
7 th International Erlang/OTP
[.Jser Conference

Stockholm, September 27, 2001

Proceedings

rT

EUC'2001 http : / /t¡¡v'n¡t. erlang. se/euc / 01/
Ericsson Utvecklings AB
P.O. Box 1505
sE-125 Z5 Älvsjti Stockholm
Sweden

f-l

Lwd
ERrcssoru * E RLANG

Erlangl0TP Llser Conference 2001

Conference Programme
08.30 Registration

Applications I
09.00 The Best SSL Appliance in the World.

claes wikström, Johan Bevemyr and rony Rogvall, Alteon websystems.
09.45 Welcome SMS in Erlang - Experiences of Rapid Deployment in a GSM Network.

Sean Hinde, one2one.

10. 10 Improving Robustness in Distributed Systems.
Per Bergqvist, Synapse Systems AB.

10.30 Coffee

Applications II
11.00 The migration from Erlang to oTP: A Case Study of a Heavy Duty TCp/p

Client-server System written in Erlang.
Mickaël Rémond, erlans-f r. ors, ând Francesco Ceçarini, Cesarini Consulting Ltd.

I1.30 An Erlang-based Hierarchicat Distributed VoD System.
Miguel Barreiro, José L. Freire, Víctor M. Gulías, Javier Mosquera and Juan J. Siánchez,
University of Coruña.

12.00 Erlang in the Corelatus MTP2 Signalling Gateway.
Matthias Låing, Corelatus.

12.30 Lunch

Technology I
14.00 Tools for Designing tveb Based Interfaces for Errang/orp.

Martin Gustafsson, OTP Unit, Ericsson.
14.20 3D Graphics with Erlang - The OpenGL Interface.

Jakob Cederlund, GNO Data.

14.40 Development of a verified Erlang Program for Resource Locking.
Thomas Arts and Clara Benac Earle, CSLab, Ericsson.

15.00 Erlang Specification Method - A Tool for the Graphical Specification of Distributed
Systems.
Frank Huch, Christian-Albrechts-Universität.

15.30 Coffee

Technology II
16.00 HiPE Version 1.0.

Kostis Sagonas, Uppsala University.
16.30 Cross-Module Optimization of Erlang.

Thomas Lindgren.
16.50 The EC Erlang Compiler.

Maurice Castro, Software Engineering Research Centre.
17.15 Preview of the Erlang/OTP R8 Release.

Kenneth Lundin, OTP Unit, Ericsson.
17.30 Close (and pub evening)

ISD-SSL
The best SsL appliance in

the world

By
Claes V/ikstrom, Tony Rogvall and

Johan Bevemyr
{ klacke,tony jb } @ bluetail.com

Þ

Alteon fØel)systems
A Nortel Networks Company

What have we buÍtt

(built in Stockholm)

platform intended to build Internet appliances
:

with. (Stockholm)

firewall (San Jose)

ISD-Core platform
A standard stackable lU Dell PC with regular PCI slots, IDE disc
and NICs

checks etc

events system management etc

a

Typical setup

fnternet
clients

Cluster of L-255 ISDs

Alteon switch

Target servers
typically - webservers

a¡tltt¡r

lllt¡rr¡

what is that Alteon switch
anyway

>

loadbalancing

ISD-Core platform g¡ves

.ÞOS
I
I

a
I
¡

ISD-SSL

n'= ¡ TÑTP

NÌB=t
Þ\\eoq'Neb
Ss¡t\sn t

\
k\çtPs

I

Rou\er

\,

\n\etne[

SS\\arrùs\a\e

'lì"îììiìTÏ"""
'S.,T,Nì..

çttss

a

F'

1ilil

1ilil

]{

I

T

I

f n t ernet
elients

AI teon swi tch
t

I

T/rleh ,s ervers
f SD- SSL a.ÞTlIianee

1. Switch redirects and loadbalances SSL traffic to group of ISDSSL boxes
2. ISD terminates SSL session.
3. ISD sets up a new connection to VIP:80
4. Switch load balances clear text traffic to group of webservers
5,6. Outbound traffic from webservers is once againredirected to group of ISDs
7,8 ISD proxies traffic. Encrypted SSL traffic on the client side, and clear text traffic
on the servers ide

5

47
6

2
3

ISD-SSL feature set
o Easy certificate and key management

Secure storage of private keys

scalable solution - buy more boxes and get more performance

o Hardware HA solution.

SSL to the client, yet the switch sees clear text traffic and can do it's funky L7 stuff with the traffic

a

o

a

Transparent - webservers see real client IP as source Ip

Oflload webserver from RSA and bulk encryption

Client authentication, revokation lists

Based on openssl + bignum hw cards

a

a

a

a

Shopping Cart
Persistence r (uhh)
Without Manual Server Configurations

cBA
o iSD-SSL makes encrypted

cookie visible to Web switch

V/eb switch can associate
shopping cart (HTTP) and
payment (HTTPS) sessions
from same user (cookie)

User cookie is the most
accurate persistence indicator

Due to mega- and micro-
proxies

a

o

-Þ
-a' "

HTTP t
a-..--. HTTPS ffiñ

¡
I
¡

-'ç
.f¡

,f _..- ' .'\
,t

The BOX

1 SSL accelerator cards
of 600 tps

OR

Universal Power Supply

18 Gb hard disk

A purpose-built apptiance for processing ssl-, sessions

Console port

2 RJ 45 connectors
for 10/1O0Base-TX

a
a
a

o

SC connector
for 1000Base-

1 Rack Unit

coNHtCI TtfitES

¡5û 2.0

Cc¡:hÊtlrl.
5Å-/?J

C,rn¡eo
,$(!-lÐd

Ë5
Êis.lP â00

hfol
NdSn¡aulo

fl15

ru
.ÀIær¡

\ü/e are best, says
Network Computing magazine

llm fstrrolb
ftrltfr lIlPlm
N|¿OSS. G0nr¡r
fc*rlc Cüol!.lt

IC S.-llcdfh Hsrrrfll¡ ss
t rt r.hn¡l lædr¡tr-

t¡anrt25 la*rr t¡tlilr

'"d"Hrc

nfiÅcr
nFwoa'30û

ÍVs
CrYdo$ril

Éh ?no

5mi'-t#oll
ssr.R

Llm¡¡l¡d
fitr¡d

rJ ¿¡'
3.rr'1.

ffi l0¡3it tt'et;r¡lT.: | !*blÈ¡,Itryr. ¡J r¡l¡
I loltlÉriht,rt I

t!Aìa-tf B¿3.6'c¿2.6'O¿t.6rf<1.6 A-c ctlots rrrcruDr I oR - r¡ tHtR n^flGrs. loln sconrs AilD wncxrr.0
sco¡fs ARt eAstD oN ^ îc¡tt <.rl o-5. Custol¡l¡t trt Rtsutts ot txts R¿ro¡t C¡r¡o to you¡ tNvttoNMt¡{t ustilG
lxf l¡¡ttlì^r:ll{t ftf rr;ll C¿(ir', A J^vÂ

^ppttr
oN Ntlwonr CoMpul¡llc ONltNt,

^t
www.rutttveeïcottput,NG.cc/lû.

SECURITY 44414

3.534410* 4.s

3.753.804.roTO¡AI SCORE

AA-BBB

REPORT CARD External SSt Accelerators

Tungsten Firewall
Cluster of L-255 Tungsten ISDs

eaeh one running ISD-Core + f¡sçkpoint firer¿a11

Corporate
netroork

Internet
elients

Àlteon switch

osYN packet arrives at the switch (FIN or RST as well)
oswitch redirects packet to one of the ISDs
oCheckpoint software at the ISD decides what to do with that particular TCP flow
.ISD instructs switch that {src ip, src port, dest ip, dst port} shall be cut-through inside the
switch
OFIN or RST arrives at the switch - switch redirects to the same ISD that got the SyN
.ISD terminates that TCP particular TCP flow

¡¡t¡¡rt¡

¡l¡¡¡t¡t

Customers

kia

Welcome SMS

Welcome SMS in Erlang.
Experiences of Rapid Deployment
in a GSM network

æ'ta
I ! ¡(f.j1.rj:ìj'¡

:.. :

The Requirement

¡ Send out SMS messages to One 2 One customers
when they arrive in a foreign network.

¡ Don't send them any more messages for at least two
weeks.

r Different messages depending on destination Country.
¡ "Marketing" usable GUI configuration.
r Option to send messages to roaming customers when

they arrive in the UK.
r Ultra reliability not a hard requirement

r Except NOT sending multiple messages

ã*¡'ra lT! l!,i¡¡
l.îh!)úlrLì,il

1

The Timescale

. 8 (yes, 8) weeks from start of design to launch of
servrce.

ãll:,.trl m r1,,.- ¡

I i::1t,r.X:l,n:,ì

Access to Customer Behaviour?

r Monitor all international c7 signalling links.
r Extract contents of MAp messages:

r Where is the customer? (VLR Address)
r Whose customer is it (lMSl)
r Who should receive the SMS? (MSISDN)

r VLR address and lMSl are in Location Update,
MSISDN is in lnsert Subscriber Data. These messages
can even take different physical routes...

ã'+''n1
T Àt?;i,il"

2

Business Logic

¡ Decide which message to send
r Different depending on class of customer (prepay,

postpay, wholesale)
r Different depending on destination Country
r Different for inbound roamers

r Have we sent them one already in this country?
r Have they elected not to receive these messages

llÉ'ñ T

i.
t:

t'

¡

:

I

Operational Requirements

r lntegrated with existing alarm management system
(SNMP Traps)

r Generate statistic reports of system activity into
existing stats database.

¡ Load balancing between SMS service centres
r Ability to on the fly reconfigure which SMS service

centres are active and the load balancing between
them.

EFñ m ì{,i:,,-.
I !at¡:rát,:¡,rl

3

Design Options

r Commercial cT probes to do automatic correlation of
all messages for a particular activity.
r Best supplier delivery time longer than entire project

duration.
¡ Time taken to integrate.. Who knows.

r Option to exercise Synergy across T-Mobile
lnternational group.
r Several useful design ideas shared. Again,

timescales not lined up
r Standard commercial systems - expensive, don,t meet

all requirements, integration time huge+.r

Design Options 2

r Use Erlang?
r But what about c7 probes?

r Possibility to use standard test set (MpA 7400) to
extract all c7 messages as raw data and send out as
UDP

r Two spare (but old) 4 CPU Sun machines about to be
de-commissioned

r Lead times of all elements OK. Now to work..

Fill}r'ã m l{,,iìr;
I illcixô¡tril

4

C7 Probe C7 Probe

Design Overview

TCP (lnternal TCP (GlP Protocol)

ÐP c7UDP c7

m rl.,r," t,.'..,..,,',.'.;
ãt-ñ

Customer Database
Also

SMS Service
Centres

¡l

wsms_log¡c@brucê

inets
mnesia
stats
snmp

(@
inets

mnes¡a
slats
snmp

gn_agenll@bums

@ @

Erlang Nodes
SMS S€ruics Côntre

Cuslomer dB

Burns

m ì1,i, ;^
I 'rr^;rtrt.r..l

Standby

t*¡'rl UDP c7 messages

Active

5

Some screenshots

¡trÞ¡þþ

f!4
arCB
!úü

Mw,N
Þktbgd@
!]!!&
9t9
¡'@
&Èd
¡@
S!@
üß
Cûr.rô¡
@¿þq@
!s
krHo
Y@
¡t

Roaming Par.tner Configuration

cq

-

lcdrædNdf------]

@ hlhl

:$

llllf}r,.rr¡¡ m !1,t¡!_!
I !'Jrr, !r'.4;,1

Some screenshots

Þls&x
tsË¡¡r
li:a::i.

li!

&
iö*e,

Vcnlon Informatlon
È'#¡h¡rútu-ft-d.b*

elã;õ;;:-liì¡!

l
þ,

;;*¡-'ã
T ¡ì,,i:i:"

6

u5¡¡D!&
li:i:.Ei

T

&
Ìjú

Some screenshots

m:,.,1r)r!
A i!:!(,1ii.',¡:.!

Fllt'?ã
:

i¡.. .¡,1

i'.

!

'i

I'

r Bug with restart of one process starting up too many
sms sending processes.

r LAN Latency - both for UDP and dB reads.
r Fixed by tuning concurrency and timeouts.

r One module not permanently loaded in the customer
Database.

r Scanning an Mnesia table to delete some rows is
pretty heavy..

Problems encountered

rr| ¡i:,iìr;.
I iarrir¡b:i.¡l

7

What else have we been up to?

r Oracle Call lnterface Binding to Erlang

r Multithreaded Driver
r Pools of Sessions
r Decent Performance (> 1000 selects per second)
r 1500 lines of C (so far!)

r Garbage collection of stale handles

ãÇr¡'a. rrl Í,,1,!:,
¡ iítr!iJll,j¡jì

What else have we been up to?

r Oracle Call Interface Binding to Erlang

N =,447956123456",
F=fun0 ->

case oci:exec("select name, balance lrom cust where telno = :e", [N]) of
(Name, Amountl ->

A1 =Amount-10.0,
oci:exec("update cust set balance = :e where telno = :e',f41, Nl)

0->
oci:abort("Customer not lound')

end,

ocilransact¡on(Connection, F).

ãl#r;ã m -ï,,¡,!
I rÌtcixâ!Lìr¿,

8

What else have we been up to?

r Generic "behaviou/'for tcp/ip clients
. link management (using heartbeats)
r simple callbacks for protocol implementation

r model is alltransactions multiplexed down 1 socket

' time taken to implement new protocol down to a few days

r Call Data Record - record and playback

ñåffi T

What else have we been up to?

r The Original Project used to justify the use of Erlang
never got into service. All hardware has been re-
deployed for other Erlang applications!

ñ!'|ñ?rr{ m í,,ir:.
I ia{tr,r¡itt1,¡l

I

Improving Robustness in
Distributed Systems

Per Bergqvist
per@svnaDSe.se

Erlang User Conference 2001

Design base

r Cluster of cooperating hosts
I Erlang and C
o COTS hardware based
I Unix based (i.e. Solaris or Linux)
. 10/100/1000 base-T backplane

("system area network)

1

I

T.

Cluster

r Shared, distributed, system configuration
o Each host have ONE cluster controller
e Dispatch and superuise worker tasks
r Master cluster controller: holds configuration

database (persistent replica)
r Slave cluster controller: gets configuration

from master cluster contlollers
r Cluster is DOWN when all master cluster

controllers are inaccessible

Typical system

2

r Enforces decoupling of parts of O&M
from actual traffic processing

Key Benefits

r Single system view

:,

Implementing a cluster

o Cluster-> Host-> Node-> NodeData
r Cluster global parameters
o Subscription mechanisms for conf. changes
c Mnesia as configuration database on master

cluster controllers
o Homebrewn configuration distribution to

slave controllers (NOT using mnesia)
o (Worker) node superuision

3

r Disallow writes when all replicas not
accessible

r Use timeout on table load and force
load

Mnesia gotchas

¡¡T BUT ¡¡¡

r TCP based distribution

o Network partitioning

4

Network parameters

r Align TCP retransmission intervals w/
Erlang heaftbeats

r Aling TCP and IP rerouting parameters

I

i

Typical system II:
Dual backplane

5

Erlang multi-homing problem

Multi-home Erlang w/ TCp

r Add an alias interface to loopback ilf
r Patch tcp distribution to bind to alias

r Publish alias interface on (all wanted)
via real hw i/f's
. Method 1: Static routes and gratious/proxy

arp
. Method 2: Use new (routing) protocol

6

r Implement a utility to:
- broadcast unsolicited ARP responses
- respond to ARP requests
for the alias i/f address

I Add static routes on all far end systems
I NOTE: all real i/f needs to be on same

IP subnet

ARP method

¡0

I

iNew routing protocol

r Broadcast (ethernet frames) what you
have, including interface priority

e Let the far end select path based on
what/when they receive

o Far end dynamically sets up host routes
I Use short retransmission interuals

7

Erlang multi-homing resolved ?

Summing up

I Erlang can support multihoming with some
additional work

. By using loopback alias i/f, link failure
becomes a routing problem (peer-peer
association is kept intact)

o Solaris TCP/IP stack parameters are:
- !'rat{ find (only in out-of-date app. notes)
- hard to set "right"
- host global

o A distribution mechanism with built-in support
for multi-homing preferred

I

Erlang Distribution over SCTP

Erlang User Conference 2002

Per Bergqvist
per@synapse.se

i
l',,'
i..¡. .''fr."
É*#rì
ffi-ffi
þT,+ii
Íiri,rl¡
i ¡ì. :;,
il;i',,i
i¿1i'{ih

$!ì;r;i.l
t,

t.
li ,,;:i
:': I

i:, '.i
Ì1-:.1
{_- r::
li
i,

9

The migration from Erlang to OTP: A case study of a
heavy duty TCP/IP Client Server applicatÍon.

Francesco Cesarinil
Mickaël Rémond2

September 27,2001

Proceedings for the Seventh International Erlang User Conference, Stockholm,
Sweden.

Abstract
A team of software engíneers at IDEALX set out to build a proxy þr a heavy duty
TCP-IP application. They had Erlang experiencefrom previous in house projects, but
had never come ín contact with the Open Telecom Platþrm's design principles. Wen
an external Erlang/OTP consultant was taken in to review the code, he discovered a
system written in pure Erlang. This paper describes reasons why development on
OTP design principles were developed in thefirst place, and explains why they were
bypassed ín the prototype phase of thß project. It concludes by descríbing how the
migration of the Erlang prototype to an OTP product was achieved, looking at the
advantages gained through such a migration. The intended readers are companies
and individuals considering using Erlang in product development, but do not have
access to in house Erlang expertise.

Introduction
IDEALX's business idea is to run in-house software development projects on behalf
of customers using open source tools and components. One of these projects consisted
in developing an instant messaging server where different protocols were interfaced
towards the Jabber protocol, used by the ISP who commissioned the product. Due to
the concurrent nature of the system, time scales, fault tolerance, high availability, and
scalability, Erlang was chosen to develop the core of the system. The team had
previous Erlang knowledge from in-house projects,

-and unanimously agreed that it
was the best route to take. Inspired by the Sendmail3 presentation at thJSixth Erlang
User Conference, the project decided to take in an ErlangOTP consultant. His task
was to review the code, review the system architecture, and provide OTP training.
When he started reviewing the code, he discovered a working protôt¡pe developed in
pure Erlang. It did not use orP design rules, principles and applications.

The team had been looking for something similar to OTP, but as they did not exactly
know what they were looking for, they did not know where to look. Only when they
took in external Erlang/OTP help were a lot of their questions answered. When the

I francescolri,erlang-consulting.com, r¡.wrv.erlang-consulting,com
2 nrickael.renlondr¿r,erlan g-fi'.org, *,*'*l.arlun*f..org
' Christenson et. Al. Sendmail Meets Erlang: Experiences using Erlang for email applications.
Proceedings to the sixth International Erlang user conference, october 3, 2000.

migration of the system from Erlang to orp took place, the size of the code was
drastically reduced and extra functionality includeã in OTp was gained. We conclude
the paper by sharing some of our ideas and needs to encourage olher projects without
experienced consultants or mentors to start using at least a sùbset of the ôtf design
principles from the st¿rt.

Product Requirements
A French internet service provider commissioned an lnst¿¡rt Messaging proxy server
based on the Jabber protocola. Jabber is an XMl-based open source initiativè aiming
at producing an open protocol alongside a gateway to exiiting competing instant
messaging systems such as AoL, Microsoft, and yahoo! At the time, JaÉber could
onlyhandle fifty to one hundred simultaneous connections. The requirements from
the ISP stated that the proxy needed to handle at least ten thousandiimultaneous
lsers. Scalability during run time was another requirement, as \ryas the possibility of
flexible software which at a later date could easily allow the addition of services such
as advertisement messages to subsets of users.

Why OTP?
The first major product developed in Erlang was the Mobility Server. It was based on
extensive proto[pes started in early 1991. When working on the first prototlpe, the
software engineers realised that similar problems had beJn solved diffãrentlyìn'the
various subsystems. Many models of client / server solutions had been implámented.
Processes had different start and restart strategies, and error handling wasiot
standardised.

A few people realised that a common approach, originally limited to start and
recovery, was needed. In late 1993, alongside the Mobility server project,
development on Bos, the Basic operating system,.o*-.n.rd. If inúoduced
behaviours, restart strategies, release handling and code upgrade principles, alongside
a set of design rules and guidelines that made procesæ riùibit a uniform behaviour
towa¡ds the Erlang virnlal machine. In 1995, the development of BOS and Erlang was
combined, giving birth to the Open Telecom Platform. Þrior to the fnst release of
OTP' BOS was an obvious choice in all Erlang products developed within Ericsson.

Companies using Erlang/OTP have achieved many commercial successes. These
successes are in part due to the in house knowledge and experience that has been built
through many years of using the technology. Ericison has been running Erlang/OTp
projects since 1991, and has a department specialised in Erlang/OTp trãining;nO
consulting. They have a direct communication and support chinnel to the Eriang/OTp
maintainers. Nortel Networks employs many of the róft*at" engineers who oriþnally
tll9nted Erlang, alongside members of the team that implemented the first release oforP. other companies, especially in Sweden, have people who have previous
experience from Erlang/OTP based projects. They knowthat OTp shout¿ be used
from the start. what þnne1¡ when people .orne ãrross Erlang through the web or
through word of mouth and learn it from the documentation availablè on üne and
through the web, but a¡e not made aware of the opportunities of OTp? V/hat if they

2

4
wwu, jabber.org and www jabber.com

then go ahead and use it in a project without having the necessary mentorship? That is
what happened at IDEALX.

IDEALX's protoqæe had many similarities to the early Erlang prototlpes developed
in the early 1990s. No coherent supervision structure existed. Some subsystems had
restart strategies that were able to handle process crashes, others did not. Message
passing was used in an uncontrolled fashion, making debugging very hard. ln
addition, the team had made design decisions based on incorrect assumptions over
how the virtr¡al machine and the kernel functioned. These decisions resulted in
bottlenecks, inefficient constructs, and bad use of concüïency.

Why OTP was bypassed?
In December 1998, when Erlang was released as an open Source development
environment, Mickaël Rémond, the project leader and co-author of this paper,
discovered the language. He found it very appealing because it offered many
interesting features that were new to him.

He had not developed many concurrent applications because it meant having to add a
magnitude of complexity to the code, drastically changing the programming paradigm
he was used to. The languages he had used prior to Erlang were not made to handle
concurrency, making the implementation of multith¡eaded systems appear unnatural
and awkward.

What he found interesting about Erlang was that using the language changed and
improved his programming style. Concurrency became shaightforward and natural.
He further realized that mapping processes to truly concurrent activities in the real
world meant simpliffing and improving the application design. It became easier to
think in term of concurrent process than, for example, in terms of objects.

But, as he came from an object-oriented background, there was still something that he
missed. Object orientation is not only used to design the system. It is also a way to
organise and reuse large part of the source code. How was it possible to implement an
efficient and well-structured program without object orientation?

OTP was certainly not the answer that came to mind. When looking at other
functional languages, he discovered that some of them offer a mixed of orthogonal
approaches. For example, Objective CAML is a functional object oriented language.
Erlang had no such obvious approach.

This lead Mickaël Rémond to ask the classical newbie question in response to a mail
sent to the Erlang mailing bst. "How do you apply object oriented programming
techniques in Erlang? " It seemed the natural question to ask, and only later did he
realise it was the wrong one. Fortunately, Joe Armstrong came to the rescue. He gave
him a very important clue in explaining that you can apply a tlpical Object Oriented
Approach in Erlang with a common pattem. An example can be found in Chris
Rathman's shapes oo examplet. Joe Armstrong however added that object
orientation was not needed because Erlang has something more powerful called
behaviours.

3

5 u,rvu .an gelfi re.com/tx4icuslshanes/erlan g.htnrl

"Something more powerful than object orientation? " It sounded too good to be true.
It took some time before Mickaël Rémond really understood what Joã Armstrong
meant. Object Orientation is not necessarily the best way to design and structure a
piece of code. It might appear easier to learn and use, but when applied to larger
system, the theory does not work. Users are forced to add "technical" objectsihat
often result in complicated hierarchies. This makes the system architectüre complex
and sometimes affects the performance of the application.

It was however difficult for him to understand how to use the behaviour altematives.
The design guidelinesare not very well promoted, and you have to search deep into
the documentation to find examples. Such an approach is obvious when workiig with
proper Erlang mentorship, but it certainly was not obvious for someone who had
downloaded Erlang/orP soon after it was released as open source.

OTP Deterrents
Behaviours are part of the design principles in the Open Telecom platform. Saying
that, you are facing your first deterrent to dig deepeiinto behaviours. Unless its name
implies it, the open Telecom Platform was not only made to develop telecom
applications. It is a much more general tool. In fact, OTP is useful to organise any big
enough Erlang application.

The second problem is that behaviour documentation is not where you would expect it
would be, and is more a reference document than a step-by-step tutorial. To find the
behaviour documentation, you have to look into "system irinciples" and "design
principles", and in the correct section of the STDLIB documentation. The new=
organisation of the documentation in R8 is clea¡er, but still is not sufficient.

Vy'e also need to emphasise how behaviours relate to each other and how they can be
used to make your application more robust. Maybe the tutorial should illusrâte the
way to migrate a pure Erlang progr¿rm into an Erlang/orp application. A step- by-
step explanation, applied to a real application design. A widèþ available advanced
Erlang programming book, focused on practical OTP aspects would also be welcome.

In addition, more Open Source code for applications designed using behaviours are
needed. When searching on the net, most examples are *ritten in pure Erlang. It was
hard to find good examples of applications designed in OTP. In some cases,irot even
OTP applications in the Open Source release follow their own design princþles.

IDEALX's Erlang team did not really know how they could build a project using
OTP's design principles, and thus, it was not the obvious choice. Thèy áecided to
work on a prototype in pure Erlang, and only later realised their mistake and asked an
Erlang/OTP consultant to review their work.

The Migration
Francesco Cesarini was brought in to provide technical consulting and OTp training.
His time on location with the team was limited to one week, and that had to include
all OTP training. That was a solution he tried to persuade IDEALX not to go ahead

4

with. Often, when tryrng to cut training costs, the results are catastrophic. OTP design
principles are complex, so people not experienced in Erlang often have a hard time
grasping the subject. The group, however, consisted of a set of experienced
prograûrmers with a computer science background who had encountered many
different programming paradigms. They had programmed extensively in Erlang, both
on in house projects and on the lnstant Messaging proxy server. By stripping the
course material to the bare essentials, they were able to cover design patterns,
programming rules and the new bit syntax in two and a half days, exercises includedó.

As soon as the team had a good understanding of how call-back functions worked and
felt comfortable with the OTP design principles, it was possible to review their code
in regards to style and efficiency. The review allowed the team to explain the
architecture of their prototype, and their ideas and misconceptions on which they
based their design decisions. A misconception on how the virtual machine worked
resulted in a huge bottlenecks in the encoding and decoding processes. Believing that
each process saved a private copy of the byte code, they wanted to reduce memory
usage at the expense of message passing.

This was followed by putting together a new system architecture with emphasis on the
process and application structures. This task only took a few hours because of the
preparatory work during the review. The result was a simpler architecnue, as the
migration helped reduce the complexity while keeping the overall modularity of the
system. Prior to the rewrite, the code was hard to follow. The use of the standard
design patterns, namely generic servers, finite state machines and supervisors helped
improve readability and structure.

The original prototype did not support distribution and load balancing. The OTP
migration, however, facilit¿ted designing those aspects in the system. The restart
strategy came as a bonus, as it was achieved through the use of supervisors. Due to
the time scale of the project, the team did not have time to introduce release handling
and hot code upgrade. They did not feel confident with the upgrade, and for political
reasons preferred stopping and restarting the system instead ofrisking a crash due to
some enor.

The overall performanceT of the system was greatly improved after the rewrite. The
unnecessary conculrency had been removed resulting in a drastic reduction in the
overall exchange of data rimong processes. The code review took into consideration
efficient constructs, so the use of binaries and pattem matching on the bit syntax, also
played a big role. It was an easy task for the team to migrate from a pure Erlang
application to one using OTP design principles. The rewrite of the prototype into a
real product took 20 days, and resulted in the reduction of the code size by
approximately 50%. The original prototype had taken 25 days to develop.

o It has to be pointed out that the training session was successful only because the participant's
background. As the consultant had to be on location for a whole week, he agreed to the intensive
course only because he knew there would have been more time for questions and exercises should the
allocated time not have been enough.
7 No performance measurements were made prior to the rewrite.

5

,.il

¡.

¡

l
1ìl

Conclusion
The team that worked on the project would today never consider writing an Erlang
application without using OTP from the st¿rt. It took them only a couplè of days to
become productive, and they immediately saw both the need and the advantagès. But
in order to understand behaviours well, they had to first grasp how to design good
Erlang applications. Attempting to learn OTP the week after having attended the
Erlang course does not work.

Many advantages where achieved in the product after the migration. There where no
more message management elrors in that all message passing was handled through
functional interfaces. Process supervision and restart strategies where standardised.
Processes exhibited the same uniform behaviour and had basic event tracing and
logging functionality. It was possible to generically control the whole systeir,
distributing it across several nodes and processors. Even if not used in this release of
the product, they had the existing tools for release handling, could easily integrate
other OTP applications, and had a platform easily allowing the implemãntatiõn of
software upgrade during run time.

By creating BOS and later OTP, a gap that existed with pure Erlang was frlled. It is a
gap dealing with methodology, structuring of programs and re-usage of code. This
was the gap that Mickaël Rémond was trying to fill when he cameãcross Erlang in
1998 and asked about OO methodology.

Unfortunately, the Erlang book came out before OTP. The documentation is well
hidden, and few examples of well-structured OTP applications are available. While
waiting for new books, new documentation, and more open source examples, we hope
that this paper will lead to a better understanding of the power of OTP tocompanies
and people who do not have access to Erlang/OTP expertise but are considering
Erlang.

6

An Erlang-based hierarchical
distributed VoD System *

Juan J. Sánchez, José L. Freire, Miguel Barreiro
Víctor M. Gulías, Javier Mosquera

University of Coruña

Computer Science Department, LFCIA Lab
Campus de Elviña - 15071 A Coruña (SPAIN)

e-mail: {juanjo,freire,enano,guiias,mosky}@lfcia.org

Abstract

Video on Demand (VoD) is a service that enables users to request
any multimedia content at any time, without being constrained by any
pre-established scheduling. Current commercial solutions tend to have
two main problems: lack of flexibilit¡ and high cost for a large scale
deployment.

The VoD server described in this paper is based in a hiera¡chical archi-
tecture, implemented using a functional programming language (Erlang)
and built over a cluster-based architecture (Beowulf).

The described system can be adapted with great flexibility to the un-
derlying network topology, and scaled in order to support a large and
growing number of concurrent users, all with a low cost solution, and
using commodity hardwa^re whenever desired.

After an initial system design work, where the hiera¡chical structure
was static and composed of three specialized leveìs (streaming, cache and
massive storage), and afler the ûrst implementations and testing, the
architecture has been evolved to an arbitrary number of levels, made of
modules with a known interface, thus achieving high levels of adaptability
and versatility.

Keywords: F\rnctional Programming, Distributed programming, Clus-
ter, Linux, Erlang, Video on Demand.

1 Introduction
A video on Demand server (VoD), is a system that provides video services, al-
lowing users to request vos (video objects) at any time, without pre.established
time restrictions.

'Partially supported by FEDER TIGIFD97-1759, Xunta de Galicia pGIDT99coMt0502
and UDC 200G5050252026

a

services like movie-on-demand (MoD), distance learning tools, or interac-
tive multimedia information services, offering personalized news based on user
profiles, are just some multimedia applications examples that may use this kind
of servers.

VoD systems must satisfy several key requirements, including:

o Huge storage capacity: in most applications, the system should be able to
offer users a big number of multimedia objects, that should be stored in
some way at the server. Even though storage capacity grows steadily for
a given cost, so do user expectations.

o support for a great amount of concurrent users: the system should be
able to mânage a great amount of VO requests. A single user may pG.
tentially perform several concurrent requests (for instance, multi-camera
movie or conference archival). vos may also be requested at high rate by
automated tools to perform processing.

o High bandwidth: the high bandwidth usage characteristic of muitime-
dia contents service, together with the need of serving objects to a large
amount of users, makes of this one of the main requirements: the server
must be able to provide a high total throughput.

r Predictable response time: when a user asks for a video object, the system
should be able to give - performing statistical estimations that take the
system state as input - an approximation of the waiting time. Besides,
the server should try to minimize the waiting time for urry u."..

e Fault tolerance: with 24x7 expected uptime, there's a need for some kind
of mechanisms, both hardware and software, to keep working at least in
a degraded mode when some kind of fail happens. users wilr expect the
same kind of uptime as conventional rV (versus: they are used to some
downtime on common internet-based services).

In addition to the traditional requirements for this kind of servers, we a.dded
three more, that put stricter conditions on the design decisions:

o upwards and also downwards scalability: the system must be abre to
service a reduced number of users in a simple, scaÌed-down environment,
and also capable of growing by increasing the used resources, in order to
support a very large amount of concurrent users. It should be usable on
very economical, commodity hardware as well as on high-end server farms
and large SMP systems.

o Adaptability: a system abÌe of adapting to the underlying topology, mak_
ing an efficient use of the availabie network bandwidth. Thã topoiogy of
current DocsIS cable and ADSL networks results in each section of the
customer - provider link offering vastly different characteristics, thus there
is a pressing need to optimize network resource usage to avoid saturating
the slowest paths.

o Low cost, taking into account the totar cost of deploying, managing and
operating the system.

2

2 State of the Art
There are currentìy several video streaming server solutions available from Re-
alNetworks, Microsoft, Apple, Cisco, Philips, IBM, Oracle, Kasenna and others.

While most of them are welÌ suited for low volume video streaming on the
Internet and some for corporate video services on a LAN, few try to address the
difficulties in serving high volumes of multimedia contents on a large, heteroge.
neous network.

In general, the detaiied anaÌysis of this products, gives the conclusion that
most of them represent very expensive, cìosed, non-scalable and non-adapt,able
solutions. They however tend to be turnkey solutions, ready to plug and easy
to run on a small deployment.

A more detailed study of some of these solutions can be found at [10].

3 VoDKA: a hierarchical distributed functional
VoD server

In order to cope with the previous requirements, an innovative solution, based
in a distributed and hierarchical storage system 13], built over Linux clusters
composed by commodity hardware [2], is proposed: VoDKA (Video on Demand
Ketnel Architecture).

The hierarchical architecture allows the division of the system functionality
among the different levels of the hierarchy, giving a bigger specialization, which
makes viable the satisfaction of the "a priori" incompatible requirements. For
example, the complex relation between high capacity, low cost, and a very short
response time, finds a solution in the layering that is described in detail in
section 3.1.

The conclusions obtained after the system implementation with this first
proposaÌ, have produced an architectural design refinement, resulüing in a more
generaì solution, whose main features are detailed in section 4.

In the analysis and design stages of the system development, design pat-
terns [7] with their adaptations to the programming language are used, and
behauiours [6] (which represent the equivalent to the design patterns but at a
ìower abstraction level).

The programming language in which most development has been made is
Erlang/oTP [1], which has ideal features for the implementation of monitoring,
control and scheduling subsystems. In some of the I/o modules, whose perfor-
mance is critical for an optimal performance of the system, c has been used
instead, after an initial phase of Erlang/OTP prototypes.

In every moment, emphasis has been made in reuse, by using OpenSource
tools (Linux, Erlang/orP), or through the adoption of certain subsystems from
open soiutions for special functions inside the system, like protocol adaptation or
working with special file formats (Quicktime), and subsystems independization
(openMonet [8], Inets nod¡csÌ [9]). Additionally, the use of opensource tools
has allowed for easy operating system and hardware neutrality.

3

i

!

:

i

I

Tf b&,l@6...

Tsñiary þvsl
(reiwstongo)

Sffindâry tswt
(larg€ sls €ctìê)

Primry l€vs¡
(buf€ring and
pÞ1@l adâÞlåtim)

Figure 1: Initial hierarchical structure

3.1 Initial design proposal
The hierarchy in the initial design proposal (figure 1) was composed of three
speciaiized levels, described bottom-up in the following paragraphs:

o Tertiary Level (massive storage level): massive storage level has different
requirements in terms of resporrse time, compared with the ones in the
higher levels. Its main goal is to store ar the available video objects in the
VoD server with tape chargers, disk arrays, or a¡y other massive storage
system.

The server global performance depends on this level in terms of load time,
latency, throughput, etc., Even though it's interesting to optimize these
quantitative parameters, the higher level can alleviate their weights in the
global performance measurements, because the secondary levei acts as a
cache for the tertiary one.

o secondary Level (cache level): it's composed of a set of nodes, each of
them with enough capacity for storing at reast a comprete video object.
The object, read from the tertiary level, is stored temporally in some
node before being striped in the primary one. An appropriate scheduling
policy should decide which are the videos that should be maintained in
the cache, and for how long, in order to satisfy the future user requests
and limit accesses to the massive storage level, if possible.

r Primary Level (streaming level): it's composed of a set of nodes in charge
of protocol adaptation and sending the final video stream in the right
format to the client. The interest in putting the sufficient number of
nodes in this ievel is due to performance as well as to the need of quick
reaction after a fail in any of the nodes, sending the tasks dynamically
to another node, limiting in this way the losses in the quality of service.
This level has important requirements both in bandwidth and in response
time.

4

3.2 Key technologies
Besides the innovative architecture presented, two of the most important and
differentiating features of the proposed solution are the use of a functional lan-
guage and the adaptation to a cluster-based architecture.

3.2.1 Erlang/OTP

The used language, Erlang, has been designed and used at Ericsson for program-
ming distributed control systems. The combination of the functional paradigm
and parallel computing gives a declarative language, without side effects, and
with a high level of expressiveness, abstraction and ease of prototyping.

Erlang is specially suitabìe for distributed, fault tolerant, soft real-time sys-
tems. It is a language based in asynchronous message passing, transparent
transference of values, and higher order communications, that has the capacity
of supporting a high number of concurrent processes.

The language is suited for the development of distributed systems, permits
the transparent location of processes in different nodes. It also includes primi-
tives for the support of fault tolerance and provides facilities for the replacement
of code without having to stop the system.

The proposed solution also uses extensively the libraries and distributed de.
sign patterns of the open Telecom Platform (orP), including generic servers.
supervision mechanisms, a distributed database (Mnesia) with location trans-
parency, fragmentation, replication, and integration with the language, and a lot
of useful integration libraries; SNMP, ASN.I, C Interface, Corba, Java, HTTp.

SNMP, the Inets HTTP server, the SASL support libraries, the EVA and
MESH alarm and measurement handling applications, and Mnesia are used by
the monitoring subsystem. The c interface, the TCP and UDP libraries and
others are extensively used in the I/O and streaming layer.

There are also additional modules in development (LDAP administrative
interface, user application gateway) that make extensive use of ASN.I, and the
Java interface, among others.

Erlang/orP not only provides many useful libraries and applications; there
is also a rather homogeneous philosophy underÌying all of orP, so application
design and interfaces is naturally coherent. A high degree of reusability and
high programmer efficiency are also encouraged and made possible.

All the cited features makes of Erlang a very well suited language for the
development of the proposed system.

3.2.2 The Linux Cluster

The use of Beowulfl clusters in the proposed solution proposed in this paper
(Linux-based low cost distributed system) has been another of bhe keys that
make proposed server an innovative architecture. The distributed memory ar-
chitecture complements itself perfectiy with the message passing philosophy of
the chosen language. while the voD system can run on other architectures as
well (SPARC/solaris, PowerPC/AIX), a linux cluster provides an idear environ-
ment.

rNote the somewhat liberal use of the term BeouruIf; in strict sense, the way we use Linux
clusters does not make them Beowulf-class

5

i

l.:

I

RP

H.2ól lm

(Ek¡ fAPE)

lFl.) (m)

Figure 2: VoDKA Server with n levels

Some of the advantages derived of the utilization of this technology are:

o The wide experience in the opensource community and former work with
high speed networks, distributed systems and clustering over Linux.

o source code availability: modification of any part of the software for adapt-
ing, correcting, locating problems or instrumentation.

r Homogeneous license (GPL): easy legal treatment (versus, e.g., current
MPEG4 situation, where each component has a different license, and their
interaction is sometimes annoying and even contradictory).

o compatibiìity: code developed with Linux can be ported without problems
to solaris, AIX, Tlu64, IRIX, etc. Respect of standards (posli 1003.*,
svID, 4.xBSD). Progressive commitment of commercial unix vendors to
further interoperability (sGI and IBM embracing Linux, AIX s/L provid-
ing Linux interfaces).

o Good performance

o Wide availability of development tools

o Support for different hardware platforms (xg6, Alpha, SPARC, ARM,
5/390 (zSeries), 1464, SH3, MIPS, power.. .)

4 Design refinement
The initial design ideas had to be modified in order to satisfy the needs of a
production system. In particular, a design generalization was needed, because
the three level fixed hierarchical architecture (streaming, cache and massive
storage) can be too complex for very small installations, and too rigid for com-
plex network topologies like the ring-based backbone that intercoinects some
metropolitan cable networks.

6

Cæh it

Cæhe in

neNork node

PRIMARY RINC
Cæhe in

ne¡work node

primary

prinury

Storage

Stomgc

<>-
Storage L2 Cache --¡a> -+>Ll Cache Streaming

.'Sü€ærin
ñDafltode

End u*n

node j

SEedne¡ in
f¡naj node

End uren
(Min)

Figure 3: Configuration of the server over a complex network topology

This re'definition of the hierarchical architecture gives a new one, divided in
a variable number of specialized levels, all of them sharing the same standard
interface (figure 2).

This way, for example, the cache level ca,n be absent in a given installa-
tion, or can be augmented producing a complex multilayer cache adapted to
the underlying topology (figure 3) or configuring different massive storage levels
physically distributed. The usual setup for a DOCSIS based cable network pro-
vides a restricted, if sufficient under normal circumstances, bandwidth from the
customer to the cable hea.dend, but plenty of available bandwidth through high
speed SDH fiber rings among cable headends and the provider central switch-
ing offices. In some cases there are additional switching levels to the customer.
So, in order to accomodate this situation a series of distributed storage and
cache servers are deployed throughout the provider network, optimizing link
characteristics.

Even, a server could be used as a storage subsystem of a different server,
giving a VoD meta-server.

Besides the flexibility related to the physical distribution of the system, its
necessary the system to be abie to, inside each of the levels and among differ-
ent ones, interact using heterogeneous storage and transference protocols. This
flexibiiization is based in identifying the communication patterns between the
different levels, factoring them out as functionai abstractions (pipes, for transfer-
ence among the nodes) parametrized by functional closures which encapsulate
the particular protocols and are established by schedulers that collaborate do-
ing the tasks related to some work. This generalization in each level controllers
ensures the utilization of generic monitorization mechanisms and reflective pre
gramming for discovering the features of each level.

It is very important to maintain the system independence of individual dig-
ital multimedia content distribution formats, currently in constant evolution.
to the front-end of the VoD system, where the content distribution is actually
done (streamer), providing different procotols adaptation: HTTP, RTp, etc.

The first logic layering in the VoD server is the one differentiating the video

7

Vidæ On Dem¡nd Kemel Architecture

Sm¡moff

MÂn¡gement Subfystem

Figure 4: separation between the voD server and the management web appli-
cation

server kernel implemented mainly with distributed functional technology and
built over Beowulf clusters, and the different application servers that, using the
video distribution capacities offered by the VoD server, give to the end user final
services (figure 4).

The applications, developed using conventional technorogies, interact with
the video server redirecting the vo requests with the a.dequate parameters;
besides, applications use the information obtained by the monitoring subsystem
about the state of the system at any moment. Typical applications are cinema
and television on demand, distance learning, e.commerce, interactive news, etc.

Figure 5 shows an example of how the media object flow among storage
levels works until the actual streaming of the object in a simplified system con-
figuration where the cache has been removed. In this case, the client request is
received by an HTTP front-end, which defines the adaptation protocol required
for a distribution of type progressiae d,ownloød over HTTp of a multimedia ob-
ject. The front-end interacts with its scheduler (streaming sched) through the
group in which is integrated (sched Group), and decides the way in which the
video stream is actually going to be distributed (DD1, in this example, instanti-
ated to an HTTP adaptation in a port negotiated with the client). The stream-
ing level scheduìer propagates the media object request of the to its successor in
the responsability chain [7], incorporating the protocol that the storage should
use for the transference (DD2, in this example a TCp/Ip communication). The
successor, the storage Ìevel scheduler (storage sched), propagates the request
towards an storage multiplexor (storage Group), connected to different storage
systems: a mounted file system (File storøge Driaer), a tape robot (Tape stor-
age Driuer). The scheduler mission is to decide which source is going to be used
for obtaining the media object (in the example the Fite storage Driier, building
a pipe that connects that data source with the transference protocol suggested
by the streaming scheduier, that creates anew pipe for taking the storage trans-
ference and sending it using the destination suggested by the HTTP a.dapter.

In addition to the improvements described, the second prototype also intro-
duced reflective generic servers and vodka Explorer, a GUI tool fòr navigating
the logical server topoiory and reading or changing its state.

During the I/o layer rewrite, it was noted that voDKA performance bot-
tlenecks were ofben not cPU, but purely I/o bound, thus it was decided that

8

sRm
l|m

XSLT

lm

VODKÂ

VODKA-5|¡v. voDfú-sl¡v.

SGm
cmp

Sh¡ruS
SH

Sbn8.
sfu

Sbn8.
GruP

RIP

H.2ó3 IM
¡m

ShF
Divir
(Fn.)

Sbu8.
Dnvcr

OAP¡)tm

SbraF
hv.r

(HTTP)

MO

MO
DDI

ÍSuÈ.MOÞ{DSl.DD2ì
(SuG.MOÞDS2 !

S@nF
Cñup

M(

STREÀM UO STORAGE YO

Figure 5: Example of transference in a system configuration without cache

rewriting these modules in C was not worth the effort: Erlang was fast enough,
given proper care wa-s taken.

4.1 Example VoD deployment
As an example of the VoDka server configuration flexibility, figure 6 shows a
schematic of the responsabilities distribution among nodes in our cluster Borg.

o The massive storage is in the node borg25, that also has an associated
scheduler with two storage controllers (CD unit and tape robot with 0.5
TB of capacity).

o The storage scheduler is the successor of the cache scheduler, that is run-
ning in the node borg24 in the responsability chain. The cache scheduler
uses as cache the aggregated bandwidth of the local cache controllers of
the nodes borg1...borg23.

o The node borg24 itself hosts an streaming scheduler whose successor is
the cache scheduler, supporting a progressive download HTTP adapter,
that gives video service to the lab using the department switched 10Mbps
network.

¡ The server covas hosts a cache scheduler, whose successor is the borg24
cache scheduler (two cache levels), and a local cache controller. Besides,
the server contains an streaming scheduler fed by the cache scheduler,
and supporting an progressive download HTTP adapter, using the ATM
adapter that is directly connected to the university backbone.

o borgO, the Borg cluster front-end, is used for the system monitorization.

o one of the nodes is a sPARCstation running Linux, while the rest of the
nodes are x86 machines aiso running Linux and covas is a Sun UltraEn-
terprise 3000 running Solaris, demonstrating system portability.

I

ii

i bo¡g2¡ i borsÀ5

Figure 6: Borg configuration in the University Campus

5 Conclusions

A video on demand server that meets the basic requirements of such a system has
been developed: great storage capacity, high bandwidth, predictable response
time, large number of concurrent users and fault tolerance.

Evolving this system, in a second stage, the solution meets now other im-
portant features: scalability in both directions, adaptability to different network
complexities and topologies, and low cost. This has been possible in part by
using key technologies like th'e Erlang programming language, design patterns
knowledge, and Beowulf clusters.

currentl¡ the system is being refined, paying special attention to the schedul-
ing subsystem, and the addition of new modules for the support of different
formats and storage protocols and distribution of multimedia àu¡ects. An im-
portant amount of work is also being done in the implementation of external
applications, that are going to interact with the end user and the server.

References

[1] J. Armstrong, R. virding, c. wikström, M. williams. concutrent pro-
grømming in Erlang. Second Edition, prentice.Hall. 1996.

[2] M. Barreiro, v. M. Gulías, cluster setup and its administration. In Rajku-
mar Buyya, editor, High Performance Cluster Computing, Vol. I. prentice
Hall, 1999.

[3] s. G. chan and F. Tobagi Hierarchical storage systems for interactive
video-on-demand rechnical Report, stanford university, computer sys-
tems Laboratory, Number CSL-TR-g7-723,p. g4. 1gg7

| ¡æMU!

(ñbl frAÆ)

(Ek) (Bb) (Fk,

10

[4] Cisco Systems, Inc. A Distributed, Video Serler Architecture for Fleúble
Enterprise-Wid,e Vid,eo Deliaery en
http://www.cisco.com/warp/public/cc /pd/mxsv /iptv3400ltechldvsa-wp.hrm,
White Paper, 2000.

[5] D. Du, J. Hsieh, J. Liu, Building Video-on-Demand seruers Using Shared-
Memory Multiprocessors. Distributed Multimedia Research Center and
Computer Science Department, University of Minnesota, and Ronald J.
Vetter, Computer Science Department, North Dakota State University.
1996.

[6] U. Ekström, Design Pattems for simulation in ERLANG/OTP. Master
Thesis, Uppsala University, Sweden, 2000

[7] E. Gamma, R. Helm, R. Johnson, and J.Vlissides. Design Pattems: EI-
etnents of Reusable Object-oriented Software. Addison Wesley, Reading,
1996.

[8] LFCIA, OpenMonet Project. http://sourceforge.net/projects/openmoner

[9] LFCIA, Erlatron Project. http://sourceforge.net/projects/modxsl

[10] J.J. Sánchez, V.M. Gulías, A. Valderruten, J. Mosquera. State of the Art
and Design of VOD Systems. Proceedings of. the Intemøtional Conlerence
on Information Systerns Anølgsis, SCI'00-ISAS'00. ISBN 98G02-6694-4,
Orlando, USA, July 2000.

11

Erlang in the Corelatus MTP2 Signalling Gateway

Matthias Läng: Corelatus AB
matthias @ corelatus.se

September 2001

f lntroduction

Corelatus is a startup founded by Thomas Lange, Matthias Läng and Ulf Svarte
Bagge approximately one year ago. We build hardware for use in telecommunica-
tions networks.

This paper looks at our experiences using Erlang in a stand-alone system which
terminates SS7 MTP2 and passes packets to a general-purpose server for further
processing. Erlang was used throughout the project: from when it was just an idea
to when it became a certified, tested, approved and mass-produced product suitable
for placement in the core of an operator's SS7 network.

2 The Concept

Our concept was to build a stand-alone box to handle the parts of a telecommuni-
cations system which are difficult or expensive to implement using general-purpose
computers. This would enable software developers to build complete systems by
combining our hardware with ordinary server hardware. The most important features
are:

o carrier-grade hardwarci a rack mountable chassis, dual 4gv Dc power inputs
and no moving parts.

o Approved for use in telecommunication centers. This means passing lightning
tests, surge tests, electrical and radio interference tests and so on.

o Support for aspects of media and signalling which are too timing-sensitive to be
easily handled by a general-purpose server.

o Narrow interfaces. Electrically, this means nof having a shared bus with other
hardware. Physically, it means being in a separate box. Logically, it means
the programming interface runs over TCP (on Ethernet). The narrow interfaces
give us complete control of, and responsibility for, everything inside the box. lf
the box crashes, there is no doubt where the problem lies.

our customers use our hardware, called the GTH, inside operators' core sS7 neþ
works. Today's SS7 networks are mostly tied together with 2MbiVs E1 or T1 links
carrying SS7 signalling.

I

2Mbiys E1

SS7 on E1

Unix servers

Figure 1: Unix servers connected to the telephony network via GTH

The parts of SS7 which have stringent timing constraints are MTP1 and MTp2. For
this application, our hardware provides MTPI and MTP2 on the E1 links and transfers
packets over lP to unix (or NT) servers for higher-layer SS7 processing. ln IETF
nomenclature, the Corelatus GTH acts as a signailing gateway.

GTH

INAP MAP

TCAP

SCCP

MTPl

Passed up to
a server over
lP (ethernet)

Handled by the GTH

Figure 2: SS7 stack

3 MTP2

MTP2 provides three services: it moves packets from point-to point, it removes incor-
rect packets and it handles retransmission. The otficial definition of MTp2 is the ITU
standard Q'703. When we started, I had never looked at MTP2 before. I decided to
implement MTP2 in Erlang as a pleasant way of gaining experience.

2

,Ar^'4.OOO

ISUP

MTP3

MTP2

3.1 MTP2 in Erlang

The ITU specification is 89 pages long, of which 58 are SDLt4l diagrams. our Erlang
implementation is 2004 lines long, or about 33 pages.

We wrote the Erlang code by directly translating the state machines in the SDL part
of the standard to Erlang gen-fsm state machines. SDL and Erlang are a good
fit for each other: most of the SDL in MTP2 consists of ten concurrently executing
state machines sending each other messages (sþnals in SDL-parlance). using an
automatic gen-fsm graphing tool [5] produces diagrams which are strikingly similar to
the standard. The resulting code is also easy to compare to the standard:

idle(start, StateData) ->
ok - gen-f sm: send-event (

SÈateData#state. daedr, start) ,

{next-stat.e, in-service, StateData#sLate{
fsnx = 0,
fibx = 1,
fsnf = 0,
fsnt = 127,
rtr = false,
fisu¡nsu-accepted = fa1se,
abnormallcsnr = false,
abnormal-fibr = fa1se,
congestion-discard = false,
congestion-a.ccept = false

)
Ì;

idle(retrieveJcsnÈ, St.ateDaEa) ->
BSNT = sevenbit_dec (Stat.eData#state. f snx) ,

ok - gen-fsm: send_event (StateDaÈa#state. 13,
{bsnt., BSNT}),

{nex.t-state, id.le, StateData} ;

Q.703, p.59

While testing the Erlang implementation against itself, we found two errors in the ITU
specification. 1

lThe errors are corrected in an ITU errata

3

bb

sbr

LS -> RC

Rlhdo ßNl

-> RC

Slân

RC -> DAEOR

BSNT := FSNX - 1

FSNX:= 0 ASNT

RC -> L3

FSNF:=0
FSM:= i27
RfR:.0

ld.

CeÞl
FISUilSU

Creltrrul
BSNR

&Þt
FIBR

CåÈlrytd
drsd ad
6g!3lM@pt

i:
I
t'|..'.
t-.r''

3.2 Bit-stuffing and Performance

Bit stutfing is central to MTP2 (and related protocols like HDLC). lt solves the problem
of how to delimit messages in a communications channelwhich is nothing more than
a stream of bits. A special sequence of bits delimits messages, and messages are
modified before transmission to ensure that they do not contain the delimiter. Sending
the message 0000 101 1 1 1 1 1 l ooo looks like this at the transmitter:

1. Send the message delimiter: 0111 1110

2. Modify the message in a way which guarantees that the delimiter never appears
in the message. We do this by inserting an extra zero-bit whenever we just sent
flve one-bits in a row. The message is now oooo 101 1 1 101 1 1oo o

3. Send the message delimiter.

The receiver does the reverse, including removing the extra zeros. lf we could write
the transmitter using the Erlang binary syntax, it would look something like:

encode_message (Bin) ->
Flag = 2#01-111-110,
<<Flag:8, stuff_message(Bin), Flag:g>>

sÈuff_message (<<2#1111j_ : 5, Rest/binary>>) _>
<<2#l-111L0 : 6, stuff_message (Rest) >>;

stuff_message (<<A:1, Rest/binary>>) ->
<<A: 1, stuff_message (ResÈ) /binary>>.

The above is not legal Erlang; Erlang does not allow binaries sized anything other
than a multiple of 8 bits. We solved this by exploding all binaries into lists ót Oits.
Running on real SS7 signalling data, our reference implementat¡on can handle one
or two timeslots of MTP2 (one timeslot is 64kbiVs). The performance is not impor-
tant, the objectives were to learn and to generate test bitstreams to verify our hìgh-
performance MTP2 implementation.

4 Disguising Distributed Erlang

Most of the current and future applications for our hardware use the GTH as part of a
larger system, usually with one or more Unix servers controlling the GTH. Sìnce our
control system is written in Erlang, this would be a perfect application for distributed
Erlang, apart from one catch: Erlang is not popular with non-Erlang users. we ex-
amined alternatives, including coRBA, ASN.1 and Megaco and alsã rejected these
for one reason or another. Eventually we were inspireà by a pair of comments we
stumbled across:

4

XML is little more than a notation for trees and for tree grammars,
a verbose variant of Lisp S-expressions coupled with a poor man's BNF
(PhilWadler)[7]

Any Erlang message can be encoded in XML[3]. Better still, the message stays
human'readable while simultaneously looking a lot less obviously like Erlang.

if you think TCP guarantees delivery, which most peopte probabty do,
then so does Erlang [when passing messages](Per Hedeland)t6l

lf we assume the converse is also true, then XML and TCp can be combined to
produce a protocol with the same functionality as message passing in Erlang. The
protocolcan be described by a machine-readable BNF-like language (an XML DTD).
The user will be comfortably oblivious to the presence of Erlang in their system.

4.1 A General XML Encoding

Using j interface as a guide, we can produce a list of what needs to be encoded

¿

Data type Rep resentation (example)
Atom
Binary
Numbers
Exit signal
List
P¡d

Port
Ref
Tuple

<atom name="abcd'7>
<binary>base64-encoded data</binary>
<number value="'l2"/>
see section 4.3
< list> <atom name="abcd'7> <binary> 863MGU p </binary> </list>
<pid a="0" b="12" c="19'7>
<port id="1234"/>
<ref id="12AB,C67"/>
<tuple> <atom name="abcd'7> <binary> 1 2ByTE6OMGg</binary></tuple>

Binaries are encoded as base64, references are converted to binaries before being
encoded. An example: our system can play lists of audio messages to a subscriber,
perhaps "you have 56 dollars and 22 cents lett in your account". ln Erlang we repre-
sent this as

Pid = {sÈart, {player, {pcm, L, 3},
[youhave, fiftysix, dollars, and,
twentytwo, cenÈs, leftinyouraccount,l))

Using the above encoding to carry the same information

<tup1e>
<atom name= " start', />

5

i

i

I

<tuple>
<atom narne= "player" />
<tuple><aEom name="pcm" /><number value= " 1" />

<number value="3" />
</tup1e>
<list><at,om name=,' youhave,, />

<atom n¿Lme=,' fift.ysix" / > . .. </list>
< / tuple>

< / tuple>

This works, but it is only slightly prettier than an obfuscated PERL contest. lt also
fails to meet our goal of not expliciily exposing Erlang concepts in the Apl.

4.2 A Problem-spec¡f¡c Encoding

Our API doesn't have that many messages, and the messages are not arbitrary
terms. They are all tuples which start with an atom. There are only eleven top-
level message types. lf we defined a separate XML encoding for each me.""g" *"
could cut the size of the messages, remove the references to tuples and listé and
write a more precise DTD to specify the interface.

Example: to start a DTMF detector on the GTH, we use the internal message

{start., {dmt.f_detecÈor, {pcm, 3, g} , Message_dest_pid} }

A single-purpose encoding for this message is

<start.>
<dtmf_det,ector dest= "apicl_3 " >

<pcm_source span="3 " timesl_ot="9">
< /dtmf_detect.or>

< / start>

Similarly, the example for message playback becomes

<sÈart><player>
<clip narne=,,youhave, /><clip narne=', f if tysix ,, />
<pcm_sink span= " 3 " timeslot= ,,9" />

< /player>< / start >

As a final touch, we replaced the words sfart and sfop with new and detete to add
to the illusion of object orientation. The DTDs[2] on our website define our Apl,s
grammar.

6

4.3 Processes and Linking

The XML encoding takes care of formatting the data we want to send back and forth.
But there is more to distributed Erlang than just sending messages. There is also
RPC, a global namespace, node monitoring and process linking. supporting all of
these seemed unnecessary, so instead of modeling the external control system as
an Erlang node, we modeled it like an Erlang port.

An Erlang port is linked to the process which created it. An Erlang port can send and
receive messages. lf the port dies, the controlling process is notified.

ln our APl, the external system is connected via a TCP socket. lf the controlling
process dies, we close the TCP socket. lf the socket closes, we kill the controlling
process. lf any of the Erlang API processes die, all remote processes are notified.
This poor man's emulation of Erlang's linking and message passing allows the system
to recover from a client process death:

præess dies

præess nol¡li€s €xl€mal
ol a client death.

TCP Sækets

Figure 3: Recovery on a second server due to a first server's death

5 Gonclusions

Erlang is a nice protocol specification language. Our reference implementation of
MTP2 in Erlang is more compact than the SDL + plain English MTP2 specification.
By being able to execute our "specification" we had a ready-made test system for
our high-performance implementation and we found two errors in the original ITU
specification.

Distributed Erlang is a proven way of building robust distributed applications. By
encoding Erlang terms in XML and connecting to the non-Erlang node using TCp, it
is possible to create a human-readable, language-neutral protocol. By duplicating a
proven approach we know it is possible to build robust systems using this approach.

7

Extsrol UNIX/NT SeNsr

1. remote clienl
præ€$ dies

2.'link€d"GTH

4.

Supory¡eß API

3. Sup€pisr
othe. API prse$

Extamal UNI)ûNT Ssrysr

5. Rsmote hot standby ctisnt
lakes ¡eævgry act¡on

1i :. t.

r,
¡..

i
: 't'ì

References

[1] The GTH API Documentation
http://www.corelatus.com/gth/api

l2l The APt DTDs
http:/iwww.corelatus.com/gth/api/gth jn.dtd
http://www.corelatus.com/gth/api/gth _out.dtd

[3] Ertensible Markup Language (XML) t.O
W3C Recommendation
http://www.w3.orglTN2000/REC-xm|-2OOO1 006

[4] Specification and Description Language (SDL) Forum
http://www. sdl-foru m. org

l5l gen-fsm Graphing Toot
Vance shipley from Motivity Telecom sent me this tool in private
correspondence.

[6] Posf to Erlang-Questions Maiting ¿,bf 9. october 19g9, archived at
www.erlang.org

17) The Nert 700 Markup Languages
Philip wadler. lnvited rark, second conference on Domain specific Languages
(DSU99), Austin, Texas, October 1999.

8

Tools for Designing Web Based
Interfaces for Erlang/OTP

Martin Gustafsson

Program

r Why Web Based User Interfaces.

r Best Desing of Web Based Tools, with
Erlang/OTP.

r htpd the Webserver in Erlang/OTp.

¡ How to use WebTool.

'ì

Why V/eb Based User Interfaces

r Easy for the user.

r Fast development,

- Easy to Learn.

- Easy to Use.

r The tool can be used from the network.

r Easy to generate printable reports.

Problems with Web based User
Interfaces

r Takes little more time to start than
command-line tools.

r When security is a problem,

- Examples:

rWhen the functionality of the progam can be used
to krasch the Erlang node.

¡When the functionality handles valuable data.

2

httpd -The V/ebserver in OTP

r Support for Basic User Authentication.

r Support for SSL.

r Support for creation of Dynamic Web Pages

r htpd is a Apache styled Webserver.

The functionality of httpd

HfiP-request

HTTP-Response

{ response { stauscode,Body} }

hnpd

mod xxx

3

n
)

l

i

i
fJ

:
i

Creation of dynamic TVeb pages

r CGI

r Eval Scheme
- Ex: http://server:portÆvalSchemAlias/mod/func(anyArg)

r Erl Scheme
Ex : htþ://server:port/ErlSchemeAlias/mod/func

The Webserver will return the result of calling
mod:func(Env,lnput).

WebTool

r WebTool is a framework for rweb based
tools.

r WebTool configures and start the webserver.
r WebTool can start and stop the various web

based tools.

4

r Add the callback function for each tool to the
file webtool-vsn/priv/config. fîle.

- Ex: [{webcover,configData,l]],
{ webappmon,configData, []]]

r Start WebTool.

- Ex: webtool:st¿rtQ.
webtool : s tart(" I etc I varlwebtool",standard_data).

r Point a browser to htþ: lllocalhost:8888/

{Jsing V/ebTool

a

i:

Callback function for WebTool

r WebTool use the callback function to
receive configuration data for the tool.

r Configuration data is needed for:

- Creating links from WebTool to the tool.

- Configuration of the Webserver.

- Data about how to start and stop the tool.

5

Developing tools to be used via
WebTool

r The tools must export a callback function that
returns the configuration dataneeded by
WebTool.

- Example:
conf igDat.a O ->

Application=my_app
Realpat.h=code : priv_dir (App1 ication),
{myt,oo1, [{web_data{..URL",,,Linktext" } },
{alias, {er1_a1ias, ,,Vpath,,, ['.Modu1e,,]]] ,
ialias, {*VirLualpath2,,, Real_path} } ,
{start{ tMod, Func,Àrg}, {Mod, Func,ArS} } } I } .

Design principles for Web based
Tools

r A N-layered solution has many advantages

- Easier to update the code

- If well designed the logic module might be
possible to use as a command-line version.

HTTP-Request

WebPage

Module that
generates the

User Interface
logic Module

6

3D graphics in Erlang

Jakob Cederlund - jakob@gnodara.se

Bj örn Gustavsson - bj orn@erix. ericsson. se

Dan Gudmundsson - dgud@erix.ericsson.se

¿

:
¡'
t

¡

I

t

3D graphics in erlang

¡ 3D graphics with hardware acceleration

r OpenGL - an open version of SGI's GL
Reasonable API

Open standard

Cross platform (Wintel, Linux, Sun, Mac)
V/idespread support from hardware

¡ SDL - a library supplementing OpenGL with interaction,
2D graphics and more

1

erlang and 3D graphics

r erlang high level language

r 3D graphics needs symbolic language

¡ Fast development

r Performance critical code mostly in 3D hardware and
drivers

ESDL

¡ An erlang driver that interfaces with SDL
r Supports most OpenGL calls
r Fast

Optimized C driver

Uses binary syntax

¡ Available as download from contrib area

r Written by Dan Gudmundsson

2

ESDL

SDL lib

i

Wings - a 3D modeller in erlang

¡¡ Uses erlang as ñrnctional language

æ Fast development

t Good performance

æ Powerful

s Innovative user interface

æ Inspired by Nendo

n Written by Björn Gustavsson

c Some inspiration from Jakob Cederlund

J

Wings

¡ Most of the erlang code not performance critical
r Some functions optimized
e Winged-edge structure for 3D objects
tr Uses gb_tees and gb_sets (included in OTp Rg)

Wings - features

r Powerful modelling

r Every operation applicable to several objects at the same
time

r Imports and exports to different formats
Wavefront

3D studio

e Easy to do easy things

As opposed to other 3D modellers

4

Wings - development

s Functional

Only one process

Process dictionary used in for GUI st¿te

¡ Some things suprisingly easy to do

Multiple undo, with shared data

Only updates appriopriate parts of the model
Continues after crash, e.g. to save work

Just a catch, saves dump to file
a Library functions used

gb_sets and gb_trees (R8)

sofs - Sets OF Sets (R8)

digraph and digraph_utils

t

: Funs used a lot

special fold operations to iterate over model elements
: Optimization after implementation and testing
: Data structures hidden, used via functions
s Most user coÍrmands uses primitive commands

r Example inset

Extrude

Scale

Wings - development cont.

5

V/ings - examples

r Rendered in Bryce, composited in PhotoShop

"rry
"qr",

Wings - examples cont.

I Modelled in only 5 minutes!

I Rendered afterwards in Bryce

ç**

6

V/ings - performance

¡ Most things fast enough

r Optimized floating point in R8

¡ Some things take time

Smooth

Dissolve

Used as primitive by many commands

r erlang fast enough, even for interactive tasks

Wings - future

r Long to-do list

r Ongoing development, bugfxing and new features

r Future feafures

Plug-ins, both in erlang and C

More export formats, e.g. renderman

Cameras, multiple views

Materials, textures

r New platforms (MacOSX)

i

7

Wings - availability

r Open sor¡rce

Full source on sourceforge

n Compiled versions

Currently requires oþ, esdl and SDL
Stand-alone erlang version with installer will be
available shortly

r Documentation and examples

Home page h@ : //www. erlang. org/proj ecVwings/

8

Development of a Verified Erlang Program for
Resource Locking

Thomas Arts and Clara Benac Earle

Ericsson, Computer S.cience Laboratory
Box 1505, 125 25 Alvsjö, Sweden

E-mail: {thonas, clara}@cslab. ericsson. se

Abstract. We have designed a tool to simplify model checking of Erlang
programs by translating Erlang into a process algebra with data, called
p,CRL. As a case-study for this tool v¡e focused on a simplified locker
implementation after the locker that is present in the control softwa¡e of
the AXD 301 switch. The translation algorithm has been developed to
handle this production-like code. We use the tools accompanying pCRL
to generate the transition systems from the specification generated by our
tool. With the C.æsnn/ALoÉs¡RA,N tool set, we verified properties for our
case-study.

1 Introduction

within Ericsson the functional programming language Erlang [1] is used for the
development ofconcurrent/distributed safety critical softwa¡e. Faced with the task
of creating support for the development of formally verified Erlang prograrns, as a
subtask we have built a tool to enable the use of model checking for such programs.
The tool is aimed to be accessible for Erlang programmers without forcing them
to learn an extra language (specific for the model checking tool that is used).

Using model checking for the formal verification of software is by now a well
known field of research. Basically there are two branches, either one uses a spec-
ification language in combination with a model checker to obtain a correct spec-
ification that is used to write an implementation in a programming language, or
one takes the program code as a starting point and abstracts from that into a
model, which can be checked by a model checker. Either way, the implementation
is not proved correct by these approaches, but when an error is encountered, this
may indicate an error in the implementation. As such, the use of model checking
can be seen as a very accurate debugging method.

For the first approach, one of the most successful of the many examples is the
combination of the specification language Promela and model checker SPIN [14].
The attractive merit of Promela is that this language is so close to the implemen-
tation language C, that it becomes rather easy to derive the implementation from
the specification in a direct, fault free way. In case one uses UML as specification
language and Java or C as implementation language, one might need more effort
(apart from the fact that model checking UML specifications is still an unsettled
topic).

a

AIso with respect to the second approach there are many exarnples, among
which PathFinder [13] and Bandera [6] starting from Java code. There exists even
an earlier attempt to use model checking on Erlang code by Huch [15]. our ap-
proach could be added to this list, probably with the difference that we use the
knowledge of the occurring design patterns used in the Erlang code to obtain
smaller state spaces (cf. [z]). we follow a similar approach to the translation of
Java into Promela, checked by sPIN [13]; however, we translate Erlang into pcRL
[12] and model check by using cæsen/Ar,oÉnennrv [g]. compared tò Huch,s ap-
proach we focus much more on the data part and do not abstract cose statements
by non-deterministic choices, but really check the data involved. For that rea-
son we can check mutual exclusion and absence of deadlock for a small locker
program that will be the leading example of this paper. If one abstracts from
the data in this program in such a way that cose statements are translated into
non-deterministic choices, then mutual exclusion is no longer guaranteed and can
hence not be shown.

one of the main goals of our approach is to be able to deal with Erlang code
that is written according to the design principles as advocated within Ericsson.
Our starting point was a distributed locker algorithm as is running in Ericsson's
AxD 301 ATM switch [a]. we started re.designing this locker in such a way thar
formal verification guides the development. I¡ this paper we illustrate our ideas
with one of the first locker prototypes in this development process.

In section 2 we describe the locker algorithm that we consider in this paper.
we show in section 3 how this locker is impremented in Erlang, using the generic
server and supervision tree design principles.

The Erlang modules can automatically be translated into a pCRL specification
and in Section 4 we describe our contribution in the form ofthis translation tool.
Verification of the pCRL specification for the classical properties: no deadlock,
mutual exclusion and no starvation, is described in Section 5. In the conclusion
in Section 6 we discuss the merits and shortcomings of our approach and put it
in context with respect to other approaches.

2 Designing the algorithm

The case-study we have at hand in this paper is a classical locker algorithm.
several processes want access to one or more resources from a given, finite set. A
locker process is playing arbiter, responding the requests for alccess to resources
in such a way that all clients eventually get their demanded access, but no two
clients get access to the same resource at the same time. The client sends one
message containing all resources that are requested, waits until access is granted,
accesses the resource, gives the resource free and sta^rts asking for other resources
again.

Several fault situations are easy to imagine a¡rd these should guide us towards
solutions for the most rudimentary problems. We describe the anaìysis of these sit-
uations as a pre-study for the actual implementation. However, *ith the tools we
discuss later, one could find these results in an experimenting fashion: implement
an idea in Erlang and obtain all possibre runs of the prograÃ aubmatically.

Here we discuss the fault situations, using a special notation for scenarios. A
scenario is a sequence of states of the locker process. A state of the locker contains
a fixed set of resources and for every resource we have three 'fields': the name of
the resource, the client that has access to the resource! and the list of clients
that want to access the resource. As an example of this notation, we sketch a
possible starvation situation. There a¡e two resources, A and B, and three clients,
1, 2 and 3. The algorithm is such that if a dema¡rded set of resources is available
for a certain client, then this client gets access to those resources. Here, client 1

requests resource A, client 2 requests resource B, and thereafter client 3 requests
both resources. Client 1 releases and requests resource A again, client 2 releases
and requests B again. A continuous operation in this way causes client 3 to be
waiting for ever to get access, i.e. client 3 is starving.

AB
access 1

pending

access

pending

access
pending

eccess
pending

access
pending

access
pending

access L 2
pending 3 3

This scena¡io indicates that in general one has to pay a price for optimal resource
usage: viz. a possibility for starvation. Clearly one does not want starvation in the
program, but one still may accept it in the algorithm. If one has good evidence to
believe that resources are not accessed very frequently, then the above situation
might be very unlikely and one might choose to loose performance for client 3 in
favor of a better over-all performance.

We, however, assume that the frequency of access to the resources can be rather
high and that the different clients may have overlapping demands for resourcesl.
Therefore, we need to decide upon a solution to this problem. we choose to use
a 'first come, first serve' strategy. A resource is only available if there is no client
1 If cìient 1, 2 and 3 would all ask for the same resoulces, this sta¡vation problem would

not occur

I2

1

3

t
J

,
3

,
3

3

1

3

I
3 3

l

waiting for it. i.e., both access field and list of pending processes for the demanded
resource is empty.

B A
åccess
pending 3, I

access
pending

t2

2

3

A
1

1

.)

B
t
3

3

3

2

J

1

3

1

access
pending

access 2
pending g g

Thus, in this solution, a client could have to wait for its resources, even if all
demanded resources are unused at the moment. some optimizations are possible,
for example to time-stamp the pending processes and give access to the resource
if the first of the pending processes has not yet waited a certain amount of time.
This is more involved a¡rd we do not consider this or other optimizations in this
version.
The action upon a client requesting for a list of resources wil be:

- Look whether all demanded resources a¡e available. A resource is available if
no other process is accessing it, and there are no processes pending for this
resource.

- If all demanded resources are available, then the client is notified and is given
access to all resources.

- If any of the demanded resources is unavailable, then for every demanded
resource' the client is placed at then end of the list of pending processes.

The client is assumed to release all the previously demanded resources by only
one release message; upon a release, the client is removed from all resources and
a calculation is performed to see whether one of the other clients can get access
to its demanded resources. similar to the reasoning above, we cannot give access
to just a.ny client for which all demanded resources are available. Even for the one
resource case it is clear that we need to take a ,first come, first serve'policy. Thus,
with only one resource and several clients, we would give the client at the head of
the pending list access to the resource. However, one could wonder what happens
if there are two resources and both have one or more clients in their pending list.

AB
eccess I 1

pending 2 9,2

Here we need an algorithm to decide whether client 2 or 3 gets access to the
resource after that client 1 releases. The possibilities we could ihink of boil down
to the construction ofone list ofthe pending processes where the first client in this

list for which all demanded resource are available gets access to these resources
(i.e., is notified a¡d removed from the pending lists and put into the access'field').
Several ways of constructing this combined list are:

1. Merge all list and sort them on the client identifier. This means that the client
with lowest identifier has highest priority. Hence, starvation is an obvious
problem. When, in the above example, client 2 is given access and client 1

requests both resources again, then by the time client 2 releases, client 1 will
be granted access. Repeatedly having 1 and 2 requesting access will cause 3
to starve.

2. Append all lists (and use a small optimization by a unique append, i.e. only
appending the clients that a¡e not yet present in the list). Clearly the same
starvation problem as above occurs for this solution.

3. Construct a list that contains only those heads of the pending lists that do
not occur in one of the tails of a pending list.
The reason why this can work is that we have the clients always request all the
resources at once. Hence, the clients are put in the pending list in a 'sorted'
manner. A situation like

AB
access
pending 2,3 3,2

cannot occur in this setting, since either client 2 follows client 3 in all pending
Iists or vice versa. There might be clients in between, but the order cannot be
reversed.

4. Add a time-stamp to any incoming request and save the client information
with this time.stamp. The list is now obtained by appending and sorting the
time-stamps.
An equivalent approach is to separately store the list of requesting clients and
use the order in which they requested as the priority order for giving access.

We have experimented with both version 3 and 4 and present version B here.

3 Locker Implementation in Erlang

The ideas sketched in the previous section a,re now to be implemented in Erlang.
Clients and locker are implemented as Erlang processes that communicate with
each other by message passing. The locker is implemented as a server, follow-
ing one of the generic design patterns given in the Erlang distribution [8]. This
generic sen)er design pattern prescribes an implementation of the locker as a so
cùled callback module. The actual loop that saves the state of the server and
receives messages is implemented in a standa¡d module and whenever a message
arrives, the appropriate function in the callback module is executed. These call-
back functions return a new state and a possible reply message, which is by the
sta¡¡dard module part send to the caller. In this way, the generic server prin-
ciple implements synchronous communication on top of Erlang's asynchronous
communication primitives. For a detailed operational semantics we refer to [2].

The flow of control between clients and locker should be as follows:

¡

i
l

- a client requests the locker an exclusive lock on several resources,
- if all requested resources are available, the locker gives an ok to the client,
- when the client has performed the necessary operations on the resources, it

notifies the locker lty a release of the locks.

The locker schedules the clients on a first-come first-served basis as explained in
the previous section. Note, however, that this scheduling is relative to the resource.
A client that requests â resource that is taken, may be served later than the client
requesting another, free resource, after it.

The client is programmed as a very simpre process, just using the generic
server call principle to communicate with the locker. The gen_server: call func-
tion hides synchronized communication with the server. The second argument
of this function contains the message that is sent to the server, which calls
the handle-call function in the callback module. The client is suspended until
handle-cal] returns a reply value, which is passed by the server to be the return
v¿lue ofthe gen-server:ca1l. For this particuiar client we are not interested in
the actual returned value and just use it for synchronization. The spawnJink
function is used to create a new process, in this case running the roop function
with the arguments Locker and Resources.

-module (client) .

start(Locker,Resources) ->
{ok, spawn_link (client ,Ioop, [Locker, Resources])] .

loop(Locker,Resources) ->
gen_server : ca]I (Locker, {request,Resources}),
critical_section,
gen_server: calL (Locker, release) ,
loop (Locker, Resources) .

The atom critical-section between the two synchronous calls for request and
release implements the so called critical section. In a real implementation some
critical code should be placed in this critical section, but we

"b.tru"t
from that.

To implement the locks we use a record with the folrowing fierds:

- resource: the name of the resource,
- exclusive: the client which is using the resource,
- pending: a list of clients that want to access the resource.

The Erlang program for the locker process is given by a generic server callback
module that accepts the messages {request,Resourcls} ánd rer"ease.

-moduLe (locker) .

-behaviour (gen_ server) .

-record(Iock,{resource, exclusive = none, pendiug = t]}).
init(Resources) ->

{ok,nap(fun(Resource) ->
#lock{resource = Resource}

end, Resources))).

The init function returns for every resource in a given list Resources a record
of type lock where the first field contains the name of the resource and the other
two fields are insta¡rtiated with the (default value) empty list.

handle-calI({request,Resources}, C1ient, Locks) ->
case check_availables(Resources,Locks) of

true ->
{reply, ok,

map(fun(Lock) ->
update-exclusive (Lock, Resources , Client)

end, Locks)Ì;
false ->

{norep1y,
nap(fun(Lock) ->

add-pending (Lock , Resources , Ctient)
end, Locks))

end;

handle-call(release, Client, Locks) ->
Ne¡¡Locks =

map(fun(Lock) ->
release_1ock (Lock, Cl ient)

end, Locks),
Locks-updated =

send_reply (Newlocks, aI1_pendings (NeÌrlocks)) ,
{reply, ok, Locks_updated}.

The generic server automatically supports every message in a gen-server:caIl
with the process identifier of the sender and a tag (a kind of time stamp to
distinguish different messages from the same client). When obtaining a request,
the locker stores the combination of identifier and tag as a pair in the pending list
(or exclusive field). when releasing, a new tag is used foi the pair (since iiis a
new message) and removing the pair from the list should be done by only looking
at the process identifier. Note that the locker ca¡¡not remove the tag already at
the moment of receiving the request of a client, since the tag is necessary for
a reply, as implemented by send-rep]y. This function checks for every pending
client whether its resources are available. If so, the client is notified and the locki
are updated.

send-reply(Locks, tl) ->
Locks;

send-reply(Locks, [Pending lpendi.ngsl) ->
case obtainabLes(Locks,Pending) of

true ->

I .i -:

ír 'ì

i:'-I
;

¿..
I .. j

i

gen_server : reply (pendj.ng, ok),
send-reply (nap (f un (Lock) ->

pronote_pending (Lock, Pending)
end, Locks),

Pendings);
false ->

send_rep1y (Locks , Pendings)
end

These are the only functions that contain side effects, viz. the sending and receiv-
ing of messages. All other functions are side-effect free and easy to implement.

In addition to client and locker code we also have implemented a so called
superu'ision tree, à commonly used design principle to monitor the individual pro-
cesses [8]. Basically the code for the supervision tree describes a process that is
started, which monitors two processes, one is the locker, the other a new supervisor
process, which monitors the clients. The code describes what should happõn if one
of the processes crashes and is instructed to restart clients and locker processes.

All processes together can now be started with only one function call, viz.
supervisor:start, with in the arguments the number of clients one war¡ts to
start it with and the list of resources one considers.

4 A pCRL specification

The Erlang modules described in the previous section are automaticalìy trans-
Iated into one pCRL specification, The data is directly tra¡rslated from Erlang to
¡ICRL without any abstraction. The specification is used to generate the transition
system, which is used for model checking.

The translation is performed in two steps. First we apply a source-to-source
transformation on the level of Erlang, resulting in Erlang code that should be
executable in the same way T the original, but is optimized for verification. Second
we translate the collection of Erlang modules into one pCRL specification. The
advantage of having an intermediate Brlang format is that progrÍunmers can easily
understand the more severe manipulations of the code and iherefore are better
able to understand the smaller step to ¡.¿cRL notation. Moreover, the intermediate
code can be input for other verification tools.

4.1 Erlang to Erlang transformation

The source-to.source transformation of the Erlang modules contains many steps
and we mention only the more relevant ones, skipping trivial steps like removing
the debug statements in the code.

We use the supervision tree structure to obtain a finite set of initial processes.
we start the translator with the same arguments as that we would need to build
and start the supervision tree. This allows us to bind the number of clients and
resources to a certain value. For every different number we need to run a different
transformation. The supervisor processes are taken away and the new initialization

function only creates the processes of locker and clients. The handling of a process
that crashes is left to be detected in the transition system.

We replace (a predefined set of) higher order functions like map by a first-order
alternative, since the target specification language does not suppo.t higher order
functions. Thus, acallrnap(fun(X) -> f (X,y1 ,. . . ,yn) end, Xs) is réplaced by
a call to a new function roapJ(xs,y1,. . .,yn) which is defined and added to the
code as

nap-f ([],Yf ,...,Yn) -)
Ü;

rnap-f ([XlXs],Y1 ,...,yn) ->
[f(x,Y1,...,Yn) I nap_f (xs,y1,.. .,yn)J.

In the next phase we determine all functions with side-effects, i.e., those func-
tions that do send or receive a message or call a function doing so. This is a
call-graph problem where we keep a list of side-effect free functions in the library
modules. The gen-server:call function and handle-calt function are typically
added to the functions that contain side-effects.

The most involved operation is now to get rid of the use of return values of
functions with side-effects. In ¡^¿CRL a process may have side-effects, but has no
return value; on the other hand, a function in pCRL has a return value, but
may not contain a side-effect. In case an Erlang function (in)directly causes a
side-effect, its computation pa.rt and side-effect part have to be split. For the
source-to-source transformation, it suffices to make sure that all return values are
matched in a variable and to provide decomposition of the data structure of this
return value by means of side'effect free functions. currently we can deal with
basic data types and the compound data types lists, tuples, records and mixtures
of these.

4.2 Erlang to ¡rCRL transformation

Given the Erlang modules that are transformed as described above, we generate
one pcRL specification from these modules. Erlang is dynamically typed whereas
¡rcRL is strongly typed. Therefore, we construct in ¡lcRL a data type ErlangTerm
in which all Erlang data types are embedded. All side-effect free functions are
added as a term rewriting system with this ErlangTerm data type. A standard
transformation is used to translate Erlang statements into the term rewriting
formalism. In addition we have to define an equivalence relation on data types,
which is rather involved. In this particular case with only 14 different atoms and
7 data constructors, 440 equations are reserved for comparing data types, roughly
two third of the whole specification.

with respect to the part with side.effects, we benefit from the fact that the
Erlang to Erlang transformation was generated for a specific configuration and
contains all information on which processes are started. This allows us to define
the initial configuration in the pCRL specification. The Erlang processes coincide
with the ¡ICRL processes, where a non-terminating Erlang function describes the
main loop of the process in the Erlang case. However, when translating this loop,
we cannot translate recursive calls to Erlang functions with side.effects in a direct

v¡ay to pCRL. In ¡lcRL computation and side-effects cannot be intermingled.
The solution is found in the definition of a separate pcRL process implemenling
a call stack. Communication with this call stack is used to return the values of
the computation.

Certain restrictions with respect to the pCRL functions have to be taken into
account; there is only one function clause possible, with only sequential com-
position, non-deterministic choice, and an if-then-else statement for control. We
translate case statements and pattern matching by using the if-then-else con-
struct and calls to newly introduced process functions. The handle_call, and
gen-server: cal"l are translated into communicating actions in ¡rCRL. The dif_
ferent clauses of the handle-call function are combined in one ¡.rCRL loop, using
the state mentioned in the arguments of ha¡dle-ca1} as state of the loåp. Thã
unique process identifiers used in Erlang are integrated as an argument (sãrt) or
all process calls and instantiated by the first call in the initid pãrt.

comm

gen_server_ca1l I handLe_ca11 = caII
gen_server_reply I returned = return

proc J"ocker(Self: Term,Locks: Tern) =
sun¡(Client: Term,

sum(Resources: Term,
ha¡dle_ calI (Self , tuple (request , Resources) , CIient) .
(gen_server_reply (CIient, ok,Self) .

locker (Se1f ,

.,'tå¡ti3Ïl;iïitiït: [il:ï;::]ït!it; ii::5, ì,
locker (Self ,

map_add_pending(Locks,Resources,Client))))) +
sun(Client: Tern,

ha¡dle_call (Se1f , release, Client) .

send_reply (Se1f ,nap_release_lock (Locks , CIient) ,
all-pendings (map_release_lock (Locks , Client))) .

su¡n(Locks2: Tern,
rcallresult (Self , Locks2) .

gen_server_rep1y(Client,ok,Self) .

locker (Self , Locks2)))

send-reply(Se1f : Term,Locks : Tern,MCRLArgl : Tern) =(¡¡callresuIt (SeIf , Locks)
< I eq(equal(MCRLArgl,nit),true) l>

(gen_server_rep).y (hd(MCRLArgl),ok,Se1f) .

send_rep1y(Se1f,
nap_pronote_pending(Locks,hd(MCRLArgl)),
tI (MCRLArgl))

< I eq(obtainables(Locks,hd(MCRLArgl)),rrue) | >
send_reply (Self , Locks, t1 (MCRLArgl))))

After this automatic transformation, we can verify a specific configuration,
in which the clients repeatedly request all available resources. In order to per-
form several verifications at once, in particular to verify all situations in which
the clients repeatedly request an arbitrary (varying) subset of the resources, we
modified the pCRL specification by hand. we used pCRL's possibility to express
non-determinism for this. The ¡^¿CRL specification is used to generate a transition
system. The number of states for the generated systems depends on the configu-
ration. We tried several configurations, up to three clients and four resources, the
Iargest resulting in about a million states. Creating such large state spaces takes a
few hours on a single processor workstation. Even though this is time consuming,
improving this has not highest priority; we plan to focus on small examples in the
deveìopment phase of the software. Larger examples take more time, but so does
testing. The development of on-the-fly model checking and parallelization of the
model checker might increase performance dramatically in a later stage.

5 Verifying the model

The three properties we want to verify for this locker are: absence of deadlock,
mutual exclusion and no sta¡vation. All are classical properties that a¡e well stud-
ied in literature. The first is trivially shown, the second and third need the right
formulation and the support of a model checker. Mutual exclusion is a safãty
property, whereas no starvation is a liveness property. The safety properties are
easier to check than the liveness properties, as is explained later and depends on
the fact that some infinite traces in the specification are excluded in a real Erlang
execution because of the underlying Erlang scheduler.

5.1 Mutual Exclusion

The property for mutual exclusion should express that a resource can only be
accessed by one client at the same time. In order to show this, we added two
actions to the ¡¿CRL specification use and free with a resource as an argument.
As soon as we enter the critical section, the use action is applied for all resources
that the client requested. Before leaving the critical section, the resources are
given free again. We use the macro

UurIl(oi, a2) = [-* .a1.(-az)* .at]Íqlse

stating that 'on all possible paths, after an ør action, any other ø1 action must be
preceded by an ø2 action'. The mutual exclusion property depends on the number
of resources. In fact we need a different formula for any number of resources. For a
system with two resources, 11 and 12, the mutual exclusion property is formalized
by

MUTEX(r1,rz) = Ur.rtu,(use(r1), tree(r1)) n
Uurrr,(use(12), f ree(r2))

' ..:

..

A new version of the model checking tool within the Cæsan/AloÉseneN toolset
[9] is under construction and with this new release, we should be able to formulate
one property for an arbitrary number of resources.

The mutual exclusion property has been shown for configurations with 2 re-
sources and 2 and 3 clients where the clients repeatedly request an arbitrary (none
empty) subset of the resources as well as for the situation with 4 resources and
3 clients. The latter consisted of a model with a million states and it took a few
hours to verify the mutual exclusion property. A recently developed parallel model
checker has been used to check our largest transition system. The few hours have
been reduced to nine minutes on about fifty processors [5]; a promissing develop-
ment for scaling this approach.

6.2 Starvation

Proving that there is no starvation for the processes turned out to be a problem.
This is caused by the fact that there are traces in the transition system that
do not correspond to a fair run of the Erlang program. The Erlang processes are
scheduled by the use of a certain scheduler and in the model we have (on purpose)
abstracted from scheduling and consider all possible sequences of actions, even
those in which one single processes gets all execution time.

we want to base our no starvation property on the notion or. o,n act,ion is
euentually followed by another action. In particular, the request of a resource is
eventually followed by using that resource. One way of formulating this property
is:

EvrFollow (at, az) - l: .arl. pX.((-)true
^

[-øz]X)

we used this in a context where we instantiated the actions ø1 and a2 by the
request for a resource and the entering of the critical section, respectively. For
the latter, we use the confirmation by the locker, i.e., the returned ok message.
The actual property, like in the mutual exclusion case, depends on the number of
clients and resources. For three clients and two resources we have:

¡IO-STARVATION(c1, c2,cs,i1,iz,is) - (1)
EvrFollow(cr, ir)

^
EvrFor,low(c2, i2)

^
EvrFor,low(ca, i3)

unfortunately, this property does not hold, even for simple scenario's where
definitely no starvation occurs. As an example consider the following simple sce-
nario with three clients and two resources. The clients repeatedly request only one
resource, where client 1 and 2 request A, and client 3 requests B. In such a scenario
there is no starvation, since both clients may access their resource, release it and
request it again. In the pCRL specification we have the possibility of a loop in
which client 3 continuously requests and releases resource B. The clients request-
ing resource A simply do not get any scheduling time in this sequence. However,
in the Erlang program this loop is not present, because of the scheduler. Thus,
the problem is to disregard unrealistic loops in the transition system. Removing
such loops from the transition system, if we at all could find a way to do so, ii

incorrect. I¡ a realistic setting, such a loop could be executed a few times before
the scheduler enables the other processes. What in a realistic setting is excluded,
is the infinite traversal of only this loop.

we would like to weaken the Ev'rFollow property, such that non-fair paths,
which exist in the model, but not in the implementation due to the scheduling
by the Erlang run-time system, are ignored. Because of limitations in the model
checking tool (evaluator 3.0) we need to express this property in alternation free ¡.r-
calculus. External advice was required to come up with the following reformulation
of EvrFollow, describing that even if a loop exists before reaching ø2, it is still
possible (from every state of the loop) to reach a2 alter a finite number of steps
(modality (-*.a2)true).

EvrFollow(q, az) = [-*.ø1.(-o2).1(* .a2)true

This property is weaker and in combination with Property (1) it holds for the
above mentioned scenario's. unfortunately, it is too weak, i.e., ignores loops that
should be considered. Property (1) with this weaker EvrFollow holds for the
first scenario mentioned in Section 2 in which we have starvation in the Erlang
context. Recall that for that scenario, client 1 and 2 on their turn take priority
over client 3. Thus, there is an ignored loop with only actions of client 1 and 2,
although it causes client 3 to starve.

we need to be more precise in the kind of actions that we ignore in a loop and
which not. Thinking a little longer about this, it turns out that all actions may
appear in the loop. Neither a request nor a release of any other client should be
ignored. No matter with action one would like to ignore, there is always a plausible
scenario possible from which it is clea¡ that one cannot ignore that action. Even
a whole loop should in principle be allowed, as long as it does not occur infinitely
often if other actions along the path are also enabled. In our opinion this goes
beyond the expressiveness of the logic we use.

Currently we investigate several possibilities to work around this problem, viz.
adding explicit scheduling to the pCRL specification, having the model checker
changed, or using a different logic (and model checker) that enables reasoning
with fairness.

one might wonder whether sta¡vation is a.n important property at all, since
even if a theoretical starvation problem occurs, it might happen that in reality the
process always gets served. In regula.r implementations a timer is set after sending
a message and the starvation as such shows as a time out on the client site. This
time out is normally followed by a retry a¡rd as such the process might get served
after a few attempts. we experimented with that by adding such time outs and
removing the check for the pending list in the function check-available (which
leads to starvation for the scenario which was discussed in Section 2). Running
this program does not show a starvation at first sight. The client does get accesi
to the resource, occasionally. If we implement the clients with an access time of
say, 500 ms, in the critical section, then sta¡vation will show up in the form of a
time out of some of the clients. The total number of served requests gets lower,
in particula^r for the clients for which we know that they theoretically starve.

Interesting in this context is that we only detected the performance problem
after sufñciently increasing the time spent in the critical section. Here one can

!

argue that testing would not have been sufficient and that the error could show
unexpectedly after having the software in use for a long time. Hence, we find
starvation an important property to verify.

6 Conclusions

The main contribution of this work lays in the development of an automatic
translation of a class of Erlang programs into pCRL. This enables a development
of Erlang programs that goes hand in hand with formal verification; leading to
forlnally verified programs. We do not expect smart abstractions or clever tricks
performed by the users of this tool, assuming from them a limited knowledge on
verification issues. We provide 'push-button verification' that fits in the existing
development cycle. As a leading example for developing our tool we used an
implementation of a locker algorithm. Verification of this locker algorithm has
only partly been successful. Absence of deadlock and mutual exclusion could be
proved, but it could not be shown effectively that the algorithm is starvation free.
It is subject to further research to find a way around this problem.

The number of states in our models was not much more than a million, such
that real performance problems were not encountered. It takes a while for a com-
plete verification, but a few hours is still considered acceptable in this stage. The
majority of the work is put in getting the specification right and formulating the
right properties. In this case, in pa.rticular for 'no starvation', we have spent much
time in the formulation of the, still not satisfactory, property.'we

use an approach simila¡ to PathFinder or the Bandera project [1g,6]. It
would be interesting to see if a Java version of the same case study could easily
be handled by using those tools, bu¡ we have not found the opportunity to do so.
Running the model checking approach of Huch [15] directly on this ãxample is
impossible, since that version does not support the generic server design principle.
we could change the program by removing this generic server implementation and
use a direct implementation in Erlang instead. However, the approach of Huch
would translate the choice whether to return an ok message to the client or to store
the client in the pending list, to be a non-deterministic choice. By abstracting away
the data in that way, mutual exclusion does not hold for the obtained transition
system.

Another approach to verification of Erlang programs which differs from model
checking is the use of a theorem prover for checking properties. The Swedish
Institute of Computer Science have in cooperation with Ericsson developed a
kind of theorem prover specially focussed on Err*g programs [3]. Advantåge of
using this tool compared to the model checking approach *e ihe possibiliiy of
using the full ¡r-calculus (instead of alternation free), the possibility to reason
over an unbounded number of clients and resources, and the completeness of the
approach, i.e., if a proof is given, it holds for the program and not only for the
specification. Since model checking allows an easier automation, we aim on using
this technique for prototyping and use the theorem prover approach for the version
we are satisfied with.

With this verification of the locker case.study we posted several questions for
further research and we solved several practical issues on the way. we continue

with adding features to the locker, such as shared locks a¡rd fault-tolerance, there-
with increasing the need for an even better translation tools.

Acknowledgements

we would like to thank Radu Mateescu and Hubert Garavel from INRIA Rhone-
Alpes, .Iz{< van Langevelde, Jaco van de pol and wan Fokkink from cwl, and
Lars-,A'ke FYedlund and Dilian Gurov from sICS for taking part in the discussions
on this case study and supporting us with their advises.

I

References

[1] J.L. Armsrrong, s.R. Virding, M.c. williams, and c. wikström. concurrent pro-
gramming ,in Erlang. prentice Hall International, 2nd edition, 19g6.

[2] T. Arts and r. Noll, verifying Generic Erlang client-servei Implementations. In
Proceedings 1FL2000, LNCS 2011, p. 37-53, Springer Verlag, Berlin, 2000.

[3] T. Arts, G. Chugunov, M. Dam, L-.Ä,. ¡te¿tund, l. G.,rrJ.,r, and T. Noll A Tool
for verifying Software written in Errang To appea.r in: Int. J. software Tools forTechnology Tfansfer, 200L.

[a] S. Blau and J. Roorh, AXD 301 - A new Generarion ATM switching sysrem. Enc-
sson Reu'iew, no 1, 1998.

[5] B. Bouig, M. Leucker, and M. weber, Local Pa¡allel Model checking for the Alter-
- _ nation Flee p-calculus. tech. rep. AIB-042001, RwrH Aachen, March 2001.
[6] J. Corbett, M. Dwyer, L. Hatcliff, Bandera: A Sourcelevel Interface for Model

checking Java Programs. rn Teaching and, Research Demos at ICSE,ll, Limerick,
Ireland, 4-11 June, 2000.

[7] cwl, httpt / lvvtt .cri.nrl-ncrl. A Lønguage and rool set to study comrnunicat-
ing Processes with Data, February 199g.

[8] Open Source Erlang, http://nrr.erlang.org, 199g.
[9] J'-c. Fernandez, H. Ga¡avel, A. Kerbrat, R. Mãt."r.rr, L. Mounier, and M. sighireau.

caon (c,os.An/AloÉsenaN development package): A protocol validation and ver-
ification roolbox. rn proc.'of the gth conf. on computir-Aided. verification, LNCS
1102, p. 437-440, Springer Verlag, Berlin, 1g96.

[10] W. Fokkink, Introd,uction to Process Algebra, Texts in Theoretical Computer Sci-
ence, Springer Verlag, Heidelberg, 2000.

[11] J. F. Groote, w. Fokkink, M. Reiniers, Modetting concunent systems: protocol
_ . Verif,cat,ion ,in ¡.:CRL. course lecture notes, April 2000.
[12] J. F. Groote, The synrax and semantics of timed ¡rcRL. tech. rep. sEN-RgzOg,

CWI, June 1997. Available from http: / lvvu .cci.nl..
[13] K. Havelund and T. Pressburger, Model checking Jevl progrâms using Jave

PathFinder. Int. J. on software Toors for Technorigg nant¡erl Vor 2, Ni4, pp.
366-381, Ma¡ch 2000.

[14] G. Holzma.n, The Design and validotion of computer protocols. Edgewood cliffs,
MA: Pretence Hall, 1991.

[15] F. Huch, Verification of Erlang Progre-s using Abstract Interpretation and Model
Checking. ln Proc. of ICFp,9g, Sept. 19gg.

Intended for submission to the Erlang-Workshop

Erlang Specification Method - A Tool for the
Graphical Specification of Distributed Systems

Flank Huch
Institut für Informatik, Christian-Albrechts-Universität Kiel,

D-24098 Kiel, Germany

fhuOinf ornatik. uni-kiel . de

ABSTRACT
'We present a tool for the specification, documentation and
verification of specifications for distributed systems. The
used specification formalism is especially designed for the
later implementation using the functional programming lan-
guage Erlang. The main point of the specification formalism
is using the s¡me kind of communication and process con-
cept in the specification as provided by Erlang. processes
are graphically specified as labeled transition systems with
sequential behaviour, branching, sending or receiving of val_
ues, and the creation of new processes as possible actions.
As in Erlang receiving values can be expressed with pattern
matching against all messages in the mailbox of a process.

The tool provides an editor for a convenient development
of specifications, a consistence checker, a simulator, a com_
ponent for generating Erlang code from the specification a¡d
a model checker for proving properties expressed in LTL for
abstractions of the specifications.

Keywords: specification, verification, Erlang, distributed
system

1 INTRODUCTION
Growing requirements of industry and society impose greater
complexity of softwa¡e development. Consequently under-
standability, maintena¡ce and reliability can Dot be wa¡_
ranted.

Things get even harder whenever leaving the sequential
territory and developing distributed systems. In addition to
the problem of designing la^rge systems we get the problem
that the behaviour of concurrent processes is even ha¡der to

Notice

understand than a sequential behaviour. In distributed sys-
tems many progrâms a¡e executed concurrently and interact
via communication. Hence for a simulation of what hap-
pens when a program is executed one has to consider many
states in ma¡y processes, the system can be in. Considering
hundred or more concurrent processes it is clea¡ thât thi;
is impossible, just knowing the code of the program. The
difference to sequential progtams is the great number of pos-
sible execution paths of concurrent and distributed system
in dependency of schedulers or the performance of system
components. Different runs of a program can lead to dif-
ferent results, even deadlocks. Hence a program tested and
running well on a plattform can deadlock on another one.

The same problems appeax during the development of dis-
tributed systems. Therefore we need a formal method for
the specification of distributed systems which can also be
used as a good documentation of its implementation. The
way from the specification to the implementation should be
straightforward to provide fast development and should also
be seconded by automatic generation of code or code skele-
tons. But for using the specifications as documentâtiou it is
also necessa^ry that the implementatiou does not differ too
much from the specification and that the way back from the
implementation to the specification can also be taken. To
provide this the specification formalism should be tailored
especially to the progr¡mming language and use the same
kind of process model and communication. Messages should
have the s¡.me format and neu¡ processes should be created
in the s¡me way,

In this paper we present the Erlang Specification Method
(ESM) for the specification of concurrent and distributed
systems designed especially for the distributed functional
language Erlang. This formalism was used for the fust time
for the specification of a communication system. This was
done by gtoups of students in a practical course. In the
development almost 70% of work had to be done in speci_
fication. But this resulted in very good structured syslems
which work very robustly and have an almost professional
cha¡acter. Time for the development was very short and
we were surprised of the quality and complexity of the de_
veloped systems. After the practical course we sta¡ted to
develop a tool for the graphical speciñcation of Erlang pro_
cesses. It supports a comfortable graph ed.itor, consistence
checks of the specifications, a simulation component and a
model checker for proving properties of the system expressed

1

I

i

i

I

1

in LTL. Because ESM is very expressive, the verification
component also provides abstraction.

In Section 2 we present our specification formalism in de-
tail. For the simulation of a specified system a formal se-
mantics is defined in Section 3. Section 4 shows how easy
code skelettons can be generated from the specification. The
verification component is described in Section 5 and in the
conclusions in Section 6 we show the experiences made in the
development of a communication system and discuss future
work. For readers, who a¡e not famiiiar with Erlang, we give
short introduction in Appendix A.

2 THE SPECIFICATION FORMAL-
ISM ESM

In the development of large distributed systems it is neces-
saxy to specify the system design. A large part of the spec-
ification of a distributed system is the specification of pro-
tocols, which processes use for their communication. Other
parts of the system specification a¡e the pa.rtitioning in pro-
cesses, their location in a network and the behaviour of the
sequential parts. In this paper we will not discuss the spec-
ification of the pa^rtitioning in processes and their location.
We will concentrate on the protocol specification.

In practice Erlang developers use specification formalisms
like UML [Alh98] or SDL [STS7] for rhe specification of pro-
tocols. The main problem of the use of these formalisms is
that communication between processes differs from commu-
nication in Erlang. But in the specification of a protocol the
kind of communication is a major point. Implementing UML
or SDL specifications in Erlang leads to a progrâm which
simulates the corresponding communication of the specifica-
tion formalism. We lose the expressiveness of accessing the
messages of the mailbox with pattern matching. Another
point of implementing these specifications in Erlang is that
we have to gua¡antee that our implementation of the UML
or SDL communication is correct. This can especially be
hard using UML with remote method invocation. Another
problem of UML is that it uses an object oriented view which
can be difficult to be implemented in Erlang considering in-
heritance.

On the fust sight SDL se¡ms to match communication
in Erlang. And Erlang progrâmmers are supposed to use it
for the specification of Erlang progrâms [AWV93]. In SDL
processes a¡e also identified by a pid aud every process has
a mailbox in which incoming messages are stored. But the
mailbox is just a queue and a process has to take the mes-
s¿ges out, in the sa.me chronological order, as they come in.
So processes have to consider many possible interleaving se-
quences of incoming messages instead of picking them out in
a supposed order. Implementing an SDL specification iu Er-
lang, all receive statements a¡e flat a¡d all possible messages
have to be considered in every receive statement. The pro-
gram gets larger than it could be using pattern matching on
the mailboxes.

'We see that the model of communication is a major point
for the choice of a specification formalism. Many other for-
malisms like LOTOS [vEVD89] a¡d Estelle [ISO89] exisr for
the specification of protocols. But there is no formalism
defined yet, $¡hich uses the sarne communication a.s Erlang
does. But for developing distributed systems in Erlang with

all the opportunities of Erlang such a formalism has to be de-
fined. The result is the Erlang Specification Method (ESM):

For every kind of process p e P a labeled transitiou sys-
tem Tp = (Sp, Ir,----+p,uorso) is defined which specifies its
behaviour. The states s € .9o are labeled with va.riables rep-
resentiug the knowledge of the process in this state. Vors is
the set of all va¡iables and ao,rsp i Sp + Varst, yields the
sequencel of va¡iables the states a¡e labeled with. The initial
states i €. I, ate labeled with the va¡iables the process binds
its knowledge in, when it is sta¡ted. Multiple initial states
are possible because a process can be staxted in different
ways.

The labels of the transitions will contain Erlang terms
over va¡iables of the predecessor uodes for the specification
of calls to sequential parts. Therefore we assume D to be
set of function symbols n'ith arity. As an exempls +12 e Ð.
Now we can define Erlang terms over a set S, which will later
be instantiated with va¡iables or pids:

S Ç
"¡(S)utt...tu" € ?>(S) and f ln 6l s Í(ot,...,u,) e ?r(S)

Let C = {t l/0, l.l.l 12l¡u {{... }ln I n€ IN} u {al\la €
Atomsl be the set of constructor functions, where .Aúorns
is the set of ali allowed Erlang atoms, t land [. l.]a¡e the
constructors for building lists and {. . . } is the constructor
for tuples of any arity. For the set of constructor terms,
which will later be the values \¡¡e calculate on o¡ the possible
patterns we then use ?c(.9).

The following transitions are possible:

o Sequential evaluation which is specified with an Erlang
expression. Its behaviour is specified with natural lan-
guage. For access to the result we allow pattern match-
ing. The variables which a¡e bound in pattern matching
can be part of the knowledge of the destination state.
Notation: (s,pot<- e,t) e---+o, where s,ú € Sr, e €
T¡(V¿rs(s)), pat eT6(Vars) and uarsr(t) Ç uarso(s)U
uørs(pøt)

r Branching in dependence of an the value of an Er-
lang expression. Again the behaviour of the expres-
sion is specified with natural language, but the result is
matched against multiple parterns. All matching pat-
terns cân be performed. The difference to the sequential
behaviour is that branching is allowed with the sarne ex-
pression.
Notation: (s,case e of pot,t) €*o, where s,ú €
Sr, e € T2(Vars(s)), pat e Ts(Vors) and aarsr(t) Ç
uarsoþ) U uars(pat)

o Sending a value to another process. The pid of the
other process must be known in this state. We use the
Erlang syntax for sending actions.
Nototion: (s,X!tr,ú) €-ro, where s,ú € Sp, X €
uarso(s), u Ç.Ts(Vars(s)) and uarsr(f) Ç r,arso(s)

¡ Receiving values and binding va¡iables to (parts of)
these values with patterD matching. The bound va¡i-
ables can be knowledge of the destination state.

iln most cases we will handle this sequence as a set of
va¡iables. The order is only relevant in the creation of nev¡
processes, v¡hen values a.re passed.

2

Modulo nam€: databes
Global knowl6d0e; DB

P I lookup {X, DB) 6eq: DB<-addEl6{ iK.V}, DB)

{0) ?{lookup,K,p} (0) ?{aIlocace,R,p)
j

K,V,P

+

I

P I allocaÈed

X, P
61

K, P Ì0) ?{valùe, v, P}

CÀSE ¡ookuÞ(K,DB) OF K, P

(0) {succ,V) (0J fail

\
-

pt free
P K, P

1
The a d,otobose

Notation: (s,?pat,ú) €---+o, where s, t € So, pøt €.
Tç(Vors) and uarsr(t) Ç uarsoþ) U uørs(pat)

¡ Creation of new processes with a list of arguments. For
the creation of new processes we also use the Erlang
syntax of sparn and add X <- spam(...) if the pid

'of the spawued process is needed in future states and
has to be knowledge of the destination state.
Notation: (s, X<-spava(p,,i,

"),ú) €---)p or (s, spavn
(p',i,e),t) €ër, where s,t e Sp, Ì e Vors, e e
T2(Vors(s)), ¿ e Ip, aa initial state ofthe process spec_
ification p' e P and uorso(t) Ç oarso(s) U {X}

To prevent too much nondeterministic behaviour of a pro-
cess there may be only two kinds of nodes with -oru thu.o
one outgoing arc. First, a bra¡ch can be specified with case
a.rcs, for s¡ample a lookup in a database succeeds or tails. All
expressions ofa branch have to be identical. The user should
define uon-overlapping patterns, but non-determinism in
the protocol specification is possible as well. In the tool,
this formal definition is implemented as a special branching
pattern, which allows the user to define only one expres-
siou. F\rrthermore bra¡ching is allowed, if every outgoing
a¡c of a state is labeled with a receive operation. Ágri"
the user should define non-overlapping patterns, to prevent
non-determinism, but in an early part of the specification
non-determinism can be helpful.

In Figure 1 we present the specification of a database or
trame server, in which clients can store values with unique
keys and look them up with a key. All presented specifiia_
tions are created with our tool.

In our tool the initial states a¡e ma¡ked with a border to
distinguish them from the other states. For every state the
user can optionally define a name, which is displayed in its
fust line. Only the initial states must have a nalrre, because
with these nåmes they can be spawned from other processes.
The va¡iables of the state follow in the next lines. F\¡rther-
more it is possible to decla¡e some va¡iables as global knowl_
edge. This is an abbreviation for the occurrence of these
variables in every state of the process specification. In the
formal semantics we have omitted this. But for clea^rer spec_
ifications we have added the decla¡ation of global knowlédge
in the tool.

The specification of the database has only one initial
state, n¡med start. In this state the database a.ccepts
only messages matching the patterns {allocate,K,p} and
{lookup,K,P}. The va¡iable K is bound to the requested key
and P to the pid of the requesting process in both cases. In
the lookup-case the database just answers v¡ith the lookup-
value of the key in the database, where looLup is a sequen-
tial function. Its specification can colloquially be defined
by: "lookup yiclds the correspontling value of a key stored
in the database". This specification is stored in the tool and
can be accessed or modified by clicking on the arc. When an
allocate-message is received, we have to consider two cases.
First, the key is already allocated and the database only no-
tifies the requesting process and succeeds in its initial state.
Second, the key is free. In the formal syntax this branch
was modeled by two arcs labeled with case, the call of the
Iookup-function and the respective patterns. The numbers
in front of the patterns in the specification in Figure 1 are
an additional feature of the tool not formalized above. Here
the user can defined priorities in which the patterns should
be matched, if they overlap. This can sometimes be useful
to make a specification more detailed. In our specification
the patterns do uot overlap and all priorities have no effect
and can be by default set to zero. After a notification of the
client, the database waits until the correspouding value is
received and adds this uew values to the database.

The main point in the specification of the database pro_
cess is, that we guaxantee mutual exclusion for multiple
clients extending the database. Therefore we use two dif_
ferent states in which we wait for different messages. F\r_
thermore, we check if the allocate-message and the value_
message include the seme pids in their third componeat. The
va¡iable P in the pattern {value,V,p} is already bound to
the pid of the requesting process and is no introduction of a
f¡esh unbound variable. Hence the second receive sratement
suspeods until a value rvith the same pid is sent. We will
later prove this property and need to refer to the states s1,
s2 and s3. Therefore we n¡med them in the specification.

A specification of this database process in SDL would be
more complicated, In the second receive statement s/e u¡ould
have to list all possible other messages, which could be sent
to the database from oiher clients. But the process may not

3

seq: write{v) DB! {value.V, self}

seq: EiLe(allocated)

DB! {lookup,K,self) DB ! {al.locace, K, s€l.f }

/ \.
K K

I I

-/ -\
(0) llookup,X) (0) {inserÈ,X}

{0) ?{value,V)

-
-

(0) ?a¡locat€d +

(0) ?free +¡
-

seq: V <- readi) -->

CÀSE us€rsel.ec!ionO OF

Module namg: clioît
Globel k¡owledge: DB

The
2

ø client

ignore these other messages and has to save them in a data
structure, which has to be processed later. An alternative
would be sending other messages, which do not match the
pattern {value,V,P}, to the database process itself. But
this means busy waiting, which should be impeded.

In Figure 2 we also present the specification of a client
process. A client cau enroll new entries in the databa.se or
lookup keys, in dependence of a users choice. The here pre_
sented ex¡mple is very easy and small and it is no problem
to progr¡m this directly in Erlaug. But programming la.rger
systems with multiple different kinds of processes it is dif_
ficult to have a¡ overview of all processes taking pa¡t in a
protocol. The system helps the developer, because she is
restriced to only the communication paxts of the protocol
and can define the protocol stepwise. She sta¡ts with the
definition of the sending action sta.rting a special protocol,
for example the userSelection in Figure 2 a¡d the resulting
lookup-message sent to the database. Then she switches to
the database and specifres how it reacts. It sends back the
corresponding value and succeeds in the initial state. Again
the developer switches to the process which will receive the
message, the client. After finishing this part of the speci_
fication she backtracks a¡d succeeds q,ith the non-finished
states. This track through the specification is seconded by
a stack, where unfinished states are put a¡d can later be
retract and finished.

we use the function

A: Know x Know -+ Knou
(

btu pù(X\ = | ot(x¡' if P¡(X) is defined\rt-r"\"'
I oz(x), otherwise

Finite knou¡ledges, to which we can restrict in the semantics
will also be represented as the graph notation of a substitu-
tion ([X1/u1 , ...,X^lun]).

The operational semantics is denoted by the relation :+C
Stotex Lobelx,Stoüe, where Løbelis the set ofactions relevant
for concurrency:

Lobet:= {!u I u eTc(piû}u {?a I u eTc(pid)} u
{spavu(/) I I /" erSþ)} u ie}

We write sås' for (s, a, s,) €+ and s:¡s, fe¡ sås,.
The semantics of the sequential pa¡ts of the specifica_

tion is defined by an inrerpretation /: (Tc(più,r), where
l¿, = ¿Uln) : Tç(Pid)^ ---+ Tc(piû inrerprers rhe used
functions. The semantics of an Erlang term with respect to
a local knowledge can then be defined algebraically:

€ :: Ts(Vars) x Piil x Know
-+ Tc(pid)

tlxÀo p = p(X)
€[eeLfle p : p
tÍô("r,. .. ,en)lo p : g¡(t[etjp p,. . . ,€ne.\, p)

The definitiou of the operational semantics -9 i5 p¡s_
sented in Figure 3.To keep the rules for assignmenr, case
and receiving ea.sily, we use functions match and mailmatch
to model Erlang's mechanism of pattern matching. In the
rule for assignment the expression is evaluated and matched
against the pattern. If this is successfui, the knowledge is
updated with the corresponding substitution. CompLed
to other functional languages pattern matching in Erlang
is more complicated, because of non-linea¡ patterns with
multiple occurrences of the s¡-e va¡iable:

3 SEMANTICS OF ESM

In the operational semantics multiple processes will be cre_
ated and every new process will be identified by its own pid.
To model these pids we define pid:=

{@r¿ | n e IN}. A siate
of the operational semantics of an ESM specification is a fi_
nite set of processes: Stote := p¡;n(proc), where a process
consist of a pid, a state, the knowledge bound to the va¡i-
ables, and a mailbox: Proc := Pid,xl)r* Srx Knowx MBox.
Mailboxes MBox := Tc(Piû- a¡e words over ground terms
of a¡ execution. The knowledge of a state is a binding of its
va¡iables Know: Vors

->
Tc(Pid). This knowledge will be

updated when a process executes some actions. Therefore

match(X,t) = [X/r]
match(c(potr, . . ., pot,),c(u1,

match(paúr, o1) e
match(- -) = Fail, otherv¡ise

, r.¡')) =
O match(pot,, u,)

4

2 Íat,. .. , u,l is an âbbreviation for [or I [.. I tu, I t] l..l l

ú) e---r t p
e =a L) :pt

fI, , S, PtQ -+ fI, (p,t, p' Ð p,

(s, case e of. pø\, úr) e -+ tfeje p = t1 m,atch(p(pat),u): p'
fI, (p, s, p, q) + fI, (p,t¡, p' t) p,q)

let (s,? pøtr,tr), . . ., (s,?pot*
(i, j, p') € mailboxmatch(

be all possible actions in s

, p(pot^)), (a,. . ., un))
,t*) €--+
(p(potr),. .

n, (P, s, P, ('ul t.,, tuj r...,u")) ==+ fI, (p, ti,p'V) p,('ult... tuj-L ruj+),t..., o*))

s,Xle t €---+ t e X=u p
n, (P, s, p, Q ,U, Pt ,8' ::a fl, t, prq),

(s, X=sparu (m,i, e),t) e---r
i e I^ €["no p = [ur, . .. ,anl2

T^ = (S^,1-,-t^)
uørs(i) = (Xt,. .. , Xn)

,urp'rq' : u)

fI, (p, s, p,q)
-

n, (p,t, plx/p' l, q), (P', i,[X, I ar, . . ., Xn / o,), q)

Figure 3: OperationøI Semontics

Two derived substitutions can only be unioned ifthe overlap_
ping parts a¡e identical. This is tested in the union function
@, which yields Fail otherwise.

A branch can be chosen, if a pattern matches the seman_
tics of the expression. In contrast to the a.ssignment, the sub_
stitution in this rule is also applied to the patterns. Hence
a comparison to local values can also be expressed with pat_
tern matching.

The rule for receive actions is a little bit more difficult,
but this cannot be impeded, because of the Erlang seman-
tics. We want to allow convenient access to all elements of
the mailbox with pattern matching. The elements of the
mailbox a¡e successively matched against the patterns. If
a value matches one of the patterns it is removed from the
mailbox. The sequencing messages do not have to be consid_
ered. But our specification can have overlapping patterns.
It is possible that multiple patterns match this value. This
is formalized by the function mailmatch, which yields a set
of triples. Every element cousists of the matching positioa in
the patterns, the position of the matching value in the mail_
box and the corresponding variable bind.ings. The position
in the mailbox is identical for all yield triples.

mailmatch((pott, . . ., pot^), (q,. . ., uu))
: {(i, j, p) | match(patr,a¡) = p I Fail and

match(patr,o¡) = Fail Vk < i,I < j]

A value cau be sent to another process, if the va¡iable
for the destination is bound to a pid. The semautics of
the expression, to be sent, is added to the correspond.ing
mailbox. Finally, nevr' processes caü be spawned. Here wã
onlr' :rresent the rule, where the pid of the new process is
st' in a va¡iable. the anonymous process generation is
de¡^ied analogously. In the here presented formal semantics
runtime errors a¡e missing. They can occur when a value

should be sent to a non-pid, for example a natural number,
or a matching fails. For shortness we do not formalize these
rules here.

In the tool this semantics is used for the simulation com-
ponent. The user cân execute paths of the operational se_
mantics. Therefore he has to decide two different kinds of
non-determinism. First, which process performs a step in
the interleaving semantics. Secoud, which action does a pro_
cess perform if its behaviou¡ is non-deterministic. The inter_
pretation of the sequential functions cânnot be completely
given, because this would be their implementatioo. È"o"",
the user is asked for their semantics on the actual values, if
this is needed. The chosen path is displayed as a message
sequent cha¡t and the actual state by coloring the actual
states of the processes in their specifications and the corre_
sponding bindings for the variables. The simulation can be
used for debugging the protocol. This is better, than a de_
bugging the implementation, because here also unfair paths
can be tested. In the implementation the path which can be
tested is influenced by the scheduler. A system working cor_
rect on one a¡chiúecture can for example deadlock on another
one. To support the tester, it is also possible to backtrack
paths and chose other branches or perform random traces.
F\¡rthermore the specification is much smaller than its imple_
mentation. Finding protocol errors (e.g. deadlocks) is much
easier on this abstraction, than in the code. In the specifi_
cation only the relerant states for the concurrent behavior
are considered.

For future work we want to combine this part with the Er_
lang interpreter, which is able to calculate tle expressions, if
the occurring functions a.re already programmed in Erlang.
This v¡ould lead to a comfortable specification and prograri_
ming environment. If a function is not defined yet, thã user
is asked for its interpietation for the concrete values. This

5

In [DG86] Dowting and Gallier presenr a continuation se-
mantics for flow graphs. This continuation semantics de_
fines a system of equations for the semantics of a flow graph
which can be interpreted as a tail recursive functionai pio-
Srâ-. Consequently we can give an ea.sy translation from a
flow graph into a tail recursive functional progrâm with the
same semântics as the flow graph. We can use this tra¡sla_
tion for the generation of Erlang code (or a skeleton for an
Erlang program) from the process specification. The states
of the system are represented by functions. The par.âmeters
of the functions are determined by the knowledge of the cor_
responding states. Note that the global knowledge has to be
included, because in functional languages global variables do
not exist. In Erlang a global registration of processes is pos_
sible, but the use of global knowledge could yield conflicts
and should be prevented. As a couvention we use the first
arguments of the functions for the global knowledge.

The body of a function implements the actions of the out_
going a^rcs and then the function of the destination state
is called. If the process graph contains a deterministic se_
quence this is translate into a sequence of actions instead of
defining a function for every state. A state with multiple
outgoing receive actions is implemented as one receive state.
ment. The code for the right hand-side of a pattern is the
implementation of the destination state of the corresponding
receive action or a call to the function of this implementa_
tion. Only states which a¡e reached by multiple a¡cs have to
be represented by their own function.

The result is a tail recursive Erlang skeleton in which the
sequential paxts or parts that have not yet been specified
have to be added. Since Erlang optimizes tail recursion, the
execution is efficient a^nd there is no stack overflow after some
recursive calls as it v¡ould happen in imperative languages.

As an s¡nmple we present the Erlang code for the
database. Only the initial state (multiple a¡cs lead to the
initial state) gets a special function to prevent a blow up of
the progrlm si2s.

behavior is stored in an Erlang module. If the sn-e calcula-
tion is needed once again, the function is already defined for
these values. F\rrthermore, this function also yields a (finite)
prototype definition for the real implementation of the func-
tion. For testing the behavior of this prototype definition
can be compared with the implementation of the function.

4 CODE GENERATION FROM THE
SPECIFICATION

-nodule (database) ,

-erport ([sta¡t/1])

start(DB) ->
receive

{allocate,K,p} ->
case lookup(K,DB) of

{succ,V} -) p!allocated,
sta¡t (DB) ;

fail -> Plfree,
receive

{value,V,p} -)
start (addEl€n({K,V},DB))

end
end;

{lookup,K,P} -> P! lookup(K,DB),
start (DB)

ead.

The code can automatically be generated by the tool aod
be executed by an Erlang interpreter after adding the called
functions for sequential calculations.

5 VERIFICATION

In [Huc99] we presented an approach for the formal verifi-
cation of Erlang progrâms using abstract interpretation and
model checking. In general it is undecidable if a given pro_
gram satisfies a property expressed in a temporal logic like
linea¡ time logic (LTL) [LP85, Varg6], because ¡s¡ sxample
termination can be expressed and an automatic verification
contradicts the halting problem.

Although we present a specification formalism in this pa-
per and not a progrâmming language, the same problem ap_
pea^rs. As other specification formalisms like SDL and UML
our approach is very expressive and model checking for tem_
poral properties in general is undecidable. We have data
structutes a¡d numbers and ca¡ calculate on them.

In [Huc99] we defined a fra-ework for abstract interpre-
tation of Erlang progrâms, which is based on the standa¡d
operational semantics with respect to an abstract iDterpre-
tation of values, predefined functions arxd constructor func-
tions. The abstraction is defined in such a manner, that
the abstract operational sema¡tics includes all paths of the
standa¡d operational sema,ntics, but is under some assump-
tion finite state. A property expressed as an LTl-formulais
fulfilled, if all paths of a system fulfill the property. Hence,
if the abstract operational semantics fulfills such a properry,
the property is also proven for the real operational semantici,
in other words for the system. Because the abstract oper_
ational semantics of the system is finite state under some
assumptions, we can use model checking as an automatic
proof technique.

We transfered this verification technique to ESM and
added it as a component to our tool. In this component
the user ca¡ define a finite domain abstract interpretation
and the operational sema¡tics is interpreted with respect to
this abstract interpretation. To understand the abstraction,
the user cãn run the simulation on this abstract domain and
she ca¡ use it to prove properties of the specified system.
If a given s^pecification creates only a finite set of prãcesses
at runtime3 the abstract operational semantics generates a
finite transitioû system and LTL properties can automati_
cally be proven with model checking. If the abstract opera_
tional semantics fulfills the property also the system fulfills
it. Otherwise a counter ¿¡ample is generated. This path,
caû either be a counter sx¡mple for the specified system or
a¡ additional path yield because of the additional nonderer_
minism in the abstraction. The user cân iuspect this with
the simulation and try to refine the abstraction for more
determinism.

sAlso the mailboxes have to be restricted in size
[Huc99] for details.

6

See

A basic abstract interpretation can automatically be gen-
erated from a given specification in the tool. Its domain is
given by values occurring as patterns in the progrâm. All
values that match a pattern a¡e identified by the same value.
The parts that differ axe represented by ?. For the commu-
nication tbe different pids a^re essential. Hence pids are also
alloc¡ed in values of the abstract domain. Values with dif-
ferent pids are distinguished. Additionally an ordering I
on this abstract domain is predefined which expresses that
an abstract value is more precise than another one. The
abstract domain is downwa¡ds closed with respect to J.

As an exa.-ple the pattern {allocate,K,P} occurs in
the specification of the database. In the predefined ab-
stra.ct interpretation the value {allocate, ?, @4} represents
the value {allocate, tl,@4} as well as {aIlocate,4,04}. A
less precise representation of these values is {allocate, ? , ?}
and the worst representation is ? (? { {allocate,?,?} <
{allocate, ?, @4}). But during the computation of the op-
erational semantics over the abstract domain, we may lose
information of the concrete vaìues, f6¡ ¿¡çample when it is
stored in a data-structu¡e and took out again. VVe have to
calculate on worth representations.

The functions specifying sequential behaviour yield in this
basic abstract interpretation ? for any argument. No infor-
mation of there behaviour is considered. This basic abstract
interpretation can then stepwise be refined. Therefore the
user can define the result for relevant arguments.

The logic LTL is defined for unlabeled transition systems
with state propositions. The operational semantics defines a
labeled tra¡sition system. For the verification the user can
add propositions to the states, rvhich hold if one of the pro-
cesses is in this state at runtime. For the propositions we
also use Erlang terms, because it is easy to use the known
expressions and we can also integrate pids into the proposi-
tions.

As an exe.mple we can add the following propositions to
the specification of the database

Then we can prove that a system consisting of a number of
clients and a database process gua¡antees mutual exclusion
for writing accesses to the database. This property can be
expressed with the following extended LTL formula:

6 EXPERIENCES AND FUTURE
\A/ORK

We presented a specification formalism especially tailored for
Erlang. Processes are specified u¡ith labeled transition sys-
tems. The states a¡e labeled with va¡iables representing the
knowledge a process has in these states. The transitions are
labeled with actions similar to the concurrency constructs of
Erlang or function calls representing sequential behaviour.
A main advantage of ESM is that the developed systems
a.re clearly structured. The protocol/communication part is

specified with ESM and the purely sequential pa.rts are pro-
grammed in a pure functional language. We showed how
ESM can be used in practice and how Erlang code can au-
tomatically be created. We developed a tool which provides
the following components:

o A graphical editor for the development ofspecifications.
The defined specifications a¡e automatically checked for
consistency, ¡s¡ s)c¡mple "Is a variable sent to another
process known in the previous state?"

o A simulator for testing the behaviou¡ of a specification.
There a¡e often some paths in the specification you do
not consider in development. The simulation offers all
possible steps and the user can find wrong paths, for
s¡¡mple a process has terminated, but another one still
sends messages to it.

¡ A code generator, which produces executable Erlang
code for the specification. Only the sequential parts of
the program have to be progra-med, with respect to
their textual specification.

o A verification component. The user can defi.ne abstract
interpretations, which yield finite state transition sys-
tems. She catr also specify properties in the expressive
logic LTL and verify them automatically for the result-
ing transition system with model checking. If the ab-
straction fulfills the property also the system and its
automatically generated implementation does.

'We have not used the tool for the development of larger sys-
tems yet. But in two practical course, we sarÀ' that the use
ofESM helps structuring the developed distributed systems.
Two Groups of four students had to develop a communica-
tion system where a server provides services like talk, chat,
mail and two graphical distributed real-time gâme. They
specified the systems on a blackboa¡d \¡¡ith ESM and did
the simulation in a group, where every student behaved as
a process. In this simulation many mistakes occurred, be-
cause every student tried to dr-age the behaviour of the
whole system. The systems, the students designed and im-
plemented, had an almost professional character although
the time they needed for the development was very short.
We also developed two distribut€d gemss;

o Atomic Bomberman: Up to four players run through a
ma¿e and use bombs to get through or fight against the
other players.

¡ Swinx: An arbitra.ry number of players is connected in
a ring. Each player has four seesaws. Flom the roof dif-
ferent weighted balls can be throv¡n dou¡u with a wagon.

1,. . . .

A
pePid.
p' +p

G ({aIÌocate,p}
-r (-{set,p'} U ({set,p} V allocated)),

This formula says, that if a client p allocates a key, no other
client sets a value in state s3 until p sets it or the key is allo.
cated. For a finite number of processes only a finite number
of pids exist. Hence we can tra¡slate this extended LTL for-
mula into an LTL formula. With the basic built in abstract
interpretation and the LTL model checker this property can
automatically be proven. Because the property holds for the
abstraction, it also holds for the specified system and also for
the implementation, that caa be automatically generated.
Hence mutual exclusion is also proven for the implemented
system.

STATE PROPOSITION
s1
s2
s3

{aIlocate,P}
allocated
{set , P}

In dependence of the different weight of the two sides
of the seesaws, the balls fly over the boa¡d (hopefully
to the neighbors). If a column of balls reaches up to
the roof, this player has lost. He is eliminated from the
ring. To avoid this the balls have different colors. More
than three balls of the s¡.me color in one row resolve.

To guarantee realtime-requirements, very complex protocols
are needed in the implementation of the g¡mss. Again we
got a clea.r structure using ESM.

In this practical course we also saw that the ESM specifi-
cations a¡e also a good documentation of the systems. The
students had to extend older protocolls when new features
were added to the communication system. Especially the
graphical notation helped to understand the behaviour of
the processes and extensions could easily be made.

In the actual implementation the verification component
is not efficient enough to be used in the context of la^rger
systems. But it can be used for the verification of smaller
subprocesses like the database process. For the verification
of larger systems we have to implement pa.rtial order re-
duction [Pel94], as done in SPIN [Hol9Z]. Another problem
with the model checker is that it excepts only LTL formu-
las. An extension to extend formulas would be interesting.
A first approach would be a stupid translation, which yields
a com,binatorial blow up of the formula. Hence, c¡e want
to estimate if the model checking algorithm caa profit of
the compact structure and verify the property expressed in
extended LTL more efficiently.

Another point missing in the tool is the specification of
distribution. The user can already specify sending to re-
mote nodes and spawning processes on remote nodes, but
Erlang's mechanisms for programming robust applications,
like process linking, error handling or monitoring are uot
provided yet. But for the development of real applications
this is needed

Finally, it s¡ould also be interesting to extend ou¡ tool
to a real development platform for ErÌang systems, where
parts of the sequential behaviour are only specified and the
rest is already implemented. In the simulation this should
automatically be considered and the user is only asked for
the semantics of a function call, if the corresponding code
does not exist. Iu this environment it would also be possible
to change the protocols of a developed system and leave
the sequential pa^rts unchanged. Hence, systems could be
maintained or extended very easily.

At the moment \ile a^re also iuvestigating, if it is possible
to generate ESM-specifications from existing Erlang code.
This would help to understaqd the communication structure
of existing softwa¡e. The process specifications a¡e much
more compact, than the corresponding source code.

REFERENCES

[Alh98] Sinan Si Alhir. UML in o Nutshelt.
Sebastapol, CA, 1998.

O'Reilly,

[AWV93] J. Armstrong, M. Willi¡ms, and R. Virding. Con-
cun'ent Progromming in Erlang. prentice-Hall,
Englewood Cliffs, NJ, 1998.

[Va,r96] M. Y. Va¡di. An automata-theoretic approach ro
linea^r temporal logic. Lecture Notes in Computer
Science, 1043:238ff., 1996.

[vEVD89] Peter H. J. van Eijk, Chris A. Vissers, and Michel
Diaz. The Fortnol Description Technique LO-
TOS: Results of the ESPRIT/SEDOS project.
North-Holland, New York, 1989.

Iff. F. Dowling and J. H. Gallier. Continuation
sema,ntics for flowgraph equations. Theoreticol
Com,puter Science, 44(3):307-331, 1986.

G. J. Holzmann. The model checker spin. IEEE
Tbons. on S oftware Engineering, 23(5) :279-2g5,
May 1997. Special issue on Formal Methods in
Software Practice.

Flank Huch. Verification of Erlang progtâms us-
ing abstract interpretation and model checking.
ACM S I G PLA N N otices, 3a@):261-272, Septem-
ber 1999. Proceedings of the ACM SIGpLAN In-
ternational Conference on F\nctional Program-
ming (ICFP'99).

ISO. ESTELLE: A formal description technique
based on an extended state transition model.
Technical Report 9074, ISO, 1989. 1989.

Orna Lichtenstein and Amir Pnueli. Checking
that finite state concurrent programs satisfy their
linea^r specification. In Conference Record ol the
Twelfth Annual ACM Symposiurn on Principles
of Progrørnrning Languages, pages 97-1.07, New
Orleans, Louisiana, January 13-16, 1985. ACM
SIGACT-SIGPLAN, ACM Press.

D. Peled. Combining pa,rtial order reductions
with on-the-fly model-checking. Lecture Notes 'in
Cornputer Science, 818:377-390, 1994.

R. Sa¡acco and P. A. J. Tilanus. CCITT SDL:
Overview of the language and its applications.
Computer Networks and ISDN Sgsferns, 13:6b-
74, L9g7.

lDG86l

[Hole7]

IHuc99]

Irso8e]

lLP85l

IPelea]

lsr87l

A INTRODUCTION TO ERLANG
Erlang [AWV93] is a functional progranming language de-
veloped by Ericsson. The reduction strare&y is call-by-value
and Erlang is untyped. Ertang has additional fearures for
concurrent and distributed programming. During the ex-
ecution of an Erlang program many processes run concur-
rently. Processes cân communicate with each other via asyn_
chrouous message passing. Therefore every process is iden-
tified by a unique process identifier (piQ, to which messages
ca¡ be sent: pidlo. Every process has a mailbox, in which
all incoming messages a¡e stored. Erlang provides a conve_
nient access for a process to the elements of its mailbox with
pattern matching. With the statement

I

¡eceive potr-)e1; . . . 1 patn-)ena¡;d

the elements of the mailbox of a process a¡e stepu¡ise mat-
ched against all the patterns patt,...,patn. The fust ele-
ment of the mailbox that matches a pattern pøún with a sub-
stitution p is removed from the mailbox. The whole receive
statement reduces to p(e¡).

This access to the elements of the mailbox with pattern
matching makes concurrent progÌâmming very easy in Er-
lang. You can pick out the messages of rhe mailbox you
are interested in. All other messages a¡e stored in the mail-
box and can be handled later on. Hence progra-mers in
Erlang do not have to consider all interleaving sequences of
incoming messages. Progr¡mmi¡g gets ea.sier and programs
shorter.

New processes can be created with the statement

spar¡a(rn,/, [ur,..., or])

and the reduction of the newly created process sta¡ts with
the application n1,: Í(rr,...,o,), where / is an exported
function of the module m and the arguments ur,...,,un
a¡e reduced values. The functional result of the spara-
statemenr is the pid of the created process. This pid can
be stored in datastructures or sent to other processes. Ev-
ery process can also access his own pid, with the function
self O.

For distributed programping Erlang uses the same pro-
cess concept a.s for concunent progrâ.mming. In a distributed
Erlang system multiple nodes exist on maybe multiple com-
puters in a netrvork. On an Erlang node processes can
be executed concurrently. To distinguish nodes located on
the same computer, every node gets a nn.me when it is
started. Communication between processes executed on dif-
ferent nodes stays the sâme as before. Therefore the pid of

a process also contains the node on which it is executed.
The only difference in distributed prograrnming a¡e the

creation ofprocesses on other nodes and the communication
between two independently started Erlang processes. Erlang
has an extended spavn-statement

spavn(n,m,/, Lut,...,anJ)

with the s¡me behaviour as spasn, except that the nev/ pro-
cess is sta¡ted on the node n, which is the name of the node
followed by the symbol @ a¡d the hostname of the computer
the node is located on. With this extension it is very easy
to distribute processes developed in a concurrent environ-
mert, for s¡emple to optimize speed of an application or to
guarantee fault tolerance to the failure of one node.

Creating processes on different nodes is an expressive
mechanism for distributed progra-ming, but some applica-
tions a¡e inherent distributed and a hiera¡chical distribution
is not possible. Examples for this are telephony or talk,
r¡âmmervers or cash dispensers. Here processes are sta¡ted
independently ând communication between these processes
has to be initiated at runtime. In Erlang this can be real-
ized witb global registration of processes on a node. With
the statement register (n orne,pii[) the pid is globally regis-
tered as norne on the node where the registration is executed.
For the communication between two independently started
processes on different nodes we cân use the extended send
operation {narne,noile} !u. The message u is sent to the pro-
cess, which is registered on node as narne. Usually this kind
of communication is only chosen for the fi¡st contact. Then
the pids are exchanged and all further messages a¡e sent to
pids, as in concu¡rent progra.m6l¡g.

i

ì

a-

I

CROSS- M OD U LE OPTTMTZ ATIO I\

Thomas Lindgren
e-mail: f tl@acm. org

September 14,2001

Abstract

This paper shows that automatic program optimizations that work over
module boundaries yield good to excellent speedups on realistic Erlang
applications. The optimizer works as a translation from Erlang to Erlang.

The preliminary results are excellent: as an example, the beam com-
piler is nearly four times faster than without cross-module optimization,
while gen-tcp is more than two times faster. Lesser but still significant
speedups are shown for other applications.

INTR,ODUCTION

In this paper, I will describe â nerv Erlang optimizer, ov. Ov profiles the
application to detect the 'hot core' of ihe program, that is, the functions and
modules that are most executed. Otvt then heuristically optimizes the hot core.
Subsequent to this, conventional compiler technology can be applied.

Ou (for 'optimization manager') is an Erlang-to-Erlang optimizer, itself
written in Erlang, and operates entirely without extending the Erlang/OTP
P"7B2 runtime system. Ou consists of roughly 20,000 lines of code, and was

developed for flexibility and ease of debugging rather than raw efficiency. While
oM successfully optimizes realistic code, it should still be considered a prototype
for these reasons.

Otr¡ works in two steps: first, the application to be optimized is profiled
in several ways to tell where to put in the optimization effort. Second, the
optimizations are applied using the found profile information. After this point,
the application is run normally.

OPTIMIZATIONS
The fine print of oM:s optimizations are beyond the scope of this paper. Instead,
we will show what is done by example.

Profiling

Profiling information is collected by generating a profiling version of the ap-
plication. In the profiling version, code is deposited that records information
into an ets table when executed. For example, when a clause body is entered,

1

its associated counter is incremented; when a remote call is done, a counter
associated with the pair of calling and called module is incremented.

The information recorded is shown below.

1. how often is each (function/caselif lreceive/fun) clause executed?

2. how often is a call site visited?

3. when an apply is done, what functions are applied?

4. which modules call each other, and how often?

Higher-order function removal

Higher-order functions are removed heuristically as follows: oM detects calls to
common functions defined in the 'lists' module, and emits an equivalent local
function along with a call to the new function. This is done only when a fun is
supplied in the right position, and permits oM to simplify the code considerably.

The execution profile can be used so that seldom-executed calls to 'lists' re-
main unchanged, which saves some code. Currently, ou transforms all suitable
calls, regardless of how often they are executed.

As an example of higher-order removal, consider the following code from
beam-asm.erl:

encode-arg({fie1d_f1ags, FIagsO}, Dict) ->
Flags = lists:fo1dl(fun (F, S) -> S bor flag_ro_bit(F) end, O, FlagsO),

Higher-order removal converts this into a call to a new function, and sim-
plifies the new function:

encode-arg({fie1d_f1ags, F1agsO}, Dict) ->
F1ags = lists_fo1dl_l(0, Flagso),

7.7. specialized lists : f old1
lists_foldI_1 (Acco, [x I xs]) ->

Accl = AccO bor flag_to_bit(X),
lists_f oldI_1 (Acc1, Xs) ;

lisrs_fotdl_1 (Acc, []) ->
Acc.

(While the fun in example above has no free variables, oM in general passes
free variables as extra parameters to the new function. When there are few or
no free variables, the ¡esult is a gain.)

Higher-order removal trades the cost of more code for the gain of removing
the use of fun:s and apply. However, the gains seem to dominate in practice:
the beam compiler uses the lists module heavily, and runs dramatically faster
after higher-order removal (see the evaluation section below).

2

Apply open-coding

Apply open-coding converts a call apply(M,F,As) into a case statement. For
example, asnlrt has the following central function for encoding an ASN.1 value.
Note that, to make things difficult, the function name to be called is constructed
dynamically - this means an ordinary compiler or analyzer won't know what
to do.

encode (ber,Module,Type,Term) ->
CaIl = l-ist-to-atom(1ists:concat(['enc-',Typel)),
case catch apply(Module,Ca1l, lTerm, t]l) of '/,'/, apply

{,EXIT,,undef} ->
{error, {asn1 , {undef , Module , Ca11}}} ;

{'EXIT', {error,Reason}} ->
{error,Reason};

{'ExIT',Reason} ->
{error, {asnl,Reason}} ;

{Bytes,Len} ->
{ok, Bytes} ;

x->
{ok, X}
end;

encode(ber-bin,Module,Type,Term) -> . . . ;
encode (per,Module,Type,Term) ->

After profiling, oir,t knows that Call is almost always 'encl,DAPMessage'
and can rewrite the function as:

encode (ber,Modu1e,Type,Term) -)
CaIl = list_to_atom(lists: concat([,enc_, ,Type])),
case catch

(case {ttodule,CalI} of
{'LDAPv2', enc-LDAPHessage} ->

'LDAPv2, :enc_LDAPMessage(Term, []) ; 7.7. speculative call

{'EXIT"undef} ->
{error , {asnl , {undef , Module , Ca11}}} ;

{'EXIT', {error,Reason}} ->
{error, Reason} ;

{,EXIT,,Reason} ->
{error, {asnl,Reason}} ;

{Bytes,Len} -> '/.'/, <- domina¡t case
{ok,Bytes};

x->
{ok, X}
end;

encode(ber-bin,Module,Type,Term) -) . . . ;

¡l

I

3

encode (per,Module,Type,Tern) -)

Outlining

After apply open-coding, oM tries to get rid of cold code inside functions by
outlining clauses. Outlining works by turning clauses that seldom are executed
into new functions, so as to separate them from the hot code. There are two
advantages:

1. Outlined clauses reduces function size, and small functions can be inlined
more often.

2. Pattern matching improves when outlined patterns are moved out of a
switch.

encode (ber,Module,Type,Term) ->
Cal1 = list_to_atom(1ists:concat([,enc_,,Type])),
case catch

(case {Modu1e,CaIl} of
{' LDAPv2,, enc_LDAPMessage} ->

,LDAPv2, :enc_LDApMessage(Term, []); ZT speculative ca1l

apply(Module,Call, lTerm, t]l)) of
{Bytes,Len} shen Bytes =/= 'EXfT, -> '/,'1, note new guard

tok, Bytes) ;

_x ->
' OUTLINED-1, (_X,Module, CaIl)

end;
encode (Method, Module , Type , Term) -)

' 0UTLINED-4 ' (Method, Module , Type, Term) .

' OUTLINED-I' (-X,Module, CaIl) ->
case _X of

{'EXIT',undef} ->
{error , {asn1 , {undef , Module , CalI}}} ;

{'EXIT',{error,Reason}} ->
{error, Reason} ;

{'EXIT,,Reason} ->
{error, {asn1, Reason}} ;

x->
{ok, X}
end.

'0UTLINED-4' (Method,Module,TIpe,Term) > . . .

Note that oM has reordered the clauses so that the common case is first in
this switch. In this particular case, oM can then move all the cold cases into a
single common function and pattern matching can be simplified.

4

Module aggregation

After outlining, each module is split, keeping the hot code in the original module
and moving the cold code to a new module. The hot module is optimized
(later on, perhaps native code compiled), while the cold module can be kept as

compact byte code. Otr,t does not optimize cold modules once they have been
generated.

Module splitting prepares for the next step, which aggregates several mod-
ules into one. The idea is to turn frequently executed remote calls into local
calls, which then can be inlined and optimized.

Erlang has hot code loading, so just putting the modules together will
change how the program behaves. While an application developer can merge
modules (by hand or with the help of otvt), we avoid that approach here. In-
stead, we note that a remote call m:f(X) can be logically viewed as follows:

1. lookup the module named m;

2. lookup the function named f in m;

3. call the function

The important observation is this: since code change is quite rare, steps 1

and 2 are almost always constant. As long as M is rrncha,nged, the ca,ll wilì
iuvoke the same function. Currcnt systems (eg, BEAM, HIPE) capitalize on
this by dynamic linking to the function found in step 3 when the module is
linked. But link-time is too late if we want to do compile-time optimizations.
We will instead show a compile-time approach below.

Assume that we have merged with module m. We then rewrite a call m:f(X)
as follows:

m:f (X) -->

(case latest(m) of
true -> f-local-(X);
false -> m:f (X)

end)

I'/, Iocal/merged version of f

That is, if m has not been changed since we merged the current module with
m, \¡r'e can invoke the known version of f.ll. But if m has changed, we invoke
the most recent version of m via an ordinary remote call.

The effect is that, at the cost of an extra test, we have turned the remote
call m:f(X) into a local call f-local(X) for as long as m is not changed. In a
previous paper [5], I showed how to implement the latest(m) test as part of a
linker, meaning it has a negligible runtime cost; there, I also discuss the issues
of code change more fully.

Given a profile of which modules invoke each other, the aggregator decides
which modules to merge. The basic concept is similar to water drops on a
plate: initially, each module is in a drop of its own. Module merging then
pushes the drops together to form larger drops. Aggregates are merged in order

5

l

of how often they call each other; when an aggregate becomes too large, this
process stops. (Thus, outlining and splitting enables oM to aggregate more hot
modules, since the hot modules shrink in size.)

some modules are widely shared (eg, lists), but in the moder above, they
can merge with only one aggregate; this is inadequate, since many aggregates
would benefit from merging, yet merging them all into a super-aggregate would
yield unacceptable code size.

The aggregator instead engulfs widely shared modules, copying the module
into each aggregate that needs it. The amount of copying is restricted by
aggregate size, and is done in order of call frequency. (Again, code change
needs to be adjusted to change multiple engulfed versions of a module at a
time; I will not go into that issue here.)

As an example, consider the somewhat artificial example of aggregating
modules m1 and m2, which implement a test for odd/even.

7.7 module m1

-module(m1).
-exPort (lf/11) .

even(x) when x)= 2 -)
m2: odd(X-1) ;

even(1) ->
false;

even(0) ->
true.

77. nodule rn2

-module (m2) .

-export (tgllJ)

odd(X) r¡hen X)= 2 -)
nl : even(X-1) ;

odd(1) ->
true;

odd(0) ->
faIse.

we merge modules m1 and m2 into a single aggregate. This consists of
two trampoline modules, named m1 and m2, and a core aggregate 'A0,. The
trampolines are used as interfaces to the outside world, and simply invoke the
core aggregate.

77. tranpoline module m1

-module(m1).
-export (lf/tl) .

even(X) -> '40' :even(X) .

6

I'/. tranpoline module m2

-¡nodule (m2) .

-export([odd/1]).

odd(X) -> '40':odd(X)

'/,'/, core aggregate
-module('40').
-export (lf/t,g/7J)

even(X) when X)= 2 -)
case latest(m2) of

true -)
odd(X-1) ;

false ->
m2 : odd(X-1)

end;
even(0) ->

true.

odd(X) Hhen X)= 2 -)
case latest(m1) of

true ->
even(X-1) ;

false ->
m1:even(X-1)
end;

odd(l) ->
true;

odd(0) ->
fa1se.

The net effect is to turn the calls to even/l and odd/1 in the core aggregate
'40' into local calls, which can be inlined. The latest-tests ensure that the core
aggregate is still safe for hot code loading.

Inlining

Finally, profiling has shown which call sites are frequently visited, and inlines
them throughout the aggregate in o¡der of descending frequency. Remote calls
cannot be inlined, since that would not respect the semantics of hot code load-
ing, but aggregation will have turned the important remote calls into local ones.

The inliner keeps a code size budget, and stops inlining when the budget
would be exceeded. The budget is consumed by each inlined call, using the size
of the inlined function body.

Profile-driven inlining is often superior to static inlining, since it is applied

7

only at frequent calls. A static inliner must be careful not to cause a code
explosion, which means it usually avoids inlining large functions; at the same
time, a static inliner may zoom in on code that is seldom or never executed,
merely because some functions happen to be small. In short, the benefits of
static inlining are erratic, since a static inliner may work on the wrong code, or
not work hard enough on the right code.

Simplification

After inlining, there often are redundancies in the inlined code. A final pass of
code simpliûcation heuristically detects and removes such redundancies. These
simplifications currently consist of four categories:

1. Functions that are no longer reachable are deleted.

2. Constant and copy propagation (e.g., y:3 and X:y mean X can be
replaced by the value 3).

3. constant folding (e.g., some BIFs with constant arguments, guard tests
known to succeed or fail).

4. Control simplification (case-of-case, pattern match simplification, nested
catch, applied and known fun).

Functions become dead due to inlining and., particularl¡ from module en-
gulfing: often, only part of an engulfed module is used and the rest of the
functions can be deleted.

Constants and copies were not propagated or folded in the measurements
discussed below, since the beam compiler already does some of this work.

Redundant control normally arises due to macro expansion and inlining. As
an example, consider a function from decodel.erl after macro expansion:

decode_action(FIag) ->
case if

Flag band 16 == 16 ->
true;

true ->
false

end of
true ->

Bodyl;
false ->

Body2

end.

\Mhen this function is executed, the inner if-expression returns an atom
which is matched by the enclosing case-expression. Simplification short-circuits
this into a single test:

I

decode-action(Flag) ->
if

Flag band 16 == 16 ->
Bodyl;

true ->
Body2
end.

RESUTTS

The results in this section are preliminary.
We applied oM to a set of realistic benchmarks. (The benchmark programs

are freely available. Please contact the author for a copy.)

decodel (1- module): an example 'inner-loop' doing packet processing;

beam (SL modules): the beam compiler applied to the'lists'module;

gen-tcp (7 modules): short messages over a local socket;

ldapv2 (5 modules): ASN.I encoding and decoding using the LDAPv2
specification;

mnesia (29 modules): the mnesia system simulating a simple home location
register database.

The applications above are, apart from decodel, popular OTP subsystems.
This brings the advantages that we are optimizing "real programs", which still
can be made freely available, and that optimizations improving them are rele-
vant to most Erlang developers.

(The benchmarks were modified as follows: ldapv2 uses tuples as records,
which seems to be a glitch in the ASN.1 compiler and which was removed; beam
was turned into a sequential program to simplify measurements, by calling the
compiler directly rather than spawning a process to do it; finally, a guard test
in a list comprehension in beam was changed into an if-statement.)

The benchmarks were run on an IBM Thinkpad 600E with 128 MB memory
and a 300 MHz processor, running Erlang/orP R7B2 on RedHat Limrx 2.1.
Each benchmark was run 30-40 times to get some statistical accuracy, where-
after the results were analyzed. I compared Erlang with Erlang: beam-compiled
programs with ou-optimized, beam-compiled programs. The latest-tests intro.
duced by oivt were simulated by a simple, "always-true" test, so as to not modify
the R7B2 runtime system.

Speedup (runtime)
beam/om

decodel
beam
gen-tcp
ldapv2
mnesia

T.T2

3.96

2.54

1.01

L17

(2.94 h-o remove * 1.34 other)
(2.15 if outliers kept)

(1.28 if outliers kept)

I

f ""'::ì
;.i' '-'... -\

.
,.ì

i

;

Two benchmarks, gen-tcp and mnesia, suffered in that the baseline results
showed a very broad standard deviation. This meant it was difficult to compute
speedups with any confidence. I thus removed outliers to shrink the standard
deviation, which increased speedup for gen-tcp, and reduced it for mnesia. It
is unclear why results varied so widely in the first place; my current hypothesis
is that since both the offending programs are concurrent, process scheduling
plays a role.

ou yields excellent results on gen-tcp and beam, while the others have
significant but less spectacular outcomes.

Decodel is improved simply by outlining improving pattern matching. Beam
uses higher-order functions heavily and is improved mainly by higher-order re-
moval. For gen-tcp, oM aggregates and inlines across four modules and an
apply to arrive at a result close to the optimum. Ldapv2 yields nearly no
improvement, which is somewhat surprising, since the application appears well-
suited to take advantage of module aggregation and apply open-coding. The
mnesia benchmark complains during profiling (onty) that mnesia is overloaded;
this means the profile may be inaccurate compared to normal execution. The
mnesia result has not been analyzed further. From the viewpoint of orr.l, the
mnesia result shows both that the profiling step is sometimes too expensive as
implemented, and that an inaccurate profile still yields speedups.

Random examination of the generated code shows there are still numer-
ous inefficiences to be removed. Inlining and outlining should be tuned and
extended. Aggregation seems to work reasonably well for the benchmarks in
question. The simplification step should be extended to employ a greater range
of techniques, and should be opportunistic by working more aggressively with
hotter code.

RELATED WORK
Profile-driven optimization has been successfully used throughout the 1990's for
optimizing "integer programs", that is, programs that use linked data structures
and complex control flow. object-oriented languages, such as Smalltalk and
SELF, were probably the spearhead in this regard. Today, compilers such as
Sun's HotSpot Java compiler and Hewlett-Packard's line of workstation compil-
ers extensively use profile information during compilation. Researchers at HP
have shown that large engineering applications can be successfully optimized
using profile-driven whole-application methods [2].

Most of the opiimizations deployed in oIr¡ have their counterparts in other
compilers. A generalization of higher-order removal was proposed by Olin Shiv-
ers in the context of Scheme. SELF and Smalltalk predict what methods are
called similarly to apply open-coding [3]. Ad-hoc partial inlining - an unstruc-
tu¡ed version of outlining - has been proposed by several research groups and
apparently exist in a research IA-64 compiler from Intel Microcomputer Re-
search Labs (Dulong et al, 2000). Module aggregation (splitting, merging and
engulfing) is novel. While techniques for optimization across module bound-
aries have been proposed, they do not deat with hot code loading and are con-

10

sequently more straightforward, Profile-driven inlining and optimization has
been proposed and applied by, e.g., the IMPACT reseach group at University
of lllinois. The simplification phase is similar in spirit to what has been used in
a long line of functional compilers, ranging from Steele's Rabbit, up to today's
Haskell (Santos and Peyton Jones) and SML compilers ti] t7].

To my knowledge, profile-driven optimizations have so far not been applied
to functional languages. The results in this paper indicate a substantial oppor-
tunity for compiler writers.

Profiles were used in an embryonic form while testing HIPE on AXD301:
only the functions that were executed during benchmarking were native-code
compiled; this is basically just-in-time compilation as applied to Erlang [4].

The name 'outlining'was taken from a SIGCOMM paper by Mosberger et
al [6], where ii described an optimization that moved seldom-executed protocol
code out-of-line.

FUTURE WORK

There are several paths worth pursuing.
First, otvt is currently a prototype, and could be industrialized (a) by making

it more efficient, both while compiling and while profiling, (b) by tuning and
extending the optimizations, and (c) by automating its use by improving its
heuristics and adding ways to re-compile the program (locally or remotely) if
the profile changes radically during execution. Extensions to the Erlang runtime
system are probably required to do this well.

Low-level profiling support. ets-tables are unsuitable, and the profile can
be recorded as a low-level data structure rather than a term.

Better handling of modules. If a module can export several interfaces,
the trampoline modules are not needed. Furthermore, the current limit
on two versions of a module in the runtime system precludes transparent
profi le-driven recompilation.

Better handling of records. Records should have unique names throughout
the system by default, so as to avoid name clashes when merging modules.
The confusion of tuples with records aggravates this problem, since oM
cannot rename tuple tags.

Better handling of closures (fun objects). For apply open-coding, oM
needs to do function application 'by hand'. Two things would help here:
some way to extract free variables from a closure, and some way to locate
the code (syntax tree) for each closure at runtime.

Second, further evaluation is needed. one way to test our hypothesis about
scalable compiler performance would be to apply HIPE to the aggregates gen-
erated by ou, since oM extends the scope of HIPE by enlarging functions. An

11

orthogonal approach would be to examine the applications for more Erlang-to-
Erlang optimization opportunities. Finally, more and larger applications should
be studied.

Third, this paper does not explore the possibilities of improved type infor-
mation. Static type analysis of other dynamically typed languages have yielded
immense profits by finding and removing redundant type tests and dead code.
However, my previous experiences with type analysis module-at-a-time for Er-
lang have been very disappointing: modules normally export many functions
and call many other modules, which leads to a nearly complete lack of useful
information.

Module aggregation may improve type analysis results considerably, simply
because it merges modules and so tends to put producers and consumers of val-
ues in the same module. It is also possible to exploit profiles to further sharpen
the results of type analysis within an aggregate. (An example of this is mak-
ing private copies of frequently executed functions so that analysis results for
the copies are more precise, hopefully yielding more optimizations in frequent
code.) Sven-olof Nyström has written a sophisticated type analyzer for Erlang,
but compiler support is needed to make use of the type information.

Fourth, profile-driven optimization can be applied more aggressively than
in this paper, in two ways. Conventional optimizations can be done more
aggressively if we know that the code is executed often. New, profile-driven
optimizations are also possible. We are currently exploring ways to improve
module aggregation further with profiles.

CONCLUSION

Real applications are structured as a collection of modules, and running code
frequently switches between them. In order to optimize programs well, a com-
piler must look across module boundaries. In Erlang, a great hindrance to this
is that modules can be replaced at runtime.

we have described and evaluated ou, a profile-driven optimizer that ag-
gressively and safely splits, merges and engulfs modules to capture the hot core
of an application. The hot core is then optimized by higher-order elimination,
inlining and simplification of the resulting code. The results are very encour-
aging, ranging from no change to nearly 4 times faster than the baseline on
realistic code.

Ov helps per-function native code compilers indirectly, since functions in-
crease in size from inlining. Furthermore, hot and cold code is separated, mean-
ing the compiler can spend its time budget optimizing the hot code.

oir¡ also assists per-module compilers by aggregating modules into larger
units. while we are currently unaware of any such Erlang compiler, we expect
per-module compilation to have sufficiently compelling performance advantages
that per-module compilers will appear.

12

ACKNOWLEDGEMENTS

The AXD301 project provided a helpful environment for the initial evaluation
of HIPE on real applications, which was done while I was at SARC, an Er-
icsson research laboratory. My thanks in particular to Mats Cronqvist, Kurt
Johansson, Thomas Lindquist, Peter Lundell, Jan Roth, and Ulf Wiger.

Discussions with the HIPE group were very helpful. Mikael pettersson sug-
gested that "partial inlining" should inline only some clauses, rather than an
entire function body, a seed which germinated with outlining. Richard Carls-
son wrote the first implementation of a module merger. Sven-Olof Nyström has
been an excellent sounding board for far-flung ideas,

The support of HIPE by Bjarne Dâcker, Bengt Jonsson, Håkan Millroth, LM
Ericsson AB and NUTEK through ASTEC during and after my stay at uppsala
University was crucial as a foundation to this work and is highly appreciated.

Srocxuor,M, SEeTEMBER 2001

REFERENCtrS

References

[1] A.\^/. Appel. compi,li,ng wi,th continuations. cambridge university press,
1992.

[2] A. Ayers, s. de Jong, J. Peyton, R. schooler. scalable cross-module opti-
mization. In Proc. PLDI'98.

[3] c. chambers, D. ungar, E. Lee. An efficient implementation of self, a
dynamically-typed object-oriented language. In proc. OOpSLA'gg.

[4] E. Johansson, s.-o. Nyström, c. Jonsson, T. Lindgren. Eualuati,on of
HIPE, an Erlang nat'iue code comp,i/er. ASTEC report ggl}J, Uppsala
University 1999.

[5] T. Lindgren. Module merging: aggressiue optimi,zati,on and cod,e replace-
ment 'in highly-auailable systerns. Technical report 154, Computing sci-
ence Department, Uppsala University, 1gg8.

[6] D.Mosberger, L. Peterson, P. Bridges, s. o'Malley. Analysisof techniques
to improve protocol latency. In Proc. SIGCOMM'96.

[7] D Tarditi. Design and irnplementati,on of cod,e optimizations Jor a type-
directed compiler for standard ML. Ph.D. thesis, report cMU-cs-gz-10g,
School for Computer Science, Carnegie Mellon, 1gg7.

13

The EC Erlang Compiler

Maurice Castro
maurice@serc.rmit.edu.au

Softrvare Engineering Research Centre
Level 3, 110 Victoria St

Carlton, VIC, 3053, Australia

¡Ò

Abstract
The EC compiler generates native machine code
for Erlang programs. In addition to its role as a
core compiler technology in the Magnus massively
scalable computing platform, it allows stand-alone
executables to be generated, permitting easy dis-
tribution of Erlang programs on conventional com-
puting platforms.

This paper provides the motivations behind the
development of EC and describes the structure of
the compiler.

We intend releasing EC under a 'Berke-
ley' style licence and encouraging user com-
munity participation in its development
(http: //www.serc.rmit.ed u.au I - ec I).

This paper is a condensed version of SERC Tech-
nical Report SERC-OI28[8].

1 Introduction
The Magnus massively scalable computing plat-
form is a high performance message based super-
computer targeted at the business transaction mar-
ket. Brlangfl is a natural choice as the appli-
cation programming language for message passing
architectures. A survey of the currently available
Erlang compilers and platforms - Erlang/OTP[3]
(JAM and BEAM), Stand Alone Erlang[6] (SAE),
HiPE[15], ETOS[9] and Gerl[l8] - showed that they
were unsuitable for use in the Magnus architecture
and the EC project was commenced to provide a re-
targetable optimising native code compiler for Er-
lang.

In addition to its core role in the Magnus plat-
form, EC generates stand-alone native programs
from Erlang that can be easily distributed by soft-
ware developers.

EC has been built with conventional compiler
generation tools to encourage the participation of
the user community in its further development. It
is intended to be released under a'Berkeley' style
open source licence.

This plper will give a brief overview of Magnus
architecture (section 2, and survey existing Erlang
compilers (section 3). The properties and difficul-
ties we found with using them in the Magnus ar-
chitecture are identified.

The decision to create an Open Source compiler
project has influenced the design philosophy. The
resuìting iterative, small, short term goal approach
is covered in section 4. The role of testing and the
directory layout is also covered.

The internals of the compiler (section 5), the run-
time library (section 6) and the tool set used (sec-
tion 7 are discussed in detail.

Both detailed future plans (section 8) and the
immediate deficiencies (section 9) of EC are com-
mented on.

2 Magnus

Magnus[2] is a combination of three technologies

¡ A programming style that separates parallel
actiVities.

The key to scaling systems is identifying par-
allel activities. Although we have no magic
bullet for identifying these activities, we have

1

I

found that a message passing environment
with fast transfer speeds and iow cost processes
allows the easy development of scalable pro-
grams.

o A language that inherentìy supports message
passing semantics.

Erlang's low cost processes and easy messaging
semantics make it ideal for writing the paral-
lel activities that are required to allow massive
scaling. Erlang is the core language of the sys-
tem.

r An interconnect that allows messages directed
to different locations to not block each other.

The interconnect is the passive core of a WDM
switch - the Wavelength Division Multiplexer
(see figure 1).

Furthermore, by accepting the possibility for lost
messages at the application program level signif-
icant performance and system stability improve-
ments can be made.

Transmitter

or hardware errors are automatically resent. Un-
Iike these protocols Magnus only guarantees that
a message will either be correct or not delivered
at all. Application programmers determine which
messages require reliability and can use applica-
tion level libraries to implement reliable messag-
ing where required. This philosophy allows the
hardware to be greatly simplified by eliminating
buffering. The inherent high reliability of the op-
tical components is fully exploited as the need for
the latency adding protocol ievel acknowledge (ack)
messages and additional buffering is removed.

A large class of messages do not benefit from a
protocol based retransmission strategy when a con-
gestion based failure occurs. These types of mes-
sages include:

Informational messages - Some messages con-
vey information that is not required for the
continuing safe or correct operation of a pro-
cess. These messages may be discarded.

Timely messages - Some information has a short
useful lifetime. Losing this data may be less
harmful than getting delayed data.

Results of a functional conversion of data
- This data can be regenerated at any time
by supplying the same set of input data. Re-
sponsibility for recovery of this data can often
be deferred to the initiator of the operation.

Overall system reliability is improved as the
Magnus system can be efficiently programmed in
a way that does not introduce deadlocks. When a
message buffer overflo\¡r's messages are lost. There
is no failure or blocking of the sender, receiver, or
node. Thus the potential for recovery - at the ap-
plication program level - by the process that has
either been inundated by messages or is having its
messages ignored exists.

2.2 Hardware
The hardware of the platform (see figure 2) con-
sists of a number of shared memory multiproces-
sors (SMP) linked by a message passing interface.
The non-blocking optical switch is used to pass
messages from interface to interface. Information
is passed between machines at the machines' bus
speed eliminating the need for buffering on the in-
terface cards.

verRecei

lt-l
I rz-l

l]-t

2
o

J

t3-r

lt-3

tl:'
i¿-l

t2-l

13-3

2

lt-3
À2-l
l]_3

-1

¡,1 - -),2 13 ---

Figure 1: Schematic representation of a 3 Wave-
length WDM switch

The remainder of this section will discuss the
messaging environment, hardware and developing
software for the Magnus platform.

2.L Messages

A key feature of the Magnus asynchronous messag-
ing system is that we do not consider messages must
be delivered at all costs. Many network protocols
incorporate complex mechanisms designed to en-
sure that messages that are lost through congestion

CPUI

CPU4

@
@

Erlæg
OTP

Unix/BSD/Linux

CEP

CEP

CEP

CEP
CEP

@

@
Thin

Ontical
Inrè¡face

Ethemet etc
lnterface

+ { ,t t

Passive
tü/DM

Hardwa¡e Erl

The message passing architecture and non-
blocking switch allow considerable scaling as unlike
bus architectures parallel unrelated tasks need not
interfere with each other when communicating at
the same time.

The interface cards act as Direct Memory Access
(DMA) processors, freeing the main processors of
the need to perform communication tasks. The in-
terface cards can only receive a single message at
a time, hence collisions occur when 2 ports try to
talk to the same port at the same time. A collision
results in the loss of the colliding messages.

As each machine is equipped with a bank of lasers
on its interface card, a machine can broadcast to
all or some of the machines connected to the non-
blocking switch. This facility is particularly useful
for starting a gïoup of parallel worker processes on
a task.

The majority of the SMP machines are config-
ured as Erlang Engines (see figure 2). These sys-
tems have a minimal operating system and run
compiled Erlang programs. The remainder of the
systems are configured as Communication Engines.
These systems have a fully fledged operating system
and run interpreted Erlang and any programs re-
quired in other programming languages. The Com-
munication Engines perform protocol intense or op-
erating system service intense tasks, while the Er-
lang Engines run Erlang programs as quickly as

Erlang Engines Communication Engine

CEP

IEP

OP
L
R

- Compiled Erlang
Program

- Interpretcd Erlang
Program

- Other Program
- Laser
- Receivc¡

'l

Figure 2: The Magnus Architecture

possible.

2.3 Software

AII software to be run on the Erlang Engines are
initially developed under the Erlang/OTP environ-
ment to make use of the advantages of it provides
such as a fully fledged development and debugging
environment. When the programs are developed
they are recompiled with an optimising compiler
and deployed on the Erlang Engines. On the Er-
lang Engines the programs can gain performance
from the purpose built support environment.

This approach aims to capture the full advan-
tages we have found in developing in Erlang while
supporting high performance environment. To
achieve this aim it is necessary for the dialect of
Erlang accepted by the optimising compiler to be
a subset of the interpreted language. Furthermore,
it is extremely desirable to implement as many of
the features of the interpreted language as possible
to ensure that programs do not have to be majorly
rewritten for them to compile for the Erlang En-
gine.

For the Erlang Engine environment the compiler:

¡ ma/ be slow - as the programmer typically in-
teracts with the Erlang/OTP compiler

. must produce code that runs quickly

. must support a very large subset of the Er-
iang/OTP compiler's language

¡ must produce code that does not require the
Erlang/OTP runtime to operate

3 Survey

Four projects with the potential to produce an Er-
lang compiler suitable for use in Magnus were iden-
tified: OSE, HiPE, ETOS and Gerl. Each of these
takes a different approach to generating executable
Erìang programs. Their features and suitability are
discussed below.

3.1 0S8
The current implementation of Open Source
Erlang[3] (OSE) is based on the BEAM machine a
threaded interpreter. Earlier releases incorporated
the JAM machine. JAM was based on the Warren
Abstract Machine. JAM is no longer supported.
This release of Erlang is robust and provides an ex-
cellent development environment. It does not pro'
duce standalone code.

Stand Alone Erlang[6] (SAE) is a package based
on OSE that groups the interpretive environment
from OSE with compiled BEAM files allowing a
single executable to be constructed. Although a
single executable is produced this code depends on
a large number of operating system facilities and is
still interpreted.

3.2 HiPE
High-Performance Erlangll5] (HiPE) uses native
code to improve the speed of the existing BEAM
compiler. It produces code that is seamlessly called
from the interpreted environment. This compiler
does not appear to produce code that operates in-
dependently from the interpreted environment.

The current release v0.92 only supports the Ul-
tTaSPARC architecture although an x86 implemen-
tation has been promised for some time.

3.3 ETOS

The ETOS Compiler[9] converts Erlang into
Scheme, the Scheme is compiled with the Gambit
Scheme Compiler to generate C code which is then

compiled to a native executable. This process pro-
duces native machine code.

The compiler is supplied as either a pre-built bi-
nary or as source code. We were forced to select
the source release, even though it was significantly
older than the binary release, as it was likely that
we would need to make changes to the compiler to
support the Magnus environment.

The source release (Version 1.4) of ETOSIIO]
does not implement some significant parts of the
language of particular note are the operators ønd,
or, band, bor and '--'. Furthermore we had sig-
nificant dificulty with performing all the steps re-
quired to compile even the supplied test programs
under Solaris.

3.4 Gerl

Geoff's Erlang[l8, 19] (Gerl) converts a large subset
of the Erlang programming language into C code
which can then be compiled into native machine
code.

This system was developed by a past staff mem-
ber of our research group and is released under the
GNU Public Licence.

3.5 Conclusions

Gerl would seem to be the obvious candidate for
a native code generating compiler to be used in
the Magnus project as it generates native code and
has source code available. The age of the imple-
mentation and the subsequent changes in the Er-
lang language were a severe disincentive to adopt-
ing and extending Gerl. The final reason for not
choosing it was too much knowledge about how it
was implemented. Having watched a very talented
programmer cajole C*+ into interacting correctly
with Flex and Bison we felt that making changes
to Gerl could be quite difficult.

The complicated compilation process, and our
initial poor out-of-the-box experience combined
with the requirement for a commercial licence for
a compiler that would require significant work per-
suaded us not to pursue ETOS.

As neither of the other alternatives appeared to
generate native code, we were forced to commence
another Erlang compiler project: EC.

4 Development Philosophy
The development of EC will be / has been an it-
erative process with priority given to implementing
the correct and complete semantics of the language,
and then producing faster code. Although the ini-
tial phases of the project have been accomplished
by a singie programmer it is intended that many
developers should be able to work on several as-
pects of the compiler at the same time. As a result
of this approach the compiler has been structured
as group of independent programs with well defined
interfaces and phases which perform optimisations
that are clearly separated from the basic compi-
Iation of code. Furthermore, the project will be
guided by a number of goals which are intended to
be achievable by individuals working part time on
the project. These goals will be as independent as
possible to avoid sub-projects blocking each other.

A rigorous testing regime have greatly speeded

lhe development of the compiler. Each phase of the
compiler and library has its own test cases stored
with it in addition to to a set of end-to-end tests.
For end-to-end testing the output of each phase
is compared with a sample held in the associated
phase directory. This allows the impact of changes
to be found rapidly.

Test targets are included in each makefile to en-
sure that the standard tests are both easy to run
and complete.

In general, any test case that reveals a fault in
the compiler is added into the collection either in
the phase or library in which the fault was localised
or, if more widespread, in the end-to-end cases.

5 An Overview of EC

The top level design of EC conforms to the clas-
sic model used for implementing an optimising
compiler[4, 5]. Figure 3 shows the phases of com-
pilation. EC links each phase through a textual
representation of the data structures produced by
a proceeding phase and then read by a subsequent
phase.

Retargeting the compiler is achieved by creating
new machine descriptions in the phase of compila-
tion that generates assembler code.

The remainder of this section describes some of
the major design decisions, the phases of compila-

tion, and the representations used

5.1 Design Decisions

5.1.1 Separate Pre-processor

The pre-processor and records were introduced into
Erlang after version 4.4 and there has been some
debate about their appropriateness 1:

Macros are at the lexical level, like C's
macros, right? Why not at the syntactic
level, like Prolog's term-expansion and
Lisp's defmacro?

TorbjörnTörnvkist : Yes, that was
probably a mistake. At the Erlang user's
Conf. last year (1998) Richard O'Keefe
actually presented a proposal called
Abstract Patterns that would make it
possible to get rid of the preprocessor.

Robert(RobertVirding): It won't be
able to get rid of all of the pre-processor
as it can't handle including files and
conditional compilation. Actually I wrote
epp (the Erlang pre-processor) as a joke,
but some people missed the point.:-) I
also missed adding macros with the same
name but different number of arguments.

A separate pre-processor that implements exist-
ing record and macro functionality can be written.
Alternative pre-processors with less contentious be-
haviours may be easily substituted.

The pre-processor is not a core part of the EC
project and is not discussed further.

5.7.2 Separate Processes for each Phase

Separating the phases of compilation into separate
processes ensures that loose pointers cause faults
to become apparent in the phase where the fault
exists, simplifying debugging task. Furthermore,
memory management - particularly the dealloca-
tion of complex data structures - can be avoided
in the early stages of development. Typically the
majority of structures used in a phase are required
from their instantiation until the end of the phase,

r Erlang Flaws: http://www.bluetail.com/wiki/showpage?
node=ErlangFlaws

ec1

ec2

ec3

ec4

ec5

ec6.x86

gnu as

epp

Compiler Phase Function Representation

Preprocessor

Erlang

Lexical Analysis

Parsing

Abstract Syntax Tree

Language Level
Optimisation

Abst¡act Syntax Tree

Translation to
In termediate Representation

Tree IR

Convert to Canonical Form

Canon IR

Intermediate Representati on
Optimisation

Canon IR

Generate

Assembler Code

Assembler Code

Assemble

Figure 3: The Phases of Compilation in EC

so there is little advanatage in deallocating struc-
tures before the completion of a phase.

If the phases are integrated into a single process
a zoned memory allocator similar to the one used
in lcc[lf] can be used to deallocate all the memory
used by a phase on its completion.

5.1.3 Linking Passes

The use of textual representations to pass data be-
tween phases of compilation is extremely unusual.
The flattening of a data structure into a disk file
and then reconstructing the structure is clearly
wasteful. In most modern compiler developments
a pretty printer is used to output a textual rep-
resentation of the data structures being passed in

memory between phases of the compiler.
We chose to both read and write textual repre-

sentations for passing data between phases for the
dual reasons of:

. ease of debugging the output of a pass, and;

o ensuring that the textual output exactly
matches the contents of the data structure

The pervasive presence of the textual form ensures
that a convenient human readable document is al-
ways available when a fault is detected in the com-
piler. The pretty printer approach is less desirable
as errors and omissions in the pretty printer can be
confused with a fault in the compiler.

The interfaces between phases are contained in

libraries that are linked to by the communicating
phases.

In a production environment, the compiler could
be sped up by integrating the passes into a single
executable and eliminating the reading and writing
operations.

5.L.4 Retargeting

To retarget the compiler a new machine descrip-
tion is generated. Machine descriptions consist of
a modified burg grammar[l3] (see section 7.4) and
associated C code.

EC is unusual in that it defers all decisions relat-
ing to the targeting of the compiler to the phase
just before assembling code. Other retargetable
compilers[5, 11] would use some information about
the targeting of the compiler in earlier phases. In
most cases such information would be used when
activation records are generated that is when the
Abstract Syntax Tlee is translated into the Inter-
mediate Representation.

EC defers targeting by generating TJun elements
which are interpreted by the sixth stage of the com-
piler to generate an activation record.

The benefit of retaining common code and be-
haviour in all earlier stages of compilation is at the
cost of some additional complexity in the gener-
ation of assembler code and reduced opportunity
to optimise to a machines characteristics at earlier
stages.

5.2 Phases of Compilation
6.2.1 ecl

The ecl phase performs lexical analysis and parses
the Erlang input file to produce an Abstract Syntax
Tree (AST). The grammar is closely related to the
Erlang grammar found in Erlang 4.7.3 Reference
Manual[17]. Some of the grammar is drawn from
Concurrent Programming in Erlang[7] where the
grammar provided by the reference manual was not
felt to fit adequately.

The grammar used employs the changes sug-
gested in section 2.6.3 of the Reference Manual[l7].
These changes make the grammar LALR(l). The
modified grammar is more permissive than it
should be so additional checks are required in the
code to ensure that patterns contain only the ele-

ments permitted in patterns and that the Uniuer-
salPattem (-) does not appear in an expression.

The implemented grammar recognises the pres-
ence of records, macros and Mnesia queries and
produces an error when these are encountered.
Records and macros are intended to be handled by
the pre-processor. Mnesia queries may be incorpo-
rated when the support libraries are written.

We considered expressing guards as a logical ex-
pression using logical-or to replace disjunction. No
real savings were encountered as it risked the poten-
tiai for rapid short-circuit evaiuation and required
special treatment of the A-or operation for guards.
We now implement guards as an A-Expseq so that
we can choose the implementation later in the com-
pilation process.

5.2.2 ec2

The AST generated by ecl is transformed and op-
timised by ec2. A new AST is produced.

The ec2 phase performs the following transfor-
mations:

Character to Integer - Characters are con-
verted into integers. That is A-CharVal- el-
ements are converted to A-IntegerVal ele-
ments.

String to List - Strings are converted into lists
of integers. That is AStringVal elements
are converted to Al,ist elements containing
A-IntegerVal elements.

Strings and characters are not fundamental types
in Erlang. The 2 transformations convert strings
and characters into fundamental types.

The ec2 phase performs the following optimisa-
tions:

Constant folding - constants linked by operators
are merged by evaluating the operators.

The transforms and optimisations are repeated
until no further changes are made to the AST (a
fixed point is achieved).

6.2.3 ec3

The ec3 phase transforms an AST into an Inter-
mediate Representation (IR). ASTs are closely re-
lated to input languages. IRs are closely related to

ì .:

compiler output languages. This phase recognises
sections of an AST and generates a sequence of IR
elements. These IR elements are typically simple
operations (arithmetic, tests and data movements)
that can be easily translated into machine instruc-
tions.

Interesting features of ec3 are:

o the number of temporaries - temporaries be-
come registers after register allocation - is no-
tionally infinite.

¡ lists of import, export and defined functions
are made and included in the IR representation

¡ TJun elements mark the beginning of func-
tions. These elements allow function pream-
bles to be inserted at the assembler language
generation phase.

o we emit a jump to the label ToEpilogue when
the result of a clause is calculated. The epi
logue contains code used to clear the current
frame off the stack and return to the caller.

o the label Epilogue is used to mark the end
of a function. The label epilogue is followed
by a jump to ToEpilogue at the end of each
function. The jump is used to simplify the
trace scheduler.

o a nesting counter is used to identify the con-
texts in which a variable is defined. Between
each clause of a conditional language element
(if, case, or receive), all the variables are
marked as undefined, or if they are already un-
defined then the unsafe bit in the flags is set.
At the completion of a conditional language
element all the variables in inner contexts are
marked as inner. They can then be used freely.
The the first use of. an inner variable results
in a warning message been generated. Subse-
quent uses do not generate warnings. A warn-
ing is also generated tf. an unsafe variable is
used (OSE halts compilation if an unsafe vari-
able is used). We choose to allow compilation
as the code could be correct, and merely un-
safe. Note that before inner variables can be
used they are checked to see if they have a
null value. If they are successfully used in the
outermost context of a function they are then
marked as normal defined variables.

o funs are impiemented through a data structure
that contains the address to be jumped to, the
name of the module, the name of the function
and the arity of the function. Calls to local
/uns require only the checking of the arity and
the use of the pointer. Calls to anonymous

funs are made by checking the arity and calling
the pointer. Funs in other modules require the
looking up of the modules and function name.

5.2.4 ec4

The ec4 phase transforms the tree-form of the IR
into the canon-form. Canonicalisation removes the
T-seq and T-eseq elements and replaces them with
T-stmseq elements. This process is known as lin-
earisation. After linearising the code it is assembled
into basic blocks which are then scheduled to reduce
the number of jumps between blocks. Initialised
data is separated out at the start of the phase and
merged in at the completion of the phase. The or-
der of initialised data must be preserved to ensure
that data structures are not reordered.

The method closely follows that used by
Appel[5].

5.2.5 ec5

The canon IR generated by ec4 is optimised by ec5.
A new canon IR is produced.

At present the only optimisation performed is the
folding of temporaries. A partial graph analysis is
performed to identify which temporaries are aliases
for each other. Duplicated temporaries are replaced
with a single temporary.

5.2.6 ec6

The ec6 phase generates assembler code for each
of the architectures supported. Much of the code
is common between the architectures and only the
code in the machine description file should need to
be changed to support a new architecture.

The machine description file consists of a collec-
tion of C functions and a modified burg grammar.
Figure 4 shows some fragments of the description
used for the x86 processor. This compact descrip-
tion provides all the rules for outputing x86 assem-
bler code. Retargeting is accomplished by rewriting
these rules for a new processor type.

Preamble

7.sta¡t stmt
7.term H0VE=1 JlJllP=2 CJIJI.ÍP=3 INTEGEB=4 FL0AT=10 LABEL=S CALL=6

T/,
stmt:
stmt:
stnt:
stnt:
stnt:
stmt:

stmt
stnt

CALL(Iabel) ; "caÌl *0\n"; 1

CALL(tenp); "caI1 #0\n"; 1

CALL(INDIR(temp)) ; "call (#0)\n'r; 1

JUl.lP(1abeL); "j!op #0\n"; 1

CJlJl.lP (cond, label) ; "#0 #1\n" ; 2

M0VE(const, dest); "movl #0, #1\n";

ÌíOVE(catch, dest); "#O\n\tmovl #r, #1\n"; 1

ACTÄRG (const) ; "pushl #0\n"; 1

L

stmt: AND(const, dest); "andl #0, #1\n";

catch: CATCH; "call CatchHead\n\tpushl Teax\n\tcall setjmp\n\taddl $4, zesp"; 1

dest : TEMP; rr#t rr

dest: RESIJLT; "Sr"
const: INTEGER; "S#i'r
const: FLoAT; "$#frt
cônst: ADD(integer, Labet);'t$#1+#0'r
temp: TEMP; rr#t rr

formal: FRIIARG; "#a"
label : LABEL; rr#1tr

result : RESIILT; rr*rrl

integer: INTEGEB; rr#irl

cond: EQ(tenp, tenp); "cmp1 *1, #O\n\tje"

,H,

C code

Figure 4: Parts of the x86 machine description file

1

The tree grammar describes rules for covering a
binary tree. The cover is not unique and the cover
with the lowest cost should be selected. Once a
cover is chosen the template strings corresponding
to the cover are emitted.

The burg grammar rule consists of up to 4 ele'
ments:

1. Term-anon-terminal

2. Pattern - defines a node in a tree. A pattern
consists of a terminal and up to two parenthe-
sised non-terminals

3. Template - defines a string in the ternplate
table corresponding to the current rule

4. Cost - defines the cost'of using the rule

The elements are separated by semicolons - op-
tional tabs may be used to improve readability.
Rules containing 3 elements are assumed to have a
default cost. Rules containing 2 elements are con-
sidered to have an empty template and a default
cost.

When template strings are emitted the symbols
in table 1 are replaced with their values.

At present a very primative register scheduling
algorithm is used, a more sophisticated algorithm
such as graph coloring may yield major improve-
ments. The current mechanism allocates registers
from a pool of unused registers and dumps the con-
tents of registers when either the pool is empty or

Symbol Valuc

ffn
#t
ffr
#i
#r
#t
ffa

vaiue of child n (where 0 < n < 9)
label
return register
integer
float
temporary (allocated register)
formal arg

Table 1: Template substitutions

the end of a basic biock is reached. The return reg-
ister is allocated last. Allocating the return register
last reduces the likelihood of needing to dump the
register before using it.

The ec6 phase also generates the tables that are
used for accessing remote functions.

An interesting feature of ec6 is that arguments
are generated in the order required to push them
onto a stack and numbered in C call order. This
simplifies the development of both stack and regis-
ter passing models. It also allows the calling of C
functions easily.

5.3 Representations

5.4 AST

A single representation is used for all Abstract Syn-
tax Trees in EC. This representation consists of 2

sequencing elements, a clause elements, and an ex-
pression element. For convenience each of these
elements contains a position identifier, used to gen-
erate errors which contain the line number of the
source code being compiled.

The sequencing elements are Clause Sequences
(e-C:.sSeq) and Expression Sequences (A-ExpSeq).

Clause (A-Cls) elements consist of 3 sequences
of expressions. The sequences represent patterns,
guards and expressions in the Erlang source.

The expression element represents all other as-
pects of the language.

5.5 IR
EC supports two intermediate representations
known as Tree IR and Canon IR respectively. The
majority of the components are common to both

representations. The difference lies in the sequenc-
ing elements used:

o Tree IR uses the 2 sequence elements state-
ment sequence (T-seq) and expresion sequence
(.t _eseql.

¡ Cannon IR uses the sequence element sequence
of statements (T-strnseq).

The IR closely resembles Appel's[5]. The ma-
jor differences lie in the implementation of condi-
tional jumps, initialised memory locations and the
implementation of functions. EC has adopted the
CJUMP definition

CJUMP (cond, true-dest, false-dest)

This definition explicitly identifies the condition to
the C type system. Explicit elements have been
introduced to declare initialised blocks of memory,
this allows later phases of the compiler to handle
these elements separately, simplifying analysis. Un-
like Appel's Tiger compiler, EC is not monolithic,
thus EC must identify functions (f-tun) and argu-
ments (TJrmarg) in the iR so that other phases of
the compiler can generate preambles and epilogues
for them. The Tiger compiler was able to avoid this
as the IR needed to handle only one function at a
time.

The common elements of the IR are Expres-
sions (T-exp), Statements (T-stur) and Conditions
(T-cnd)

6 Runtime Library
Runtime support is required for the code gener-
ated by the compiler. At present this support is
targeted towards Unix to allow easy testing under
the development environment. Each target plat-
form (including lvlagnus) will require its own run-
time support library.

The tasks of the runtime library include:

o allocating and deallocating memory.

¡ creating basic elements of the languages (eg.
integers and tuples).

o implementing high level language operations
which are not implemented directly in the com-
piler (eg compare and list subtract).

. implementing BIFs.

o implementing IO functions.

The majority of these operations are self explana-
tory. However, IO operations require further expla-
nation. The implementation of runtime types and
iists are also discussed.

6.1 IO Functions

The compiler accesses messages through a set of
IO functions defined in the runtime library. The
following functions must be defined to send and
receive messages:

send(pid,payload) send the message pagload to
the process pid.

MessageFirstO get the first message in the mes-

sage queue and return it. If there are no mes-

sages return 0.

MessageNext O get the next message in the mes-

sage queue and return it. If there are no re-
maining messages return 0.

6.2 Runtime Types

Since the JAM machine, a number of bits in point-
ers to Erlang data items have been reserved to iden-
tify the type of an item. This mechanism can save

considerable amounts of time in pattern matching
code. EC uses the 3 least significant bits as type
tags. The meanings of the bit patterns are sum-
marised in table 2.

6.3 Lists

During the development of Gerl[18] it was found
that appending to lists was an expensive operation
under JAM and BEAM. This operation is O(n) on
the length of the first list. Adding a tail pointer
to lists in Gerl made a significant difference to list
performance. As a result EC has adopted a list
implementation which retains a tail pointer.

Lists are structured as chains of cons cells (see

figure 5) each cons cell contains a pointer to its
payload, a pointer to the next cell and a pointer to
the tail. When lists are appended, the taiì pointer
of the head cell is updated to point to the tail of
the second list. This can greatly improve append
performance.

Tail pointers inside the list are guaranteed to
point to cons cells further down the list, but they
are not guaranteed to point to the end of the list.
Thus O(1) list append performance is assured only
when the head of the first and second lists are pro-
vided to append.

Figure 5: Chains of cons cells

Using cons cells has the additional advantages
of easily implementing the semantics of ill-formed
Iists - lists which do not end in an empty list - and
requiring only the allocation and deallocation of a
single cons cell on altering a list.

Bit Pattern Meaning
0002

0012

0102

01 1z

1002

1012

1 102

1r72

Atom
Cons cell
T\rple
Integer
Float
Function
Binary
Pid, Port, Reference

Table 2: Type Tags

Pids, ports and references are distinguished by a
secondary tag field in the data item itself.

a

Payload Data

Next

Tail

Payload Data

Next

Tail

Payload Data

Next 0

Tail 0

7 Tools

The tool-set chosen to implement EC was deter-
mined by the desire to allow as many of the de-
veloper community to participate as possible. This
meant that widely available tools had to be used.
'We selected the foliowing development environ-
ment:

o Unix

o Lex and Yacc

¡C

¡ IBURG

¡ GNU as

7.L Unix

We chose to begin development of EC under the
Unix environment because of its prevalence in re-
search environments and the low cost availability
of the Unix like operating systems trYeeBSD and
Linux.

EC uses many tools that are shipped with or
commonly available under Unix including: awk,
grep, make and sed. Where multiple versions of
the tools exist, with differing dialects, the intersec-
tion of the dialect has been chosen.

The selection of Unix tools does not prevent de-
velopment on other platforms. There is a long his-
tory of supporting projects that have started in the
Unix environment in other environments.

7.2 Lex & Yacc

We chose to use well known tools from traditional
compiler development including: Lex and Yacc.
These tools are commonly used in University com-
piler courses and are often included in Unix distri-
butions.

Use of these tools simplifies the development of
the front-end components of the compiler signifi-
cantly. As the Erlang language is still in develop-
ment, using a hand crafted parser and lexer would
make tracking changes in the language more diffi-
cult.

7.3 C

We considered using the existing OSE compiler and
its Yecc grammar and generating assembler code di-
rectly. However, this approach would have greatly
reduced the pool of potential programmers avaii-
able, as we would immediately limit the project to
Erlang programmers.

C++ was considered as an implementation lan-
guage, as it offers convenient encapsulation of the
many compiler data structures. Observation of
some of the difficulties in the Gerl[l8] project in
using C++ with Yacc was not trivial. We decided
to forego the benefits of C++ for the simplicity of
using C with Yacc.

A large part of the common compiler literature is
directly applicable to C based projects. Choosing C
allowed potential programmers easy access to this
literature.

7.4 IBURG
At the beginning of the project it was hoped that
we could use either an existing code generator or
C-- [1]. Neither of these options proved fruitful as
code generators are extremeìy closely tied to the
compilers that they serve, and the MLRISC[1a]
project which attempted to develop a portable,
reusable code generator seems to have stalled, with
current code being incomplete and a subset of
SMLNJ[16] distribution, furthermore there r¡/as no
documentation for the x86 back-end. Development
of C - - appears to be still in its infancy with the
specification subject to rapid change and only pro-
totype implementations available at the time of
writing. At the time of writing Quick C - - had an-
nounced its intention to support garbage collection
and exceptions.

The only available alternative appeared to be to
implement a code generator from scratch.

Much of the work of a code generator can be
modelled as tree parsing. IBURG[l2] is a fast
tree parser based on Bottom-Up Rewrite System
(BURS) techniques. lVe use iBURG to generare
a tree parser using an annotated burg grammar to
generate the perform instruction selection. This re-
sults in more compact machine descriptions which
should permit easier porting to other architectures.

Key factors in the selection of IBURG were the
free availability of the tool - critical in open source

projects - and the generation of unencumbered
code. The tool itself is licensed in such a way that
it may not be modified and redistributed without
permission.

The licence of the code forced the development
of a script to take our modified burg grammar and
transform it into a form acceptable to IBURG.

7.5 GNU as

GNU as was developed as the back-end assem-
ble¡ for GCC. The assembler is commonly avail-
able and its syntax resembles that used in assem-
blers shipped on Unix systems derived from AT&T
Unix.

Earlier experience by the author with the use of
this assembler was positive and its only disadvan-
tage is the unfamiliarity of its syntax and operand
ordering to developers of Intel code on Microsoft
platforms. The high availability on Unix platforms
- our primary platform - and the similarity of its
syntax across a wide range of processor families
outweighed this disadvantage.

8 Future Plans

There are a number of medium term plans for im-
proving EC. These improvements include:

¡ Pre-Processors

- A separate project to develop a pre-
processor to handle record and macro
transformations into EC's subset of Er-
lang.

o ecl

- Implement the binary synta^:<. This was
postponed at the beginning ofthe project
to allow the syntax to stabilise. It is now
clear that there are a considera.ble num-
ber of users of the current syntax and only
a limited range of changes are likely.

c ec2

- The existing operator evaluation of the
constant folder should be extended to
perform BIF evaluation.

- A constant propagator should be added
to allow variables which are bound to con-
stants to be replaced with the constants.

- Perform profiling to determine if it would
be beneficial for strings and characters to
become genuine types of the language for
use in later phases of compilation.

- Implement a limited form of partial eval-
uation. Where functions can be evalu-
ated to constants within a module the
constants should be substituted for the
function call.

o ec4

o ecS

. ec6

- Dead code removal should be added to
this phase. Dead traces can be trivially
removed by disposing of any trace which
is not jumped to by a trace which can be
reached from a trace beginning at a TJun
by following the labels at the ends of each
trace recursively.

- Duplicate sub-expression removal code
can be added to ec5.

- Supporting more processor types. The
SPARC processor is an obvious next tar-
get.

- Improved register allocation.

- Identification of common parts of the ma-
chine description and moving them out of
the machine description into the common
code.

- Removing null code, in particular moves
from a register into the same register.

I Deficiencies

At the time of writing the a number of critical tasks
remain uncompleted. These t¿rsks will completed in
the next few months.

Implementations of:

F\rns - At present only the fun Fun/n f.orm of fun
is implemented. Wbrk is proceeding on other
types of anonyrnous funs and implementing
aPPly.

Last Call Optimisation - Should be imple-
mentable within the assembler language gen-
eration stage of compilation.

Dynamic code loading f code replacernent
- A Unix implementation using the dlopen
family of functions is planned

Garbage collection - The work on garbage col-
lection in Gerl[19] should be adaptable to EC.

10 Conclusion
EC implements a large proportion of the Erlang
language and generates native assembler code that
can easily call C functions. This paper has de-
scribed EC, the motivation for its development, and
the final target environment.

It is our hope that by using common.compiler
development tools, and employing a'Berkeley' style
licence other developers will be able to start using
and developing the compiier to its full potential.

The project home page is at
http: / /www.serc.rmit.ed u.au f - ec f

References

[1] C-- home. http://www.cminusminus.org/
(r'iewed July 2001).

[2] A scalable data processing system, 12 2000.
Australian Provisional Patent Application No.
PR2365/00.

[3] Ericsson Utvecklings AB. Erlang.
http://www.erlang.org (viewed July 2001).

[4] Alfred V Aho, Ravi Sethi, and Jeffrey D UII-
man. Compilers, principles, techniques, and
úools. Addison-Wesley, Reading, Mass, 1986.

[5] Andrew W Appel and Maia Ginsburg. Mod-
ern compiler implementation in C. Cambridge
University Press, Cambridge, 1998.

[6] Joe Armstrong. Stand Alone Erlang.
http : / /www.bluetail.com f - joe f sae -r7b / sae.html
(viewed July 2001).

[7] Joe Armstrong, Robert Virding, Mike
Williams, and Claes Wikström. Concurrent
Programming in Erlang. Prentice-Hall, 2nd
edition, 1996. ISBN 0-13-285792-8.

[8] Maurice Castro. EC: An Erlang Compiler.
Technical Report SERC-0128, Software Engi-
neering Research Centre, RMIT University, 7
2001.

[9] Marc Feeley. ETOS Compiler.
httpr//www.iro.umontreal.ca/-etos/ (viewed
July 2001).

[10] Marc Feeley. ETOS version I.4.
http://www.iro.umontre al.ca I - etos I cgi I
etosl4.tar.gz.cgi (viewed July 2001).

[11] Christopher W Fraser and David R Hanson. ,4
retargetable C compiler: design and implemen-
tation. Benjamin/Cummings, Redwood City,
cA, 1995.

[12] Christopher W Fraser, David R Hanson, and
Todd A Proebsting. Engineering a Simple, Ef-
ficient Code Generator Generator. In ACM
Letters on Programming Languages and Sys-
úerns, number 3, pages 213-226, Sep 1992.

[13] Christopher W F]aser, Robert R Henry, and
Todd A Proebsting. Burg - Fast Optimal In-
struction Selection and Tree Passing. In Sig-
plan Not'ices, number 4, pages 68-76, April
7992.

[1a] Lal George and Alten Leung. MLISC:
A Framework for retargetable
and optimizing compiler backends.
http://www.cs.nyu.edu/leunga/www/MLRISC/
Doc flatex f mlrisc.ps (viewed July 2001).

[15] Erik Johanson. HiPE and the
Ix Compiler: Technical Refer-
ence BETA Version 0.9.2, 2 2001.
http: f f www.csd.uu.se/-happi/hipe/hipe:nanual.ps.

[16] Lucent Technologies Bell Laboratories.
Standard ML of New Jersey. http://cm.bell-
labs.com/cm I cs I what I smlnj /index.html
(viewed July 2001).

[17] Robert Virding and Jonas Barklund. Erlang
4.7.3 Reference Manual Draft 0.7, 6 1999.

[18] Geoff Wong. Gerl - A
free implemenation of Erlang.
http : I I goanna. cs. rmit.ed u. au f - geoff I erlang/
(viewed July 2001).

[19] Geotr Wong. Compiling Erlang via C. Techni-
cal Report SERC-0079, Software Engineering
Research Centre, RMIT University, 12 1998.

¿

?Ì

;

þr. "
i;,. ':- .'

Ði:.,'
t
,

¡' :,,,
i'
ll:-

t.t
t,
ì.1
i

t

t:

l-Itt;l Hightights
Erlang 5.1/OTP R8BERTANG

This document describes the major new features and changes that will be
introduced in the next Erlang/OTP version R8B which will be released the
17:th of October 2001.

The major focus in the development of this version has been

Improved characteristics for huge systems and systems with high
demands regarding soft real time characteristics. The work here is
mainly concentrated on multith¡eaded VO, memory handling and
improvements in disk and ram based tables and Mnesia.

Introduce the important new application MegacoÆI.248 as part of
OTP.

Introduction of a permuted index in the html version of the
documentation as well as a reduction of levels of html pages for each
application.

Below follows a brief description of the most significant changes in each
application.

AppmO[, graphical view of applications and processes

A web based user interface is added in parallell with the old graphical interface based
on GS.

ASnLo compiler and runtime functions for ASN.I

. New option per-bin which makes the encode/decode functions use binaries and the
bit syntax instead of lists. The use of binaries will be the default solution in
forthcoming versions.

. Now supporting the most common use of Information Objects according to X.681 for
both BER and PER (aligned).

. The new option ber-bin which uses binaries in the encode/decode functions is now
officially supported. It is recommended to use ber_bin instead of ber, the use of
binaries will be the default in forthcoming versions.

. In combination with the BER encoding rules now the DER (Distinguished Encoding
Rules) is supported. The DER encoding rules is defined as a number of restrictions to
the BER encoding rules and is used mainly by the X.500 directory standards.

For more details, see Release Notes.

o

a

a

a

ì

i,,
ii
il

t

Comet, the COM client for Erlang

Various improvements and some new example. One example shows how to access various
data sources with ActiveX Data Objects (ADO). For more details see the Release Notes.

Compiler
. Various code optimizations, especially records are handled better.

. Floating point arithmetic is faster.

r ,{ more powerful inliner is added.

. New syntax for sening all remaining fields in a record to the same value. This is useful
when creating a wildca¡d record which e.g is used as input to mnesia : match. The
following statement sets field a to Val and all other fields to '_':
#rec{a=Va1 , -='-'}This is very practical for records with many fìelds.

. Improved handling of list comprehensions resulting in faster execution.

. New logical operators andalso and orelse.

CosEvent, (a CORBA service)
This version is a completely new version of the cosEvent application; older versions were not
compliant with the OMG specification. The "look and feel" has been changed to be more
uniform with the other COS-services.

cosFileTransfer NEW (a CORBA service)

An Erlang implementation of the OMG CORBA FileTransfer service

Note: The OMG CosFileTransfer specification have not been finalizedyet. Hence, the API
may be changed in the future.

CosNotification (a CORBA service)

Minor changes, see Release Notes

cosProperty NEW (a CORBA service)

An Erlang implementation of the OMG CORBA Property service.

CosTime (a CORBA service)

Minor changes, see Release Notes

CosTransactions (a CORBA service)

Minor changes, see Release Notes

Crypto, MDs, SHA and CBC-DES encryption/decryption

No changes since R7801.

Debugger

Internal changes.

Erlang emulator (ERTS)
. lmproved multithreaded VO

. Improved inet_driver (IP)

. Named ports

. Improved memory management on Unix (using mmap) gives less memory
fragmentation.

. Improved diagnostic BIF's retrieving memory information

. Improved floating point arithmetic

. Support for scatter/gather VO in the file driver to improve performance.

. Improvements of the file drivers real-time characteristics for the single threaded case
(default) when reading/writing very large blocks.

Erl_Interfaceo a C library for integration of Erlang and C programs

A lot of improvements, the library "ei" now can be used without support from the old library
"erl_interface". The "ei" library is reentrant and makes it possible to have i.e. multiple ei-
nodes on VxWorks (which means multiple ic generated nodes too). The old "erl_interface"
API is still there but only for backward compatibility reasons. The "Erl_interface" API and lib
is now obsolete and should not be used in new development.

EVA' event and alarm handling

No changes since R7801.

GS, the Graphics System

Some internal modules and processes in GS were prefixed with stk. This prefix has
been changed to ssrk not to clash with modules that interface to the graphical toolkit
Gtk.

Other minor internal changes, see GS Release Notes.

IC, ttre IDL compiler and runtime functions

a

' '\i

a Added support for erlang::binary in compiler and C backends.

Multiple backend option for faster compilation. Makes it possible to generate code

with several different backends in one compiler run.

. Various bugfixes and optimizations.

Inets, HTTP serrer and FTP client.

Minor changes, see Release Notes.

Jinterfac€, a library for integration of Erlang and Java programs

No changes since R7801.

Kernel, mandatory basic applications

Erlang nodes can be hidden in which case they don't participate in the global name
space and dont appear in the list of nodes returned by the nodes/O Bif. New Bif's a¡e

added to retrieve information about hidden nodes. The distribution mechanisms are

also generally improved to meet demands for larger networks of distributed erlang
nodes.

The inet, inet_tcp, inet_udp components are further improved and
optimized

The global name service is faster.

Megacoo a Mega.co[H.z48 protocol stack]YEW

A framework for building applications on top of the MegacoÆL248 protocol.
MegacoÆ{.Z4& is a protocol for control of elements in a physically decomposed multimedia
gateway, enabling separation of call control from media conversion. A Media Gateway
Controller (MGC) controls one or more Media Gateways (MG).

The semantics of the protocol has jointly been defined by two standardization bodies:

o IETF - which calls the protocol Megaco

ITU - which calls the protocol H.248

a

a

a

o

Mesh

This application has been removed.

Mnemosyne, database queries

No changes since R7B0l.

Mnesia, a DBMS

Already in R7 (Mnesia-3.10)

The implementation for tables with property disc_copies is significantly improved and

does not use dets anymore. This will improve over all system performance.

R8 (Mnesia-4.X and later)

The improvements in dets will yield an improvement on the disc_on1y_copies storage

type.

select / 123I is implemented which should decrease the need to use Mnemosyne and

match_obj ect. By use of select. the search performance is improved. The data returned

from a search with select can be taylored by the user. See ERTS User's Guide for syntax of
match expressions.

Synced transactions have been implemented, these kind of transactions do not increase the
performance but have a better behaviour from a system perspective. A node B cannot be

overloaded by running fast transactions on node A and you cannot overload disk_Iog as

you can with the normal mnesia: transaction/ [123] call.

Old dependencies, workarounds and support for old Erlang/OTP release will be removed.

Mnesia_Sessio[, interface to Mnesia

Minor internal changes, see Mnesia_Session Release Notes.

ODBC' interface to SQL databases

The application has been rewritten. The main change is that allocation and deallocation om
memory is now handled by the application.

ODBC also need handlers for communication with the database. These handlers are now
allocated by application.

New interface functions have been added which replace the old ones. The old interface
functions are retained for backwards compatibility but may be removed in the future. Fo¡
more information, see the ODBC Reference Manual.

Orber, the Erlang oRB

The overhead for Inter-ORB communication has been reduced significantly compared with
the first R7B version (3.1.8). As a part of this work the memory usage has also been reduced.

OS_Mo[, monitoring of disk-usage and OS resources

. The memsup and disksup "supervisors" are improved to give faster responses and
generate less overhead.

. Now works on Linux and FreeBSD

Parsetools, a parser generator

No changes since R7B0l

Pman, graphical tool for inspection and tracing of processes

Minor internal changes, see Pman Release Notes.

Runtime_ToolS, trace functionatify etc.

Tracing is generally improved and bugfixed, see the dbg and erlang manual sections

SASL, release handling, upgrade etc.

. The report browser (ru) no longer ignores faulty events - it prints the raw terms
instead. It also presents user-generated error-report and inf o-report events more
nicely.

. systools-make uses Xref instead of Exref for cross reference checks. The format of
the warnings for undefined functions has been changed.
(*,,* POTENTIAL INCOMPATBLNY X**)

SNMP, Simple Network Management Protocol

Minor changes, see Release Notes.

SSL, Secure Socket Layer

Minor changes, see Release Notes.

STDLIB, mandatory library functions

ETSIDETS

Ets and Dets now includes more powerful alternatives to the (d)ets: ma:udn/2 ,

(d)ets:match_object /2 and (d)ets:match_delete/2 calls. The new
matching alternatives are called (d)ets: select /2 and
(d) et.s : select_delete/2.

The new calls (d) ets :match/l-, (d) ets :match/3 and corresponding
match_obj ect / select calls makes it possible to fetch smaller chunks of
matching objects for processing instead of always retrieving all matching objects at
the same time

The predicate (d) ets:member/2 makes it possible to look for a key in an ets table
without retrieving the whole object

(d) ets: insert /2 now also accepts a list of objects to be inserted in one call

Furthermore the following (d)ets calls are added: delete_object, delete_all_objects,
from-(d)ets, to-(d)ets, init-table and test_ms (only ets). See the documentation for
details

Dets is much improved in terms of speed, resource consumption and works better
together with multithreaded VO.

o

a

a

Disk_log

Improved performance, especially when using multithreaded VO

Toolbaf, graphical launcer

Mino¡ internal changes, see Toolbar Release Notes.

Tools, various useful development tools
I

a Coast was much too slow and inefficient, especially for large modules. Also, it was
discovered that Coast in some cases returned erroneous values.

Consequently, Coast has been discontinued and is replaced with a new tool Cover
with similar interface and functionality. Refer to the Tools User's Guide and Reference
Manual for more information about Cover. (**x POTENTIAL INCOMPATIBILITY
***)
Added a web based user interface to Cover.

xref represents unresolved calls with calls where the module, the function or the
number of arguments are atoms and integers that are unlikely to occur in an Erlang
system. Calls to erlans : app:-y / 2 and the like are included among the external calls.
This is in contrast to R7 where calls to appfy and spawn were used for representing
unresolved calls.
(*x* POTENTIAL INCOMPATßLITY x*x)

A new profiling tool fprof which measure how time is used in your Erlang
programs. Uses trace to file to minimize performance impact, and displays time for
calling and called functions.

a

Other minor changes, see Tools Release Notes.

TV, grapical viewer for ets and mnesia tables

Minor internal changes, see TV Release Notes.

WebTool MW
A framework for web based tools.

Erlan 9IOTP User Conferen ce 2001 - Participants

@bluetail.com

@erix.ericsson.se

enano@lfcia.

freire@dc.fi.udc.es

Gustavsson @ uab.ericsson. se

@erix.ericsson.se

@uab.ericsson.se

nde@one2one.co.uk

@ informatik.uni-kiel.de

lundin @ uab.ericsson.se

ftl@acm.

ti it.kth.se

@corelatus.com

@DoCS.UU.SE

mickael.remond @ IDEALX.com
tony@bluetail.com

kostis@csd.uu.se

Stockholm, Sweden

La Coruña, Spain

Stockholm, Sweden

Stockholm, Sweden

Melbourne, Australia

Stockholm, Sweden

London, UK
La Coruña, Spain

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Borehamwood, Herts, UK
Kiel, Germany

Stockholm, Sweden

Västerås, Sweden

Stockholm, Sweden

Stockholm, Sweden

Uppsala, Sweden

Paris, France

Stockholm, Sweden

Uppsala, Sweden

CSLab, UAB

University of Coruña

Synapse Systems AB
Alteon WebSystems

SERC

GNO Data

LrdCesarini

University of Coruña

OTP Unit, UAB
OTP Unit, UAB
OTP Unit, UAB
one2one

Christian-Albrechts-Universität

versityMälardalen Uni

OTP Unit, UAB

Corelatus

University of Uppsala

IdealX

stemsAlteon

Uppsala University

Chairman and

Barreiro Paz IFL
Arts IFL

Per Bergqvist

Be

Castro

Jakob Cederlund

Francesco Cesarini

José Luis Freire Nistal IFL
Dan Gudmundsson

Martin Gustafsson

Björn Gustavsson

Sean Hinde

Frank Huch IFL
Thomas Lindgren

Björn Lisper IFL
Kenneth Lundin

Matthias Läng

Jan Nyström

Mickaël Rémond

Tony Rogvall

juanjo@lfcia.org

klacke@bluetail.com

Participants
epktoab @ lmera.ericsson.se

Ingemar.Ahlberg @ era-t.ericsson.se

ola.andersson @cellpoint.com

Peter.Andersson @ uab.ericsson.se

Ingela.Anderton @ uab.ericsson.se

marcus@arendt.se

joe.armstrong @ telia.com

Gosta.Ask @ era. ericsson. se

karl @orionserver.com

vahagn.avedian @ etx.ericsson.se

Bjorn.Axelsson @ hiq.se

Per.X.Bengtsson @ telia.se

Hans.Bolinder@ uab.ericsson.se

kent@erix.ericsson.se

pascal.brisset@cellicium.com

Mikael.M.Bylund @ telia. se

goran.bage@home.se

lars.carlsson @ ericsson.com

Richard.Carlsson @csd.uu.se

La Coruña,'Spain

Stockholm, Sweden

Linköping, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholrn, Sweden

Uppsala, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Cachan, France

Uppsala, Sweden

Stockholm, Sweden

Stockholm, Sweden

Uppsala, Sweden

University of Coruña

Alteon WebSystems

Ericsson Radio Systems AB
Ericsson Internet Appl ications

MobileArts

CellPoint Systems AB

Ericsson Utvecklings AB
Ericsson Utvecklings AB
Marcus Arendt AB

Ericsson Telecom AB

Ironflare AB

Ericsson Telecom AB

HiQ

Telia Promotor AB

Sjöland & Thyselius Telecom AB

Alteon WebSystems

OTP Unit, UAB

OTP Unit, UAB

Cellicium

Telia Promotor AB

MobileArts

Ericsson Telecom AB

Uppsala University

Juan J. Sánchez IFL
Claes Wikström

Tomas Abrahamsson

Ingemar Ahlberg

Kristoffer Andersson

a Andersson

Andersson

Ingela Anderton

Marcus Arendt

Joe Armstrong

Gösta Ask

Karl Avedal

Vahagn Avedian

Björn Axelsson

Per Bengtsson

Mia Berg

Martin Björklund

Hans Bolinder

Kent Boortz

Pascal Brisset IFL
Mikael Bylund

Göran Båge

Lars Carlsson

Richard Carlsson

macr@ etxb.ericsson.se

@lemon .comcu

@erix.ericsson.se

marko@cs.kun.nl

iclas.Eklund @ uab.ericsson.se

kff@it.kth.se

@schlund.de

@eei.ericsson.seF

@sics.se

nus@bluetail.com

bichl @ informatik.uni+uebi de

luke@bluetail.com

SEHansson-Granbom @ uab.ericsson

@bluetail.com

Rickard.Green @ uab.eric sson. se

mu-luebeck.de@

.Hansen @eto.ericsson.se

l.hausman@cell nt.com

.com

@home.se

rsch@uab.ericsson.se

mh@cs.chalmers.se

lla@erix.ericsson.se

@csd.uu.se

lm, Sweden

Stockholm, Sweden

Stockholm, Sweden

The NetherlandsI

Sweden

Stockholm, Sweden

Karlsruhe,

thlone, Ireland

Sweden

m, Sweden

Germanylu
Stockholm, Sweden

Sweden

Sweden

Stockholm, Sweden

ubeck,

Sweden

m, Sweden

Stockholm, Sweden

Sweden

Sweden

Sweden

a, SwedenU

Stockholm, Sweden

Telecom AB
Lemon Planet AB
CSLab, UAB

of NiUniversi

Unit, UAB

echnologyInstitute of T
Bei Schlund + Partner AG

csson S Ltd

Alteon W stems

Uni of
WebS

stems

OTP Unit, UAB

ofLubeckU

AS

ABlPoint

Alteon W

PH IT Konsult

Utvecklin AB
mers Univers of

OTP Unit, UAB

UniU

leArts

vrstMats

Mats Cu

DäckerB

van Eekelen IFL
iclas Eklund

Faxén IFLKarl-Fili

F

Fredlund

artin Gasbichler IFL
Gorrie

Granbom

Grebenö

Green

Grelck IFL
Siri Hansen

Hausman

Hedeland

Hirsch

H

la

Erik Johansson

Johansson

torbjorn.k johnson @ swipnet.se

Henrik.Jonasson @ etx.ericsson.se

bmk@erix.ericsson.se

Bertil. Karlsson @ uab.ericsson.se

hk@erix.ericsson.se

Brian.Kelly @ etx.ericsson. se

eleberg @ etxb.ericsson.se

pieter@cs.kun.nl

hl @erix.ericsson.se

Tony.Larsson @ uab.ericsson. se

John@galconn.com

fredrik.linder@ home.se

ol@stratresearch.se

leif@cyberode.se

Martin.A.Lundmark @ era.ericsson. se

ricardo @cs.chalmers.se

thomas.mattisson @ mobilearts.se

hakan @ erix.ericsson.se

Ingvar.Meyer@ uab.ericsson.se

Chandrashekhar. Mullaparthi @ one2one.co. uk

Ray.Murphy @ etx.ericsson.se

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Nijmegen, The Netherlands

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Beaverton, Oregon, USA

Solna, Sweden

Stockholm, Sweden

Stockholm, Sweden

Linköping, Sweden

Stockholm, Sweden

Stockholm, Sweden

Göteborg, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Borehamwood, Herts, UK

Stockholm, Sweden

Ericsson Telecom AB
OTP Unit, UAB

OTP Unit, UAB

CSLab, UAB

Alteon V/ebSystems

Ericsson Telecom AB
Ericsson Telecom AB

University of Nijmegen

CSLab, UAB

Ericsson Utvecklings AB
Alteon WebSystems

Galois Connections, Inc

Bluelabs AB

SSF

Cyberode AB
Ericsson Radio Systems AB
Sjöland & Thyselius Telecom AB

Sjöland & Thyselius Telecom AB
Chalmers University of Technology

MobileArts

CSLab, UAB

OTP Unit, UAB

one2one

Ericsson Telecom AB

Tordörn Johnson

Henrik Jonasson

Micael Karlberg

I Karlsson

Karlsson

Mikael Karlsson

Brian Kelly

Bengt Kleberg

IFL
Larsson

Tony Larsson

Tord Larsson

Linder

ohn

Olof Lindgren

Leif Lorentzen

Martin Lundmark

Ann-Marie Löf
Anna Löfgren

Ricardo Massa Ferreira Lima IFL
Thomas Mattisson

Håkan Mattsson

Ingvar Meyer

Chandrashekhar Mul laparthi

Ray Murphy

l@etxb.ericsson.se

.sena.Marten sson @ etx.ericsson

@telia.seH.N

.neri@si

@erix.ericsson.se

raimo @ erix.ericsson.se

Patrik.Nyblom @ uab.ericsson.se

csd.uu.se

@dcs.gla.ac.uk

ne.okeeffe @ etx.ericsson. se

ake.olsson@cel

@ou.edu

ardo@si

Perdomo @ uab.ericsson.se

Mikael.Pettersson @csd.uu. se

@etxb.ericsson.se

s@cs.kun.nl

A.Ramsell@telia.se

Reinke@ukc.ac.uk

@mi .com

berode.se

lundata.se

@ informatik.uni-kiel.de

@sip.ucm.esc

Sweden

m, Sweden

SwedenU

Sweden

Sweden

Sweden

Stockholm, Sweden

Stockholm, Sweden

Sweden

,UK
Stockholm, Sweden

Stockholm, Sweden

USA

m, Sweden

SwedenU

Sweden

The NetherlandsI

a, Sweden

Canterbury, UK

Idaho, USA

Sweden

hen,

Madrid, Spain

Ericsson Telecom AB
Telecom AB

Promotor AB
ABS

OTP Unit, UAB

Lab, UAB

Unit, UAB

OTP Unit, UAB

UniU

of Glasgow

Telecom AB
CellPoint AB

of OklahomaUnivers

de MadridUniversidad

ABUtveckl

a Universi

Ericsson Telecom AB
of NiU

Promotor AB

of Kentnt

MicronPC

AB

Chri stian-Al brechts-Universität

Complutense de MadridUniversidad

Peter Mustel

na Mårtensson

N

Daniel Néri

Nilsson

Nilsson

Niskanen

Patrik N lom

Sven-Olof N

ohn O'Donnell IFL
Janine O'Keeffe

Olsson

Pena IFL
Oswaldo Perdomo

Pettersson

Petersson

er IFL
Anders Ramsell

Reinke IFL
Riddle IFL

Ola Samuelsson

Peter Schneider-

Bodo Scholz IFL
Clara IFL

stenholm@telia.com

stolz @ i2.informatik.rwth-aachen.de

Per.S ternas @ ebc.ericsson.se

etxnep @ etxb.ericsson. se

lat2@ukc.ac.uk

lars @erix.ericsson.se

erandig @ al.etx.ericsson.se

henrik.torelm @cel lpoint.com

tobbe@bluetail.com

albertoe@sip.ucm.es

rv@bluetail.com

vlad@it.kth.se

ane@walerud.com

le@erix.ericsson.se

etxuwig @ etxb.ericsson.se

daniel.wiik @ era.ericsson.se

willehadson @ericsson.com

Lon.Willett@sse.ie

chris. williams @ ericsson.com

Lian.Wu @ eto.ericsson.se

jan.zaar@cel lpoint.com

zweije@cs.kun.nl

lennart.ohman@st.se

Stockholm, Sweden

Aachen, Germany

Stockholm, Sweden

Stockholm, Sweden

Canterbury, UK
Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Madrid, Spain

Stockholm, Sweden

Stockholm, Sweden

Stockholm, Sweden

Alvsjö, Sweden

Stockholm, Sweden

Linköping, Sweden

Uppsala, Sweden

Stockholm, Sweden

Dublin,Ireland

Athlone,Ireland

Grimstad, Norway

Stockholm, Sweden

ijmegen, The Netherlands

Stockholm, Sweden

Ericsson Telecom AB
RWTH

Ericsson Enterprise IT
Ericsson Telecom AB
University of Kent

CSLab, UAB

Ericsson Radio Systems AB
CellPoint Systems AB
Alteon WebSystems

Universidad Complutense de Madrid

Bqyql Institute of Technology

CSLab, UAB

Ericsson Telecom AB
Ericsson Radio Systems AB
Uppsala University

Ericsson Internet Applications

SSE Ltd

Ericsson Systems Expertise Ltd

AS

CellPoint Systems AB
University of Nijmegen

SjQþnd & Thyselius Telecom AB

Håkan Stenholm

Volker Stolz IFL
Per Sternås

Per Einar Strömme

Leonid A. Timochouk IFL
Lars Thorsén

Torelm

ärnström

Torbjörn Törnkvist

Alberto de la Encina Vara IFL
Robert Virding

Vladimir Vlassov

Jane Walerud

Wilhelm Welin

f
Daniel Wiik
Jesper Wilhelmsson

Stefan rü/illehadson

Lon Willett

Christopher Williams

Lian Wu

IanZaar

Vincent ZweijeIFL
Lennart Öhman

(rFL 2001).Functionalon the= Attends also the I3th International

= Computer Science Laboratory

OTP = Open Telecom Platform
UAB = Ericsson Utvecklings AB

'-":îi;--
''' : 'iÌ:ii -'l

