious formal testing began only in the later parts
of the project.

Testing. XP mandates a strict testing regime. We did not use XP unit tests,
but implemented and used an automated testing framework successfully, as
described previously. The effect was gratifying, since it improved code quality
while reducing our testing effort.

Refactoring. We refactored code thoroughly, as shown previously, but mainly in
reaction to problems rather than proactively. This might have been a mistake.

Pair programming. Considerable portions of the code were developed using pair
programming, which turned out to be a good choice.

Continuous integration. Erlang naturally enables continuous integration. The
normal development cycle is to edit-debug-recompile, then load the code into
a running full CMLP system (configured as an MLS or an MLB) to test it.

However, we also had to integrate the results of other developers. This was
done at every release and included changes in the system configuration files
(including their format) and CMLP restarts. Continuously integrating such
changes would likely have slowed development down.

On-site customer. We did not have an on-site customer. As mentioned above, a
dedicated test case writer would be useful. Also, having a customer represen-
tative available would have clarified a number of practical issues. The main
issue in introducing this is probably to motivate the expense of doing it.

Coding standards. We did not use written coding standards, but some principles
were obeyed, such as the use of ADTs instead of records.

FUTURE WORK

We are currently mulling over if the code that converts incoming data to our internal
format, and back into outgoing data, can be converted into a rule-based form as
well. The main problem is that our current set of sketched conversion rules is too
large and unstructured to yield any great advantage on ordinary code.

Given the successful rules-based approach to validation, we are also considering
writing a tool to translate the rules into a directly validating and translating XML
parser. The advantage of this approach is higher efficiency (as long as code size
remains reasonable).

However, it is not at all clear that SIMPL2 is a bottleneck. Positioning requests
may naturally have long latency (e.g., several seconds), and the cost for SIMPL2
processing is small in this context. While reducing latency and memory footprint
per request is still welcome, because system capacity is improved, other tasks have
had priority since SIMPL2 was released to customers.

CONCLUSION

We have described the implementation of the SIMPL2 version of MLP 3.0.0 on
Cellpoint’s location server series, CMLP.

SIMPL2 evolved quickly and had many features; in this context, rapid redevel-
opment, an XP-like approach based on abstraction and testing, has been highly
successful.

In a development project concerned with a large and changing feature set and an
aggressive schedule, the resulting emphasis on flexibility and ease of modification
has been invaluable in reducing trouble response times. This in turn leads to a
virtuous spiral, where development gets the time to rewrite and extend the code
before testing, rather than as a response to testing finding bugs.

We have thus found rapid redevelopment to be a fruitful way to develop feature-
rich, committee-specified protocols with high demands on reliability, as is often the
case in the telecom world.

A version of CMLP including SIMPL?2 is commercially deployed at an operator
at the time of writing, making this the world’s first implementation of the MLP
3.0.0 standard.

Ki1sTA, JUNE-OCTORBER 2002

ACKNOWLEDGEMENTS

The comments of Lars-Géran Ericson and Bogumil Hausman were helpful in prepar-
ing this paper.

References

(1] 3GPP, standard document 03.71. http://www.3gpp.org

[2] Joe Armstrong, Robert Virding, Claes Wikstrm, Mike Williams. Concurrent
Programming in Erlang. Prentice Hall.

[3] Kent Beck. Extreme Programming Explained. Addison-Wesley, 2000.

[4] Per Bergqvist. Improving Robustness in Distributed Systems. Proc. Erlang
User Conference, 2001.

[5] European Petroleum Survey Group. http://www.epsg.org

[6] Johan Hjelm. Creating Location Services for the Wireless Web. Wiley, Febru-
ary 2002.

[7] Location Interoperability Forum. LIF Mobile Location Protocol. LIF TS 101
v3.0.0, rev 2. June 3, 2002.

(8] Rob Schmersel. SIMPLv2.0 specification. Internal Cellpoint document.

o dias

: .]
Questions please use : info@blueposition.com

Using Erlang

gPosition A/S
¥ e mobility to the next level
bmas Verner
Bro

.BluePosition.com

EUC2002 1

BluePosition A/S

We take mobility to the next level

e Established in Der
2002.

e Spin off from Ericsson Denmark
ufion House.

ber of the Bluetooth SIG
P ricsson (and others) partner.
¥ Erlang User 1996-1999

IO Bluetootti’ smcsson = @D BlusTags

EUC2002 2

{

ark, Spring

. . L2
Questions please use : info@blueposition.com

Imagine if...

e Imagine if your phope€alls was automatically

gipe that you could located a college using
WFB browser.

agine the better customer service you
ould offer trough this.

? Imagine the improved efficiency.
p Imagine the reduced phone bill...

EUC2002 3

BLIS4
why Erlang
e Solve a problem for

- Performance
- More Logic

e rformance
@ault tolerant / Distribution
) TCP/1IP

EUC2002 4

/.

i . .3
Questions please use : info@blueposition.com

Product Overview

BLIS4 c @

Phone Detection
(Bluetooth/DECT)

Phone

Other, including: ¢ GSM
Access Control Network
Intranet
S Information Screens

=~/ Etc.

EUC2002 5

BLIS4 Design
Erlang Design

TCP/IP - FILE - HTTP POST

EUC2002

i . !
Questions please use : info@blueposition.com

Product Architecture
£z
w3
£
Basic

BLIS4Framework

modula Control
(optional)

EUC2002 7

Application Overview

e BLIS4Framework

Bluetooth Location Information System platform
(ERLANG)

Plu In for inge ractlon with PBX's using CTI/CSTA

—In for location information of Employees using a WEB
RLANG and PHP)

BLIS4wslock

Lock Workstation on behalf on a user
(Erlang and a WS32 Client)

EUC2002 8

Zf

: . .5
Questions please use : info@blueposition.com

UL [LU OO

Experiences
using Erlang

jrig almost all from scratch
to introduce new applications

f®asy to introduce more logic
y - Concepts
- Constraints

EUC2002 10

5

. : .6
Questions please use : info@blueposition.com

Experiences
interfacing with Erlang

e HTTP / Erlang W
- POST XML _Bocuments

- GET forpreferences

o] racing with third party
pecialized TCP/IP Protocols

till a need for C++ & JAVA designers
®

7 - BluePosition Middleware

EUC2002 11

Human Ressource
Experiences

e Sales & Marketing

- Design keeps their proatises (and vice versa)
o Short time to market, for new applications
= Trouble shgefing
pmunication

srférmance is the key

hey get convinced when the see the performance
tepwise learning

B ustomers

/ - Seeing is believing ...

o Both BLIS4 and Erlang

EUC2002 12

7
Questions please use : info@blueposition.com

Issues
Our “bad” experiences

e Erlang Applications ma
- Design keeps their promise
e Short time to marke
o Trouble shooting
- Better commuhication

e WindowsNT (200X(P)) focus

have overhead

for new applications

#Often easier to do-it-yourself

EUC2002 13

Danish Parliament
An Erlang Case

EUC2002

7z

. 3 .8
Questions please use : info@blueposition.com

Danish Parliament

e One (1) BLIS4

t call centre

Woting room
AND YES : IT WORKS !

EUC2002

e Hangtes presence detection to

Efiminates phone calls (ringing) in

EUC2002

Position A/S

é take mobility to the next level

HELGA - A call load generator written in Erlang/OTP

Anand Balagopalakrishnan
Lucent Technologies
Golf View Campus
Wind Tunnel Road
Bangalore, India

anandb @lucent.com

ABSTRACT

CDMA2000 1xEV-DO [1] is a 3G standard (TIA/EIA/IS-
856, "CDMA2000 High Rate Packet Data Air Interface Spec-
ification’) which provides Internet access by providing up to
2.4 Mbps in a 1.25 MHz channel. It is compatible with
CDMA networks and is optimized for packet data services.

This paper describes a call load generator written in Erlang
(2] which is used to perform load tests on a 1xEV-DO RNC.
In this paper we present the details of how such a load gen-
erator can be used to perform load tests. We also present
some of our experiences in using Erlang/OTP for testing.

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Functional languages—
Erlang

D.1.3 [Software]: Concurrent Programming

D.2.5 [Software Engineering]: Testing and Debugging—
call generation, load testing

General Terms
Performance, Verification

Keywords
1xEV-DO, Load generation, Testing, Erlang/OTP

1. INTRODUCTION

|_ 1xEV-DO | |1xEV-DO PDSN P
PC — Mobile — BTS L RNC L Network
|

Figure 1: 1xXEV-DO Reference Architecture

A high level network diagram of a 1xEV-DO system is given
in Figure 1. A PC connected to a 1xEV-DO mobile device
is used to connect to the Internet via a Base Station (BTS),

Bagirath Krishnamachari
Lucent Technologies
Golf View Campus
Wind Tunnel Road
Bangalore, India

bagi@lucent.com

a Radio Network Controller (RNC) and a Packet Data Ser-
vice Node (PDSN). The PDSN terminates the PPP protocol
originating from the mobiles and also assigns IP addresses
to the mobiles in the network.

[UDP|=sssescncencnncnnsnemnmmsmesnnncncamncamemmmmannnmenns UDP
I T T 1P -4 1P
|PPP |emsesscanasescsssnnmncansanonsnnsmnmenne PPP
RLP posmmcmommeamannaas RLP

TCP/UDP-==== TCP/UDP| GRE | ---- “GRE

IP p=er== IP IP Fer=nd 1P
L2 peees| 12 hese-- L2 | (2 f==--o T L2 | L2 pee-
Phy p====| Phy fpe===- Phy Phy p====o " Phy| Phy F===4Ph
Mobile BTS RNC PDSN Remote Host

Figure 2: Protocol Stacks for the Reference Archi-
tecture

The protocol stacks involved in each network element during
call processing are described in Figure 2. The initial part
of call setup, which sets up the radio resources, consists of
messaging between the mobile, the BTS and the RNC. In
the next step, the mobile sets up a PPP tunnel with the
PDSN via the resources provided by the RNC. During the
PPP tunnel establishment, the PDSN assigns an IP address
to the mobile. Once the PPP tunnel is established, the
mobile can access the Internet.

HELGA is a software tool written in Erlang which is used to
generate call processing load on the RNC. It simulates both
a BTS as well as a set of mobiles and sets up data calls via
the PDSN. Its primary use is to perform load testing of the
traffic processing components of the 1xEV-DO RNC. It is
also used to simulate different handoff scenarios. This tool
is written entirely in Erlang and is used in conjunction with
a packet thrower (written in C) to generate the call load on
the system.

2. INTERFACES USED

The RNC call processing components have the following in-
terfaces to the external entities simulated by HELGA

e A TCP interface to the BTS which carries signalling
messages

e A UDP interface to the BTS which carries data and
signalling messages.

HELGA is the endpoint for these interfaces and passes mes-
sages between the "mobiles” and the RNC over these inter-

2

faces. HELGA implements the IS-856 message set and also
simulates the interface between the RNC and the BTS. It
also handles the establishment of the PPP tunnel with the
PDSN. Each instance of HELGA simulates a single BTS
and a (configurable) set of mobiles. Multiple instances of
HELGA can be connected to each other by running them
over a set of distributed Erlang nodes.

2.1 Functional Decomposition

Since the number of calls under a BTS is configurable and
can also change from time to time (depending on the number
of handoffs which take place), the implementation of the tool
is split into two components - one which simulates the BTS
and another which simulates a mobile. This makes the BTS
and mobile components loosely coupled and handoffs can be
achieved using the distribution mechanism provided by the
Erlang emulator. The down link data rate for each call is
controlled by an external packet thrower.

2.2 Simulating the BTS interface

For the rest of this paper, the term "BTS” will be used
to identify the part of the tool which simulates the BTS
interface i.e the set of Erlang processes which simulate the
BTS interface. A BTS is simulated by two Erlang processes
- one for handling the UDP interface to the RNC and one for
handling the TCP interface. These two processes handle the
signalling messages between the BTS and the RNC and also
route messages between the RNC and individual mobiles.
Each mobile is identified by a unique Mobile Identifier and
the details of all the mobiles running under a BTS are stored
in an ETS lookup table. When run over a distributed set of
Erlang nodes, each BTS is capable of communicating with
its neighbours and can therefore perform handoffs to other
Base Stations.

2.3 Simulating the mobile

For the rest of this paper, the term ”mobile” will be used to
identify an Erlang process which simulates a mobile. Each
mobile is simulated by a unique Erlang process which is
identified by its Mobile Identifier. All ”mobiles” communi-
cate with the RNC via the processes which constitute the
BTS portion of the tool. As soon as a "mobile” is assigned
an IP address by the PDSN, it communicates with a packet
thrower and requests a data download on the down link
at a particular rate. The packet thrower routes the data
download to the "mobile” via the PDSN and the RNC call
processing software. An inter-BTS handoff is simulated by
migrating the corresponding Erlang process from one node
i.e. BTS, in the distribution to another.

3. ERLANG/OTP MODULES USED

The main building block used in HELGA is the gen_fsm be-
haviour which is used to simulate the protocol stack at the
mobile. A mobile is simulated by a gen_fsm and uses its
Mobile Identifier as its registered name. All mobiles also
join a common group, which is created using the pg2 mod-
ule. All communication within HELGA is done using the
Erlang inter-process communication and communication be-
tween HELGA and the RNC is done using the gen_tcp and
gen_udp modules. All message exchanges between various
components of HELGA use binaries. A portion of the state

information for each mobile is stored in ETS tables for quick
lookup.

At each state of the gen_fsm, a decision is made by the Er-
lang process simulating a mobile about performing a hand-
off. This is done by generating a random number which
is used to decide whether a handoff needs to be simulated.
This number is also used to determine the kind of hand-
off which will be simulated i.e soft handoff, softer handoff or
virtual soft handoff. While simulating a virtual soft handoff,
a mobile picks a neighbouring BTS at random and spawns
a copy of itself on the node representing the selected BTS.
The spawned process is passed a copy of the state informa-
tion stored in the spawning gen fsm. Once the new pro-
cess is spawned, the old process cleans up and exits and the
new process continues on the neighbouring BTS. A soft or
a softer handoff is simulated by randomly choosing a sector
either from the same BTS or from a neighbouring BTS or
from the list of sectors in the mobile’s active set and then
indicating to the RNC that a sector has been added to or
dropped from the call.

HELGA can be configured to simulate a stand alone BTS or
as part of a distributed set of interconnected base stations.
The configuration data for each instance of HELGA includes
the details of the BTS, its neighbours, the number of calls
to be setup, the location of the packet thrower etc. It is also
possible to turn on or turn off handoffs at the BTS level. All
the configuration data is read from a file and the parsing of
this file is done using the parse_erl.exprs function of the io
module.

HELGA also provides periodic snapshots of the through-
put received by each mobile under a BTS. This is done by
periodically sending a snapshot request message to all the
gen.fsms in the system. The gathering, processing and pre-
sentation of the periodic snapshot data in a human readable
form are made simpler by a judicious combination of higher
order functions and pattern matching. The snapshot data
are used to study the behaviour and performance of the
RNC under different call loads.

3.1 Using HELGA for testing

When started, HELGA reads its configuration file and ini-
tializes the BTS component, which in turn establishes TCP
connections with the RNC. HELGA then spawns as many
gen_fsms as there are calls defined in the configuration file.
Each gen fsm then initializes its protocol stack and proceeds
to setup a call with the RNC. When its call setup with the
RNC completes, a gen_fsm negotiates with the PDSN to set
up a PPP tunnel. After a gen fsm sets up a tunnel, it is
assigned an IP address by the PDSN. Once it receives an IP
address, a gen_fsm sends a request for a data download at a
particular rate to the packet thrower.

4. EXPERIENCES WITH ERLANG

Before HELGA was developed, Perl[3] was used for develop-
ing simulators. The following are some of our observations
on using Erlang/OTP

o Learning curve - The learning curve for Erlang is short
and steep when compared to languages like C++ and

St

3

Perl. Programmers very quickly start getting produc-
tive with Erlang.

Development Time - The time taken to translate a de-
sign to its implementation is much shorter with Erlang
than it is with Perl. The time taken to implement test
tools in Erlang is less than half of the time taken to im-
plement similar tools in Perl. The use of OTP modules
like behaviours significantly reduces the development
time.

Speed - Erlang code runs faster than Perl code. Erlang
code appears to be approximately five times as fast as
Perl code implementing similar functionality.

Scalability - It is easy to convert a stand alone appli-
cation into a distributed application because the lan-
guage (as well as OTP) has constructs which support
distributed applications.

Extensibility - Since the language supports hot code
load, it is easy to do incremental development, without
even having to restart the tool. Features can also be
added or tweaked in real time.

CONCLUSIONS

The built in functions of Erlang which support distributed
commurication and behaviours from OTP helped in radi-
cally changing the development cycle. Fewer resources had
to be committed to develop a tool in Erlang. Since the tool
was developed in an incremental way, with functionality be-
ing added iteratively to enhance the tool, bugs in the code
were detected very easily. This had a direct impact on the
qualily of the toul both in terms of stability and in terms
of performance. It was easier to run load tests using Erlang
code than it was with Perl code.

6. REFERENCES
(1] 3GPP2. cdma2000 high rate packet data air interface
specification. Version 2.0, October 2000.

[2] J. Armstrong, R. Virding, C. Wilkstrom, and
M. Williams. Concurrent Programming in ERLANG.
Prentice Hall, Englewood Cliffs, NJ, 1996.

[3] L. Wall, T. Christiansen, and R. Schwartz.
Programming Perl. O'Reilly, Sebastopol, CA, 1996.

* The AXC105 Fibre Switch

Hans Nilsson

hans@erix.ericsson.se

= The access system

+ Photos

Rack :
installation &

Mounted on a wall
with fibres to the
users

=+ Inside the local node

= Network processor
= Assembler
= PowerPC
» Linux
= Erlang/OTP (35 k lines)
= C (10 k lines)
= Hardware
= Some strange things...

A

- What does what

e Erlang
PowerPC o C
e Linux
Il
Tables,
registers
{1l

Ethernet
Frames

Network Processor

Ethernet
Frames

= Linux:
= Much available out there
= Many experts
= Erlang:
« High level
= Very short development
time
= Network Processor
= Flexible

= Bad

= Linux:

= Not completely
perfect

= Allergic reactions ...
= Erlang:

= Nothing bad ©

= Allergic reactions ...
= Network Processor

=« Expensive

= Allergic reactions ...

L

NS~ Arts

e

Mobile Arts Telecom Platform
19 November 2002

www.mobilearts.se

Content

{JMobile Arts Introduction

(JMobile Arts Telecom Platform

v Overview
v Technology & Characteristics

(JSome great Erlang Open Source applications
v jnets
v xmerl
v ucs

Mobile Arts

(JFounded in February 2001
(J3HQ in Stockholm

v Branch office in London

(710 employees

v 1 Doctor of Science & 9 Master of Science
v Leading edge competence in and experience (>> 125 man-
years) from development of GSM/UMTS/Telecom products
* MSC/VLR/HLR, Mobile SSF, Mobile SCF, UMTS MSC, WAP
Gateway, SMSC, MLC, etc.
» Standardisation(ETSI/3GPP, WAP Forum, LIF, etc.)

Strategy

O Concentrate on doing what we know best
v Development, GSM/UMTS and other related standards

O Focus on Indirect Marketing & Sales Channels
v Mobile Arts will not build-up a large internal marketing and sales
organisation
v We have established a number of strong partnerships with System
Integrators and/or Resellers

(3 Work closely and actively together with partners and support
their marketing & sales activities

O Mobile Arts has been financed entirely through consulting (no
loans, no venture capital)

Business Idea

3 Mobile Arts provides state of the art Mobile Network
gateway products for Messaging, Presence and Location.

O Our products provide Mobile Operators with the key
elements required to enhance existing applications as
well as launch new applications in various areas, such
as SMS, Instant Messaging, Games, Entertainment and
Information.

{3 Mobile Arts products are compatible with GSM/UMTS
networks all over the world, regardless of local
signalling standards.

19 November Mobile AAF:S
Product Architecture
Messaging :Z::LZ L':::tiilzn 300(

Mobile Arts Tool-kit
Performance Conflguration Fault
Management Management Management
Security Traffic License
Management Manag t Manag t
Log Graphical User Protocol
Management Interfaces Handlers
[scawnity | | pistri | [Redundancy |
|_Processes | | Hardware | |—Documentation |
| I .
19 November | Mobiie AAr‘ts

Mobile Arts Telecom Platform

System Overview

Billing Mobile Arts <1I:> Network

System _‘E’ Tel latf Management
elecom Platform || || Systom

GSM/UMTS/SS7
el <:> Traffic
(SMSC/HLR/MSC/SGSN) <——> Management
| n
19 November | Mecbie AAr:s

Hardware

CJProcessor
v Currently SUN (e.g., Netra T1 AC 200 or Fire V120)

(3SS7 Stack

v Ericsson/Tieto-Enator SS7 PCI-boards (one for each host)
that each supports two E1 links with up to 16 signalling
channels

v Full SS7 redundancy (STP/SRP load sharing)

v Considering Ericsson “Stack-on-a-Card” SS7 boards

v Why Ericsson? Name!

19 November Mobi'e AAP’:S

Software

{3 Operating System
v SUN Solaris 8 (2.8)

3 Additional software
v Ericsson SS7 stack
v Erlang OTP (including Mnesia)
v OpenSSL

(3 Application software
v Mainly Erlang OTP (drivers to SS7 stack in C)
v Full software redundancy with multiple hosts

v Current size approximately 5500 lines of C, 130000 lines of Erlang
and growing...

19 November Mobiie AL‘«F‘SS

Platform Overview

\ HTTP/SMPP *HTTP server
server

XML parser

o |
Service Logic I O8M | *SMPP server

| || +ASN1 encoding/decoding

$S7 stack ‘ DB ‘ «SS7 stack adaptation
adaption |
*Service logic
*O&M
*Database
19 November Niobiie A AT

5

Mobile Arts Telecom Platform
OAM Features

O Configuration management and system administration
v Web based GUI
v Command Line Interface
v FTP/SCP
v Local or remote access
{3 SNMPv2
v Fault management
v Performance management

(O Advanced tailoring of Measurement Reports

O Differentiated Operator access rights
v Operator Roles with differentiated Rights

19 November Mobile AAP:S

Mobile Arts Telecom System
Technology & Characteristics

HTTP/SMPP C}CapaCIty
server v 7100 requests/sec (360000

s

| requests per hour) on a single
_ n Rl node SUN Netra T1 system
Service Logic| | | O&M . (dead slow, but cheap
| machine)
v XML request and XML
| ss7stack i | DB | response
gdaption v Service Logic: Single FSM MAP
operation
sm/uMpéiss?
ork
(SMSC/HLRIMSC/SGSN)
: | =
19 November | Mobiie AA.’“ts

Content

3 Mobile Arts Introduction
(JMobile Arts Telecom Platform

v Overview
v Technology & Characteristics

s t Erl 0 S licati
v jnets
v xmerl
v ucs

G
Mobiie Arts

jnets — HTTP client and HTTP server

(3HTTP client features include
v Syncronous/asyncronous request interface
v Persistent connections
v Pipelines
v Proxy support
v+ more (but lots missing also...)

(Jwhy jnets HTTP server?

v Backward compatible with inets 2.6
v Standards compliant
v Fast core, flexible configuration

I -
NMobiie Arts

7

jnets performance test 1

(JSimple GET request against a small static HTML file.
{JSetup:

v 1 client machine/1 server machine

v Client makes a new request immediately after a response
was received

———
Mobiie Arts

Results 1:

(3To be done....

PR

jnets performance test 2

(J™Web serv:ish” example

XML request

XML response
B —

HTTP
server

xmerl/???
based
application

19 November

Mobiie A Args

Results 2

(3To be done

19 November

Maobiie Arte

10

xmerl — The Erlang XML processer

(OWritten by UIf Wiger, now maintained at
http://sow. forge,

v Latest release xmer-0.18

OlLate developments:

v Improved export functionality.
v Support of DOM and SAX style parsing of XML document
v Many bugfixes

_ Mobile AA‘"'SS

ucs — Erlang Unicode support

(3 Translates Unicode number to Mnemonic

(JConverts from virtually any character sets to Unicode
and vice versa, given that there exists a mapping!!

v Sometimes very slow

(OConverts between IANA defined character set names
and corresponding MIB number/character set aliases

(3 This does NOT give generic Unicode support in
Erlang (strings etc)

I T
Maobie Arcs

10

On Reducing Interprocess Communication
Overhead in Concurrent Programs

Erik Stenman

Computing Science Dept.
Uppsala University, Sweden

happi@csd.uu.se

ABSTRACT

We present several different ideas for increasing the perfor-
mance of highly concurrent programs in general and Erlang
programs in particular. These ideas range from simple im-
plementation tricks that reduce communication latency to
more thorough code rewrites guided by inlining across pro-
cess boundaries. We also briefly discuss the impact of dif-
ferent heap architectures on interprocess communication in
general and on our proposed optimizations in particular.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-
ming; D.3.3 [Programming Languages]: Language Con-
structs and Features—concurrent programming structures;
D.3.2 [Programming Languages]: Language Classifica-
tions—applicative (functional) languages, concurrent, dis-
tributed, and parallel languages

General Terms

Languages, Performance

Keywords

Concurrent languages, process scheduling, Erlang

1. INTRODUCTION

Large software systems can conceptually be split into sev-
eral separate and semi-independent tasks. Concurrency tries
to provide a convenient form of abstraction for such situa-
tions. Hence it is not surprising that many modern program-
ming languages (such as CML, Caml, Erlang, Oz, Java, and
C#) come with some form of built-in support for concurrent
processes (or threads). Unfortunately many of these lan-
guages only provide very crude low-level support for concur-
rency; for example interprocess communication is often im-
plemented with shared data structures. Promoters of these
designs often motivate the low-levelness with the need for
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

Erlang Workshop *02 Pittsburgh, USA
Copyright 2002 ACM 1-58113-592-0/02/0001 ...$5.00.

Konstantinos Sagonas

Computing Science Dept.
Uppsala University, Sweden

kostis @ csd.uu.se

speed, using pretty much the same arguments that adver-
saries of garbage collection for a long time have been argu-
ing for the need for programmer-controlled memory man-
agement.

We believe that a higher level of support is needed, not
only for memory management, but also for concurrency. A
language should provide high-level concurrency primitives
and it should be up to the compiler and runtime system to
implement these constructs as efficiently as possible.

With a more natural way to handle interprocess commu-
nication, such as through explicit message passing, the pro-
grammer can concentrate on what to communicate instead
of how. This higher level of abstraction does however come
with a price: data sent from one process to another is not au-
tomatically there in some shared data structure to be used
by the other process directly. Instead, the other process
must also receive the data; this typically requires that a
scheduler prompts the receiving process to access the mes-
sage and to possibly take some appropriate action. Schedul-
ing and switching between execution environments of pro-
cesses do come at a cost and in this paper we will present
some ideas for reducing this cost.

Our goal is to eventually have truly lightweight processes
where message passing is at least as efficient as method in-
vocation in a modern object oriented language.

We have been experimenting with different extensions to
Erlang and different designs and implementations within the
HiPE system (3], a native code compiler extension to the Er-
lang/OTP system provided by Ericsson [6]. The rest of the
paper begins with a description of some aspects of this sys-
tem (Section 2). We then present our three main ideas: a
rescheduling send (Section 3), a direct dispatch send (Sec-
tion 4), and interprocess inlining (Section 5). We end with
some concluding remarks.

2. ASPECTS OF CURRENT ERLANG
IMPLEMENTATIONS

Although some of the ideas we explore in this paper have
also been dealt with by the operating systems (OS) commu-
nity, it is important to note that our context is different since
the concurrency in Erlang is not provided by the underly-
ing operating system. Instead the Erlang runtime system
itself is assumed to provide much of the functionality often
associated with an OS. For example, the runtime system of
Erlang/OTP contains its own scheduler, memory manager,
code loader, interface to the file system, and an emulator for
BEAM code.

Clearly, the implementation of the runtime system will
have an impact on the performance of concurrent Erlang
programs. Let us therefore describe some aspects of the
current implementation.

2.1 Erlang processes

Processes in Erlang are extremely light-weight (lighter
than OS threads), their number in typical applications is
quite large, and their memory requirements vary dynami-
cally. Erlang’s concurrency primitives—spawn, “1” (send),
and receive—allow a process to spawn new processes and
communicate with other processes through asynchronous
message passing. Any data value can be sent as a message
and processes may be located on any machine. Each pro-
cess has a mailboz, essentially a message queue, where each
message sent to the process will arrive. Message selection
from the mailbox occurs through pattern matching. There
is no shared memory between processes and distribution is
almost invisible in Erlang. To support robust systems, a
process can register to receive a message if another one ter-
minates. Erlang provides mechanisms for allowing a process
to timeout while waiting for messages and a catch/throw-
style exception mechanism for error handling.

Note that Erlang processes differ from both OS processes
and OS threads: An OS-process usually has a separate ad-
dress space implemented in hardware resulting in the need of
TLB flushes and the like, while OS threads usually commu-
nicate through shared memory. Finally, OS processes and
threads are often implemented in such a way that they can
be executed in parallel.

Erlang processes on the other hand are handled by the
runtime system scheduler, which selects a process from a
ready queue. The selected process is assigned a number of
reductions to execute, called its time-slice. Each time the
process does a function call, a reduction is consumed. The
process is suspended when the time-slice is used up (i.e.,
the number of remaining reductions reaches zero), or when
the process reaches a receive and there are no matching
messages in its mailbox.

The scheduler is implemented in C as a function that can
be called either by the BEAM emulator or directly from
native compiled code. The scheduler takes as arguments the
process that has been running and the number of executed
reduction steps, and returns the next process to execute.

2.2 Heap architectures

Till the fall of 2001, the Ericsson Erlang implementation
had exclusively a memory architecture where each process
allocates and manages its own memory area. In this archi-
tecture, since each process has its own heap, message passing
is implemented by copying the message from the heap of the
sending process to the heap of the receiving process. After
the message is written, a pointer to the message is inserted
into the message queue of the receiving process.

We have implemented a shared heap memory architecture
for Erlang processes [4, 7], which is already included in the
current Erlang/OTP release. Concurrently with that work
of ours, Feeley [1] argued the case for a unified memory archi-
tecture for Erlang, an architecture where all processes get to
share the same stack and heap. This is the architecture used
in the Etos system [2] that implements concurrency through
a call/ce (call-with-current-coniinuation) mechanism. The
biggest advantage of a shared heap architecture is that send-

ing a message does not require copying. On the other hand,
garbage collection stop times might become longer since all
processes share the same heap. A shared heap architecture
also opens up some other opportunities for optimizing an
Erlang system. We exploit some of them in this paper.

2.3 Behaviours

The Erlang/OTP system comes with the powerful concept
of behaviours. A behaviour can be seen as an implementa-
tion of a design pattern. The OTP library supplies a number
of predefined behaviours such as application, gen_server, and
SUPETVISOT.

With these behaviours the programming of concurrent ap-
plications can be taken to a higher level since behaviours
supply general solutions to common programming tasks. For
example, the programmer does not need to get involved in
the details of programming a fault-tolerant server that sup-
ports code upgrades.

The drawback of using behaviours is a slight loss in effi-
ciency; since the solutions are general, behaviours tend to
employ a number of runtime tests to find the specific solu-
tion. Unfortunately there is no formal specification of be-
haviours, and they are implemented entirely in Erlang. This
means that with the current implementation the compiler
has ne real guarantees about the behaviour of a program
that uses behaviours. (The only check that is done is by the
linter which gives a warning if any callback function needed
by a behaviour is missing. There is no guarantee that the
callback function does what it should do, and hence cur-
rently the compiler can not trust the behaviour declaration
for optimization purposes.)

If behaviours became more formally specified, an optimiz-
ing compiler could use the behaviour declaration as a hint on
where to look for certain types of opportunities for optimiza-
tion. For example, an application based on the gen_server
behaviour does indirect (via function calls) message pass-
ing and pattern matching on the message. In essence: all
messages to the generic server pass through a call function
that tags the message with an atom defining the message
type and the server then finds the appropriate handler by
pattern matching on that tag. In the abstraction of the
behaviour the information of the message type is lost, and
it can not be found by e.g. conventional partial evaluation
since message passing is involved.

This common pattern was actually one of the inspirations
to interprocess inlining; we feel that users should be able to
use this powerful behaviour without worrying about loss in
performance.

3. RESCHEDULING SEND

Interprocess communication in Erlang is asynchronous,
and the send operation is non-blocking. However, these are
actually conceptual aspects on the language level, and there
are several ways to implement them in the underlying run-
time system.

The current Erlang system is implemented in the natu-
ral way, that is, the send operation just places the message
in the receiving process’ mailbox and then the sending pro-
cess continues executing until it either blocks in a receive
statement or has exhausted its time-slice.

In most cases, when a process sends a message it is because
the application wants the receiver of that message to act
upon the sent information. Hence, it would probably be in

the best interest of the sender to yield to the receiver in this
case, and let the receiver act on the message. We will refer
to this type of send as a rescheduling send operation.

We therefore propose to implement this by letting the
send operation, at least in some cases, also suspend the
sending process. This would hopefully lead to lower mes-
sage passing latency since the receiver can start executing
directly when a message is sent. We also expect that in many
cases the cache behavior would be better since the receiver
will get the message while it still is hot in the cache.

In a private heap system, since the message has to be
copied, the whole message should be hot in the cache right
after the send. Hence, it is important to directly switch to
the receiving process before the sender starts producing new
data. In a shared heap system, the message does not need
to be copied but as it is likely to have been created recently,
it is also likely to be hot in the cache.

The real benefits of this design will probably depend both
on the underlying hardware and on the communication char-
acteristics of the Erlang program. We do not believe that
the benefits of this optimization will be very significant in
isolation, but the ability to suspend a process directly after
a send can open up possibilities for further optimizations.

4. DIRECT DISPATCH

The idea to let the send operation suspend the process
can be taken one step further by completely bypassing the
scheduler. Since it is often the case that the sender is sus-
pended waiting for the receiver to react on the sent message,
a natural action for the sender to take is to contribute its re-
maining time-slice to the receiving process hoping that this
will lead to a faster response. We therefore propose a direct
dispatch send operation: After send has placed the message
in the mailbox of the receiver, any reductions left could be
passed to the receiving process, which could be woken up
directly (ignoring the ready-queue).

With this approach, some overhead of the scheduler could
be eliminated and the latency of message passing would be
reduced even further. Since this approach would also guar-
antee that it really is the receiver of the message that will
execute next, the effects of having the message in the cache
will hopefully also become more evident.

As with any process, the receiver is allowed to execute
until it blocks in a receive, or the reduction count reaches
zero, or it performs a direct dispatch send of its own. If
the receiver was taken from the ready queue and becomes
suspended because any of the two latter reasons (i.e. it is
still runnable), it is important to reinsert it into the ready
queue in the same position as it was taken from, lest it might
starve.

If the receiver performs a direct dispatch send back to the
original sender then that sender can get back the remaining
reductions and can keep on executing as usual. This way the
common case, where one process sends a request to another
and then receives a reply to the request, can be almost as
efficient as a function call.

S. INTERPROCESS INLINING

To take these optimization ideas even further, we would
like to not only change the behavior of the send operation
in the runtime system, but actually optimize the code ex-
ecuted before a send and after the accompanying receive.

The goals of this optimization are to reduce the overhead of
message creation (for example, by avoiding enclosing parts
of a message in a tuple), reduce context switching overhead,
and open up possibilities for further optimizations by con-
sidering the code of the receiver in combination with that of
the sender.

The optimization is performed on a pair of functions, the
function containing the send and the function containing
the receive. We will refer to these functions as f and g
respectively, and the pair as a candidate pair. The code at
the point of the receive statement in g is inserted into the
code of f at the point of the send. The resulting code is then
optimized using standard compiler optimization techniques.

To perform this optimization we have to respect the fol-
lowing requirements:

1. Find a program point where a send is performed.

2. Find out at which receive statement this message is
received.

3. Ensure that, at the time of the send, the receiving
process is suspended at the receive statement found
in step 2.

4. Ensure that the mailbox of the receiving process is
empty.

Since this process communication behavior can be hard
to analyze statically — in any concurrent language and in a
dynamically typed language such as Erlang in particular —
we propose the use of profiling and dynamic optimization to
implement this interprocess code merging.

To do this we take advantage of two features of Erlang:
hot code loading and concurrency. The presence of concur-
rency makes it possible to implement supervision and re-
compilation in processes in a way which is separated from
the application. Support for hot code loading ensures that
there are methods for linking and loading re-optimized code
into a running system in an orderly way. We also use a spe-
cial HiPE extension that makes it possible to replace code
on a per function rather than on a per module basis.

We first instrument the system in order to profile the as-
pects that can trigger a recompilation. During normal exe-
cution a supervisor process monitors the profile. When the
profile indicates that a part of the program should be re-
compiled, the supervisor starts a separate process for the
compilation.

The gathered profile information is then used to choose
candidates for inter-process optimization. These candidates
consist of pairs of program points; one program point refers
to a send statement, and the other refers to the correspond-
ing receive statement. These pairs are found by profiling
each send to collect information during execution. The col-
lected information has two components: information about
the destination (Dest), and the number of times the instruc-
tion is executed (Times). The Dest field is initialized to
none, and the Times field to zero. When the send is exe-
cuted, the Times field is increased and the receiving process
is checked. If the mailbox of the receiver is empty then the
program counter (PC) of the receiver is checked; if the PC
is equal to Dest or if Dest is equal to none then Dest is set
to PC. Otherwise Dest is set to unknown.

In the case where a send has only one receive destination,
the send/receive pair is considered as a candidate for the

‘... .._ Yes panancancen
':,JBSL.-—‘E copy H
"oy .

rasaedecras

¢ Restore
' tate 1

[Extracted 1
gl i
T Save :
1..foslate o

Figure 1: Before the merging, function f is executed
by o and function g is executed by 3. After the
merging, f' is executed by a.

optimization. On the other hand, if a send has more than
one destination, even if it is just two different destinations,
then the profiler will classify the send as unknown and no
optimization will be performed.

When a frequently executed candidate pair is found, the
functions containing the send and the receive are compiled
to intermediate code. The intermediate code fragments of
the two functions are then merged. In short, the merging
is done so that the program point of the send statement
is connected with the program point of the receive. The
resulting code is optimized and compiled to native code.

To ensure correct behavior, execution of the optimized
version is guarded by a run-time test. This test checks that
requirements 3 and 4 in the above list hold; otherwise the
original unoptimized version is executed.

5.1 The transformation

We will refer to the sender (the process executing f) as a
and the receiver (the process executing g) as .

For a given send, the function f can be divided into the
following abstract blocks of code:

1. Head (code preceding the send)
2. Message creation
3. send
4. Tail (the rest of the code)
The function g is divided into:
1. Head (code preceding the receive)
2. receive
3. Tail (the rest of the code)

The intention of the transformation is to allow process a to
execute code that would otherwise have been executed by
process 3. Thus, the resulting code for ¢, function ', will
contain fragments of the code from g; see Figure 1.

The merged function f' is a copy of the function f with
these six additions:

1. Test — A test is inserted before the send in f'. This
test checks whether 3 is suspended at the right pro-
gram point (at the receive in g) with an empty mail-
box. If this test succeeds the execution continues with
the optimized code (item 2), otherwise the execution
continues with the original code of f.

2. (Message copying) — In a system with a private heap
architecture the message is copied from the heap of
process ¢ to the heap of process 8 using an explicit
copy operation. (In a shared heap system, no copying
is needed.)

3. Restore state — All live S-temporaries are read from
the stack of 8. (This is done by consulting a map-
ping from intermediate code temporaries to stack po-
sitions.)

4. Code from g — The code from g that is suitable for
external execution is then executed.

5. Save state — All live B-temporaries are written back
to the stack of 8.

6. f-tail — A copy of the tail of f is executed.

Since we rely on a subsequent optimization pass to clean
things up, performing the merging is straightforward. The
subsequent optimization pass, which performs a generalized
constant propagation and dead-code elimination [5], will re-
move unused paths from g.

In our context, the generalized constant propagation prop-
agates not only true constants, but also Erlang terms such as
lists and tuples with dynamic elements. The propagated in-
formation is then used to fold tests and element extractions
on these structures. When the tests are folded and short-
circuited, we perform dead code elimination and removal of
unreachable code.

Often in Erlang, parts of the messages are just used for
switching on the type of message. Interprocess optimiza-
tion together with generalized constant propagation helps
us avoid the copying of these parts of the message.

The code from g has to be rewritten so that it can be ex-
ecuted “externally”, that is, from within process a. This
means that the primitives we want to inline have to be
rewritten for external execution.

We can extract almost all instructions from g for merging
with f, as long as the code fulfills four prerequisites:

1. There has to be some way of ensuring that we do not
get code explosion.

2. The code may not suspend.

3. The control flow may not be passed to code that is not
adapted to external execution.

4. The extracted code must terminate otherwise process
o might hang.

To make sure that these prerequisites are fulfilled some in-
structions are not extracted:

1. A call to another function, a meta call (apply), or a
return can not be extracted since the control could be
passed to code that is not adapted for external execu-
tion.

2. Instructions that lead to the suspension of the pro-
cess, such as the explicit suspension instruction or a
receive.

3. Some built-in functions are large and uncommon and
not worth the effort to adapt for external execution.

4. Non-terminating code is unacceptable. If some bug
in 8 makes it loop forever, we do not want this bug
to propagate to the process o. To ensure that the ex-
tracted code terminates, we do not accept any loops in
the control flow graph of the extracted code. Note that
this is not such a harsh restriction as it may sound,
since the only way to get a loop in the intermediate
code is by making a tail-recursive call where the caller
and the callee are the same. If there is a loop it will
probably contain the receive that caused the extrac-
tion in the first place. In this case the control-flow
graph will be cut at this point and the loop will be
broken.

The instructions in the g-tail that do not belong to any of
the categories listed above are extracted. A control flow
path that contains an instruction that is not extractable is
cut just before that instruction.

To propagate changes in the state of 8 we have to save
the new state at the end of the extracted code. To this end,
we write all live temporaries back to the stack at the end of
each path of the extracted code. At the end of each of these
paths, the continuation pointer of 8 is set to point to a stub
containing the instructions from that path that could not
be extracted from g.

To simplify optimization we duplicate the tail of f. At
the end of each path of the extracted control flow graph we
insert a jump to this copy. This ensures that when the code
in the copy is reached, the execution is guaranteed to have
passed through the code extracted from g.

5.2 Further considerations

In a runtime system architecture where each process allo-
cates its private heap, the garbage collector typically relies
on the fact that all data structures accessed by a process
are allocated on the heap of that process. This invariant is
temporarily broken while the process o accesses the state
of process 3, but since we have control over when o is sus-
pended and when garbage collection is triggered, we can
ensure that the invariant is maintained at these points. In
a shared heap architecture, this is not a problem.

Our inter-process optimizer will change the scheduling be-
havior. One might suspect that this could lead to a change
in the concurrency semantics of the program. However, note
that since in the optimized code we do not allow the code
from g to loop and count each reduction that would have
been counted before the optimization, the observable be-
havior will remain unchanged.

The inter-process optimizer will merge code from two func-
tions (f and g). If the module of g is updated with hot-code
loading, old code from g will remain inside f (actually in f).
However, this code will never be executed, since the run-
time test in f’ only succeeds when the receiver is suspended
from old code. (If the module containing f is replaced then
all optimized code is removed and in this case there is no
problem at all.)

5.3 Return messages

The situation where the receiver of a message sends a mes-
sage back to the original sender is so common that we have
decided to handle this situation specially. The technique we
have devised requires the following criteria to be fulfilled:

1. There is a send in g-tail.

2. The destination of the send in g is the process a.
3. All paths through f-tail contain a receive.

4. The mailbox of a is empty.

We ensure these criteria by first of all always check that the
mailbox of « is empty before we use the optimized code. By
doing this check in the beginning, we get a very simplified
control flow graph for f’.

In a private heap system we just copy the message from
the heap of process 3 to the heap of process «, if the desti-
nation of the send is . In a shared heap system no copying
is needed, the pointer to the message can be put directly in
the temporary containing the received message. Now, the
nice thing is that by using generalized constant propagation
we can often remove the runtime tests completely. Depend-
ing on how the message is used, we might also get rid of the
copying between the processes completely even in a private
heap architecture.

5.4 Potential gains

With interprocess inlining we can reduce the overhead of
process communication in four different ways:

1. Short-circuit switches on messages
We can use the information about the form of the
message to short-circuit the pattern matching in the
receive. Since the switching usually is made up of
several tests on heap allocated data, short-circuiting
results in a control flow path with fewer load, compare,
and branch instructions.

We also expect that this will also make the hardware
prefetching mechanisms work better. If the receiver
can receive several different messages that have the
same frequency, then the switch will go in different
ways each time rendering the prediction useless, which
results in pipeline stalls.

2. Reduce message passing
It is quite common in Erlang programs that a process
creates a message, sends it to another process, which
subsequently performs some matching on the struc-
ture of the message, accesses some components of the
message and never looks at the whole message again.

By short-circuiting switching on the message we can
avoid the creation of the message (and also save time
in the garbage collector).

3. Reduce context switching
We can, in the cases where the receiver immediately
answers, remove the context switch completely. This
not only means that the receiver does not need to be
scheduled, but it also means that the executing pro-
cess does not need to be suspended. Measurements
indicate that in many concurrent Erlang programs the
processes do not exhaust their time-slice but they are

instead suspended on receive. If the sender can keep
on running until the time-slice is used up then the ex-
pensive scheduler would be executed less. Letting the
same process execute longer also results in better cache
behavior.

4. Enabling of further optimizations

The most significant gain can come from the ability
to do optimizations on the merged code, just as the
real gain from procedure inlining comes from the opti-
mizations done after the inlining. We get the possibil-
ity to do, for example, constant propagation, common
subexpression elimination, and register allocation, on
merged code from the sender and the receiver.

6. CONCLUDING REMARKS

We have presented several different methods for cross-
process optimization aiming to reduce the overhead for in-
terprocess communication. These methods also enable fur-
ther optimizations across process boundaries, such as con-
stant propagation and more global register allocation. The
context switch can be completely eliminated in some cases,
reducing the overhead for concurrency.

These optimizations will speed up existing Erlang pro-
grams without requiring any modifications to the source
code. Since the use of processes will be less expensive, the
usefulness of concurrency is extended, making it possible to
use processes in cases where it previously has been consid-
ered too expensive.

Acknowledgments

We thank Sven-Olof Nystrém for interesting discussions on
the implementation of interprocess inlining. This research
has been supported in part by the ASTEC (Advanced Soft-
ware Technology) competence center with matching funds
by Ericsson Development.

7. REFERENCES

[1} M. Feeley. A case for the unified heap approach to
Erlang memory management. In Proceedings of the
PLI’01 Erlang Workshop, Sept. 2001.

[2] M. Feeley and M. Larose. Compiling Erlang to Scheme.
In C. Palamidessi, H. Glaser, and K. Meinke, editors,
Principles of Declarative Programming, number 1490 in
LNCS, pages 300-317. Springer-Verlag, Sept. 1998.

[3] E. Johansson, M. Pettersson, and K. Sagonas. HiPE: A

High Performance Erlang system. In Proceedings of the

ACM SIGPLAN Conference on Principles and Practice

of Declarative Programming, pages 32—43. ACM Press,

Sept. 2000.

E. Johansson, K. Sagonas, and J. Wilhelmsson. Heap

architectures for concurrent languages using message

passing. In Proceedings of ISMM’2002: ACM

SIGPLAN International Symposium on Memory

Management, pages 88-99. ACM Press, June 2002.

(5] S. S. Muchnick. Advanced Compiler Design &

Implementation. Morgan Kaufman Publishers, San

Fransisco, CA, 1997.

S. Torstendahl. Open Telecom Platform. Ericsson

Review, 75(1):14-17, 1997. See also:

http://www.erlang.se.

(7] J. Wilhelmsson. Exploring alternative memory
architectures for Erlang: Implementation and
performance evaluation. Uppsala master thesis in
computer science 212, Uppsala University, Apr. 2002.
Available at http:/ /www.csd.uu.se/projects/hipe.

[4

6

Distel: Distributed Emacs Lisp (for Erlang)

Luke Gorrie*

November 10, 2002

Abstract

Distel is an Emacs-based user-interface toolkit
for Erlang. We introduce “Emacs nodes” us-
ing the Erlang inter-node distribution protocol,
and make communication natural by extending
Emacs Lisp with Erlang’s concurrent program-
ming model. The extensions are intended for
creating Emacs front-ends to Erlang programs,
in combination with Emacs’s traditional user in-
terface facilities.

We present an introduction and tutorial on
Distel programming, and show how to write
a complete Erlang process manager in Emacs
Lisp. We then present a suite of Emacs
extensions for Erlang development called the
erlang-extended-mode, and describe the imple-
mentation of the Distel runtime system.

1 Introduction

Distel (rhymes with “crystal”) is intended for
controlling Erlang [1] [2] programs with Emacs.
The idea is to take the most essential features of
Erlang and integrate them into Emacs Lisp [3], so
that the two can communicate in a natural way.
The features we selected are processes, pattern
matching, and distribution, and they are repro-
duced faithfully at a high level, though many de-
tails differ. In general, higher priority is given to
neat integration with Emacs Lisp than to exact
reproduction of Erlang semantics.

The core of Distel is essentially an Erlang dis-
tribution library, much like the erl_interface
for C in OTP [2], extended with ideas from the
Etos [4] Erlang-to-Scheme compiler. Whereas
Etos implements a complete Erlang compiler and
runtime system in Scheme, Distel is a hybrid sys-
tem, and implements “just enough” of Erlang to

*luke@bluetail.com

support concurrent programming in Emacs Lisp.
In particular, Distel is implemented only with
normal Lisp functions and macros, and has no
special interpreter loop or compiler.

This paper is organised as follows. Sections
2-4 describe the Emacs Lisp programming ex-
tensions, and Section 5 uses them to present
a small but complete process-manager applica-
tion, as a tutorial for Distel application devel-
opment. Section 6 describes the implementa-
tion of Distel itself. Section 7 describes the
erlang-extended-mode and the development
tools it includes. Sections 8-10 discuss the past,
present, and future of Distel, Section 11 describes
related work, and Section 12 concludes.

2 Processes

Emacs Lisp processes are the fundamental fea-
ture of Distel, and are provided with a set of
Lisp functions and macros that correspond to
Erlang’s Built-In Functions (BIFs) and language
constructs. In fact, the programming interface
for Emacs processes is similar enough to Erlang
that the best introduction is to see how a simple
Erlang process can be rewritten in Emacs Lisp.
A message-counting Erlang process is shown in
Figure 1, and an Emacs Lisp version in Figure 2.
The similarities of the programs should help to
shed light on how the Emacs Lisp process works
- we’ll fill in the details as we go along.

We can test the Emacs message counter by
spawning one and sending it some messages:

(erl-spawn
(spawn-counter)
(erl-send ’counter ’one)
(erl-send ’counter ’two)
(erl-send ’counter ’three))

spawn_counter() ->
spawn(fun() ->
register(counter, self()),
counter_loop(1)
end) .

counter_loop{(Count) ->
receive
Msg ->
io:format("Got msg #~p: “p™n",
[Count, Msgl)
end,
counter_loop(Count + 1).

(defun spawn-counter ()
(erl-spawn
(erl-register ’counter)
(&counter-loop 1)))

(defun &counter-loop (count)
(erl-receive (count)
((msg (message "Got msg #%S: %S"
count msg)))
(&counter-loop (+ count 1))))

Figure 1: Message counter process in Erlang

Which will produce the following reports in the
“*Messages*” buffer:

Got msg #1: one
Got msg #2: two
Got msg #3: three

(erl-spawn ...) creates a new process. It is
a macro, and the enclosed code is executed in
the new process. The process has its own buffer,
which can be used in any way — contain text,
use modes, or visit files. The buffer isn’t dis-
played automatically, but can be made visible
with Emacs functions like display-buffer. Be-
cause each process has its own buffer, buffer-local
variables are effectively process-local — they can
be used to store process state, much like the Er-
lang process dictionary.

(erl-send who message) sends a message to
a process. The who argument accepts the same
types as Erlang’s ! operator: a PID (local or
remote), a registered name denoted by a symbol,
or a remote registered name denoted by a [name
node] vector. (Here, as elsewhere in Distel, vec-
tors are used where Erlang uses tuples.)

(erl-register name) assigns the current
process a registered name, like the register/2
BIF in Erlang.

(erl-receive saved-vars clauses after...) re-
ceives a message by pattern matching (it is more
complicated than Erlang’s receive, due to im-
plementation trade-offs discussed in Section 6.)

Figure 2: Message counter process in Emacs Lisp

Saved-vars names the local variables that will be
used once a message is received (other local vari-
ables become unbound.) Clauses specifies which
messages can be received and how they are han-
dled. The syntax for each clause is (pattern
body...), where pattern is an Erlang-style pat-
tern (described in Section 4), and body is one or
more Lisp expressions to run when the pattern is
matched. There are also zero or more after ex-
pressions, which run after a message is handled,
regardless of which clause matches.

Most importantly, erl-receive never returns.
Instead it bundles up the execution state and
throw’s it directly back up to a scheduler loop,
bypassing any code on the stack. This is
the biggest difference from Erlang programming
style: in Erlang a receive means “handle a mes-
sage and then return,” but erl-receive means
“this process state is complete - here is the next
one.” This is an important point for program-
ming with Distel, and leads to writing Emacs
processes in continuation-passing style [5] [6],
where “what to do afterwards” is given explicitly
to erl-receive instead of relying on the stack.

Because erl-receive doesn’t return, and nor
do functions that call it, they should only be
tail-called — called as the last thing a function
does. This rule is made explicit in Distel pro-
grams by the convention of naming each function
that leads to erl-receive with an “&” prefix, so

that we know to only call it in tail position. The
& naming is applied to all functions that call ei-
ther erl-receive or another &-function, except
when the calls are wrapped in an erl-spawn, be-
cause erl-spawn catches the throw and returns
normally.

Returning to Figure 2, we can see that
&counter-loop is specially named because it di-
rectly calls erl-receive, while spawvn-counter
is not because although it calls an &-function, it
does so inside an erl-spawn.

3 Distribution

Emacs processes can communicate directly with
actual Erlang processes in other nodes, via the
Erlang distribution protocol [7]. Like in Erlang,
most BIFs accept either local or remote PIDs,
for example erl-send, erl-link, erl-exit, and
so on. The Erlang method of sending messages
to remote registered processes also works, so to
achieve:

{foo, bar@cockatoo} ! Message.
We write the equivalent:
(erl-send [foo bar@cockatoo] message)

This simple mechanism suffices to bootstrap
full communication, because normal Erlang
nodes automatically run a set of useful regis-
tered servers. The RPC server, registered with
the name rex, is the most handy - it receives re-
quests to apply a function with some arguments,
and sends back the results. This server is used
throughout Distel programs to make RPCs to Er-
lang nodes.

Of course, when a message is sent from Emacs
to Erlang (or vice-versa), it is necessary to trans-
late the data in the message between languages.
In other words, we need a mapping between Er-
lang types and Emacs Lisp types. For Distel we
have chosen a mapping that is convenient to use,
though not complete or symmetric.

Some types map perfectly: lists, atoms with
symbols, tuples with vectors. Integers are
mapped directly, but the mapping is partial
because Emacs Lisp integers are only 27 bits

(Emacs has no bignums.) PIDs, Ports, and Ref-
erences are mapped onto vector-based structures,
and tagged with a special uninterned symbol® to
distinguish them from the vectors used for tuples.

Mapping strings from Erlang to Emacs Lisp is
troublesome. The Erlang binary term encoding
includes a string type, but it is used loosely - you
never know whether an Erlang string will be en-
coded as a string or as a list of integers. To side-
step the problem, Erlang binaries are mapped
onto Emacs strings, and we always use binaries to
reliably send text to Emacs. Emacs Lisp strings
are mapped onto Erlang strings.

Other types, such as floats and functions, are
not yet mapped, and attempting to send them
triggers an error.

4 Pattern Matching

Distel has three pattern matching macros, one
being erl-receive, which has already been in-
troduced. Each macro uses the same pattern syn-
tax, described below.

(mlet pattern object body...) matches object
with pattern, and on success executes the body
forms with all pattern variables bound. If the
match fails, an error is signalled. mlet is similar
to Erlang’s = operator.

(mcase object clauses) matches an object with
a series of clauses, where the syntax of each clause
is (pattern body...). The first clause whose pai-
tern successfully matches is selected, and its body
forms are then executed with all pattern vari-
ables bound. If no clause matches, an error is
signalled. mcase is of course based on Erlang’s
case expressions.

4.1 The Pattern Syntax

The pattern syntax is very similar to Erlang,
though it lacks guards in the current implementa-
tion. The syntax is specified below, and followed
by some examples.

Trivial: t, nil, [, 42,

Constants, matched literally.

1An uninterned symbol in Emacs Lisp is like a ref in
Erlang, but it looks like a symbol.

Sequence: (patl ...), [patl ...]

Sequence patterns match the “shape” of the
sequence, as well as each individual sub-
pattern. The pattern can be either a list
or a vector, and will only match a sequence
of the same type.

Pattern variable: var, my-variable, ...

Symbols denote variables that the pattern
should bind. The first time a particular
variable is used it binds to the correspond-
ing value, and then further occurrences must
match this bound value.

Following a successful pattern match, a Lisp
variable is bound for each pattern variable.

Constant: ’symbol, ’(x y 2)

Quoted constants are matched literally by
value.
Bound variable: ,var

The pattern ,var matches the value of the
pre-bound Lisp variable var. This is like
using an already bound variable in a pattern
in Erlang.

Wild card: _ (underscore)

Matches anything, with no binding.
For example, the Erlang code:

case Result of
{ok, Value} -> Value;
{error, Reason} -> exit(Reason)
end

could be written in Lisp as:

(mcase result
([’ ok value] value)
([’error reason] (erl-exit reasonm)))

and similarly,

{ok, Value} = Result,
Value

could be written as:

(mlet [’ok value] result
value)

5 A Process Manager

This section describes the design and implemen-
tation of a small but complete process-manager
application. The program does two things: it
presents a list of the processes running on an Er-
lang node, and it provides some commands to
operate on them. The process list is shown in
an Emacs buffer, with a one-line summary for
each process. The summary line shows the PID,
registered name (if any), number of reductions,
and number of unreceived messages, as shown in
Figure 3.

The first step in designing the application is to
divide up the work between Emacs and Erlang,
and decide how they will interact. The goals are
to do the work on the side that makes it the easi-
est, and to keep the program simple by minimis-
ing the interactions.

The task for the Erlang side of the process
manager is to create formatted summaries of all
the processes in the system, ready for Emacs to
display. The Emacs side then must fetch a pro-
cess list, display it in a buffer, and provide some
commands for operating on the processes. The
interactions are driven from Emacs, using RPCs
to the rex server (mentioned in Section 3.)

5.1 The Erlang Side

The Erlang side is implemented by the procman
module of Figure 4, which exports the function
process.list/0. This function returns the PID
and a one-line summary of each process in the
node, plus an extra line containing column head-
ings to match the summary lines. Note that all
the text is returned as binaries, to avoid the prob-
lem with strings discussed in Section 3.

Pid Name Reds Msgs
<0.0.0> init 3836 0
<0.2.0> erl_prim_loader 45203 0
<0.4.0> error_logger 245 0
<0.5.0> application_contr 2414 0
<0.7.0> <nome> 59 0

Figure 3: Process Manager “screenshot”

-module(procman) .
-export ([process_list/0]).

%% Returns: {ok, Header, [ProcessInfol}
%% ProcessInfo = {Pid, Summary}
%% Header = Summary = binary()
A A
%% Returns a one-line summary of each
%% running process along with its pid,
%% plus a heading that matches the
%% summary format.
process_list() —>

{ok,

fmt_row("Pid", "Name", "Reds", "Msgs"),

[{P, info(P)} || P <- processes()]}.

info(Pid) ->
PidName = pid_to_list(Pid),
Reg = item(Pid, registered_name),
Reds = item(Pid, reductioms),
Msgs = item(Pid, message_queue_len),
fmt_row(PidName, Reg, Reds, Msgs).

item(Pid, Item) ->
case process_info(Pid, Item) of
{Item, Value} -> to_string(Value);
[] -> “<none>"
end.

fmt_row(A,B,C,D) —>
list_to_binary(
io_lib:format(""-8s ~-17s ~-10s ~s™n",
[4,B,C,D1)).

to_string(X) ->
io_lib:format("~p",

x1.

Figure 4: Erlang side of process manager

(defun pman (node)
"Show a list of all processes on NODE."
(interactive (list (erl-read-nodename)))
(erl-spawn
(display-buffer (current-buffer))
(erl-send-rpc
node ’procman ’process_list 7())
(erl-receive ()

(([’rex [’ok header plist]]
(pman-insert header plist)
(erl-idle))

([’rex [’badrpc reason]]
(message "RPC failed: %S"
reason))))))

(defun pman-insert (header plist)
"Insert all process information.
PLIST is a list of [PID Summary]."
(insert header)

(dolist (pinfo plist)
(mlet [pid text] pinfo
(insert
(propertize text
’pid pid)))))

Figure 5: Emacs pman process

5.2 The Emacs Lisp Side

The job for the Emacs program is to call
process_ 1ist/0 on some FErlang node and
present the result. It must also record an as-
sociation between summary text in a buffer and
the PID of the process it represents, so that later
we can write commands to operate on the pro-
cess represented by a particular line of text. The
code for the Emacs process is given in Figure 5.

The command pman creates an Emacs process
and uses it to display the process list. The com-
mand takes one parameter, the Erlang node to
summarise. The interactive declaration says
that when the command is called interactively
(by a key binding or M-x), erl-read-nodename
is called to choose the node. This function is
predefined, and will either prompt the user for a
node or reuse the most recently chosen one from
a cache.

The body of the function is wrapped in an
erl-spawn, so it runs in a new process. Be-
cause an Emacs process has its own buffer, we
use display-buffer to show it on the screen di-
rectly.

Next, the process sends an RPC to the Er-
lang node to call procman:process_1ist (). The
predefined erl-send-rpc function is similar to
rpc:call/4 in Erlang, its parameters are node,
module, function, and arguments. The RPC
server sends back the result in a {rex, Result}
message, so we have an erl-receive with two
patterns: one to receive the summary informa-
tion on success, and one to handle any error on
the Erlang side (for example, the procman mod-
ule not being available.) If the summary arrives
successfully, it is inserted into the buffer, and
then the process calls erl-idle to enter an idle
loop. The idle loop is like a receive with no pat-
terns, meaning “schedule out indefinitely.” If we
had just returned without entering a receive, the
process would terminate with reason normal and
the user-interface buffer would be killed.

The pman-insert function takes the data we
got from Erlang and puts it into the buffer for dis-
play. The header line is inserted at the top, then
each summary is destructured with the mlet pat-
tern matching macro and inserted. To preserve
the association between the summary text and
the process it represents, we use an Emacs fea-
ture called “text properties,” which allows text in
strings and buffers to be tagged with arbitrary
key/value properties. The call to propertize
tags the summary line with a pid property, so
that later we can use get-text-propertyto look
up the PID belonging to a piece of text in the
buffer.

The process summary part is now complete,
and running “M-x pman” will display a summary
buffer as we showed in Figure 3.

What remains is to define a way to do things
with the processes. Figure 6 shows a com-
mand to kill the process on the current line. It
finds out which process we want to kill by call-
ing get-pid-at-point, which looks up our pid
property at the current location in the buffer
(i.e. where the cursor is). Then it sends the
process an exit signal with reason kill via the
built-in erl-exit fumnction, which is equivalent
to erlang:exit/2.

(defun pman-kill ()
"Kill the process under the cursor."
(interactive)
;; send an EXIT signal to the process
(erl-exit ’kill (get-pid-at-point)))

(defun get-pid-at-point ()
"PID of the process at the point."
(or (get-text-property (point) ’pid)
(error "No process at point")))

Figure 6: Emacs kill process command

A command for displaying a process backtrace
is shown in Figure 7. This is more involved than
killing a process, because we must send a request
for the backtrace and then receive and display the
reply asynchronously. We achieve this by spawn-
ing a new process to request the backtrace, and
then display the result in its own buffer when the
reply arrives.

Before spawning the new process, we look up
the PID that we want a backtrace for. We do this
first because the code inside the erl-spawn will
run in the new process’ buffer, and the lookup
has to be done in the buffer that has the pro-
cess list. Next the new process is spawned, and
uses pop-to-buffer to make its own buffer visi-
ble somewhere on the screen.

The process then makes an RPC to
erlang:process_info(Pid, backtrace). The
return type is {backtrace, BacktraceBinary},
which is very convenient for our purposes, since
the binary will be received as a string. When
the result arrives, we simply insert the backtrace
text into the buffer, and enter an idle loop.

5.3 Summary

This procman application, though simple, is com-
plete and useful. The approach to design used
here is a good one: minimise the interactions,
and do things where they are easiest. It is of-
ten best for Erlang to spoon feed Emacs, just as
the procman:process_1ist/0 function returns a
structure that is trivial for Emacs to display.

(defun pman-backtrace ()
"Show backtrace of process at cursor.
The backtrace pops up in a buffer."
(interactive)
(let ((pid (get-pid-at-point)))
(erl-spawn
(pop-to-buffer (current-buffer))
(send-backtrace-rpc pid)
(erl-receive ()
(([’rex [’backtrace text]]
(insert text)
(erl-idle))
([’rex [’badrpc reason]]
(message "RPC failed: %S"
reason)))))))

(defun send-backtrace-rpc (pid)
"Send an RPC for the backtrace of PID."
(erl-send-rpc (erl-pid-node pid)
’erlang
’process_info
(list pid ’backtrace)))

Figure 7: Emacs “backtrace” command

6 Runtime System

The Distel runtime system creates and schedules
processes, delivers their messages, cleans up after
their errors, and communicates with other nodes
on the network. This section sketches the gory
details of the implementation, and is not required
reading for the rest of the paper.

6.1 Processes and Scheduling

An Emacs Lisp process is represented as an
Emacs buffer, with all of its identity and
state stored in buffer-local variables. The ac-
tual variables we use are erl-self (the PID),
erl-mailbox, erl-links, and so on. There
are also some cute mappings of process me-
chanics onto Emacs buffers, for example the
kill-buffer-hook is used to propagate exit sig-
nals, and registered names are implemented with
buffer names of “*reg namex”. Note that be-
cause all process state is stored in buffer-local

variables, context-switching just means changing
buffers.

While a process is scheduled out, its state
also includes a continuation function that can
be called to resume execution from where it left
off. We only ever schedule a process out when
it blocks to wait for a message, so the continu-
ations are created by erl-receive. The extra
arguments that erl-receive requires reflect the
difficulty of capturing the control state in Emacs
Lisp, which lacks lexical closures and first-class
continuations.

Each time a new process is spawned, or a
message arrives from the network, the sched-
uler loops by invoking processes one at a time
until they have all terminated or blocked in a
receive. The scheduler invokes a process by
switching to its buffer and then calling the con-
tinuation function, which does what it does
and then either throws back a new continua-
tion via erl-receive, raises an error, or sim-
ply returns. If it returns a new continuation
then the process is scheduled out until a new
message arrives, otherwise it is terminated by
setting an erl-exit-reason variable and then
killing its buffer (which propagates an exit signal
via kill-buffer-hook.) This simple scheduler
is based on a technique called Trampolined Style
8-

While a process is scheduled in and running,
it can call BIFs to send messages and to do
other process-related things. The semantics of
BIFs are based on the Erlang 4.7 specification
[9], and their implementation is very simple, av-
eraging about 5 lines of code each. For exam-
ple, when (erl-send P M) is called, it either
passes the request to the distribution module (if
P is remote), or just switches into P’s buffer,
adds M to the end of erl-mailbox, and marks
the process as schedulable. Similarly, if process
P calls (erl-link @), then @ is added to the
erl-links list of P, and either the same is done
with @ or the request is handed off to distribu-
tion, depending on whether @ is local.

6.2 Network Distribution

Distribution over the network is built from three
modules: a library for binary encoding, a frame-
work for writing network-attached state ma-

chines, and the state machine for the Erlang dis-
tribution protocol [7]. The binary coding library
is a straightforward implementation of the Er-
lang external term format [10] using the map-
ping from Section 3. The networking framework
supports writing simple state machines and at-
taching them to TCP sockets, with the crucial
property of being purely event-driven and using
non-blocking I/0. It is necessary that all I/0
be done asynchronously, to avoid freezing Emacs
while a background task waits on I/O - an of-
ten lamented property of many other Emacs net-
working programs.

The Distributed Erlang state machine first au-
thenticates itself and negotiates features, and
then serves requests bidirectionally. The imple-
mentation is straightforward because the distri-
bution protocol is very high level — each message
maps neatly onto a BIF. The messages imple-
mented in Distel are:

e SEND(PID, MSG)

LINK(FROM, TO)

UNLINK(FROM, TO)

EXIT(FROM, TO, REASON)

REG_SEND(FROM, NAME, MSG)

Send a message addressed by registered
name. The PID of the sender is included
so that an EXIT signal can be sent back if
no such name is registered.

When a request arrives from another node, the
arguments are decoded and the corresponding
BIF is called. Similarly, when an Emacs BIF
is called with a remote process, the request is
encoded and forwarded to the node where the
process is running — perhaps first being queued
while a TCP connection is established.

Optional extensions, such as process monitor-
ing, have not yet been implemented.

7 Applications
The Distel software distribution includes a vari-

ety of applications and tools for Erlang develop-
ment. These tools are unified with a minor mode

called the erlang-extended-mode, which com-
plements the standard erlang-mode. The ma-
Jor features are described below, along with their
commands and key bindings.

7.1 Dynamic “TAGS”

Distel includes a small source code cross-
referencer for Erlang. The basic feature is to
jump from a function call in a program to the
definition of that function ~ for instance from the
text lists:sort(L) to the definition of sort/1
in lists.erl. The feature is similar to etags
(3], but uses an Erlang node to dynamically find
the right source files, instead of a statically gen-
erated database. The advantage is that running
an Erlang node is a lot easier than maintaining
a TAGS file, so the feature can be used all the
time.

erl-find-source-under-point (M-.)

Jump to a function definition. The defini-
tion will be chosen from the text at the point
— either a function call, or declaration in an
export list.

erl-find-source-unwind (M-#)

Jump back from a function definition. This
is a multi-level way to backtrack after fol-
lowing a chain of function definitions.

7.2 Debugger

An Erlang debugger interface, called edb, is
also included with Distel. This uses the same
interpreter-based back-end as the OTP debugger
application, but replaces the Tk-based front-
end with an Emacs interface. Erlang mode
buffers can use edb commands to toggle debug-
interpretation of a file, toggle a breakpoint on a
line, and to pop up a “monitor buffer” to view
and control debugged processes.

The monitor buffer shows all processes running
debugged code, and lets you “attach” to any pro-
cess that is stopped in a breakpoint. Attaching to
a process pops up a buffer containing the source
code of the process’s current module, with a vi-
sual marker pointing to the current line. From
this buffer the process can be single-stepped, its
local variables can be inspected, and so on.

edb-toggle-interpret (C-c C-d i)

Toggle debug-interpretation of the current
file.

edb-toggle-breakpoint (C-c C-d b)

Toggle a breakpoint on the current line.

edb-monitor (C-c¢ C-d m)
Popup the debugger monitor buffer.

7.3 Process Manager

Distel includes a process manager based on the
OTP pman application. This program is like the
procman example of Section 5, but more polished:
it uses a major mode for key bindings, and sup-
ports tracing process events via the trace BIF.

erl-process-list (C-c C-d 1)

Pop up a process manager buffer.

7.4 Profiler

A front-end to the OTP fprof profiler is in-
cluded. The fprof command prompts for an Er-
lang expression to profile, executes it with profil-
ing on an Erlang node, and presents the results
in an Emacs buffer. The result summary shows
the time spent in each Erlang function, and can
“zoom in” on each function to show its callers
and callees.

fprof (C-c C-d p)

Profile an Erlang expression from the
minibuffer.

7.5 Dilber: The disk_log Viewer

Dilber is a viewer for Erlang disk log files, in
the spirit of Unix tail. It is also the first “third
party” Distel application — written by Vladimir
Sekissov, and in on-going use as a system admin-
istration tool.

Dilber will be included in a future release of
Distel.

7.6 Interactive Sessions

An Interactive Session buffer is to Erlang as the
scratch buffer is to Emacs Lisp — a scratchpad
where code snippets can be hacked and executed.
The advantages over the Erlang shell are that ses-
sion buffers are random-access, and that local Er-
lang functions can be defined individually in the
buffer. This is especially useful for playing with
code snippets for the erlang-questions mailing
list — you can try Erlang functions without cre-
ating and compiling a real source file.

Interactive session buffers were conceived and
implemented by David Wallin, and are included
in the Distel distribution.

erl-ie-show-session (C-c C-d s)

Pop up a session buffer, creating it if neces-
sary.

erl-ie-copy-buffer-to-session (C-c C-d ¢)

Create a session buffer, and copy the con-
tents of the current buffer into it.

erl-ie-copy-region-to-session (C-c C-d r)

Create a session buffer, and copy the con-
tents of the region into it.

7.7 Miscellany
erl-eval-expression (C-c C-d :)

Evaluate an Erlang expression from the
minibuffer.

erl-reload-module (C-d4 C-4 L)

Reload an Erlang module, given by name in
the minibuffer.

8 History

Distel represents the evolution of several at-
tempts at using Emacs as a user interface for
Erlang. The first. was “erlext.el”, which be-
gan as an implementation of the Erlang external
term format and was later extended with TCP
socket communication. The drawback of this ap-
proach is that it needs a special TCP server to
run in the Erlang node, which turned out to be
too much of an obstacle for spontaneous use.

10

This was followed by Ermacs,?2 a concurrent
Emacs clone written compietely in Erlang. Er-
macs is fairly complete — it has major modes for
Erlang and Scheme programming, a built-in Er-
lang shell, and support for efficiently editing large
files. However, once the core editor was complete,
it was obvious that GNU Emacs has an incredi-
bly large set of wonderful features, and that ex-
tending Ermacs to include “enough” of them was
completely out of the question.

The lessons learned from Ermacs lead to Dis-
tel, which continues where erlext left off. Ver-
sion 1.0 replaced erlext’s custom socket proto-
col with the Erlang distribution protocol, added
very basic Emacs Lisp processes, and included
a small process manager application. Version 2.0
greatly improved the programming interface with
erl-receive and pattern matching, which made
it possible for later versions to include the sub-
stantial collection of Erlang development tools
available today.

9 Implementation Status

Distel is a stable piece of software, compati-
ble with all recent versions of GNU Emacs and
XEmacs, and suitable as an Erlang development
tool without additional programming. The im-
plementation is free software, with development
hosted on SourceForge®, and source code and
documentation available on the Distel homepage:

bttp://distel.sourceforge.net/

At the time of writing, the implementation is
3,714 lines of Emacs Lisp and 994 lines of Erlang.
It breaks down as follows:

e 608 lines of Emacs Lisp for the scheduler,
BIF's, and process representation.

e 1,231 lines of Emacs Lisp for the distribution
protocol (264 for networking, 395 for encod-
ing and decoding, 99 for the port mapper
(epmd) client, and 473 for the distribution
protocol.)

2http://www.bluetail.com/luke/ermacs/
Shttp://www.sourceforge.net /

® 1,489 lines of Emacs Lisp for the
erlang-extended-mode (544 for the
debugger, 200 for interactive sessions, and
no clear division for the remainder.) All
of the Erlang code is used for supporting
the erlang-extended-mode, Distel’s core
doesn’t require any.

The rest is made up of random examples and
test suites.

10 Future Directions

Distel development is focused on the
erlang-extended-mode and related tools,
with language and runtime system extensions
being made as they are needed. The plan is to
continue adding new applications and extending
Distel’s capabilities as an integrated Erlang
development environment. It would also be
desirable to merge the useful features of Distel
that don’t require the runtime system into the
standard (and wonderful) erlang-mode.

Using Distel for general Emacs-to-Emacs con-
current and distributed programming is another
exciting possibility. Today this would require
only an implementation of the port mapper
(epmd) and for Emacs to listen for incoming con-
nections,* though it may be preferable to use a
completely different communications layer.

11 Related Work

The three main types of related work are Er-
lang distribution libraries for other languages,
the Etos compiler, and other Emacs-based in-
tegrated development environments (IDEs).

Just like Distel has “Emacs nodes,” the OTP
applications erl_interface and Jive have C and
Java nodes respectively. David Schere’s “Erlang-
Python”® implements Python nodes, using a
binding to erl_interface. Others implementa-
tions may well also exist.

Etos [4] is an Erlang to Scheme compiler,
which is related to Distel in that they both imple-

4 At the time of writing, this seems to only be possible
with the CVS version of GNU Emacs, or with an external
helper program to bind the listen socket.

Shttp://starship.python.net/crew/gandalf, /PyErlang/

ment high-level Erlang runtime systems in Lisp
dialects. Etos was a good source of inspiration,
and anyone who studies Distel owes it to them
self to see how much more neatly things can be
done with first-class continuations.

Two popular and mature Emacs-based IDEs
are the Java Development Environment for
Emacs (JDEE)®, and ILISP [11] for Lisp. We
hope that Distel will fill a similar niche for Er-
lang programmers.

Anders Lindgren’s “Erl’em” program is said to
have been similar in scope and purpose to Distel,
but appears to have been swept away in the winds
of time.” Anders is the main author of the Emacs
erlang-mode.

12 Conclusion

We have extended Emacs Lisp for concurrent and
distributed programming, and applied the ex-
tension to developing Erlang development tools.
This has been a practical endeavour, and the re-
sulting tools are immediately available to all Er-
lang programmers who use Emacs, as is a familiar
programming interface for writing more tools.

We have also further demonstrated the power
and flexibility of Emacs. Several Distel applica-
tions are highly concurrent, particularly the edb
debugger which monitors and controls multiple
processes as they run, without interfering with
the user’s editing. The ease with which these ap-
plications are written suggests that Emacs Lisp
is very easily extended into a powerful concur-
rent and distributed programming system — in
this case using Erlang’s model, but it is easy to
envision others.

Is there anything Emacs can’t do?

13 Acknowledgements

I would like to thank Vladimir Sekissov, David
Wallin, and Mats Crongvist for their Distel hack-
ing; Darius Bacon and Martin Bjérklund for their
help with Distel’s design and invaluable reviews
of drafts of this paper (usual disclaimer applies);

Shttp://jdee.sunsite.dk .
7If you have a copy of this that you are allowed to
distribute, please get in touch with me.

11

11

and all the colleagues and erlang-questions
readers who have installed Distel and helped to
iron out the (many) teething problems.

References

[1] Joe Armstrong, Robert Virding, Claes Wik-
strém, and Mike Williams. Concurrent Pro-

gramming in Erlang. Prentice-Hall, second
edition, 1996.

[2] The open source erlang
http://wwu.erlang.org/.

[3] Bill Lewis, Dan LaLiberte, and Richard
Stallman. The GNU Emacs Lisp Reference
Manual. Free Software Foundation.

website.

[4] Marc Feeley. Etos: an erlang to scheme com-
piler. August 1997.

(5] Daniel P. Friedman, Mitchell Wand, and
Christopher T. Haynes. FEssentials of Pro-
gramming Languages. MIT Press, Cam-
bridge, MA, 1992.

Gerald Jay Sussman and Guy Lewis Steele
Jr. Scheme: An interpreter for extended
lambda calculus. AI Memo 349, MIT AI
Lab, December 1975.

(6]

Erlang distribution protocol. Described
in a text file included with the Er-
lang/OTP source distribution, under
lib/kernel/internal. doc/.

[8] Steven E. Ganz, Daniel P. Friedman, and
Mitchell Wand. Trampolined style. In In-
ternational Conference on Functional Pro-

gramming, pages 18-27, 1999.

[9] Jonas Barklund and Robert Virding. Erlang
4.7.3 reference manual. Draft (0.7), Febru-

ary 1999.

[10] The erlang extended term format. De-
scribed in a text file included with the
Erlang/OTP source distribution, under

erts/emulator/internal doc/.

Todd Kaufmann, Chris McConnell, Ivan
Vazquez, Marco Antoniotti, Rick Campbell,
and Paolo Amoroso. Ilisp user manual.

[11]

Static analysis of communications for Erlang

Fabien Dagnat
Laboratoire Informatique des Télécommunication
ENST de Bretagne, Technopdle Brest Iroise, BP 832
29285 Brest, France

Fabien.Dagnat @ enst-bretagne.fr

ABSTRACT

In this paper, we present an insight of the two major contri-
butions of works made to build a static analyzer of ERLANG
programs. First, we introduce a general framework based
on a process calculus (the configurations). This formalism
describes concurrent aspects and abstracts functional ones.
Obtaining the ERLANG semantics is then just instantiating
this framework with an adequate functional setting. The
second contribution is a sophisticated type system for Er-
LANG. This type system infers types and subtyping con-
straints for a program and ensures that the collected con-
straints have at least one solution. This system detects usual
functional errors but also some of the communication errors.
More precisely, for each process, it cumulates all received
messages and all handled messages and ensures that the first
is included in the second. To do this, it borrows concepts to
the object (or record) usual typing in ML.

1. INTRODUCTION

The development of telecommunications industry and the
generalization of network use bring concurrent, distributed
and mobile computing into the limelight. In that context,
programming is a hard task and, generally, the resulting
applications contain many more bugs than usual sequential
centralized software. Indeed, the indeterminism resulting
from the unreliability of networks and the size of the code
of such applications makes it difficult to validate any dis-
tributed functionality using informal approaches. Our work
focuses on using static analysis, a kind of formal methods to
ease development.

As Erlang software are mainly used in telecommunication
equipment that do not tolerate failure, their development
must be certified. More precisely every step toward the final
application must be walidated (ideally automatically). Our
aim is to participate to this hard task, by building static
analysis of communications using type inference techniques.

To give an abstract model to ERLANG programs, we use the
actor model developed by Agha in [1]. It is based on a net-
work of autonomous and cooperative agents (called actors
and similar to ERLANG processes), which encapsulate data
and programs. They communicate using an asynchronous
point o point protocol and store each received message in
a mailbox. When idle, an actor handles the first message
it can in its mailbox. Besides those conventions (which are
also true for concurrent objects), an actor can dynamically
(at run-time) change its interface. This property allows to

1

Marc Pantel
Institut de Recherche en Informatique de Toulouse
LIMA / ENSEEIHT, 2 rue Camichel
31071 Toulouse, France

Marc.Pantel @ enseeiht.fr

modify the set of messages an actor can handle, yielding a
more accurate and widely usable programming model. For
example, it can give an abstract model to applets and dy-
namic code loading.

In a first approach, we defined type systems for the Cap cal-
culus described in [8], a primitive actor calculus derived from
asynchronous 7-calculus and Cardelli’s Calculus of Primi-
tive Objects. Two type systems were developed. The first
one [9], based on usual object type abstractions, catches all
usual functional and communication errors (erroneous pa-
rameters) but only a subset of messages which will never
be handled. The second [7], detects all (safety) messages
not understood but requires a much more complex type ab-
straction and a new programming discipline. These systems
were proved to be correct. In order to validate their practi-
cal use, the need for a programming language implementa-
tion arose. In a first approach, we developed a lab language
ML-AcrT integrating ¢ la ML programming with actor prim-
itives and including a sophisticated type system extending
the previous work on CAP (see [11]). Then, we studied Er-
LANG, as it appears that, thought its functional aspects have
a strongly different semantics (and typing) than ML-AcT
one’s, their concurrent semantics and typing were similar.
Therefore, we developed a framework abstracting the parts
of both languages having semantics (and typing) differences
(for example, functional aspects or mailbox semantics). It
became possible to build systematically the semantics, the
typing and some properties about the typing, once provided
the functional setting. Furthermore, this functional setting
can use a well known classical one. For example, ML-AcCT
use the ML functional semantics and typing.

This article gives an introduction to this abstraction and its
application to ERLANG. The first section provides a better
insight of the form of communication errors we wish to de-
tect and the ones our system captures. Then, we introduce a
simplified version of ERLANG and its formal semantics based
on configurations, an asynchronous n-calculus like process
algebra. Then, we define our type system and illustrate its
use on examples. Finally, we discuss scaling this system to
the full language and some possible extensions to our work.

2. COMMUNICATION ERRORS

In an usual concurrent setting, a process P may receive a
message m (P ! m, in ERLANG). Supposing P is idle, there
are two possibilities, either P can handle m or it cannot. Our
works focus on the early detection of requests that may not

2

be handled (the second case). This problem is related to
the method not understood errors of object oriented pro-
gramming. In the actor context, a message that may not be
understood by its receiver is called an orphan.

Typed object oriented languages determine the set of meth-
ods an object P understands (typeof(P)) and ensures that
each method invocation P.m is correct by verifying that m
is part of the type of P (m € typeof(P)). Furthermore, as
the type of an object does not change, the verification can
be done when the method is invoked. Adapting this technic
to ERLANG (P becoming a process and P.m becoming P!m)
raises two problems leading to a much more complex typ-
ing: a) the computation of the set of messages a process can
handle is dynamic and more complex and b) as the time
between sending a message and its reception by its target
may be important (the message may travel through large
networks), the verification must be done upon reception.

The usual approach for actor languages is to dynamically
check for message not understood errors. A process knows
the messages it can (immediately) handle and if a received
message does not conform to this interface, it raises a mes-
sage not understood error (see the initial actor model [1] or
the Vasconcelos and Tokoro object calculus [26]). But this
approach reduces consequently the set of programs that one
may build. In fact, the programmer must adopt a sort of
synchronous programming discipline to be sure that mes-
sages arrive in right states. We think that this strategy is
too restrictive. For example, consider a printer device that
has two states: working (it accepts printing requests) and
stopped (it waits for initialization). A client must wait that
an initialization message has been sent to the printer before
printing. It would be much more flexible to enqueue all re-
quests received when the printer is stopped and to process
all pending requests when it is initialized (possibly indepen-
dently by another process) which is the usual behavior of
unices print spoolers.

The second and opposite approach never rejects a message.
When a process receives a message that it cannot handle, it
silently enqueues it. Notice that, in this context, a message
may stay indefinitely in a mailbox (their size is unbound).
This semantics has been chosen by the blue calculus [4], the
join calculus [14] and ERLANG.

We believe that a combination of both approaches may be
much more appropriate. Such a system would reject pro-
grams that contains message never understood and would
accept all other messages warning the programmer that they
may never be handled. To achieve this goal, we use a power-
ful behavioral type system to enforce the rejection of such
messages. Our type system detects all messages that are
not in the set of messages the receiver may handle dur-
ing its execution. This means that typeof(P) cumulates
all the receive that P could execute. To do this the sys-
tem must follow the flow of functions called by P. It is clear
that, in general, our analysis will answer T (top) to express
the fact that a process may assume an externally defined re-
ceive and therefore understands virtually everything. But,
we think that the results are generally already helpful and

'By opposition with a more usual class name type system
as in C++ or Java.

/

we are working on extending our techniques to those open
programs as will be discussed later.

For example, a process P executing the first function of the
program below (ping) has a type containing ping, change
and all messages accepted by all possible behaviors F. This
means that sending a message {change, pong} to P adds
pong to the type of P.

ping() -> receive ping -> ping();
{change, F} -> apply(F,[])
end.
pong() -> receive pong -> pong() end.

3. A SIMPLIFIED VERSION OF ERLANG

Following 2 common use in the definition of static and dy-
namic semantics, we simplify the ERLANG language by sup-
pressing syntactic sugar and ignoring constructions that are
typed orthogonally to our work (for example, exceptions,
lists or records). Furthermore, we do not address the seman-
tics of the real time part of the language which is complex
but do not add any specific problem to the type system. An
effort has been made to define precisely a small (but still too
big) language named CorRE ERLANG ([5] or [6]). Therefore,
we use a smaller version of the language named pErlang:

prg i=cj..;¢. | e;5...5c. pry

c u=s(p,....,p) >e

p w=_ |V |s|]| {p,..p}

e ==V | s | i | {e,..,e} | (&) | e,e | ele
| ele,...,e) | caseeof fend | receive f end

f uw=p->e | p->e;f

A pFErlang program is a set of function definitions includ-
ing a function named main. This main function is launched
to start the execution of the program. The rest of the lan-
guage is very close to ERLANG. Each function is composed
of clauses separated by semi-colons and terminated by a
dot. All clauses (s(p,...,p) -> e) must refer to the same
function name s and have the same arity. Notice that this
language does include guards to simplify the semantics and
the type system for this paper. A pattern may be a joker
(always succeeding), a variable V (always succeeding and
binding the variable®), an atom s, an integer i or a tuple.
An expression may be any of those values and add paren-
theses, sequencing (,), message sending (!), function call,
choice (case) and message handling operation (receive).
The choice (resp. the receive operation) matches an ex-
pression (resp. the mailbox of the current process) using a
set of filters composed of a pattern and an expression (f is
named interface). Finally, some atoms represents built-in
functions, as for example, spawn and self.

Notice that as CORE ERLANG, we adopt lexical scoping of
variables to ease the presentation. Qur prototype uses ERr-
LANG strategy mixing dynamic and lexical scoping. There-
fore, the real system uses systematically an input and an
output environment for each expression. Again for sake of
simplicity, #Erlang does not include lists that are replaced
in application and spawning by tuples.

2This is not true for ERLANG, but our system can easily
adopt ERLANG policy.

4. FORMAL SEMANTICS OF ERLANG

Our work focuses on static analysis and more precisely on
typing. In order to prove the correctness of our type system,
we need a formal semantics of ERLANG. To our knowledge,
few works have addressed such a hard task. Indeed, as Er-
LANG is a full fledge functional, concurrent, distributed and
mobile language, its semantics is complex. Some efforts have
been made to give an informal, but clear and systematic de-
scription of its semantics ([3] and [6]). But, this is not suffi-
cient to build and prove some static verification system. It
seems that only two papers ([12] and [15]) try to build such
a formal semantics. These two papers define two Labeled
Transition Systemn that does not suit our need (proving the
correctness of a type system). Inspired by those approaches
and our previous works on semantics for actors, we built our
own formal semantics by instanciating a general framework
called configurations previously build on a lab language ex-
tending ML to actors (ML-AcT). This framework defines
a general syntax for concurrent actions and abstracts (in
the sense of taking as parameter) the functional part of the
studied language. With this approach, we can reuse exist-
ing semantics and typing from the functional world. The
pErlang semantics is obtained by instantiating this frame-
work with an adequate functional semantics.

We are not going to give all the formal definitions and jus-
tifications of this model that may be found in [10]. We are
only going to give insights on configurations to deduce the
pErlang semantics. Most rules are given in appendix for the
interested reader.

Configuration

A configuration is a term that represents a concurrent sys-
tem at a given time. Its definition is parameterized by three
sets : the name set a € A, the message set m € Mess and
the expression set e € £zp with A C £zp and Mess C Ezp.
The set of configurations noted W is built from the following
grammar:

w
o7

€|Brr |vaw|wlw|adm|ave
* | {a|m)

A configuration looks like a w-calculus term with a send
operation, noted a<m (a is the receiver and m the message),
and a process, noted a b e (« is the identity and e is the
executed expression). The identity of a process is either
unspecified x to model toplevel computations® or, (a|m) a
pair composed of a name (pid in ERLANG tradition) and a
mailbox (the tilde notation denotes sequence). As it is usual
in process calculi, we use a name binder v to simulate the
name creation and suppose that the corresponding notion of
free names and substitution are defined.

In the context of pErlang, £zp represents the syntax intro-
duced in the previous section, addresses are built automat-
ically when the built-in function spawn is called and a mes-
sage can be any value (atom, integer or tuple).

A congruence is defined to state which configurations are
equivalents:

e (W,||,€) is a commutative monoid, the order of sub-
configurations is not important and we can suppress

3Those expressions cannot access receive or self.

all occurrence of e.

e w || Err = Err and abErr = Err, errors are propagated
until the program evaluation stops.

e va.w = w if a is not free in w, va.w = vb.[b/ajw if b is
not free in w and va;.vas.w = vaz.va;.w ; those three
usual properties allow to forget the bindings of unused
names, to rename a bounded name and to modify the
order of restrictions.

e the restriction rule, va.w: || w2 = va.(w; || w2) if a
is not free in ws, allows to enlarge the scoping of a
name. Combired with the previous rule, it enables
(up to a renaming of a in w) to extend the scoping
and to simulate name propagation in the medium.

e x>v = € and va.((a| @)>v) = € if v is a value (it cannot
be reduced) ; therefore, a global computation (or a
process) which reduce to a value can be destroyed by
a garbage collector. Notice that the process must have
an empty mailbox and be inaccessible to the outside
world.

Notice that it is possible to add a rule to express the fact
that a stopped process waiting for a message, that do not
understand any of its mailbox messages and is no more ac-
cessible from outside is an error. But, as our type system
cannot capture all such messages (for example in a deadlock
case), we cannot prove its correctness with this rule.

The appendix contains all the configuration reduction rules.
Let us discuss only original rules.

As introduced in the second section of this paper, we try to
detect communication errors. To define those errors more
precisely, they are introduced in the semantics of configura-
tions. Therefore, when a process receives a message, it can
accept it (and put it in its mailbox) or reject it by raising
an error:

{almm)ve if P(m,e)

(alm)>e|la<1m—>{En_ else

To abstract the choice of reaction, a (communication) po-
tential P(m,e) is defined. This predicate approximates e
to determine whether m may be understood or not. This
allows the semantics of our framework to behave differently
toward such messages. It is possible, for example, to code
usual ERLANG semantics with a predicate always true. In
the next section on typing, we will discuss more deeply this
subject.

Our general semantics includes a rule to specify the interac-
tion between functional and concurrent reduction:

a ¢ FN(apve)

ave— va.(a' e || w)

/

w ’
ata, e—ca, e

Where, we suppose that the functional reduction have the
given shape with a being a fresh name (a ¢ FN(a b e))
that may be used during the expression evaluation and w
being a configuration describing the concurrent effect of the
functional reduction step. In the rest of the paper, if the
label of such a reduction is ¢, it is omitted. Notice that if
a is unused, the third congruence rule enable to forget its
binding.

Functional reduction

A pErlang program is a set of function definitions and its
execution corresponds to the reduction of the body of the
main function in a context where all the other functions are
defined. By consequence, the first step of the functional se-
mantics builds the function environment (noted F). This
process will not be described here, its result is an environ-
ment associating an atom and an arity to the body (all the
pattern matching converted to a tuple matching) of the cor-
responding function. For example:

f(p1,p2) > e1; {p1,p2} —> e1;
2} >
{f(Ps,IM) ->e3. PEOMUGES (£,2) {ps.pa} > es.

To simplify our presentation this set is abstracted and sup-
posed to be accessible in all rules. This could be done by
tagging each expression with this environment: ex and by
propagating it during reduction.

Functional reduction uses the classic notion of evaluation
context. A context noted C[] is an expression with a hole
marking the sub-expression subject of the current reduction
step. The reduction Cle;] —. Cle2] reduce the expression
e1 and replace it by the result e2. The evaluation context
grammar is also given in the appendix, it expresses the fact
that the order of evaluation is undefined when evaluating
a tuple, a message sending or an application. On the con-
trary, evaluation of a sequence (resp. a choice) starts with
the first expression (resp. the tested value). In addition
we suppose that an error cause the end of the evaluation
process: C[Err] £ Err.

Variables once defined have their values propagated by a
substitution noted o that we will not describe here. The
matching operator / uses a function match to compare a
pattern and a value and build the substitution of the vari-
ables in the pattern by their corresponding values. This
function either returns a substitution or fails. It tries to
match the first filter p — e. If match(p,v) returns o, / re-
turns o(e). Else, if it did not matched, the process continue
with the remaining filters. At the end, if none of the filter
have matched, we get an error.

Purely functional evaluation is classic. The most original
rules concerns application:

ak a, Clo(vr, .., vn)] —e @, {g[gvllf(”vgﬁr t(i:";()ﬂ]f)

The called function must be in the current function envi-
ronment (F). The result corresponds to the matching of its
body with the tuple of actual arguments. This rule suppose
that the expression describing the function must reduce to
a valid atom and therefore, it extends slightly ERLANG se-
mantics.

The functional actions that are connected with concurrent
behavior have an original form and must be explained:

* Sending a message impose that the first argument is
a name, returns the sent value and is labeled by the
configuration sending term:

1 vy dvn Err if V1 Q A
at a, Cuilv] —5, a {C[vz]

e Spawning impose that its second argument is a tuple,
returns the name (guaranteed to be fresh by concur-
rent reduction) of the future process and is labeled
by the configuration describing the newly created pro-
cess. This is only rules where the fresh name is used.

a ko, C[spawn(v, v1, ..., vn)] Me a, Cla]

e A call to the built-in function self must be done in
a process and is replaced by the name of the current
process:

ak (|, Clself()] —e {a'|), Cla']

¢ Accessing the mailbox is similar to the choice except
that the order of matching is different. The process try
first to match each message with the first pattern and
try next patterns only if none of the mailbox messages
successfully matched the first pattern. For this we use
a function matchmailbox that returns the resulting
mailbox and the reaction. Notice that if the mailbox
is empty no reduction can take place and by conse-
quence the process is stopped (until a message reaches
its mailbox).

at {a'{), Clreceive f end] —. (a'|'), Cle]

where matchmailbox(f, m) = i/, e

S. TYPING pErlang

When building a type system to statically detect errors in
programs. The first thing to do is to define precisely what
kind of errors, we want to avoid. In a concurrent setting,
two families of errors arise: functional errors and concurrent
errors. The former family is usual in the sequential world
and correspond to the erroneous use of a value (for example,
using an undefined variable or using 1 as a function). The
latter is rather unusual and has been described in details in
the section 2.

A type system can provide several level of precision. Two
prototypes have already been built for ERLANG (see [17] and
(16]) that concentrates on typing purely functional compu-
tation by simplifying the language semantics. Qur ambition
is to build a more useful system for ERLANG programs that
also analyzes concurrent parts. As we use similar technics
for collecting and solving constraints, our work may be con-
sidered as an extension of those systems.

Type inference and Constraints

Our system allows the synthesis of the types of every pro-
gram entity without requiring any type annotation from the
programmer. To do this, a fresh type variable is associated
with each node of the syntactic tree of the program and con-
straints between those variables are collected. At the end of
this collect phase, a resolution tool determines whether the
constraint set has solutions. If this is the case, the program
is declared well-typed. The schema of figure 1 describes this
process.

To type functions and give them widely usable types, ML
uses parametric polymorphism. For example, map has the
type Vo, (o = B) — o list — B list meaning that it
can be used with any type @ and 8. We advocate that in

Program —= Analyser

— types + contraints -

Solver

types + solved contraints

'

Printer

» safety error(s)

+ << readable >> types

Figure 1: The analyzer schema

the concurrent context, this form of polymorphism becomes
too restricting. Our system adopts inclusion polymorphism
that intuitively means that the system ensures the correct-
ness only for all values used in the program as real arguments
(that is finite intersections rather than infinite ones). There-
fore, in our context, we use the subtyping relation. A type
t1 being a subtype of a type t2 (t1 C t2) if a value of type
t1 may be used (safely) where a value of type t» is required.
For ERLANG, the main use of subtyping is on process type:
a process that understands more messages and sends itself
less messages than another process, can replace this one.
Typing an expression e under assumptions A will produce a
type t and a subtyping constraint set C: At e: ¢, C, this
deduction being valid only if C has at least one solution.

Notice that usual ML type system such as SML or Ocaml
can be viewed as following the same process collecting equal-
ity constraints. But, when subtyping is needed (as for ERr-
LANG), the constraints become complex and their resolution
must use sophisticated and powerful graph algorithm. We
refer the interested reader to the works of Pottier (19] or
Fanhdrich [13]. Indeed, a constraint set is viewed as a graph
where type variables are nodes (with their upper and lower
bounds) and subtyping relation defines the edges.

The type of map becomes (a = 8) — a list — B list and
each application with an argument of type ¢; and another
of type t2 produces the constraint set {t; C a — 8, t2 C
a list, B list C t.} where ¢, is the resulting type. This strat-
egy collects all possible argument types and ensures that
they can all be used safely:

flltica—8, | |t Colist, g list C[]}

Potential and Errors
Before going on, let us look at the example below to precise
some vocabulary:

statel(V) ->
receive
{add,V1} -> statel(V1i + V);
{change,V1} -> state2(V,V1)
end.
state2(V1,V2) ->
receive
{add,V3,V4} -> state2(V1 + V3, V2 + V4);
{mute,F} -> F()
end.
state3() ->

receive
kill -> true
end.

main() ->
case (spawn(statel,1)) of
P~>P ! {add,1,3}, P ! kill,
P ! {change,11}, P ! {mute,state3}
end.

A function may contain two forms of interfaces (the filters
f of a receive f end). One called immediate that is present
in the body of the function or in the body of another called
function ignoring received datas (in messages). And the
second category corresponds to interfaces received via mes-
sages. This notion is extended to processes, the set of im-
mediate interfaces of a process being the set of immediate
interfaces of its initializing function. In the example, statel
calls state2 and itself and state2 only calls itself. By con-
sequences, the immediate interfaces set of P is:

{{add,V1} {change,V1} {add,V3,V4} {mute,F}}

The immediate interfaces may be viewed as the static au-
tomaton describing our process and the others as some dy-
namic part (in the exemple, kill).

Our type system captures all orphans that leads to error (in
the semantics) using the potential introduced in the previ-
ous section. It is possible to give a predicate that collects
all immediate interfaces (we refer the interested reader to
[10]). Such a potential would approximates the previous set
(keeping only labels) and would be defined by:

P(m,e) £ (label(m) € {add change mute}) (%)

Furthermore, as we do not want to raise an error and forbid
the sending of the message kill, the potential of a processe
calling a received function accepts anything. The real po-
tential of P is then an open potential: P(m,e) £ true. In
fact, the potential defined in (*) would correspond to the
same process if we change state2’s second filter body (the
mute reaction) to any code not calling F.

Building the rules for such a system is already complex and
does not capture all errors that our type system detects.
Indeed, if in the example, we send a message sub to P, it is
not rejected because the potential of P is opened. Building a
more precise predicate (with respect to the captured errors)
is hard and in fact corresponds to a slight simplification of
the type inference. By consequence, we will not give precise

6

definition of the potential predicate and one can view it as a
simplification of the type. Each atom sent in mute message
is collected and its potential is added to the potential of P
which becomes:

>

P(m,e) = (label(m) € {add change mute kill})

The message kill is not declared orphan but the message
sub causes a type error (it raises a dynamic error if not
rejected).

We are currently devising a new definition of errors based on
a dedicated arborescent temporal logic (see [25]). However,
this approach currently only handle immediate interfaces.

Message and Process Types

An automatic analysis of the ERLANG compiler code, its
standard libraries and programs freely available on internet*
revealed that sent messages and receive interfaces are mainly
tuples where one element is an atom. This atom plays the
role of a label for messages. Furthermore rule 5.7 from [27]
states that all messages should be tagged. Following the
pioneer work of [17], we impose to all programs this precept.
Notice that the only (less rare) exceptions are the use of
jokers or variables to delegate the treatment of the message
to a choice instruction or to another process. These two
uses do not go against our precept since they just serve as
forwarder. Finally, a program not following this principle
may easily be adapted manually.

Those labels play a role similar to those of record label in ML
or of method names in objects (for example). We borrow
the row technology, used to type records, to approximate
interfaces. Rows are now frequently used for static anal-
ysis in ML world (see for example, exception analysis [18]
or object typing in Ocaml [20]). In our context, a process
type is a row, which is a partial function from labels to pair
of types describing arguments the message contains. The
first one describes received messages content and the second
handled messages content. Indeed, the originality of our
types is the fact that they contain both received and han-
dled messages in the type of a process. A process receiving
messages labeled m, containing datas of type T and han-
dling it with values of type T2 will have the following type:
@{m, : (T, Ts), i}. The (row) variable i expresses the fact
that the type of the process is only partially known. The
conversion from a tuple type T to a message type T (if it
is sent) or T (if it is handled) is done in a lazy way and is
defined in the appendix. Either the system knows the form
of the type and converts it, or its structure is unknown and
the system waits. A message reduced to an atom s has the
type s and correspond to the message type {s : (unit, T)}
or to {s: (L, unit)}. Meaning respectively that it is a sent
message (the handling part is meaningless®) or a handled
message (the received part is meaningless). The conversion
of tuple message is similar. In the paper [17], the conver-
sion was done for all tuples but we think that this is not
really necessary. Back to our example, the process P has the

“This represent 200 000 code lines.

5The sens of the T or L will become clear when subtyping
will be defined. The intuition is that it is nothing.

following type if o and i are variables:

Tr £ @{add : (1x3, int U (intx int)), change : (11, int),
mute : (state3, T), kill : (unit, @), i}

Where T is the type of the function F taken as parameter.
Notice that the unknown part i is related to the type T.

The correctness of the system is ensured by generating for
each spawn process a fresh interface type i verifying oi. This
predicate is true if each received message is understood and
is mathematically defined by:

ofmi: (T;, T ier 2Viel T,CT)
Applied on previous type Tp, we get:
{1x3 C int U (int x int), 11 C int, state3 C T, unit C a}

We have not yet defined subtyping but intuitively, one can
see that the two first constraints are trivial. The complete
is discussed resolution after the presentation of types and
subtyping.

Types and Subtyping

In ERLANG, one of the difficulties, is that being untyped, an
expression may evaluate to values of really different struc-
tures (for example, a boolean and a function). Therefore,
the type language must include a notion of union #; L ¢;
meaning that a value of this type may be of type ¢ or ¢,.
Moreover to get sufficient precision, each constant has its
own type (for example, 1 is of type 1 subtype of the integer
int).

In ERLANG, any expression can execute a receive (i.e, ac-
cess the mailbox of the current process). Therefore, the sys-
tem use an indirect effect calculus inspired by [24] to collect,
in the type of self, all interfaces matched against the mail-
box. This effect is then included in the type of a function.
When a process is spawned the effect of its initial function is
added to the process type. In our example, state3 has the
following function type where the effect is the superscript of
the arrow:

: kill: (L, unit
unst w—} true

The language of types needed for pErlang is built by the
following grammar:

T = L|T|t|TUT|TNT
| i]int integers
| s| atom atoms
| wnit | Tx..xT | tuple tuples
| T L functions
| @r processes
I == {}|Tr|i|{m:(T,T), I} interfaces type

Subtyping is defined in the formula appendix, only three
rules are unusual:

® Process types are contravariant because a process may
replace another one only if its interface is larger, @I C
@I’ is equivalent to I' C I.

e Function types are contravariant on arguments as usual
and covariant on effect and on result. Indeed, if a func-
tion must replace another one, it must have a smaller

7

!

concurrent effect: Ty = Tp C T/ z, Ty <= T C
TWYAICI'AT,C T

o Interface subtyping is covariant on received type, con-
travariant on handled type and compose covariantly.

{m: (T, T2), I} C {m: (T1,T3), I'}
= TlgT{ATgl_i:_Tg/\IEI’

The intuition behind this rule is that the system must
keep the largest type T of received messages and the
lowest type T of handled messages. The correctness
predicate ¢ leads to T- C T, and any received con-
tent of type T" is guaranteed to be understood by any
receiver state T’ because TC T, T T, C T".

Attentive readers may have remarked that the subtyping
on interfaces is defined only for rows beginning by the same
message label. A complete algebraic theory exists and proves
that it is the only needed rule. If one label of the left side
row is absent from right side row, the subtyping is clearly
false and once all left side labels are treated, the system
reduces to {} C I which is an axiom.

Another example

Before going into further discussion on this type system,
consider a function that realizes a timer waiting for a mes-
sage cancel or the end of a time specified at its creation to
throw an alarm:

timer ({Pid, Time, Alarm}) ->
receive {cancel,Pid} -> true
after Time -> Pid ! Alarm
end.

A timeout function spawns such a timer process using the
pid of the current process and returns the pid of the timer.
The same process may cancel this timer using the returned
pid:

timeout ({Time, Alarm}) ->
spavn(timer, {self(),Time,Alarm}).
cancel (Timer) ->
Timer ! {cancel,self()}.

Supposing arguments of after (Time) are integers, our sys-
tem infers:

{cancel:(L, @&)}
——eey.

timer : axintxa true U o

timeout : intxa 3 Q@{cancel : (L, @&)}

Q@{cancel : (Q¢, T)} 2, cancel x Q¢

cancel :
meaning that:

e The timer function takes three arguments: an address
(receiving the third argument), an integer and a value
(a message). The result is either true or this value and
the current process receives a cancel message contain-
ing (an address of) a process that receives the third
argument.

e Alarm (of type) must be a legal message (tuple be-
ginning by an atom).

e The process calling timeout receives the alarm (it ap-
pears in timeout effect).

7

e The result of this function is the name of a process
understanding cancel messages containing an address
that receives the alarm message.

e A call to cancel must includes an argument that re-
ceives a cancellation message containing the address of
the current process and returns this cancellation mes-
sage.

Those types are complex but very informative about the
behavior of these functions. For example, the system can
ensure that the pid returned by a call to timeout does not
receive messages other than cancellation. It can also ensure
that the process calling this function is able to receive the
alarm message.

Functional Typing

Pattern matching cannot be treated in the usual ML way:
(a1 — B1) U (@2 — B2) cannot be equal to (a; M az) —
(81 U B2). In fact, the type system must include pattern
matching, to do this [2] introduced the notion of conditional
type t17¢2. This type means ¢; (if ¢» is different from L) or
L. For example, if e : te, case e of true -> 1; false ~> foo
is of type (int?(t. N true)) U (foo?(t. M false)). Our sys-
tem does not use this conditional type which enjoys good
algebraic properties but is not really readable and leads to
the loss of the pattern matching structure. Instead, we use
a conditional constraint ¢; = ¢ meaning that if ¢; is veri-
fied then the system must also ensure c;. This constraint,
generated to approximate pattern matching, allows to keep
a high level of precision on the link between matched values
and results. Typing previous choice lead to the following set
of constraints: C = {t. C true = int C t,, t. C_ false =
foo C ¢, t. C true U false} where ¢, is the result type.
Either the system knows the structure of ¢, and C can be
simplified, or it is decomposed in two sub-systems (because
the matching is composed of two branches):

e One, in which, #. is subtype of true and therefore C =
{te C true, int Ct,}

o Otherwise (due to third constraint), t. is a subtype of
false and C = {t. L false, foo C ¢}

As, in general, we do not know precisely the matched value,
all those decomposed sub-systems must have a solution.
This means that a n branch pattern matching fires the res-
olution of n sub-systems. However, the practice have shown
that this is not a real problem. Indeed, when applying a
pattern matching to a value, we often know more or less its
structure and many of the sub-systems are trivial.

The typing judgments have the following shape:
Environment + Expression : Type, ConstraintSet
As, many typing rules are classic, we limit our explainations

to sends, choices, receives and calls:

e Typing e:!e2 returns the second sub-expression type
and the constraint set containing all constraints pro-
duced by the typing of e; and e2, plus a constraint
specifying that e; must evaluate to a process that re-
ceives the value of e,:

Ete:t, Ch Eter:ta, Co
Ekeler it2, C1UC U {ta ;@{5}

-

e -

8

¢ Typing a choice consists in typing the tested value and
all patterns and associated expressions of the filter. A
reaction expression must be typed after adding to the
current environment the environment resulting from
typing of the corresponding pattern:

Ere:t., C. Erpi:t, & EU&i ket C;
EFcaseeofpy < ep; ... :t, CeUUCiUC

where the resulting constraints cumulate all already
calculated constraints and those due to the choice (C).
C specifies that the tested value must be taken into
account by one of the patterns and add all already ex-
plained conditional constraints (one for each branch):

C={t.C||PIulJft-Ce =t Tt}

This means that the result type ¢ will be the union of
the type of each pattern that may match the tested
value.

o Typing the message handling may result in any possi-
ble branch type (hence the union) and adds all pattern
types to the current self type:

Ebpi:th & _
EU& et t;, C; C:= {E(self) C @t7}
EF receive p1 — eg; ... : L’t,-, U(C,- ucer)
i

2

® Typing an application is much more complex. First,
one must type the function expression and each argu-
ment expression.

Ere:t., C. Erei:t;, C;
EFelel,...,en) : t, C'eUUCi uc

where C is composed of t. = dom(Tx), £(self) C @I,
Fun(Tr,te,n) C (41 X... Xts) EA meaning that:

— The function must be defined.

— Its effect I is added to the current process effect.

— All possible functions are subtype of a function
type accepting the n actual arguments ¢;, having
an effect I and resulting in ¢ (it is the result of the
application). To get the set of possible functions,
we use a function Fun which applied to (T, t.,n)
returns the union of all function types associated
to an atom (and the arity n) of ¢, in T'. Like the
transformation from tuple type to message type,
this function is lazy and waits to know the value
of t. to perform its action.

For each possible functions of type o LN B, the last con-
straint ensures that all applications are legals because by
substyping it leads to {t: x..xt, C o, I' C I, B C t}.
Furthermore, all effects (resp. results) are cumulated in the
global effect I (resp. result t).

The function typing environment T'# results from the typ-
ing of all functions in F. A mapping (s,n) — f in F adds
a mapping (s,n) — t5 if the typing of f by the rule be-
low results in ;. And, We suppose that all constraints it

may produce are added to the global constraint set before
resolution.

Ebpi:t, & £U&-I—ei:t§,0i
EFpr—ep; .. |_|(tz~ - 1), UC"

Going back to our example, the application of F leads to:

state3 C T, unit C o, T C {statel,state2, state3},
Tp C @I, Fun(T#,T,0) C unit 5>t

The first constraint combined with the fifth leads to:

{Rill: (L, unit)}
e

unit true L unst Ly

This imply that Tp C @I C @{kill : (L, unit)} and
true C ¢. The first constraint simulates (in the type sys-
tem) the reception of unit message: (.1, unit) C (unit, o)
equivalent to {.L C unit, & T unit}. Adding this to the ini-
tial constraint set leads to a solvable constraint set (where
a = unit). This allows the system to guarantee the correct-
ness.

6. SCALING TO ERLANG TYPING

The simplified system presented here does not correspond to
the real prototype implementation. To scale to this system,
we have to:

e extend the types by lists, characters, floating point
numbers and all other basic types (corresponding to
ERLANG basic values). This extension and the defini-
tion of built-in function is straightforward but need to
add a lot of rules.

e change scoping rule policy. Our system needs to have
an input and an output environment for each expres-
sion. This is also boring routine.

¢ add guards to the pattern matching (again routine ex-
tension). Notice that in the prototype, it is one of the
constructions that contains a lot of type informations.

e take care of dynamic patterns. Indeed, in ERLANG, a
variable in a pattern is a definition only if the vari-
able is not already defined. This small modification of
the semantics and more precisely of the semantics of
patterns needs important changes in the type system
summarized just below.

One of the biggest problem that we faced when typing ER-
LANG is dynamic pattern matching. Indeed, in the patterns,
a variable is not always a binding occurrence, that is, if the
variable is already bound, its value replaces the variable be-
fore pattern matching is realized. For example, consider:

g(X) -> case 1 of X ~> ok; _ -> no end.
The term {g(1),g(2)} reduces to:
{case 1 of 1 > ... , case 1 of 2 > ...}

and then to {ok,no}. Usual typing of this function gives
a — t with the constraints:

{1Ca=0kCt 1C (T\a)=>noCt}

9

Therefore, the application has type (ok lino)X (ok Lino) be-
cause the two applications gives 112 C « meaning that both
branches may be used. The problem comes from the fact,
that the usual function typing impose to all possible real
argument types to be simultaneously compatibles with all
their potential use in the body of the function. For this,
when typing the body of the function, the system collects
constraints of the form o C ¢ where « is the type of an argu-
ment. And each call to the function produces constraints of
the form ¢' C o which enable by transitivity to ensure that
t' Ct. But, in the body of a function, if a pattern includes
an argument, the system generates a constraint ¢ C « incom-
parable with t' C o. This means that we cannot guarantee
that the argument respect one of the constraints required
by the function.

The type obtained for {g(1),g(2)} is not very precise (using
usual strategy) but above all, if the joker branch is not in the
choice, the program cause an error that cannot be detected
by the type system. To solve this problem, the system is
going to type each application of a function using a fresh
instance of its type. With this strategy no harmful flow (of
information) may happen between two application sites as
before. Indeed, the intuition behind this problem is that
when a function use one of its arguments in a pattern, each
application produces a new (and different) version of the
body (of the function). Therefore, the constraints it imposes
are not the same and the return type are different too.

The typing of a function leads to a type o — 8 and a con-
straint set C. Its calling on an argument of type ¢ will use
type t — 8’ (where ' is fresh) and add [t/e, 8'/B]C to the
global constraint set. Therefore, typing:

g(X) -> case 1 of X -> ok end.

gives & — t with {1 C o, ok C t}. Therefore, the type of
{g(1) gD} is tixts with {1 C 1, ok T #1, [IC 2] ok T
to} where the boxed constraint is false. The error is now
detected!

The drawback of this strategy is that the number of type
variables and constraints grow more rapidly. To solve this
problem, in practice, the system apply this strategy only to
a subset of functions. More precisely, this strategy is applied
to the arguments of functions using one of their arguments
in a pattern. As this situation is not the most usual, the cost
to pay (for this strategy) is not too expensive (in general).

7. DISCUSSION

In this paper, we have proposed a formalization of the ER-
LANG semantics using a two level reduction system. A first
level concentrates on concurrent aspects of the language us-
ing a formalism inspired by the m-calculus, the configura-
tions. And a second expressing the functional semantics
(and its potential concurrent effects) using a more classic
setting. Finally, we have introduced a type system for Er-
LANG insisting in the original parts of our works: message
typing and the fact that the system try to stay close to the
language. The versions presented in this article represent
only insight of the complex system developed and the pro-
totype of static analyzer realized.

Formal semantics of Erlang

This work though not complete can be a good beginning to
reach a good formalization of the semantics of ERLANG. A
complete formalization of the whole language would require
a lot of work because one would have to:

e add the node (site) notion. For this, configurations
must be extended by a set of node names and by a
construction (n | w), meaning that w is executed on
node n. A configuration describing a two nodes could
then be vn1, no.((n1 | w1) || (n2 | we)).

¢ implement dynamic code replacement. Each site
must include the environment of defined functions and
the values of those functions could change: (n | £ | w).

e allow sending message between sites. The target
of the message may be local keeping the same syntax
or remote on node n and the transit message could be
a@n am.

e integrate the time notion. In ERLANG, the message
handling operation has a clause after that allows to
stop the execution of this instruction after a specified
delay. One solution could be to add a notion of counter
to each node.

o add a notion of symbolic names and a dictio-
nary. A service can be abstracted by associating it
with a name. This declared name represent a process
(that can change). Each node needs to maintain dic-
tionary: (n| &5 | En | w).

* add signals. ERLANG use signals to propagate excep-
tions among processes. For example, we could add a
flag to the message making it possible for the receiver
to distinguish a signal from a message.

Some recent work on distributed process calculi like D (see
[21]) or the join calculus (see [14]) can also help in such a
project of formalization of the semantics of ERLANG. Notice
that those points are not all the problems that needed to
be solved, we refer the interested reader to the chapter 10,
11 and 12 of [3]. Those three chapters does not include a
formal semantics but their informal systematic description
of ERLANG semantics enable to view all possibilities.

Complete Erlang Typing
To become a complete and widely usable tool our system
needs some extensions.

First, the ERLANG messages does not contain label so the
type of process must be retailored. The works on XM (a
typed functional language used to manipulate XML docu-
ments) of [23] can be a good basis. Indeed, to type cor-
rectly the choices of XML, they build a typed A-calculus
including a notion of record without label. For example,
(1) + ("test") + (Az.if z then 1 else 0) is typed by
{int; string; bool — int}. This adaptation does not seem
to be straightforward because the type system of XM\ use
equality constraints and is based upon a notion of con-
straint implication. Therefore, its integration with the sub-
typing needed for ERLANG needs studies about subtyping
constraint implication and to our knowledge, none of the
work made in this area have really achieved that goal yet.

10

In the context of telecommunication systems, exceptions are
very important to reach a certain level of quality for pro-
grams. Indeed, the reliability of such applications needs a
precise treatment of every possible exceptions. A type sys-
tem helping the programmer in this task would be a real
aid. It could estimate the set of potential exception caused
by every expressions of the program and ensure that they
are treated. An extension of [18] may be a good start point
toward such a static analyzer.

Finally, the most difficult point with ERLANG is that the
approximation made by this ideal type system should have
to be compatible with kot code swapping. Indeed, in ER-
LANG, a module is used by hundreds or thousands of nodes
that cannot be stopped or restarted. An evolution of such
a module use dynamic code replacement and therefore, the
old version and the new one have to be executed simulta-
neously and must cooperate safely (at least for a temporary
period). Such a task is totally out of reach at the moment;,
but a first step to its resolution could start from [22].

8. REFERENCES
(1] G. Agha. Actors: A Model of Concurrent Computation
in Distributed Systems. Series in Artificial Intelligence.
The MIT Press, Cambridge, MA, USA, 1986.

[2] A. Aiken, E. Wimmers, and T. Lakshman. Soft typing
with conditional types. In Proc. of POPL, pages
163-173, Portland, USA, Jan. 1994. ACM Press.

[3] J. Barklund and R. Virding. ERLANG 4.7.9 Reference
Manual, February 1999. downloadable from
wWwv.erlang.org.

[4] G. Boudol. The n-calculus in direct style. In Proc. of
POPL, pages 228-241. ACM, Jan. 1997.

(5] R. Carlsson. An introduction to core erlang. Erlang
Workshop. Principles, Logics, and Implementations of
High-level Programming Languages. Florence, 2001.

[6] R. Carlsson, B. Gustavsson, E. Johansson,
T. Lindgren, S.-O. Nystrém, M. Pettersson, and
R. Virding. Core Erlang 1.0.2, language specification,

Oct. 2001.

[7] J.-L. Colago, M. Pantel, F. Dagnat, and P. Sallé.
Static safety analysis for non-uniform service
availability in actors. In Proc. of FMOODS, pages

371-386, Florence, Italy, Feb. 1999. Kluwer.

J.-L. Colago, M. Pantel, and P. Sallé. CaP: An actor
dedicated process calculus. In Proc. of Proof Theory of
Concurrent Object-Oriented Programming, May 1996.

(8]

[9] J.-L. Colago, M. Pantel, and P. Sallé. A set-constraint
based analysis of actors. In Proc. of FMOODS,

Canterbury, UK, July 1997. Chapman & Hall.

[10] F. Dagnat. A framework for typing actors and
concurrent objects. Ongoing report, available from

perso-info.enst-bretagne.fr/~fdagnat, 2002.

F. Dagnat, M. Pantel, M. Colin, and P. Sallé. Typing
concurrent objects and actors. L’Objet - Méthodes
Jormelles pour les objets, Volume 6(1/2000):pages
83-106, May 2000.

[11]

[12] M. Dam and L. Fredlund. On the verification of open
distributed systems. In Proc. of the ACM Symposium
on Applied Computing, volume 28, pages 532-540.
ACM, June 1998.

M. Fahndrich. BANE: A library for Scalable
Constraint-Based Program Analysis. PhD thesis,
University of California at Berkley, 1999.

(13]

[14] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and
D. Remy. A calculus of mobile agents. In Proe. of
CONCUR, Pisa, Italy, volume 1119 of LNCS, pages
406-421. Springer-Verlag, 1996.

(15] F. Huch. Verification of Erlang programs using
abstract interpretation and model checking.
Proceedings of ICFP 99, 34(9):261-272, Sept. 1999.
[16] A. Lindgren. A prototype of a soft type system for
erlang. Master’s thesis, Computing Science
Departement, Uppsala University, 1996.

[17] S. Marlow and P. Wadler. A practical subtyping
system for ERLANG. In Proc. of International
Conference on Functionnal Programming, June 1997.
[18] F. Pessaux and X. Leroy. Type-based analysis of
uncaught exceptions. ACM Transactions on
Programming Languages and Systems, 22(2):340-377,
2000.

F. Pottier. Simplifying subtyping constraints: a
theory. Information & Computation, 170(2):153-183,
Nov. 2001.

D. Rémy and J. Vouillon. Objective ML: An effective
object-oriented extension to ML. Theory And Practice
of Object Systems, 4(1):27-50, 1998.

P. Sewell. Global/local subtyping and capability
inference for a distributed m-calculus. In Proc. of
ICALP °98. LNCS 1443, pages 695-706.
Spinger-Verlag, July 1998.

[22] P. Sewell. Modules, abstract types, and distributed
versioning. In Proc. of POPL, pages 236-247, London,
UK, Jan. 2001.

[23] M. Shields and E. Meijer. Type-indexed rows. In Proc.
of POPL, pages 261 — 275, London, UK, Jan. 2001.
[24] J.-P. Talpin and P. Jouvelot. The type and effect
discipline. Information and Computation,
111(2):245-296, June 1994.

[25] X. Thirioux, M. Pantel, and M. Colin. Multi-set
abstraction of non-uniform behavior concurrent
objects. Work in progress, Nov. 2002.

[26] V. T. Vasconcelos and M. Tokoro. A typing system for
a calculus of objects. In Proc. of OTAS, Kanazawa,
Japan, volume 742 of LNCS, pages 460-474, New
York, USA, 1993. Springer-Verlag.

[27] M. Williams and J. Armstrong. Program Development
Using Erlang - Programming Rules and Conventions.
ERICSSON, mar 1996. Doc. EPK/NP 95:035.

11

APPENDIX
Configurations reduction rules:
CONGRUENCE 3 , : PARALLEL : RESTRICTION : ACCEPT :
w) = W) w; — W, Wy = wo w; — w2 wy — wa P(m,e)
w1 — wa wljwr — wl|we ve.w: — va.ws (elm)pelladam — {a|lmm)pe
REJECT : EXPRESSION :
not(P(m,e)) a ¢ FN(ave) akla, e o, €

{a|M)pel|ladm — Err

Evaluation context grammar:

Matching semantics:

’U/D Err
v/(pwheng —e):: f£ {Z{g)

Functional reduction rules:

VARIABLE ERROR :
at a, Clz] —¢ o, Err

SEQUENCE :

APPLICATION :
ata, Clo(vi,...,vn)] —¢ @, Cl{v1, ..., va}/F(v,n)]
SEND ERROR : SEND :

(51 Q A v1 € A

{A}|C,e|Ctle|e!C|Cle,.
e

at a, Clv, e] —. a, Cle]

ave — va.(a' be || w)

.»e) | e(A) | case C of f end

if match(p,v) = fail
if match(p,v) =¢

APPLICATION ERROR :
(v,n) & dom(F)

et a, Clu(vi,...,vn)] —e @, Err

CASE :
al a, Clcase v of f end] —. @, Clv/f]
SPAWN ERROR :
7.
v is not a tuple

at a, Cvlvs] —. @, Err

SPAWN :

a F a, Clspawn(v,v1, ..., v5)] ______)(al@)bv(vl,...,vn)

SELF :
at (a'|m), C[self()] —. (a’ |), Cla']

RECEIVE :

matchmailbox(f,m) =

aka, Clulva] 2%, o, Cluvs]

e @, Cla]

at e, C[spawn(v,v")] — @, Err

SELF ERROR :
at x, C[self()] —¢ %, Err

RECEIVE ERROR :
a bk *, Clreceive f end] —¢ %, Err

o~
m, e

aF {(a'|m), Clreceive f end] —s. (a’'|’), Cle]

Mailbox semantics:

35 (Vi<j m,-/fl =Err) 'm,j/f1 =e

(Vi eJ mi/fl = Err)

matchmailbox(f1:: -, (m:)ies) = (Mmi)ien (i}, €

Type Conversion:

(52 {s: (unit, T)}
sXTi%xTn £ {s: (Tyx...xTs, T)}
TAT,
{OTeu7
r]: T‘ é |_I i
a@£a if ais a type variable
{ T 2 Err otherwise

matchmailbox(f; ::

I:

fl, (m:)ies) = matchmailbox(f], (mi)ies)

'8

5£ {s: (L, um’t)}
slex XTn & {s: (L, Tix..xTy)}
TA T;

BN

Hl=
Hb Ilb

LJ;
’_l
a if
Err

« is a type variable
otherwise

el 3
> 17

12
Subtyping Deduction System:

TETh, TCT TCT, TCT, i€EN s €At
LcT TCT CI ICT = = = =
= = {} E ="' TCT.NT, TCTiUT, TCThUT t E int s € atom
Vi T, CT/ el T'CT ICI! T,CT
Ty x...xTy C tupl = [— = = =
! = rupie Tix..xTp CT,x..xT. @rcar

nbnco LT

LLCTW T,CT, ICT
{m: (T, T2), N C {m: (T},T3), I'}

Typing Deduction System:

Var Tuple Paren Sequence

V € dom(€) ginitm{} Ere:t:, C; Ete:t,C EFer:t;,Ci EFes:ts, Co
— :[c;
EFV:EWV), {} Sl—{el,...,en}:tlx...xtn,UCi EF(e):t, C Ererexity, C1UC:
Send Case

Eler:t, Oy Etez:ts, Co Ere:te, C, Erbpi:tf, & EU& ket C

Elkeiler:ts, CLUC: U {t: C Qiy} Ercaseeof p1 —ep; ... : t, CEUUCiU{te ;l_jt?}uu({te Ctf=>tLCt})

Application
Ete:te, Ce Erei:t;, C;

EFe(er, . en) 1 t, Ce U JCi U {te T dom(T), E(self) C @I, Fun(Tr,te,n) T (t1X...xts) > £}

Receive
Ebpi:il, & EUE et C;

€ & receive p; = e;; ... : |_|t;, U(Q U {€(self) C @t7})

Stand-alone Erlang

Stand-alone Erlang is a minimal Erlang distribution. It features:

ecc - the Erlang compiler

elink - the Erlang linker

ear - the Erlang archiver

escript - the Erlang scripting interface
esh - the Erlang shell

You can builds Erlang applications in very few files.
Applications start very quickly.
Applications have a small memory footprint.

Download. °

Installation (linux)

You can generate windows . exe files in Linux, and vice. versa.

Here is a typescript of a session where we fetch, install and test SAE:

Fetching and installing SAE

$ wget http://www.sics.se/~joe/sae-r9b0-1.tgz

$ gunzip sae-r9b0-1.tgz

$ tar -xf sae-r9b0-1.tar

$ cd sae-r9b0-1/dist

./Install

installing executables in /home/joe/bin
installing code in /home/joe/lib/sae

patching executables

rebase: /home/joe/bin/ecc as /home/joe/lib/sae
rebase: /home/joe/bin/elink as /home/joe/lib/sae
rebase: /home/joe/bin/esh as /home/joe/lib/sae
rebase: /home/joe/bin/escript as /home/joe/lib/sae
rebase: /home/joe/bin/ear as /home/joe/lib/sae
ecc is ok

elink is ok

beam_evm is ok

Compiling and building a test program

Running the test

Running test

test worked

Test that we can find ecc and elink.

$ which ecc
/home/joe/bin/ecc

$ which elink
/home/joe/bin/elink

Make the test programs:

$ cd ../examples

$ make

ecc test_hello.erl
ecc test_url.erl

ecc test_autoload.erl
ecc test_autoloadl.erl
ecc test_dets.erl

ecc test_bug.erl

ecc test_include.erl
elink test_hello.beam
elink test_url.beam
elink test_autoload.beam
elink test_dets.beam
elink test_bug.beam
elink test_include.beam
./test_hello

Hello world
Args=["./test_hello"]
test_hello worked
./test_url

test_url worked
./test_include
test_include worked
./test_dets

test_dets worked
./test_autoload

Auto load test incomplete S$ROOTDIR not defined
./test_bug

aaaa

test_bug worked

Test that scripting works. Note: fib] is an interpreted script. £ib2 is a compiled script.

$ cd ../dist
./factorial 20
factorial 25 = 15511210043330985984000000

$ cd ../examples
$ time ./fibl 24
fib 24 = 46368

real 0m2.603s
user 0m2.490s
sys Om0.060s

$ time ./fib2 24
fib 24 = 46368

real Om0.451s
user O0m0.400s
sys Om0.020s
Very quick start

Store the following in a file called hello.erl:
-module (hello).

-export([start/1}).

start (Axgs) ->

io:format ("Hello world~nArgs=~p-n", [Args]),
erlang:halt ().

Compile and run as follows:

$ ecc hello.erl

$ elink hello.beam

$./hello 1 2 3

Hello world

Args=[" ./hello", "lu, ||2||, ll3ll]

The file hello is a 2 KByte executable which can be distributed together with the original system
files.

Quick start (Linux)

To compile:
> ecc *.erl

This will compile all the . er1 files in the current directory producing .bean files if the compilation
was successful.

To create a Unix application called myUnixProg give the command:
> elink -o myUnixProg *.beam

When the program is run in Unix with the command:

> myUnixProg Argl Arg2

The function:

myUnixProg:start ([Argl, Arg2, ...1])

Will be called. All the arguments are Erlang strings.

Making windows executables

This does not work yet
Note: Windows executables can be built in Unix or vice. versa

To create a stand-alone windows application called mywindowsProg. exe give the following
command:

> elink -t windows -o myWindowsProg.exe *.beam

elink reference

> elink
elink [-shell] {-windows] [-o OUT[.exe]]
[-s M] -m Ml.beam [M2.beam M3.beam ...]

Make an executable OUT

Excuting OUT will load the code in M1 M2 M3

The command >QUT[.exe] Argl, Arg2

Will cause M:start([Argl, Arg2, ...]) to be evaluated

> elink [-m] Ml.beam M2.beam M3.beam

3

implies s = M1 o=M1
> elink -o Mi[.exe] -m Ml.beam M2.beam
Mi must be in M1 M2
implies s = Mi
> elink -s Mj -o Mi.[exe] -m Ml.beam M2.beam
Mj must be in M1 M2
> elink -r Dir Executable
Rehomes Executable to ERL_EARS=Dir

elink examples

> elink al.beam a2.beam ...

Makes an executable called a1. The start function is al:start (.

> elink al.beam a2.beam ..

Makes an executable called a1. The start function is a1:start (. ..

> elink -0 a3 al.beam a2.beam ..

Makes an executable called a3. The start function is a3 :start (.

be a3 .beam

> elink -0 a3 -s a4 al.beam a2.beam ...

Makes an executable called a3. The start function is a4:start (..

be included on the command line

> elink -shell ...

.) - one of the beam files must

.) -a3.beam and a4 .beam must

Makes an executable that runs in a shell capable of understanding line editing commands. This is
useful if you want to write an interactive application that behaves like the Erlang shell.

> elink -r /home/joe/foo/bar /home/joe/bing/bongo

Changes the environment $ { ERLANG_EARS} which is hidden inside the executable

/home/joe/bing/bonge t0 /home/joe/foo/bar.

The directory /home/joe/foo/bar must contain the files erlang.ear and ErlBoot_new. img - this
command is so obscure that you will probably never ever need to use it. If you got this far then no

manual will help.

Erlang scripts

escript is the scripting interface to Erlang.

Here is an example of a simple Erlang script:

#!/usr/bin/env escript
-export ([main/1]).

main([X]) ->
J = list_to_integer(X),
N = fac(J),
io:format ("factorial ~w = ~w~n", [J, N]).

k

fac(0) -> 1;
fac(N) ->
N * fac(N-1).

Make the file executable and run:

> chmod u+x ./factorial

> ./factorial 123

factorial 123 = 12146304367025329675766243241881295855454217088
483382315328918161829235892362167668831156960612640202170735835
221294047782591091570411651472186029519906261646730733907419814
952960000000000000000000000000000

The script must export main/1. The directive -mode (compile) can be included to improve
efficiency.

esh

esh is an interactive query shell. To start it:

> esh
Erlang (BEAM) emulator version 5.2 [source] [hipe]

Eshell v5.2 (abort with ~G)
1>

€CC

ecc is the Erlang compiler.
> ecc *.erl

Compiles files. ecc accepts the following flags:
® -w Warn

® compressed Make a compressed binary file.
® strip Strip the binary file

elink

elink is the Erlang linker.

elink [-shell] [-windows] [-o OUT[.exel]
[~s Mod]l [-m] Ml.beam ...

Arguments can be pretty much in any order.

ear
ear is a command line utility for maintaining Erlang archives.
Erlang stand-alone applications use demand-code loading or static code loading.

The demand code loader loads code from Erlang archives (. ear files) - Erlang archives are created

5

with the ear command.

In a statically loaded application all necessary code is loaded contained in the application.

The preferred method of building an application is to use demand code loading. The base
distribution includes a single archive erlang.ear which contains all the modules and include files
in stdlib kernel and compiler - this is sufficient for making a large class of applications.

Building and maintaining Erlang archives is done with the program ear

Shipping several applications with your own personal library

If you have several applications you might like to proceed as follows:
Create a personal library

> ear -a joe.ear PathToCompiledModulesl/*.beam
> ear -a joe.ear PathToCompiledModules2/*.beam
> ear -a joe.ear PathToCompiledModules3/*.beam

Now distribute joe.ear the installer must place this in the same directory as erlang.ear, module
names in joe.ear must not collide with the names in erlang.ear

Use of Erlang in system test of AXD301

Karl Olsson
Erlang distribution
Tools
conf Configuration tool
sssg UNI traffic generator
xAXE AXE 10 traffic simulator/generator
xMG Media gateway simulator
OTP test server Automatic test tool
dbg

loading of modules

AXD301
201918171615141312111098 76 5432 1
2R = Sloizb CP control processor,
ch o Unix, Erlang
Y SC Switch core
CB Connection board

ATM (32x2Mb/s - 1x2,5 Gb/s)
CE (32xT1 - 124xE1)

FR
MPLS
012 .. 16 3031
(S STS] [Si] [S[S]
ke 8 2lee
stby ch
Scalable 10Gb - 160Gb
0-4 CP pairs/subrack
Erlang distribution

20191817161514131211109876 5432 1

lzRe e oloka

10.0.13 10.0.1.2

TE i

‘axd301@cp1-19’

‘axd301@cpl-1"

HUB
pc:call/4
m
WS (STPC) ! 10.0.1.254

LAB LAN network

Tools - conf

AXD301 user interfaces
AMS (http)
snmp
NO command line interface

Wk
%% block_board(Subrack, SlotNo, Type) ->
%%% ok | Other
%% Input: Subrack integer
%%% SlotNo integer
%% Type cpl,sc2,clk2,cpld,sc20,clk20,ath,cb
%% output: ok | Other
%8 Exceprions:
%%%& Description: blocks a board
%&% Example: conf:block_board(l,11,atb).
(113
L1
block_board(Subrack,SlotNo,Type) ->
{EmSlot,PiuSlot,Side] = case Type of
epl -> {1,1,1}; sc2 -> (2,2,1); clk2 -> {2,2,2};
cpl9 -> {19,19,1}; sc20 -> {2,20,1); clk20 ~> (2,20,2);
atb -> (SlotNo,SlotNo,1}; cb -> {SlotNo,SlotNo,2}
end,
SubmicFunctions = {eqmlmsPIU,submit_open_piu},
SubmitRequests =
[{action, eqmMi,piuTable, [Subrack, EmSlot, Piuslot, Side),null,
({"Block",7,2,null)],
({errors,rollback)]}],
SubmitProperties = ({pageSource, {eqmLmsPIU, open_piu}}, {postAction,0}],

rpc_call (SubmitFunctions, SubmitRequests, SubmitProperties,
"block_board ~p ~p -p Successfull®, [subrack, SlotNo, Type],
*block_board ~p ~p -p UNSUCCESSFULL", (Subrack, SlotNo, Typel ,
"block_board").

Tools - sssg

sssg
WS with SUN ATM board
sssgl L | AXD301 o sssg2
sag | Eisahin "axd30l@epl-1], *axd30 Eepl-19, sssg2@sahiy
HUB

STPC crinode@stpe

LAB LAN network

ATM
ethemnet

Engine Integral

DSS1/QSIG ISUP/CT

||

——— Circuit emulation \/

— ATM
ethernet

AXE 10

DSS1/QSIG

AXD301

TeS

AXD301

MG MG
| Pc [ER
LAB LAN network Tools - XAXE, xMG
STPC
> o — ethemnet
HUB “1 N Control link H.248 (ATM)
———— Circuit emulation
—_— ATM
— MG1 MG2 —_—

ML Mediation logic xMG
MG Media gateway WS with SUN ATM board

OTP test server

‘axd301@cpl-1°

‘axd301@cpl1-19*

‘axd301@cp2-1" ‘axd301@cpl-1’

it
U

‘axd301@cpl1-19°

‘axd301@cpl-19°

pc:call/4 rpe:call/4 &ﬁ'

gen_tcp

STPCx slave@stpey STPCy
LAB LAN network
STPCml —— ethernet
= —— Control link H.248
; —— Circuit emulation
= —
xMG ML Distribution
conf/snmp
sssg
xAXE
xMG
Erlang logs
sssg
— MGI1 MG2 —

LAB LAN network

Highlights in Erlang 5.2/OTP R9B

This document describes the major new features and changes in version R9B
of Erlang/OTP. The changes are described as a comparision with the original
R8B release and some of them have already been delivered as patches to R8B
and/or R7B. For more detailed information, please refer to the release notes for
the individual applications. Interesting news in this release is that we have
integrated results from the ASTEC-HiPE research project as part of the
product. See Hipe and Packages below for more info on that.

Significantly updated or new applications in OTP R9B

Asnl
Comet REMOVED
Compiler
CosEventDomain NEW
Erlang Runtime System (ERTS)
Et (Event Tracer) NEW
GS (Graphical System)
HiPE NEW
IC (IDL compiler)
Inets

Kernel

| Megaco (H.248)
Mnesia

Observer NEW
ODBC
Orber
OS_mon
Packages NEW
Runtime_tools
SNMP

Stdlib

Tools

Applications with minor changes Iand bugfixes

The following applications have only minor changes in R9B:
CosNotification, CosTransactions, Debugger, Erl_interface, EVA (Event & Alarm),
Mnesia_session, Pman, SASL, SSL, Toolbar, Tv (Table Visualizer), WebTool.

Asnl, compiler and runtime functions for ASN.1

]

* New option optimize in combination with per_bin and ber_bin which makes the
encode/decode functions much faster than before. In rough terms the encode/decode is
2 times faster when optimize is used.

» Itis now possible to add options to the Erlang compiler to be used when compiling the
generated .erl file. Any option that is not recognized as a specific ASN.1 option will
be passed to the final step like: erlc +debug_info Mymodule.asn or
asnlct:compile('Mymodule',[debug_info]).

o The feature "multi file compilation" which compiles several ASN.1 modules together
and produces one .erl file is improved.

Comet, COM client for Erlang (REMOVED)

The Comet application is removed from the product because we currently have no resources
to maintain it. We plan to make it available on the Open Source site. It still works on
Windows NT 4, but there are problems on Windows XP.

Compiler

e The documentation for the 'compile' module now lists several options that were
previously undocumented or only documented in the 'er]_lint' documentation. One
very useful option is warn_unused_vars, which also is improved in the compiler. Use
of this option can reveal bugs and dead code, it is highly recommended.

 The endianess specification 'native' has been added to the bit syntax. It will resolve to
either big or little endian at load time. It is specially useful for communcating with
linked-in drivers.

cosEventDomain, OMG Event Domain Admin Service
NEW

A new Corba service "cosEventDomain" is added as a separate application. cosEventDomain
is compliant with the OMG service CosEventDomainAdmin.

ERTS, Erlang emulator

e The previous hard system limit of 255 known remote nodes has been removed. With
the exception of node-name atoms, all data regarding remote nodes is now garbage
collected.

e Major improvements regarding memory handling, introduction of sl_alloc version 1
default and sl_alloc version 2 which makes it possible to tune the memory allocation
behaviour to best suite a certain system. A number of other memory handling
improvements are also added.

* The endianess specification 'native' has been added to the bit syntax. It will resolve to
either big or little endian at load time. It is specially useful for communcating with
linked-in drivers.

¢ The maximum number of Erlang processes within one Erlang node is increased to

2718 ~1 =262143 , previously the limit was 32768. To enable the higher limit the +P
flag must be used when Erlang is started.

A

Et, an Event Tracer with graphical viewing of trace data
NEW

The two major components of the Event Tracer (ET) tool is a graphical sequence chart viewer
(et_viewer) and its backing storage (et_collector).

One collector may be used as backing storage for several simultaneous viewers where each
one may display a different view of the same trace data.

GS, a Graphics System

GS is updated to use Tcl/Tk 8.3.4. This is a major update since GS previously used an ancient
version of Tcl/Tk.

HiPE, High Performance Erlang NEW

A number of useful and promising features from the HiPE project at Uppsala University is
integrated into this version of Erlang/OTP. The major features are:

e Native code generation for Sparc (Solaris) and x86 (Linux). The native option to the
compiler is used to select this codegeneration. It is then possible to run the generated
modules together with the ordinary interpreted modules on a standard OTP R9B
system.

The native codegeneration can give significant performance improvements especially
on sequential code. See http://www.csd.uu.se/projects/hipe/hipe.html for more info.
This feature is intended for evaluation and may be supported in future versions.
Feedback is velcome.

o "Shared heap" a new approach to memory handling within the Erlang emulator where
all Erlang processes share a common heap. This way of handling memory is very
interesting and have a potential to reduce memory consumption an improve
performance. A separate emulator is built to support "shared_heap", it is started with
‘er] -shared'. This feature is intended for evaluation and may be supported in future
versions. Feedback is velcome.

IC, an IDL compiler

A number of minor improvements and corrections.

Inets, HTTP server and FTP client.

e A HTTP client is added to the application. Author: Johan Blom of Mobile Arts AB. It
is provided as is with very limited documentation in this version but we plan to
support it fully in coming versions of Inets.

o Updated to handle HTTP/1.1.

Kernel

o The set_net_ticktime/[1,2] and get_net_ticktime/0 functions has been added to the
net_kernel module (see net_kemel(3)) which makes it possible to change the net_tick
time during operation.

e There are new functions bchunk/2,3 in the disk_log module that are to be used like
chunk/2,3 but return objects as binaries.

 The loading of BEAM code at start-up of embedded systems has been optimized: if
the thread pool is non-empty (see the system flag +A in erl(3)) and files are read from
a file system (the default, see the value efile of the -loader flag in erl(3)) disk seek
times have been reduced.

Megaco, a Megaco/H.248 protocol stack

The binary codecs ber_bin and per_bin is now both compiled with the +optimize
asnl-compiler flag for better runtime performance.

* The previously included tool, et, has been moved out of the Megaco application. It is
now provided as a separate application called Et.

Mnesia, a heavy duty real-time distributed database

e The table fragmentation functionality in Mnesia has been improved.

- Select and match_object is done in parallel which should improve performance.
- A new concept of hash modules has been introduced. This means that a user now can

define its own mapping between record keys and the actual table fragment hosting the
record.

» Improved table loading performance during startup. Mnesia should be able to utilize
the network bandwidth better, and Mnesia also uses new dets functionality to improve
the loading of disc_only_copies tables, if possible.

Observer NEW

Observer is a new application with various facilities for "observing" a live system with
minimal disturbance. The application is fully functional and supported, but the functionality
and APT's are still in beta-status i.e they can be changed in the next versions. We are very
interested in feedback from users regarding the functionality in Observer.

Observer currently contains two different parts:

¢ Trace Tool Builder, a base for building trace tools for single node or distributed

Erlang systems.
 Erlang Top, a tool for monitoring of Erlang processes similar to the UNIX top utility.

ODBC

o The Erlang ODBC application consists of both Erlang and C code. The C code is now
delivered as a precompiled executable for Windows and Solaris.

e Various optimizations.

New API that has an Erlang/OTP touch and feel instead of being a C-interface with
Erlang syntax. The old interface is deprecated and will be removed in Erlang/OTP
R10.

Orber, a CORBA Object Request Broker

Support for fragmented IIOP-1.2 messages.
Possible to add and use the IOR component TAG_ALTERNATE_IIOP_ADDRESS.
Unique VMCID:s assigned to Orber by the OMG.

Supports the Fixed datatype.
Possible to add new initial references.

The NameService can be configured to be stored on disk.
It is now possible to set Orber's configuration parameters in, for example, an Erlang
shell.
Possible to list which port numbers Orber may use locally when connecting to another
ORB.
Improved documentation.

Several new debugging facilities:

o Two IIOP trace interceptors included (different verbosity).

Type checking within an Erlang node.

OrberWeb, which is an extension of the WebTool application.
IOR dump.

O 0 O

OS_Mon, monitoring of disk usage and OS resources

cpu_sup:util/0 and cpu_sup:util/1 which returns information about cpu utilization have
been added. For further information see cpu_sup(3).

Nodename is now used as key in loadtable (os_mon mib).

The loadCpuLoadS, loadCpuLoad15 values has been added to the os_mon mib.

Packages NEW

This is an extension to Erlang with structured program module packages, in a simple,
straightforward and useful way. The implementation is done by Richard Carlsson from the
HiPE team at Uppsala University and is intended for evaluation. This or a slightly modified
solution may be supported in future versions of Erlang/OTP. The debugger might have some
problems with the naming of modules when packages are used. See

http://www erlang.se/publications/packages.html for more info. There is also a paper about

Packages at http://www.it.uu.se/research/reports/2000-001.

Runtime_Tools

L]

Trace ports can now be opened on remote nodes

It is possible to use the local node as a "trace control node", i.e. trace only remote
nodes.

The function dbg:i/0 now prints information about all traced nodes

Added a number of functions for controlling tracing on remote nodes.

5

-

SNMP

Minor additions and bugfixes.

STDLIB, Erlang standard libraries

A number of improvements in dets.

The function ets:select_count/2 is added to the stdlib application.

New functions sofs:extension/3 and sofs:partition/3.

A new module ms_transform which implements a parse transform that translates ‘fun'
syntax into "match specifications". This simplifies writing of "match specifications"
used in ets:select and in dbg.

¢ The undocumented and deprecated modules bplus_tree and unix has been removed.

Tools

There is a new tool cprof, a call count profiler. It is something inbetween cover and
fprof, and can be used to get a picture of which functions are most frequently called.
See Tools User's Guide and Reference Manual.

Erlang/OTP User Conference 2002 - Participants

Chairmen and speakers

Joe Armstrong SICS Stockholm, Sweden joe@sics.se
Johan Blom Mobile Arts Stockholm, Sweden [johan.blom@mobilearts.se
Goran Bage Mobile Arts Stockholm, Sweden goran.bage @mobilearts.se

Fabien Dagnat

ENST, Bretagne

Brest, France

Fabien.Dagnat @enst-bretagne.fr

Bjarne Dicker

Huddinge, Sweden

bjarne @cs-lab.org

Magnus Eklund Cellpoint Stockholm, Sweden magnus.eklund @cellpoint.com
Luke Gorrie Alteon WebSystems Stockholm, Sweden luke @bluetail.com

Seif Haridi SICS Stockholm, Sweden seif @sics.se

Bagirath Krishnamachari Lucent Technologies Bangalore, India bagi @lucent.com

Fredrik Linder Cellpoint Stockholm, Sweden fredrik.linder@cellpoint.com
Thomas Lindgren Cellpoint Stockholm, Sweden thomasl_4711@yahoo.com
Kenneth Lundin OTP Unit, Ericsson Alvsjé, Sweden kenneth.lundin@uab.ericsson.se
Hans Nilsson Ericsson Kista, Sweden hans @erix.ericsson.se

Mickagl Rémond erlang-fr.org Paris, France mickael.remond @erlang-fr.org

Konstantinos Sagonas

Uppsala university

Uppsala, Sweden

kostis@csd.uu.se

Erik Stenman

Uppsala university

Uppsala, Sweden

happi @home.se

Thomas Verner BluePosition Copenhagen, Denmark tv@blueposition.com
Claes Wikstrom Alteon WebSystems Stockholm, Sweden klacke @bluetail.com
Rasmus Witjen BluePosition Copenhagen, Denmark

Participants
Mats Andersson Ericsson Alvsjo, Sweden etxmaga@cbe.ericsson.se

Peter Andersson

OTP Unit, Ericsson

Alvsjo, Sweden

peppe @erix.ericsson.se

&gcla Anderton OTP Unit, Ericsson Alvsjﬁ, Sweden ingela@erix.ericsson.se
Marcus Arendt Marcus Arendt AB Sollentuna, Sweden marcus @arendt.se

Thomas Arts IT-university of Gothenburg Goteborg, Sweden thomas.arts @ituniv.se
Gosta Ask Ericsson Alvsjo, Sweden Gosta.Ask@etx.ericsson.se
Mia Berg Sjoland & Thyselius Telecom [|Stockholm, Sweden mia.berg@st.se

Johan Bevemyr Alteon WebSystems Stockholm, Sweden jb@bluetail.com

Martin Bjorklund Alteon WebSystems Stockholm, Sweden

Hans Bolinder OTP Unit, Ericsson Alvsjﬁ, Sweden hasse @erix.ericsson.se
Kent Boortz OTP Unit, Ericsson Alvsjo, Sweden kent@erix.ericsson.se
Pascal Brisset Cellicium Bagneux, France pascal.brisset@cellicium.com
Mikael Bylund Telia Promotor Uppsala, Sweden mikael.m.bylund @telia.se

Richard Carlsson

Uppsala university

Uppsala, Sweden

richardc@csd.uun.se

Francesco Cesarini

Cesarini Consulting Ltd

London, UK

francesco@erlang-consulting.com

Mats Crongqvist Ericsson Alvsjo, Sweden mats.cronqvist@etx.ericsson.se
Niclas Eklund OTP Unit, Ericsson Alvsjﬁ, Sweden Niclas.Eklund @uab.ericsson.se
w_g_nus Frbberg Alteon WebSystems Stockholm, Sweden magnus @bluetail.com

Catrin Granbom Ericsson Alvsjo, Sweden catrin@erix.ericsson.se

Péar Grandin Ericsson Alvsjd, Sweden Par.Grandin @uab.ericsson.se
Joakim Grebeno Alteon WebSystems Stockholm, Sweden

Dan Gudmundsson

OTP Unit, Ericsson

Alvsjo, Sweden

dgud @erix.ericsson.se

Martin Gustafsson

Stockholm, Sweden

martin-g@home.se

Per Gustafsson

Uppsala university

Uppsala, Sweden

pegu2945@csd.uu.se

Bjorn Gustavsson

OTP Unit, Ericsson

Alvsjo, Sweden

bjorn @erix.ericsson.se

Siri Hansen

OTP Unit, Ericsson

Alvsjo, Sweden

siri @erix.ericsson.se

Per Hedeland Alteon WebSystems Stockholm, Sweden "_per@bluetail.com

Pekka Hedqvist PH IT Konsult Stockholm, Sweden "—Eekka@home.se

Sean Hinde T-Mobile Borehamwood, Herts, UK Sean.Hinde @t-mobile.co.uk
Henrik Jonasson Ericsson Stockholm, Sweden Henrik.Jonasson @etx.ericsson.se

Micael Karlberg

OTP Unit, Ericsson

Alvsjo, Sweden

micael.karlberg @ericsson.com

Bertil Karlsson

OTP Unit, Ericsson

Alvsjo, Sweden

bertil.karlsson@uab.ericsson.se

Hékan Karlsson

Ericsson

Kista, Sweden

hakan karlsson @ericsson.com

Mikael Karlsson Creado Systems Stockholm, Sweden mikael.karlsson@creado.com
Bengt Kleberg Ericsson Stockholm, Sweden eleberg@cbe.ericsson.se

Héakan Larsson Ericsson Kista, Sweden hakan.larsson @ericsson.com
Tord Larsson Alteon WebSystems Stockholm, Sweden tord @bluetail.com

Jani Launonen University of Oulu Oulu, Finland | hjabba@eesZ.oulu.ﬁ

Tobias Lindahl Uppsala university Uppsala, Sweden t0li6207 @csd.uu.se

Erik Lindblom Ericsson Stockholm, Sweden Erik.Lindblom@etx.ericsson.se
Bjorn Lisper Miilardalens Hogskola Visterds, Sweden lisper@it.kth.se

Matthias Ling Corelatus Stockholm, Sweden matthias @corelatus.se
Ann-Marie Lo6f Sjoland & Thyselius Telecom Stockholm, Sweden ann-marie.lof @st.se

Anna Lofgren Sjoland & Thyselius Telecom [Stockholm, Sweden anna.lofgren @st.se

Luca Manai Ericsson Alvsjé, Sweden luca.manai @ericsson.com
Héakan Mattsson Ericsson Stockholm, Sweden hakan@erix.ericsson.se

Hékan Millroth Alteon WebSystems Uppsala, Sweden hakanm @nortelnetworks.com
Chandrashekhar Mullaparthi | T-Mobile Borehamwood, Herts, UK [|[Chandrashekhar.Mullaparthi @t-mobile.co.uk

Hans Nahringbauer

Telia Promotor

Uppsala, Sweden

hans.h.nahringbauer@telia.se

Raimo Niskanen

OTP Unit, Ericsson

Alvsjo, Sweden

raimo@erix.ericsson.se

Annika Nordqvist

Ericsson

Alvsjo, Sweden

etxnora@cbe.ericsson.se

Arto Nummelin

Ericsson

Alvsjo, Sweden

etxarnu@cbe.ericsson.se

Patrik Nyblom

OTP Unit, Ericsson

Alvsjo, Sweden

[pan @erix.ericsson.se

Jan Nystrom

Uppsala university

Uppsala, Sweden

I jann@it.uu.se

Sven-Olof Nystrom

Uppsala university

Uppsala, Sweden

svenolof@csd.uu.se

Leif Nis

Ericsson

Alvsj6, Sweden

etxlnas @cbe.ericsson.se

Anders Ramsell

Telia Promotor

Uppsala, Sweden

anders.a.ramsell @telia.se

Erik Reitsma Ericsson Rijen, The Netherlands erik.reitsma@eln.ericsson.se

Tony Rogyvall Alteon WebSystems Stockholm, Sweden tony @bluetail.com

Per Romin Ericsson Nacka, Sweden Per.Romin@ebc.ericsson.se

Dan Sahlin Sahlin Innovation Stockholm, Sweden dan @ fatburen.org

Christian Schulte IT University Kista, Sweden schulte @imit.kth.se

Christer Skeppstedt Ericsson Alvsjs, Sweden Christer.Skeppstedt @etx.ericsson.se
Hékan Stenholm Stockholm, Sweden hakan.stenholm @mbox304.swipnet.se
Per Sternas Ericsson Nacka, Sweden Per.Sternas@ebc.ericsson.se

Robert Tjarnstrom Ericsson Alvsjo, Sweden erandig @cbe.ericsson.se

Lars Thorsén Ericsson Alvsjd, Sweden lars@erix.ericsson.se

Torbjoérn Tornkvist Alteon WebSystems Stockholm, Sweden tobbe @bluetail.com

Mats Westerling Ericsson Alvsjo, Sweden etxmweg @cbe.ericsson.se

UIf Wiger Ericsson Alvsjd, Sweden ulf.wiger@etx.ericsson.se

Jesper Wilhelmsson Uppsala university Uppsala, Sweden ‘__jesperw@csd.uu.se

Christopher Williams Ericsson Alvsjo, Sweden chris.williams @ericsson.com
Michael C Williams Ericsson Alvsjti, Sweden mike @erix.ericsson.se

Erik Ackander Ericsson Alvsjo, Sweden etxerac@cbe.ericsson.se

Lennart Ohman

Sjoland & Thyselius Telecom

Stockholm, Sweden

lennart.ohman @st.se

Updated 2002-11-12

