6th International Erlang/OTP
User Conference

Stockholm, October 3, 2000

Proceedings

EUC’2000 http://www.erlang.se/euc/00/
Open Systems

Ericsson Utvecklings AB

P.O. Box 1505

SE-125 25 Alvsjo Stockholm

Sweden | Y
ERICSSON = v']

W

08.30 Registration.

Applications Session.

09.00 Use of Erlang/OTP as a Service Creation Tool for IN Services. Sean m
5 . -}

Hinde, one2one, UK. Intelligent Networking requires large databases with high performance, m

soft real time access, very high availability, ease of management, and minimum customisation.

This talk describes the experiences of a GSM mobile operator in using Erlang/OTP as a service creation tool for

Number Translation, VPN, Mini Pre-pay, and authentication services.

09.30 Sendmail Meets Erlang: Experiences Using Erlang for Email Applications. q o P
Scott Lystig Fritchie, Sendmail Inc, USA. Our experience developing a prototype of a bulk VO | arwrniars: |

daemon, based on ONC RPC both as a server and as a client, suggested a long and difficult development
cycle. Erlang lived up to its promise to make the task easier, despite the learning curve, skeptical management, and the

challenging nature of the project itself.

10.00 MPowered by Erlang. Per Bergqvist, CellPoint. Finder! offers multiple % CELLPOINT ‘
interfaces to the end-user, while providing a uniform look and feel for the service that is
easy to use. The user is always in full control of their privacy. Finder! supports standard GSM phones and WAP

phones, and can also be accessed via the Internet, providing for mass-market services today and in the future.

10.30 Refreshments.

11.00 NETSim - Six Years with Erlang. Bengt Tillman, Ericsson Radio. Ericsson

develops many different applications for the controlling and configuring of telecommunication networks. N Eﬁ
Alarm handling and the generation of statistics files are two such applications which have to be tested on 9!*

very large networks (hundreds of AXE exchanges). This talk explains how Erlang has been used in order
to make a simulator which solves this huge testing task.

Implementations Session.

11.30 A High Performance Erlang System. Mikael Pettersson, Uppsala University. <G>

HiPE (High Performance Erlang) is an optimising native code compiler for Erlang under ASTEC
development at Uppsala University. The compiler offers selective compilation and produces Aetvancas Somwaes Touwctiny
significant speedups over emulated code. This talk will describe the architecture and main features of

the HiPE system. HiPE is available open source at www.csd.uu.se/projects/hipe/osh.
In Proceedings of ACM SIGPLAN. International Conference of Principles and Practices of Declarative Programming.

12.00 ECOMP - an Erlang Processor. Robert Tjarnstrom and Peter Lundell, Ericsson Telecom.
An Erlang processor has been built in an FPGA (i.e. programmable hardware). The JAM compiler has been changed to
generate native code which allows Erlang programs to be run directly on the processor without any OS and with

improved performance. Furthermore, results from experiments with call control software will be presented.

12.30 Lunch.

Developments Session 1.

13.45 An Erlang DTD. Richard A. O’Keefe, Otago University. The Erlang DTD
supports literate programming, so that the documentation can be automatically extracted from
the master file, and supports better cross referencing. If the marked up source code gets through
the SGML parser, there isn’t much left for an Erlang parser to check. There is one program to convert Erlang source

code to marked up SGML or XML, and another to extract source code from a marked up document.

UNT TJlSIT'l’r,"O‘[;:"uGO

LAY o hesn 0T

14.30 XMErl - Interfacing XML and Erlang. Ulf Wiger, Ericsson Telecom. XML (Extensible
Markup Language) is an emerging standard for handling structured data on the Internet. This talk describes how XML
can be combined with Erlang in an almost seamless fashion. Examples will show how to parse XML documents, and

how to generate true XML or HTML documents from native Erlang data structures.

15.00 Extending Erlang with Structured Module Packages. Richard Carlsson,

Uppsala University. An Erlang system at present is a flat structure where all modules are on the same
level. This causes difficulties for really large systems. This talk will present a proposal based on the
package system from Java and shows how it can be introduced very smoothly into the current Erlang

system.

15.30 Refreshments.

Developments Session I1.

16.00 Highlights from Erlang 5.0/OTP R7B. Kenneth Lundin, OTP Product @ @ ﬁ

Unit. The R7B release of Erlang/OTP contains a number of interesting new features and
enhanced characteristics which will be presented here, such as the bit syntax, trace of local

functions, CORBA services etc.

16.15 COMET - An Erlang-to-COM Port. Jakob Cederlund, OTP Product Unit. COMET is a library
that enables Erlang to use COM-objects on the Windows platform. This gives possibilities for Erlang programs to use
many services and applications on windows, such as Internet Explorer, Microsoft Office and Windows Scripting.
Combining Erlang’s functional semantics with COM and object-oriented systems in general will be discussed. COMET

will be part of the next open source release of Erlang.

16.45 The Bit Syntax - The Released Version. Patrik Nyblom, OTP Product Unit. A powerful new
feature in the new R7B release of Erlang/OTP is the bit syntax which enables efficient creation and matching of
binaries. This is very useful when, for example, implementing protocol stacks in Erlang. A proposal for the bit syntax

was presented at EUC’99 and this talk presents the actual implementation.

17.45 Bus Transfer.

Evening Session.

18.30 Conference Dinner. Conference dinner on board traditional
steamship Waxholm III cruising out into the Stockholm archipelago.

Poster and Demo Session.
During refreshments and lunch.

A Toolf for Verifying Software Written in Erlang. Lars-Ake Fredlund, SICS. SI GS

Demonstration of the Erlang Verification tool to prove interesting properties of a program.

A Monitoring and Instrumentation Tool Developed in Erlang. Miguel Barreiro, LE @ \r 2
Victor M. Gulias, Juan J. Sanchez, Universidade da Corufia. MONET is a monitoring and e
instrumentation tool developed using OTP applications which is being used in a video-on-demand server, under
development at LFCIA lab, running on a Beowulf cluster. Status information is produced in XML and then transformed
into different formats (HTML, WML, etc.) using Erlatron, a distributed XSLT processor also developed in Erlang using

expat and sablotron libraries. .

Ll

Use of Erlang/OTP as a Service Creation Tool for IN services

Sean Hinde (One20ne)
Abstract

This paper describes an approach taken to Intelligent Network (IN) service development using a
combination of standard IN elements (SCP, SSF) and a set of Erlang/OTP nodes using the Mnesia
distributed database to store customer records, and the Erlang language to provide complex service

logic.

Introduction

The telecoms market has some unique and well documented requirements of its core network systems
including:

Soft real time

Massively high availability - 99.999%, including planned outages!!
Enormous complexity - GSM

Great flexibility

One could probably say without too much fear of contradiction that these requirements are completely
orthogonal! The telecoms industry has had to invent some pretty clever tools to allow the flexibility
required without compromising the other requirements. Some of these have been hardware based with
multiple processors locked together in some level of hot/warm standby, others have been in software
engineering techniques, and yet others have been the approach taken by Intelligent Networks.

This approach is to take a high level abstraction of the core building blocks of (in this case) a telephone
call. For example a simple freephone call consists of someone picking up the receiver, dialling a
number, having this number translated by the network into another number, and routing the call to the
destination. IN provides a set of building blocks which allow operators to intervene at each of these
points and manipulate the call data at each one in a network safe manner. These building blocks are
normally implemented as a gui tool for defining the logic, and normally run on a separate system to the
actual telephone exchange.

The availaibility requirements are met by testing the toolset as thoroughly as practicable to ensure that
even a misuse of the tools cannot bring down any part of the system, or indeed affect any call other
than the one being controlled.

One of the drawbacks of this approach to date has been that the interfaces have never been fully
standardised meaning that a vendors IN equipment is much more likely to work seamlessly with its
own switches. At One2One we have an entirely Ericsson based GSM switching network and have
Ericsson IN Service Contro! Points.

An architectural decision was taken at a very early stage in our IN depolyment to store the data in an
external database and split the logic between the SCP and this database.

The SCP only contains the logic to drive the telecoms interfaces into the switched network and it hands
off control of the “Business Logic” to the external database systems which hold the customer data.
The SCPs and external databases are interfaced using ¢7 to TCP/IP protocol converters.

Experience of using a standard UNIX/commercial database.

Initial solutions to this problem of where to store the customer data were (and still are) based on a
system written by a small in house team of IT programmers based on C code interfacing to a standard
SQL database. Various problems were experienced with this system:

Copyright One 2 One.
Author: Sean Hinde I 23/09/2000

® One read/write failure lead to many others in a row. Solution was to do multi threading!

e Random explosions in the numbers of worker threads. Solution was a full time UNIX admin
killing off zombies.

e Commercial Failover system deployed never worked correctly. Took at least 30 minutes to do a
manual failover.

® CPU load extremely high. Adding more processors made it worse - turned out to be bug in some
spinlock C code.

e Still slowed down periodically - Full time team of DBASs to tune and optimise.

We now have a team of 20 full time C programmers hacking code as fast as they can to try to introduce
resiliency into this system.

The Problem

The conclusion drawn from this project by the telecoms designers at One 2 One was that the tools used
in the IT software industry are not up to the task of fast and safe development of systems with the
properties required in a telecoms network without access to the vast teams of people and months of
continuous development and testing available to the telecoms vendors (Surely not - an admission that
these things cost a lot to produce?!).

At the time there didn't appear to be many alternatives which were comparable with the existing GUI
based IN Service Creation Environments.

The Solution? .

Then one day in 1998 while browsing the Ericsson web site for fun the author stumbled across
Erlang/OTP. The most noticable quality of this system was that for the first time here was a product
which claimed to have almost all the properties we had been looking for in a platform which runs on
standard commercial hardware. It proved a little more difficult to get throught the hype and really
figure out what the platform was and exactly how it could be used. Permission was obtained to spend
some time on an invesigation into whether this platform was the answer to our prayers.

It proved to be very easy to learn to program in a functional style even for a completely non
programmer(!), and after a few weeks we had produced the bones of a multithreaded TCP/IP server
which would receive a command from the SCP, invoke a thread to implement a piece of custom service
logic (e.g. translate a number) and send the result back to the network.

The conclusion to this investigation was that there was minimal customisation required to the standard
Erlang/OTP platform to fit in with the existing infrastructure. Namely:

SCP Interface — Socket based using a simple proprietary binary interface

Alarm Interface - to the existing Network Mgt System (socket based text interface)

Stats Interface - ets stats counters needed to be output to files in certain format every 15 mins
Provisioning Interface — Socket based using same protocol as the interface to the SCP

Event Logging - Socket based io of existing event_logger stream to the network management systems
Intranet based monitoring — Simple HTTP query interface to lookup a customer, view alarms, stats.

The effort required to understand the more esoteric parts of the OTP application structure took some
more time and effort, but solutions to these customisations were quickly implemented and work started
on the first IN service.

Copyright One 2 One.
Author: Sean Hinde 2 23/09/2000

Applications

Two large and two small systems have been deployed to date. The first one to go live was the 4" one to
be started and the 2™ one to go live was the 3™ one to be started!

Currently in service are:

e Corporate VPN service. This service allows short code dialling, global and per VPN black and
white lists, Closed User Group functionality (On-net and Off-net calling). It will also present the
short code of the calling mobile for a mobile to mobile call. Pretty much all the actual service logic
ir written in Erlang rather than on the SCP. There is also a prototype WAP based telephone book

service.

Part of this system is a complete Intranet based customer care system based on the INETS web
server included with Erlang/OTP. This has accounted for about 80% of the effort in writing the
service. The HTML is currently being ported to a modifed version of the esp Erlang Server Pages
system which allows for lists:map/2 loops containing raw HTML and local variables amongst the

embedded Erlang code.

e RADIUS Authentication Server for WAP services. This system started out life as a database
containing a record for all One 2 One customers which would include their IN service profiles.
The first requirement turned out to be for authentication of Dial in WAP users so a front end was
written in Erlang which implemented the RADIUS protocol. The system consists of 24 erlang
nodes — 16 mnesia database servers, 2 O&M, 2 Radius nodes, 2 provisioning nodes, and 2 nodes
providing other miscellaeneous functions.

The database servers are configured as 8 pairs of nodes with data split amongst the nodes using the
fragmented tables feature of MNESIA and each fragment replicated across a pair.

So far the system has been in service for 5 months and has had a series of individual nodes fail for
various software licence or hardware reasons but there has not been a single call lost.

Imminently in service:

e Mini Prepayment system. This consists of an IN Service which queries an Erlang/OTP based
system at the start of the call to allow/disallow the call and at the end of the call to update the

customer record with their usage.

There is an Inets based query front end where one can query the database based on oldest record,
or highest usage, or highest number of inbound calls first. It allows an agent to update the cutoff
thresholds on an individual basis.

e Number Translation Service. This service was the original one planned and due to a whole host
of reasons unrelated to Erlang is only now about to go into service.

Issues

In this section I present some of the difficulties and issues encountered along the way (Using
Erlang/OTP R6B)

EVA Integration
Integration between the standard EVA application and built in alarm_handler alarms is non existent. In

the end I gave up using this and now just send all alarms via SNMP traps using a slightly modified
version of the standard alarm_handler. To be useable straight out of the box this would need to be

tidied up quite a lot.

Copyright One 2 One.
Author: Sean Hinde 3 23/09/2000

Potential for Partitioned Network

The weakest part of the deployed systems is the communication between the database nodes and the
potentially serious consequences of a failure for the consistency of the database. A dual LAN
arrangement has been set up using some commercial software but there is still a single point of failure
in the stacked switched hub arrangement.

It would be nice to see some mechanism whereby multiple sockets could be set up between two nodes
using different interfaces with load sharing/failover. Or there could be some retry mechanism before
declaring the link to be down.

There must also be scope to perform some form of (perhaps assisted) recovery from a partitioned
network situation in the mnesia database.

Memory Usage

The Erlang runtime system can get out of hand in terms of memory allocation. This has manifested
itself during testing when a table transform of an mnesia table containing 100k small records exceeded
the 1G beam process limit.

Future Work

Future work in One 2 One with Erlang/OTP is currently planned to remain solely in the telecoms
domain. Projects currently underway or planned are:

Mass SMS sending tool.
Tuxedo Middleware Interface for query of systems.

Investigation into how the architecture may fit into the future 3 Generation equivalents of Intelligent
Networks

Resourcing

We have found that a single developer can develop and test all of the IN service logic and Erlang code
for each of the systems mentioned above within 6 months (some more , some less).

Conclusion

The combination of using an Intelligent Network Service Control Point for drivin g the telecoms
interfaces into a GSM network, and Erlang/OTP based systems to store customer records and provide
the complex business logic of the service has proved itself to meet sufficient of the requirements of
telecoms network components to be used in full commercial service.

The main reasons this is seen to be true are the existence of the mnesia database system to provide soft
real time performance and real time data replication, and the suitability of the Erlang language for
writing telecoms logic in such a way that any failures which do occur cannot affect other calls in

progress.

Attention to the network resiliency problem and the susceptibility to excessive memory usage would
result in a truly formidable system for this sort of database application.

Copyright One 2 One.
Author: Sean Hinde 4 23/09/2000

Sendmail Meets Erlang: Experiences Using Erlang for Email
Applications

Scott Lystig Fritchie, Jim Larson, and Nick Christenson: Sendmail, Inc.*
Debi Jones?

Lennart Ohman: Sjoland & Thyselius Telecom AB?
October 3, 2000

Abstract

Our software engineering team needed to create a system that moves data from a set of legacy
applications with diverse properties to data repositories scattered around the network. This system had
to be highly concurrent, straightforward to extend, have high performance, and be coded rapidly by a
small development staff. Because of these requirements, the authors embarked upon an experiment to
write this application in Erlang. This paper describes what we did, why we did it, and what we learned
over the course of our development effort. It is our hope that this chromnicle may be useful to others
thinking about coding in Erlang for the first time and to the incumbent Erlang community to hear an
outsider’s perspective on this fine language.

1 Introduction

In the fall of 1999, a development team from Sendmail, Inc. began developing a program that would act
as an I/O request broker connecting a set of legacy applications to a set of distributed data repositories.
Some of these legacy applications might operate under a UNIX inetd-like forking model, some might be
multithreaded using one thread per connection, and some might be multithreaded using thread pools and
event-driven programming techniques. The data passing through this program, which was creatively named
the “Client Daemon”, is multiplexed over several separate connections to remote data repositories. In essence,
the Client Daemon acts as a “traffic cop” — marshaling, massaging, and redirecting data and data requests
from a varied set of legacy applications to a set of distributed servers.
There were a significant number of additional constraints placed on this project:

¢ Rapid Development. This technology introduced some fairly radical notions of data movement and
storage. The system needed to be demonstrated to work or to fail as soon as possible, to allow time

for a redesign.

e Early time to market. Sendmail, Inc., like most software companies, is competing on “Internet
time.” We wanted to be able to get our system to market as quickly as possible.

e Avoid proprietary, non-portable hardware and software. Platforms such as VAXcluster [KLS86]
or products from IBM, HP, and other vendors could achieve many of these goals using off-the-shelf
proprietary solutions. However, this system must be straightforward to port to a variety of UNIX
operating systems and perhaps even to Windows NT.

*<scott@sendmail.com>, <npcOsendmail.com>, and <jim@sendmail.com>, respectively.
t<netbean®earthlink.net>
f<lennart.ohman®st.se>

2 Sendmail Meets Erlang

Access Server Data Servers

App.#1 | App.#2 | App. #3

S e 4 e f -

Rermelspace | e

e Client Daemon \\¥ /

Kernel space -—
’ IP Stack .

Figure 1: Process Architecture Sketch

e High performance. A distributed architecture will have higher overhead than a well-tuned architec-
ture based on a single machine. Given that fundamental limitation, we want to make the overall system
and each component as fast as possible. The Client Daemon initiates few data requests itself. The bulk
of its work is taking data from one side (from the network or another application), massaging it, and
passing it through to the other side. This means that its network interface and its IPC must be highly
efficient.

e Concurrency. The Client Daemon will need to handle and track many simultaneous requests and
responses from disparate sources. Each of these request /response pairs will take an unknown amount
of time to complete.! In order to accommodate the various legacy applications, the Client Daemon will
need to handle both synchronous and asynchronous communication modes, a notoriously difficult task
in most programming languages.

e Ease of Management. There will be many nodes running a Client Daemon in a production envi-
ronment. Therefore, we need some mechanism to tie all these systems together for monitoring and
administration.

Figure 1 represents the overall architecture. The legacy applications are linked with a glue layer called
the “Client Library”. The Client Library uses IPC to move the data from these applications to the Client
Daemon, and the Client Daemon moves the data over the network to remote Data Servers.

This paper describes the justification for and the procedures we went through to build the Client Daemon
using Erlang. We chronicle our experiences, including what went well and what didn’t. We provide some
advice for other groups not terribly familiar with programming in Erlang and some suggestions for the Erlang
community on how Erlang might be made more appealing to software development groups like ours.

'In fact, they may never complete. The Client Daemon must handle network timeouts in a context-sensitive manner.

Erlang/OTP User Conference 2000

2 Background

Since we and the company had developed many applications in C already, we had an intrinsic bias toward
this language. Early on, we built a rudimentary prototype in C using the Libero [Lib] and SMT [SMT] tools
by iMatix and using the familiar rpcgen and 1libc’s ONC RPC library to handle the data transport over
the network to the remote Data Servers. The Libero/SMT finite-state machine approach seemed a viable
way to manage the Client Daemon’s growth if we decided we liked SMT, and we wouldn’t lose much time if

we didn’t like it.

2.1 C Prototype

We confirmed our suspicions that the ONC RPC stub generator, rpcgen, generates some really ugly code.
Furthermore, it assumes that all RPC calls are fully synchronous. Even modern rpcgen implementations
capable of generating thread-safe stubs assume the calls are synchronous. As a result, we had to write our
own RPC call mux/demux code, ignoring most of what rpcgen had created and bypassing much of the ONC
RPC library’s infrastructure.

After just over a month of coding, the Libero/SMT version of the Client Daemon was capable of inter-
acting with both the applications and the Data Servers, although it was by no means ready for production
use. At this point, we had learned a lot about RPC client stubs, RPC server stubs, XDR encoding, RPC
fragment reassembly, and other RPC arcana, but the Client Daemon still had at least one obscure memory
leak, its performance seemed slower than estimates predicted, and there were a great many core features

that still needed to be implemented.

2.2 Erlang Discovered

Before starting the first prototype, we had conducted an exhaustive literature search to learn what lessons
we could from the work of others. During this time, we came across references to the HTTP load balancer
Eddie [Edd], which is written in Erlang. Erlang’s built-in concurrency model was seductive: all the threading
add-ons to C and C++ looked ugly by comparison. The “standard” Erlang libraries and OTP helped keep
us from typing too much. Tony Rogvall gave us the source code to a full-featured ONC RPC library, allowing
us to avoid a lot of XDR- and RPC-related drudge work.?

Also, around this time we had the opportunity to talk with a number of the software engineers at
Bluetail A.B. who have written most of an email proxying system, called the Mail Robustifier [Blu], in
Erlang. The fact that these folks had done significant work on an email-related project in Erlang increased
our confidence in Erlang’s viability. Their kindness to answer some general questions about coding such a
project in Erlang helped us tremendously.

Two potential benefits of using Erlang were most appealing: higher programmer productivity and easier-
to-maintain code. It was difficult to tell how many of the success stories from Ericsson and other companies
using Erlang were worthwhile praise and how many were hype. Since our group was already familiar with a
wide variety of arcane languages, we were quickly able to understand the reasons that these claims might be
more than just smoke. We felt that if Erlang could live up to its promises, many of the goals of the project
could be met much more easily with Erlang than with C, especially given our time-to-market concerns.

3 Implementation in Erlang

It’s no surprise that software development managers are uncomfortable adopting new programming languages
or techniques. Trying new and radical techniques with the industry’s current time-to-market demands is
usually a recipe for disaster. Sendmail, Inc.’s management was as skeptical as one would expect. Our dabbling
with developing a second Client Daemon prototype in Erlang was greeted cautiously. Outside of our team,

2We have contributed our enhanced version of his package to the Erlang community. It should be available at
http://wwv.erlang.org/user.html by the time of the conference.

4 Sendmail Meets Erlang

nobody in our company had even heard of the language, much less knew anything about developing software
in it.

3.1 The Second Prototype

The beginning of the learning curve was steep. The simple matter of writing a non-trivial program in a
functional language is a radical change for people used to working with procedural languages such as C or
Perl. We used parts of the OTP as best we understood them. The result was not pretty, but it worked.

Once we got over the startup costs of coming to terms with the new language, the Erlang prototype
fell together quickly. After a month and a half, the Erlang Client Daemon had surpassed the Libero/SMT
prototype in stability and feature set with comparable performance. We didn’t discover any project-killing
issues, so we recommended to our management that we complete our development of the Client Daemon in
Erlang.

3.2 Convincing Management To Let Us Continue

Our team had the advantage of being small and closely-knit. The design and prototype development had
been done in a “skunkworks”-like atmosphere: most of the company was preoccupied with other projects.
Given the size of our team, the promise of writing a complex application using a relatively small number of
lines of code, and our time-to-market constraints, our team agreed that the potential benefits were worth
risking our project on Erlang.

Our management was skeptical about using Erlang for production code. First, they felt the discomfort
normally associated with radical ideas. Second, no other developers knew it, which makes it more difficult
to solicit advice or conduct code reviews in-house. Third, management felt that it might be hard to hire
programmers for the team, since they would have to know both C and Erlang.

On the first and second points, we were still not entirely comfortable with the language ourselves, but
both we and our management team were willing to set aside discomfort if the reasons for doing something
new were compelling enough. On the issue of hiring, we pointed out that we had come up to speed fairly
quickly. We felt that any programmer with an adventurous spirit could learn Erlang as quickly as we had
(especially with our mentoring) and that our projections about time-to-market made this a worthwhile
trade-off. Further, they were persuaded by our estimates about how quickly we could code and debug this
application in Erlang as opposed to C. In the end, the rapid development schedule was able to compensate
for the risk, since “If you're going to fail, fail early [Bro95].”

3.3 Further Development and Performance Tuning

We spent the next several months tightening up the code, improving Tony’s RPC library, filling out features
in the Client Daemon, improving the Client Library, and fixing bugs. While the core of the system was
coming together, we had two outstanding concerns. The first was that we found the overall structure of the
code to be vaguely unsettling, and the Client Daemon still didn’t perform as well as we’d like.

Prior to starting work on this project, we had established performance goals. One of our really big concerns
going into this project was that the Client Daemon would be doing a lot of data copying. There would be
significant performance penalties if it could not do so efficiently. The default drivers in the Erlang emulator
implement I/O via disk, pipes to spawned sub-processes, and TCP or UDP network connections. The only
way to have direct communication with an unrelated UNIX process is through TCP or UDP sockets, which
are not as efficient as other IPC mechanisms.

We created some crude programs that simulated how the Client Daemon might perform if it could interact
with the outside world using UNIX domain sockets, through an mmap ()-style DMA mechanism, and via other
mechanisms. We saw some potential for improvement there, but we still didn’t know what was consuming
all of our systems’ resources.

Erlang/OTP User Conference 2000

We used the Erlang profiler, eprof, to determine which processes were taking most of the CPU time.
Unfortunately, it was difficult to measure CPU time (versus wall-clock time) consumed or a global context
for the answer. We also had no insight as to how much time was spent in the runtime system for things
like scheduling, memory management, linked-in drivers, and message-passing. To answer these questions, we
compiled the virtual machine with gprof support. This gave us a global context for the performance data,
but didn’t give us any correlation with the Erlang code, only with the C code. For instance, we knew how
much of the resources were taken up by garbage collection, but we did not know which processes or modules

were producing the most garbage.

3.4 Outside Assistance

At this point, we felt that we could accelerate our progress with some outside help. Friends in the Erlang
community recommended Lennart Ohman (one of the authors of this paper), an experienced Erlang developer
and trainer.

After being briefed on what we were doing and why, Lennart first set out to explain current best practice
regarding process hierarchy, including supervisor structure principles and process linking techniques.? Since
the Client Daemon was not written using a strict top-down approach, but grew via more “organic” methods,
we never looked at the entire process structure as a whole, and thus had a process hierarchy that was
structured poorly. In hindsight, much of his advice seemed like common sense, and we probably would have
figured it out eventually, but we never stumbled across it in our perusal of the current documentation and
our inspection of other Erlang applications. Lennart’s presentation was much more efficient than discovering
the principles ourselves by trial and error.

We also received a great deal of training on parts of the OTP that we hadn’t yet used. We learned quite
a number of best practices for Erlang coding that we hadn’t found documented anywhere or found only after
we knew what to look for. Overall, this contributed a great deal to the organization of our code, making it
more flexible, structured, and readable, and generally enabled us to think more clearly about its architecture.

The performance issues proved to be more difficult. We discussed several ideas on how to speed things
up. One idea was to run the legacy applications as an Erlang I/O port under the Client Daemon, allowing
communication with that process using a pipe rather than an IP socket. However, that technique won’t
work with those legacy applications that fork. We considered adding an Erlang driver that would allow
zero-copy 1/O of bulk data in and out of the virtual machine (in most cases), but the time to implement
such a modification to the system ran against our time-to-market constraints and has been shelved for future
consideration.

It was brought to our attention that there haven’t been many Erlang projects that are both I/O intensive
and have had externally-driven performance goals. Our application’s workload seems atypical in today’s
Erlang usage, excepting Eddie and Bluetail’s products. While it has been disappointing not to reach our a
priori performance goals, detailed study suggests that our performance shortfall is probably related more to
the UNIX process architecture and less to our language choice.

After performing code cleanup based on Lennart’s suggestions, we prepared for an initial test release of
the system during the summer of 2000. That release has been put on hold while we perform integration work
with another complex legacy application and improve our monitoring system.

4 Lessons Learned

Working with Erlang over the past year has been educational. We've learned a number of lessons that we
think are worth sharing with the rest of the community.

3“Imagine your application running for ten years. How many uncontrolled processes are you willing to tolerate?” This was
a perspective we desperately needed.

6 Sendmail Meets Erlang

4.1 Erlang is Quickly Learned

Even in isolation, a decent programmer can quickly come up to speed on the basics of Erlang, with greater
ease than with many other more popular languages. With mentoring, we expect that a new person could
be able to understand enough of our existing code to begin making non-trivial contributions in less than a
month.

4.2 OTP Isn’t So Quickly Learned

Proficiency with the OTP, however, is another matter. In our estimation, there simply isn’t sufficient docu-
mentation to expect isolated programmers to make decent use of OTP on their own. We often found ourselves
making up too many things as we went along. We’d make informal bets that such-and-such a problem had
already been solved but we didn’t know how. The erlang-questions mailing list [erlb] was invaluable —
as long as we had a coherent question to ask — but it was hard to know what we might be missing.

If we'd been learning Erlang at Ericsson the same way we learned C, rubbing shoulders with much
more experienced programmers and tackling small, self-contained projects, we would have had a much easier
experience. Unfortunately, we had to immediately create the architecture for a major application. Without
a mentor, the best place for education is by reading existing code of well-written applications. However,
without commentary, we would expect the novice Erlang programmer to miss many subtle issues involved
in employing it correctly. We certainly did. If mentoring isn’t an option, we think a training course in the
use of the OTP after the developers have some familiarity with the language is probably wise.

4.3 Erlang Is Good For Both Rapid Prototype and Production Code

Now that we’re more proficient with Erlang, prototyping new ideas is a rapid process. Once the prototype
is done, it can often be folded into production code with only small modifications.

The language, together with the standard and OTP libraries, provides an extremely useful framework.
We're free to consider important operational issues from the beginning, knowing that many mundane details
are already taken care of. The process linking concept, together with process supervision trees, is the most
valuable, in our experience. The tools for event logging are a close runner-up. And the inter-node message-
passing infrastructure is so easy to use it’s hard to explain to programmers not familiar with the language.

4.4 Erlang Performs Well

Our first experiences with bulk I/O with Erlang were bad, since the original version of the RPC code moved
all data as lists of bytes rather than binaries. Once we modified our code to be binary-friendly, we saw its
performance increase by more than an order of magnitude. Without binary data types, though, the language’s
performance would have been abysmal for our application.

For a single application reading or writing a large file over the network, data throughput measures of the
Erlang and C Client Daemons are identical: the performance of both is limited by network latency. When
performing multiple concurrent bulk reads or writes through the same Client Daemon, the C prototype is
faster, but only by a couple of percentage points. We were pleasantly surprised to find the difference so small.
We have found that our performance shortfall, relative to C, is due to a small penalty per byte of bulk data
in each RPC transaction, and a large penalty per transaction. We hope that the former can be addressed by
a more advanced network driver or other IPC mechanisms, and that the latter can be addressed by further
tuning our code.

4.5 We Would Use Erlang Again

Many advanced programming languages are useful for research but have severe deficiencies for production
work. Erlang doesn’t fit that pattern. Our increased productivity with Erlang more than offset the difficulties
of learning the language. Aside from wanting access to UNIX domain sockets and shared memory, the

Erlang/OTP User Conference 2000

language provided most of the tools we needed to develop the prototype and then expand it into a production-
quality system. Indeed, we had difficulties with the packaging and distribution tools largely because they
provided more functionality than those in the traditional C/UNIX environment.

We worried that the virtual machine might be too slow for our purposes. Instead, performance has not
been a big issue: Erlang’s performance is on par with our C prototype. The next big performance increase will
come from changing the communication channel between the Client Daemon and its applications, probably
using shared memory. If we were to use that scheme in both languages, we expect we would see comparable
performance, and we expect the Erlang version would be finished sooner.

If we had to do this all over again, we’d still use Erlang.

5 What Erlang Needs

We've got a long wish list of things we’d like to see in future Erlang/OTP releases: enhancements to the virtual
machine, new built-in functions, expanded libraries, more supported platforms, and better documentation.
Fortunately, under the Erlang Public License [EPL], the source code is available for us to modify to suit our
needs. Many of these things aren’t tremendously difficult to do*, and we may yet implement some of them,
but code is almost always nicer if someone else writes and maintains it.

We realize many of these wishes may be fulfilled by the R7 release of Erlang/OTP. However, since we do
not have that release at the time this document is being written, these wishes are based on the R6B release.

5.1 Better Documentation of Best Coding Practices

The Erlang book is the best reference we’ve found for learning the language. However, documentation on the
Open Telecom Platform is confined to the reference material in the online documentation [Erla]. In fairness
to the current OTP documentation, it is a good reference resource, but it’s not a tutorial. You simply need
to know where to look and to know if it’s the right hammer to pound any particular nail.

Programmers coming from a C/UNIX background are accustomed to an edit-compile-debug work cy-
cle inherited from batch-processing origins. Interactive editors and integrated development environments
have accelerated the cycle but have not changed its fundamental character. The interactive interpreter was
therefore a little puzzling — how should it be used in daily work? Being unable to learn at the knees of
local experienced Erlang programmers, we experimented on our own. Having a detailed “user story” in
the documentation, a low-level chronicle of a typical day programming Erlang, would have accelerated this

process.

5.2 More, Better, and Faster IPC Mechanisms

Understanding that our desires are biased toward the applications we typically work on, we’d like to see
UNIX domain sockets formally supported. We’d also love to dabble with shared memory, though it can be
problematic in a system where memory management is hidden from the programmer. We’d love to see a
more efficient TCP and UDP driver, one that makes use of the outputv() driver interface to allow use of
vectored I/O primitives and other efficiency mechanisms.

We understand the portability concerns raised by supporting these admittedly platform-specific features.
It can make “write once, run anywhere” code more difficult to write and maintain.> Such feature creep
presents a slippery slope: what new features are platform-independent enough, or is customer demand great
enough? In our opinion, the need for fast IPC warrants their use in the standard Erlang distribution.

As discussed in Section 4.5, Erlang is a surprisingly useful, practical language. Support for additional
IPC mechanisms can only encourage other adventurous programmers to develop other Erlang applications
that break yet more new ground.

4As an example, we've already experimented with having the TCP and UDP drivers allocate their buffers from a shared

memory pool.
5The Client Daemon runs quite well on Erlang/OTP for Windows NT, despite intentionally ignoring NT during development.

8 Sendmail Meets Erlang

5.3 Better Debugger

The debugger in Erlang/OTP R6 is useful, but it needs enhancements. We would love to see a binding
watchpoint feature added. A more streamlined “compile, debug, edit, compile, debug newly-edited code in
the same debugger environment” cycle, one that requires fewer mouse clicks, would be nice. Also, it would be
handy to save breakpoint settings in a context-sensitive manner, attempting to maintain breakpoint locations
despite adding or deleting lines of code prior to the breakpoint.

5.4 Better Profiling Tools

We’ve spent a good deal of effort trying to understand the performance characteristics of the BEAM VM in
general and of our application running within it. The Erlang/OTP R6 profiling tool, eprof, is okay at best
and utterly inaccurate at worst. We ended up working on a better tool,® but the effort has been limited by
the VM'’s process trace output itself: it can fail to mention execution of some short functions, which throws
off function call counts and can lead to misattribution of execution time.

The fundamental problem is the lack of a global context for the profiling results. If eprof profiling reveals
a function to be the tall tent pole within a given process, it may still be insignificant if the profiled process
is only a small fraction of the overall runtime. The user-contributed top tool [Top] is useful for getting a
system-wide view of VM reductions, but it cannot account for reductions made by short-lived processes.
Furthermore, there is no accurate correlation between VM reductions and either CPU or wall-clock time.

To give a global context for our performance, we used gprof to measure the BEAM VM as a C program.
This didn’t allow us to directly measure the execution of our program code, but we were able to see the
relative weights of bytecode execution, message-passing, garbage collection, and linked-in drivers.

Within the Erlang code, we see the need for both process-oriented and function-oriented profiling. We
also need the ability to create a gprof-style call graph. Lastly, we need both wall-clock and CPU-clock timing
statistics.

5.5 Better String Handling

Being avid Perl hackers, it may be unfair to criticize Erlang for weak string handling features, but we’ll do
it anyway. The functions found in the standard string module are a good base. But Erlang’s treatment of
strings as lists of bytes is as elegant as it is impractical. The factor-of-eight storage expansion of text, as well as
the copying that occurs during message-passing, cripples Erlang for all but the most performance-insensitive
text-processing applications.

Erlang’s treatment of binaries, by contrast, has so far proven to be a showcase for the language’s features
without a significant cost in performance. We’d much rather see a string library, parser-generator, etc., based
on binaries, or on some new binary-like string representation, rather than the current list representation.

5.6 Multiprocessing Support and Memory Usage

Again, on this topic Erlang is caught between a rock and a hard place. On multiprocessing machines, we’d
really like to see the virtual machine take advantage of as many CPUs as are available, especially since
moving data between Erlang instantiations via IPC currently requires several data copies and is therefore
expensive. We see no reason why SMP support would require any change to the language or its libraries. It
would require a massive redesign of the virtual machine and possibly large sections of platform-specific code
to get the best performance. However, if Erlang wants to be considered for applications like ours on high-end
hardware, SMP support is necessity.

We understand that with R7 we’ll see the VM able to use up to 4 GBytes of RAM, but, again, for high
end applications this isn’t enough. We need to be able to run our system on 12+ processor machines with

6We were desperate enough to modify eprof for greater accuracy and to try to measure both wall-clock and CPU time. See
http://www.erlang.org/ml-archive/erlang-questions/200005/msg00052.html.

Erlang/OTP User Conference 2000

12+ GBytes of RAM. For the foreseeable future, this means running multiple virtual machines per physical
server, which is something we’d prefer not to do.

5.7 More Support For Writing Network Servers

Many important Internet applications, such as the Apache web server and the BIND naming daemon, are
moving toward a multithreaded programming model. We shudder to think of using C/pthreads to achieve
this. With the imminent release of the bit syntax, we see a great opportunity for Erlang to be the premiere

language for serious Internet server development.
We'd like to see more support for writing servers providing TCP- and UDP-based protocols. While there

are a few sample applications to learn from, more could be done to assist programmers communicating via
an IP network to non-Erlang-based clients. Items on this wish list include:

e More documentation and examples of non-trivial clients and servers of popular protocols.

e Allow a listening TCP socket to operate in an “active” mode, i.e. by allowing gen_tcp:accept() to
send a message to the listening process rather than as a blocking function call.” This would allow a
gen_server to directly accept new connections without blocking.

e Streamline/simplify the process for passing ownership of a newly-accepted socket descriptor process
to another process. The most natural way to write a per-session process’s start() entry point is
to have the TCP connection socket as an argument and to give the new process’s PID as a return
value. However, there is a race between the new process using the socket (e.g. printing a prompt or
greeting) and the listener process changing the socket ownership. This race can be resolved with some
message-passing for synchronization, but it has occurred often enough in our code to be annoying.

¢ Avoid needless data copies across the driver boundary.

e The binary syntax will help immensely with network byte-order conversions and (un)packing encoded
data structures. ’ '

With a few clean-ups and an eye towards attracting a wider audience, we feel that Erlang can make
significant strides as a network application language.

6 Conclusion

We were surprised at the extent to which Erlang fulfilled its promises. It took some effort, but it was
straightforward for developers to come up to speed on the language, and its use significantly reduced the time
it took to produce working code. While we still believe that Erlang has some deficiencies, it has demonstrated
itself as a first class prototyping language, and we have no qualms about shipping a production application
based upon it. A number of Erlang’s features are novel and compelling. As we look at other projects written
in C, we often find ourselves thinking about solving their problems with Erlang. While there are a great
number of places in which the language and its environment could be significantly improved, Erlang is already
a fascinating language that deserves a wider audience than it currently has.

7 Acknowledgments

The authors of this paper would like to thank our management for allowing us to get ourselves into this
mess. Thank you as well to those fine folks at Ericsson who came up with Erlang in the first place. Also, a

"Some thought should be given to a rate-limiting mechanism for these automatic accepts, although much existing connection
accepting code has no such mechanism, either.

10 Sendmail Meets Erlang

special thanks to the folks at Bluetail A.B. for their early encouragement. We especially appreciate the work
of Tony Rogvall and his ONC RPC library: it saved us a great deal of work. Finally, we want to especially
thank everyone on the erlang-questions mailing list for helping a bunch of neophytes come up to speed
with their nice language. You’ve helped us more than you’ll probably ever know.

References
[Blu] The Bluetail Mail Robustifier. See http://www.bluetail.com/products/bmr/.

[Bro95] Frederick P. Jr. Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley,
20t* anniversary edition, 1995.

[Edd] Eddie, an HTTP load balancer. See http://www.eddieware.org/.
[EPL] Erlang Public License. See http://www.erlang.org/EPLICENSE.

[Erla] Erlang online documentation. Available at the Open Source Erlang distribution site:
http://www.erlang.org/download.html and in browsable form at:
http://wuw.erlang.org/doc.html.

[erlb] The erlang-questions mailing list archive. See
http://www.erlang.org/ml-archive/erlang-questions/.

[KLS86] N. Kronenberg, H. Levy, and W. Strecker. VAXclusters: A Closely-Coupled Distributed System.
ACM Transactions on Computer Systems, 4(2):130-146, May 1986.

[Lib] Libero, a finite-state machine-based, programming language-independent code generation tool. See
http://www.imatix.com/html/libero/.

[SMT] SMT, the Simple Multi-Threading kernel. See http://www.imatix.com/html/smt/.

[Top] top-1.0, a UNIX top-like tool. See http: //wwu.erlang.org/user.html.

MPowered by Erlang

Per Bergqvist
per@cellpt.com

Date: October 3rd 2000 Place: Erlang User Conference 2000

<® CELLPOINT

CellPoint Systems

¢ World leading in location dependent services based on
standard GSM terminals

¢ >90 persons in Marketing and Sales, R&D and Operations,
expanding very rapidly

e Stockholm, London and Johannesburg, SA

¢ 4 years experience of commercial GSM based positioning
systems

¢ Complete solutions ready to implement, launch and bill

@ CELLPOINT

Vision

“Create affordable, secure and user friendly location
dependent services for everyday use by the mobile
generation”.

& CELLPOINT

A nice selection of products ...

® Infrastructure products
— MPower Location System
- ExPos

* Applications
— Finder
~ iMate

@ CELLPOINT

MPower Location System

Operator domain

ol ’3‘%1

Applications

@ CELLPOINT

iMate demo

Var 3r Petter,
Nisse och Kalle?

@& CELLPOINT

Taming Windows ...

* Development environment NT
— Historic, office integration, price reasons

* Portability
- Windows NT/2000
— Solaris

* Tools
- Cygwin
- CVSs

* Performance

— NT/Pentium beats Solaris/Sparc (both absolute and bang-for-
the-buck)

& CELLPOINT

Very good experiences ...

* As we all already know
— Robustness
- Less code
— Easy to learn

¢ Performance
— Excellent for truly massive parallel applications

& CELLPOINT

... and less good

* NT port

* Global

* Database support (odbc,mnesia)

* Inet_drv (much better in R7)

* Debugger (please !!!)

* SSL support

* Untyped language in large systems

@& CELLPOINT

Conclusion

Erlang by choice helps us to
MPower the mobile
generation

& CELLPOINT

1(16)

NETSim - 6 years with Erlang

Bengt Tillman
ERA Link&ping

bengt.tillman @era.ericsson.se
http://www.Imera.ericsson.se/tss/ (Ericsson only)

g S

Ericsson Radio Systems AB 2000-09-20
2(16)

e R

NETSim - six years with Erlang

NETSim - a Network Element Test Simulator
What is NETSim?
Technical challenges and their solution with Erlang/OTP

Administrative challenges and their solution with Erlang/OTP

* ¢ o o o

Summary

- -~)

Ericsson Radio Systems AB ' 2000-09-20

3(16)

o

/\Simulated NE
AReal Network Element (NE)

NETSim in a telephone network

OSS or NMS

O&M traffic:

- Commands and responses
- Corba method calls

- Alarms and notifications

- Files

IP or X.25 network

Ericsson Radio Systems AB 2000-09-20

4 (16)

'Y

NETSim k

NETSim simulates the operations and maintenance (O&M) functions of net-
work elements (exchanges) in a telephone network

Customers:

0 Developers and testers of Operation Support Systems (OSS) and
Network Management Systems (NMS)
0 Trainers of OSS and NMS operators

Installations:

Q Ericsson development, test and education departments
all over the world

Scope:

Many different O&M protocols (MTP, lIOP, ftp, X29, MIP, telnet...)
Many different types of simulated NEs

Many different versions of each type of simulated NE

Many different O&M functions (MML commands, Corba methods)
Many simultaneous simulated NEs

Many simultaneous users

Heavy O&M traffic

000000 D

Ericsson Radio Systems AB

2000-09-20

5(16)

O

Q
0 User interfaces
Q

o GSM

o PDC (Pacific Digital Cellular)
a UMTS

o General AXE simulation

Q User developed products

¢ Many functions in more than one product

General AXE simulation
General Corba functions

NETSim information model

Tech. challenge 1 - Product structure

¢ Different products for different markets

N J
Ericsson Radio Systems AB 2000-09-20
6(16)
1 Tech. challenge 1 - Product struct)
Solution: pREprTs SN LE TN
NETSim exploits dynamic linking in / \ BREN
order to be able to ship the same 0 Co?xnéon b
programs in many different I finctl PDC ‘.
combinations. II b unctions specific o
' functions ‘
NETSim does not use the o e
Erlang/OTP application concept. I N -
[N e e
& ; asM |
P N specific !
| Uls and ! functions J
Product "l information B
3 -~
PR
-
UMTS L = , e
specific ! A JPTd 3
functions "‘ R
/ t " I User
] enera developed
Function Block : Corba functions
\ function
9 J

Ericsson Radio Systems AB

2000-09-20

7 (16)

X

Tech. challenge 2 - Many “commands”

NETSim shall simulate many different “commands” in many
different versions of many different types of NEs,

Base Station Controller (BSC)

Example of commands
R6 R7

0 Unique module names:
- ntcop_bscr6.erl
- ntcop_bscr7.erl
- ntcop_bscr8.erl
o ~ 1100 modules (Erlang/OTP runti

maps command to Erlang module
0 Structured modules would have b

0 AXE commands (CACLP, SAAIl, NTCOP)
a Corba methods (basic_create_MO)

4 Solution: One Erlang module per command

me 738)

Q Search database per NE type which

een nice

J
Ericsson Radio Systems AB 2000-09-20
8 (16)
i K
Tech. challenge 3 - Many NEs
¢ Many NEs must be active simultaneously
0 System test - 300 to 600 simulated NEs - > 4000 in the future
0 Function test - a number of testers (10) have one network each (10-50 NEs)
-4 Other requirements
0 Each NE shall have its own database where the following functions shall
be possible independently and at any time:
- save database (10 - 30,000 records)
- restore database
- copy database to another simulated NE
0 Load distribution over several computers must be possible: -
¢ Solution: NETSim database implementation:
Q ets tables with a wrapper around (mmldb, netsimdb)
[{{Table, Key}, [{Tag, Value}, ...]}...]
0 Mnesia too rigid - we have looked at it
¢ Solution: NETSim load distribution implementation:
o Distributed Erlang, see next page
N _/

Ericsson Radio Systems AB

2000-09-20

9 (16)

e
Tech. challenge 3 - Many NEs
netbr Erlang nodes in NETSim
E E SS - superserver - administers licenses and keeps
4 @ p track of all other nodes (“fixed point”)
@ EI] @ CL - client - administers the networks of simulated
\ J NEs for one user
' E \ Ul - user interface - graphical (Java) or command
' \ = E line interface
[s] E 1\ / S - server - executes simulated NEs.
—

o

[u][s])

UNIX

computer

N—

([

Y

“Common”
disk

Limitations to consider:

0 Number of ets tables per Erlang node
=> max ~ 256 NEs per server

0 Number of unix file descriptors per unix pro-
cess

a Memory size of computers

0 One Erlang ORB (Orber) per NETSim server

Very dynamic environment - nodes come and go all J

Ericsson Radio Systems AB

2000-09-20

10

(&

First Erlang (R2?) in NETSim had no ets, no behaviours...
Until 1998 Erlang grew and NETSim followed

With new GUI (Java) 1997: Erlang - Java coupling through jinterface and ic

(first through Orber) - unfortunately gs is not good enough.

¢ With UMTS (3rd gen mobile systems) NETSim is pushing Erlang:

Challenge 4 - Technological frontline

o Corba - Orber

o Corba - CosNotifications
0 Many R7 changes caused by NETSim requirements

¢ Very good cooperation with and support from Erlang/OTP:
0 Niclas Eklund and Babbis Xagorarakis

Ericsson Radio Systems AB

2000-09-20

11

/' L]
Tech. challenge 5 - parallelism
¢ Requirements:
0 Many NEs executing at the same time
0 Several parallel command sessions per NE
0 Many Uls open at the same time
¢ Solution:
o Erlang processes for commands and NEs
0 Distributed Erlang for parallel Uls
N\
Ericsson Radio Systems AB 2000-09-20

12

(Adm. challenge - Lead times and freq. deliveries
TG2 '

NE development | Real NE available
| A
OSS development | Function tes | Systemgtest Y

1YY YYYYYYYY S e W S W R

NETSim development

Frequent Some
deliveries deliveries

o

Ericsson Radio Systems AB : 2000-09-20

13

(Adm. challenge 1 - Lead times

¢ Solution: The outstanding productivity in Erlang/OTP due to

0 loading of code into an executing system

behaviours (both faster coding and repeated loading)

its high level

This gives

==> real short turn-around times (a few seconds)

==> development in a “real” NETSim installation

==> incremental development: “write 3 lines and then test them”
==> development, basic test and integration test at once

==> time is spent on making functions - not on debugging

==> compact source code - easy to read and easy to maintain

0O0DDOD

¢ Solution: Erlang/OTP is easy to learn

0 we have had many persons writing “commands” over the years
and no one has known Erlang in advance

N
Ericsson Radio Systems AB 2000-09-20
14
a T .
Adm. challenge 2 - Frequent deliveries
¢ Problem:
0 Incremental deliveries so test can start early
o Frequent changes
o Often parallel support to different customers
¢ Solution (all implemented as Erlang programs)
0 Daily build (also used as part of system test)
O Administration tool (about 32 different windows implemented in about
three weeks using gs)
0 Automatic test records
o This gives:
==> The status of the source code known at all times
==> Anyone can do configuration management tasks
==> Beta delivery with 24 hours notice
==> Alpha delivery with 3 hours notice
==> Patch delivery with returning mail (seldom needed)
|

Ericsson Radio Systems AB 2000-09-20

15

Adm. challenge 2 - Frequent deliveries
Daily build process

Build all function blocks (2 hours)
Install function blocks of one product

Perform black-box testing of all functions directly available to the customer
(without programming). (1 - 2 hours/product)

Install test programs (dynamic linking again)

Perform black-box testing of application programmer interfaces and white-box
testing of internal interfaces (NOTE: the product we deliver to our customers
is NOT contaminated with test programs). (1 - 2 hours/product).

Go back and install the next product

For all products tested generate a test record (which is automatically pub-
lished on the intranet)

. .

Ericsson Radio Systems AB 2000-09-20
16

/_

-

Summary

Without the following properties of Erlang/OTP it would have been impossible
to develop and maintain NETSim with the small team we have been

(2 - 15 persons):

O so easy to learn - and still so powerful

0 so fast to develop in because of loading of code into an executing system
a so flexible because it allows distribution and dynamic linking

0 so powerful because of its light-weight processes

Some other nice features which have saved us a lot of time:
o behaviours, ets

0 the tools tv, pman and debugger => debugging at customer sites
0 ASN.1, SNMP, Orber - so far no 3rd party products needed

My personal experiences in programming:

0 | programmed assembler, Forth and Pascal 1966 - 1990 and enjoyed it

a llearned C++ in 1990 and disliked it

0 In 1983 | thought about working with project management and system
design rather than to program in C++

0 Since 1993 | have worked with system design and produced more pro-
grams than ever - in Erlang - and | still enjoy it.

J

Ericsson Radio Systems AB 2000-09-20

A High Performance Erlang System

Erik Johansson
Computing Science
Department, Uppsala
University, Sweden

happi@csd.uu.se

ABSTRACT

Erlang is a concurrent functional programming language de-
signed to ease the development of large-scale distributed soft
real-time control applications. It has so far been quite suc-
cessful in this application domain, despite the fact that its
currently available implementations are emulators of virtual
machines. In this paper, we improve on the performance
aspects of Erlang implementations by presenting HiPE, an
open-source native code compiler for Erlang. HiPE is a com-
plete implementation of Erlang, offers flexible integration
between emulated and native code, and efficiently supports
features crucial for Erlang’s application domain such as con-
currency. As our performance evaluations show, HiPE is
currently the fastest among all Erlang implementations.

1. INTRODUCTION

The concurrent functional programming language Erlang
was designed by Ericsson to address the needs of large-
scale distributed soft real-time control applications [2]. Such
applications routinely arise in products developed by the
telecommunications industry. Erlang caters for these needs
with a run-time system that provides many features often
associated with an operating system rather than a program-
ming language. These features include scheduling of light-
weight concurrent processes, automatic memory manage-
ment, networking, protection from deadlocks and program-
mer errors, and support for continuous operation even when
performing software upgrades.

After around a decade of existence, Erlang is generally con-
sidered as a “success-story” in declarative programming lan-
guages; see e.g. {25]. Users experience that Erlang allows
telecommunication systems to be programmed with less ef-
fort and fewer errors than by using conventional program-
ming language technology [1, 5]. It is worthwhile to note
that such systems typically consist of several hundred thou-
sand lines of source code (the size is partly due to the com-
plexity of the telecommunication protocols), and rely heavily
upon the concurrency capabilities of Erlang.

Mikael Pettersson
Computing Science
Department, Uppsala
University, Sweden

mikpe @csd.uu.se

Konstantinos Sagonas
Computing Science
Department, Uppsala
University, Sweden

kostis @ csd.uu.se

The industry, besides Ericsson, is showing a growing inter-
est in Erlang, but there is a very limited choice of compilers,
partly due to Erlang’s—until recently exclusive— “in-house”
development. Also, as an implementor of these compilers
publicly admits [1]: ‘performance has always been a ma-
jor problem’ and ‘we are (even) considering adding imper-
ative features to the language to solve these (performance)
problems’. Indeed, the performance of current implementa-
tions of Erlang is inferior to that of good implementations
of other functional programming languages; see also [8, 11].
In the competitive market of telecommunications, however,
the need for a high-performance implementation is some-
times pressing.

As one such example, consider AXD 301, a new generation
ATM switching system from Ericsson [5]. The major part of
AXD 301's software is written in Erlang; it consists of about
480,000 lines of Erlang code, with about 95,000 of them con-
stituting the time-critical modules of the system. Speeding
up this time-critical part would be more than welcome by
the AXD 301 engineering team, let alone Ericsson, because
this speedup directly corresponds to the ATM switch being
capable of servicing more requests; see also [5].

Currently, complete implementations of Erlang are based on
emulators of virtual machines. This gives them good porta-
bility, but emulation incurs a performance penalty to Erlang
programs which some users wish—and in some cases need
to—avoid. Ways to avoid the performance problems caused
by emulation are: 1) compile to a sufficiently low-level and
fast language such as C or 2) use the recently proposed
C-- [19] as a portable assembly language, 3) use a retar-
getable code generator such as ML-RISC [18] or 4) the gcc
back-end [21], or 5) compile directly to native code. Each of
these implementation choices has well-known pros and cons
but one can roughly expect a decrease in portability and
an increase in performance and implementation effort for a
higher choice number; see also the above references and the
references therein.

Perhaps another issue deserves attention: byte-code emula-
tors usually result in smaller object code size than C-based
or native code compilers. Although object code size is be-
coming less and less of a concern nowadays, it is still a poten-
tial problem when the source code of the application con-
sists of several hundred thousand lines. Also, not paying
attention to code size can result in poor I-cache behaviour
leading to significant performance degradation. Ideally, a

system should provide a seamless integration of emulated
and native code execution, and allow its user to choose the
execution mode individually for each application component
based on the various space/time trade-offs that are involved.
Information about these trade-offs should also be something
that the system provides to its user.

This paper presents our approach to the efficient execution
of Erlang. We have developed a system, HiPE, which com-
bines the performance characteristics of a native code com-
piler with the benefits of an emulated implementation. HiPE
currently uses the JAM emulator [1] as a basis and allows
selective compilation of whole modules or individual func-
tions into native code, which is then executed directly by the
underlying hardware. Besides fully describing the architec-
ture of HiPE and the changes to the JAM run-time system
needed to support native code execution, we discuss various
technical issues that this emulated/native code integration
entails in the context of Erlang and how we dealt with them.
More specifically:

® we pay special attention to supporting hot-code loading
(see mext section) and error handling in HiPE;

e we describe a method for performing tail call optimiza-
tion in a mixed mode of execution where a separate
stack is used for each mode—this method is probably
folklore but, to the best of our knowledge, it has not
been reported in the literature;

® we compare and analyse the performance of existing
Erlang implementations on “standard” small bench-
marks and on large programs from actual industrial
Erlang applications and show that HiPE’s performance
is superior.

To make this paper self-contained, we begin by reviewing
the characteristics of Erlang (Section 2). Sections 3 and 4
form the main part of this paper and describe the basic
characteristics of HiPE, its architecture, and the integration
of native and emulated execution within the same run-time
system. Section 5 contains a performance comparison of
HiPE against other implementations of Erlang, both indus-
trial and academic, and against other functional languages.
Section 6 contains additional measurements on some of the
benchmark programs used in our performance evaluation
that give more insight on HiPE’s performance. We end this
paper with some concluding remarks.

2. A BRIEF INTRODUCTION TO ERLANG

Erlang is a dynamically typed, strict, concurrent functional
programming language. It is possible to create closures in
Erlang, but typical Erlang programs are mostly first-order.
Erlang’s basic data types are atoms, numbers (integers with
arbitrary precision and floats), process identifiers, and ref-
erences; compound data types are lists and tuples. There is
no destructive assignment of variables and the first occur-
rence of a variable is its binding instance. Function selection
happens using pattern matching. Erlang’s design inherits
some ideas from concurrent constraint logic programming
languages such as the use of flat guards in function clauses.

Processes in Erlang are extremely light-weight, their num-
ber in typical applications is quite big, and their mem-
ory requirements vary dynamically. Erlang’s concurrency
primitives—spawn, “!” (send), and receive—allow a pro-
cess to spawn new processes and communicate with other
processes through asynchronous message passing. Any data
value can be sent as a message and processes may be located
on any machine. Each process has a mailboz, essentially a
message queue, where each message sent to the process will
arrive. Message selection from the mailbox occurs though
pattern matching. There is no shared memory between pro-
cesses and distribution is almost invisible in Erlang. To
support robust systems, a process can register to receive a
message if another one terminates.

Erlang applications typically consist of a number of mod-
ules: an Erlang module defines a number of functions. Only
explicitly exported functions may be called from other mod-
ules. Calling functions in different modules, called remote
calls, is done through supplying name of the module of the
called function. During execution of functions, tail call op-
timization is performed. As in other functional languages,
Erlang’s memory management is automatic through garbage
collection. The real-time concerns of the language call for
bounded-time garbage collection techniques; see [24, 16). In
practice, garbage collection times are usually small as most
processes are short-lived or small in size.

To perform system upgrading while allowing continuous op-
eration, an Erlang system needs to cater for the ability to
change the code of a module while the system is running, so
called hot-code loading. Processes that execute old code can
continue to run, but are expected to eventually switch to the
new version of the module by issuing a remote call (which
will always invoke the most recent version of that module).
Erlang provides mechanisms for allowing a process to time-
out while waiting for messages and a catch/throw-style ex-
ception mechanism for error handling.

The Erlang language was purposely designed to be small,
but comes with libraries containing a large set of built-in
functions (known as BIFs). With the Open Telecom Plat-
form (OTP) middleware [23], Erlang is extended with stan-
dard solutions to common requirements of telecommunica-
tion applications (servers, state machines, process monitors,
load balancing), standard interfaces (CORBA), and stan-
dard communication protocols such as HTTP and FTP.

3. JAM: THE BASIS OF HIPE

HiPE is based on the bytecode emulated JAM implemen-
tation of Erlang, to which it adds the ability to compile
and execute Erlang as native machine code. HiPE is a new
component (currently 30,000 lines of Erlang code and 3,000
lines of C and assembly code) added to an otherwise mostly
unchanged JAM system; only the JAM emulator and the
garbage collector have been extended to be aware of native
code. Because of this tight integration, we describe relevant
aspects of the basic JAM system here; Section 4 continues
with HiPE-specifics.’

'HiPE is publicly available as open-source. The current
release is based on Ericsson’s Open Source Erlang 47.4.1.
See http://www.csd.uu.se/projects/hipe.

3.1 The JAM system

The JAM-based Erlang implementation uses JAM: a vir-
tual stack machine whose primitive operations closely cor-
respond to the Erlang language. For example, since Erlang
is a dynamically-typed language, JAM uses a self-describing
data representation with tagged values [10], and the emu-
lator’s instructions operate on tagged values, never on raw
machine values.

3.1.1 The JAM compiler

The JAM compiler is a non-optimising compiler which per-
forms a straightforward translation to the JAM virtual stack
machine. The object files contain bytecodes and relocation
entries which describe all symbolic references that must be
resolved by the loader.

3.1.2 The JAM loader

The JAM loader translates JAM bytecodes from the ex-
ternal format to the internal format expected by the JAM
emulator.

Erlang atoms are symbolic constants, like atoms in Prolog
or symbols in Lisp. The internal representation of an atom
is its position in the atom table, which is not known until
runtime. Therefore, the first task of the loader is to replace
symbolic references to atoms by their current internal rep-
resentation.

A remote (non-local) function call is represented by a triple
(module name, function name, function arity). First the
names are translated to internal atoms. Then special cases
are identified, such as calls to the erlang module which
become calls to C functions in the runtime system. Finally,
the JAM instruction at this call site is patched to reflect the
result.

After a module has been loaded, a global symbol table is
updated with information about the module, its exported
functions, and the code addresses at which those functions
start.

3.1.3 The JAM emulator

The JAM emulator is a single C function which executes
JAM instructions represented as bytecodes. The JAM im-
plementation is indirectly threaded [4, 17). The emulator is
invoked on a runnable Erlang process, and executes code for
that process until it blocks. A process blocks either when it
attempts to read a message and its message queue is empty,
or when its “time slice” has expired. Time slices are rep-
resented by work budgets, which are explicitly decremented
and checked at specific points in the emulator.

Each Erlang process is described by a process control block
(PCB), a stack, a heap, and a set of pointer registers:

sp next word on the stack

fp start of current function’s activation record
ap first actual parameter

pc current bytecode instruction

cc debug information about the current function

The stack discipline is simple but unoptimised. At a call,
the parameters are pushed in left-to-right order, followed
by a 4-word continuation record containing the caller’s fp,
ap, pc, and cc. Then fp is set to point to the start of this
record, sp to the first word after the record, and ap to the
first parameter (derived from fp and the callee’s arity); see
Figure 1. (Note that ap now has the same value as the
caller’s sp had before the call.) At return, sp is reset to ap,
then cc, pc, ap, and £p are restored from the frame, and the
return value is pushed onto the stack.

ap — | parameter #1

parameter #n
fp — | caller’s fp
caller’s ap
caller’s pc
caller’s cc
sp—=> | - (stack grows down)

Figure 1: JAM stack on entry to a function

In JAM, tail calls are complicated by the fact that the four-
word continuation frame is pushed after the parameters in-
stead of before. Since the continuation frame is adjacent to
the parameter area, it must be relocated whenever there is
a tail call and the caller and callee have different number
of parameters. At a tail call, the JAM emulator copies the
frame into temporary variables, then copies the outgoing
parameters from the bottom of the stack to the parameter
area, and then (if necessary) moves the copy back to the
stack.?

Exception handling is implemented by dynamic tracking [3).
On entry to a protected code block, a 2-word catch frame is
pushed onto the stack, containing a pointer to the previous
catch frame and the address of the first instruction after
the protected block. The address of this frame is saved in
the PCB. To raise an exception, the stack is unwound one
call-frame at a time, until the activation record containing
the current catch frame is found. The unwinding process
simultaneously restores the sp, fp, ap, and cc registers.

3.2 Processes and memory management

An Erlang node is an instance of the Erlang runtime system
executing on a given machine. On Unix, this is a single
Unix process. Within a node, Erlang processes are created
dynamically and execute as coroutines. A C procedure acts
as scheduler, continuously selecting a runnable process and
passing it to the emulator for execution.

Each Erlang process has a PCB, a stack, and a private heap
for the data structures it creates. An Erlang process starts
with small stack and heap areas, which are grown when
needed. Compared to a typical implementation of Posix
threads in Unix, which would allocate in the order of one
megabyte of virtual memory for each thread’s stack, Erlang

ZPerformance could be improved by shrinking the frame to
a minimum: ap is redundant and cc can be computed from
pc when needed. If the continuation was pushed before the
parameters, it could remain in place during tail calls [7,
Section 4.6.1].

processes are extremely lightweight. An Erlang node is ex-
pected to handle hundreds or thousands of Erlang processes
with relative ease.

The garbage collector is of a standard two-generational stop-
and-copy type [16]. It does, however, have one interest-
ing design feature: each process’ heap is strictly private to
that process, and no references are allowed from one pro-
cess to another’s heap. The advantage of this arrangement
is that it simplifies memory management. Since references
from other processes cannot occur, garbage collection is a
strictly local activity, and when a process terminates, its
memory can be reclaimed immediately. This is believed to
reduce total memory management costs, since the major-
ity of Erlang processes are expected to be short-lived or to
have small amounts of live data. The disadvantage, how-
ever, is that message passing must be implemented by data
copying, which reduces sharing and increases the pressure
on the memory caches.® Messages are expected to be small,
however.

4. HIPE: SYSTEM OVERVIEW

The HiPE compiler is called as an ordinary Erlang function,
within a running Erlang system. The smallest unit of com-
pilation is a function: given the name of an existing Erlang
function, the compiler translates that function’s JAM byte-
codes to SPARC V9 machine code, and then a linking phase
updates the system state so that future calls invoke the na-
tive code; see Section 4.2. In this respect, HiPE resembles a
(user-invoked) JIT compiler. Alternatively, the HiPE com-
piler can compile a whole Erlang module, and the result of
the compilation can be saved in a file, as symbolic SPARC
code. This file can later be loaded explicitly into the HiPE
system.

Some Erlang applications are delivered only in bytecode for-
mat and no sources are available. For example, before Er-
lang became open-source, Erlang libraries were only present
as JAM bytecode files. Therefore, HiPE was designed to be
able to take already-loaded functions in JAM bytecode for-
mat instead of Erlang source code as input. Although this
means that HiPE cannot perform some high-level optimiza-
tions, this compilation scheme offers more freedom to its
users: users have the possibility to identify (using HiPE’s
profiling tools) those functions and call paths that would
benefit most from compilation to native code and selectively
compile them. This way, HiPE combines the performance of
a native code system with the code compactness of a byte-
code system. This integration is very tight: code compiled
by HiPE uses the same runtime system and the same built-in
functions as the JAM emulator.

4.1 The HiPE compiler

The compiler has four intermediate representations: an in-
ternal representation of JAM bytecode, a high level interme-
diate language (ICode), a general register transfer language
(RTL), and a machine-specific assembly language, currently
only SPARC; see Figure 2. ICode, RTL, and SPARC are
represented as control flow graphs of basic blocks.

3We are planning to measure memory subsystem perfor-
mance by implementing a shared-heap runtime system and
comparing it against the current runtime system.

Memory & Symbolic
JaM | A7 JAI\$ code
/ Byte-code
JAM ICode
Emulator Data w
N RTL
‘| Native
Code [™ —\P%
| SPARC

Erlang Run-Time System HIiPE Compiler

Figure 2: Intermediate representations in HiPE.

The JAM bytecodes are translated to symbolic form by a
straightforward process. Internal atom numbers are con-
verted to real atoms, and branches to local functions are
translated to call instructions with symbolic function names.

ICode is based on a register-oriented virtual machine for
Erlang. Arguments and temporaries are located in an in-
finite number of registers, and all values are proper Erlang
terms. The call stack is implicit, and calls preserve regis-
ters. Bookkeeping operations, such as heap overflow checks,
context switching, and time-slice decrements, are implicit.
The translation from JAM bytecode to ICode uses a simu-
lated stack to map JAM stack slots to ICode registers. To
simplify dependency analysis in later compilation passes, a
renaming post-pass ensures that independent live ranges use
different registers. :

The ICode is then optimised with standard compiler opti-
mizations such as copy and constant propagation, and con-
stant folding. This is done in one pass over all extended
basic blocks. Dead code removal is then performed to re-
move assignments to dead temporaries.

Unreachable code is removed by the translation to RTL,
since only reachable basic blocks are inserted in the RTL
control flow graph. Operations on Erlang values are ex-
panded to make data tagging and untagging explicit.

The optimisations that were performed on ICode are applied
again to the RTL code. Heap overflow tests, call stack man-
agement, and the saving and restoring of registers around
calls are made explicit, and the standard optimisations are
applied again. In order to limit the number of heap overflow
tests, they are propagated backwards as far as possible, and
adjacent tests are merged.

The RTL code then is translated to abstract SPARC code,
and registers are assigned using a graph-colouring register
allocator similar to the one of Briggs et al. [6]. Finally,
symbolic references to atoms and functions are replaced by
their values in the running system, memory is allocated for
the code, and the code is linked into the system.

4.2 The HiPE linker

As described before, Erlang requires the ability to upgrade
code at runtime, without affecting processes currently exe-
cuting the old version of that code.

The JAM system maintains a global table of all loaded mod-
ules. Each module descriptor contains a name, a list of
exported functions, and the locations of its current and pre-
vious code segments. The exported functions always refer
to the current code segment. At a remote function call,
module:function(parameters. ..), the JAM emulator first
performs a lookup based on module and function name. If
the function is found, the emulator starts executing its byte-
codes. Otherwise, an error handler is invoked.

In native code, each function call is a direct machine-level
call to an absolute address. When the caller’s code is being
linked, the linker initialises the call to directly invoke the
callee. If the callee has not yet been loaded, the linker will
instead direct the call to a stub which performs the appropri-
ate error handling. If the callee exists, but only as emulated
bytecode, the linker directs the call to a stub which in turn
will invoke the JAM emulator.

In order to handle hot-code loading and dynamic compila-
tion at runtime, the linker also maintains information about
all call sites in native code. This information is used for
dynamic code patching, as follows:

e When a module is updated with a new version of the
emulated code, all remote function calls from native
code to that module are located. These call sites are
then patched to call the new emulated code, via new
native-to-emulated code stubs.

e When an emulated function is compiled to native code,
each native code call site which refers to this function
is patched to call the new native code. The first in-
struction in the bytecode is also replaced by a new
instruction which will cause the native code version to
be invoked. Finally, the native-to-emulated stub used
to invoke it from native code is deallocated.

e When a module is unloaded and its memory is freed,
all native code call sites referring to this module are
patched to instead invoke an error handling stub. All
native code call sites within this now non-existent mod-
ule are also removed from the linker’s data structures,
to prevent future attempts to update them.

Both the standard Erlang system and HiPE support load-
on-demand of modules. When invoked, the error handler
for undefined function calls will attempt to load the JAM
bytecodes for that module from the file system. If this is
successful, the call continues as normal. As a side-effect of
loading the JAM module, the HiPE linker will patch native
code call sites as described above.

4.3 Native code calling conventions

In the HiPE runtime system, an Erlang process can execute
both emulated JAM code and native SPARC code. To facil-
itate data sharing, HiPE uses the same data representation

as JAM. However, the JAM calling convention is inappropri-
ate for native code, since JAM passes all parameters on the
stack and uses large call frames containing redundant infor-
mation. Instead, native code passes the return address and
the first five parameters in registers, remaining parameters
(if any) on the native stack, and shrinks the fixed portion
of stack frames to a single word for preserving the previous
return address. Currently, HIPE does not use the SPARC’s
register windows; instead, registers are saved and restored
as needed around function calls.

HiPE uses two stacks for each process, one for emulated
code (the estack) and one for native code (the nstack). An
earlier version of HiPE used only one stack, but that scheme
was quickly abandoned as it was found to be quite complex
and difficult to implement correctly. Our current dual-stack
approach has disadvantages and advantages too:

— As described in Section 3.1.3, the JAM emulator im-
plements exception handling by creating a linked list of
catch frames on the stack. Native code uses the same
strategy, which means that each stack may contain
pointers to the other. If the runtime system relocates
one stack (to increase its size), then the other stack
must be traversed so that the catch frame links can be
updated.

+ By separating the stacks the stack-scanning code in the
garbage collector is kept simple. With a single-stack
approach, the scanning code would have to know when
to switch “mode”, in order to correctly deal with the
different stack frame layouts. This is certainly doable,
but would require more effort to implement correctly.

Foreign Function Interface

Erlang programs can and often do call C functions: standard
procedures (BIFs) in the runtime system are written in C, as
are the I/O modules. For each BIF, there is a machine-code
stub which is directly callable from native code. The stub
takes care of saving the native-code state registers before
invoking the C function on the C stack. The stub also checks
for exceptions at return, and either returns to its caller or
invokes the current Erlang exception handler.

However, the Erlang runtime system is not designed to per-
mit arbitrary recursive calls between Erlang and C func-
tions. Whether the Erlang code is emulated or native makes
no difference. A detailed explanation is beyond the scope of
this paper, but the limitation stems mainly from the non-
reentrancy of the Erlang process scheduler (a C function)
and the way in which the runtime system periodically polls
1/0 channels. (It would not be overly difficult to modify the
runtime system to eliminate this limitation, however.)

4.4 Mode-switching

In HiPE, a mode-switch occurs whenever there is a trans-
fer of control from native code to emulated code, or vice-
versa. We made the design decision that the mere presence
of multiple execution modes should not impose any runtime
overheads, as long as no mode-switches occur. This design
requirement calls for great care when implementing mode-
switches, not only for performance, but also for correctness.

4.4.1 Where do switches occur?

Since HiPE compiles individual functions to native code, a
mode-switch must occur whenever there is a flow of control
from one function to another, and the two functions are
in different modes. Thus, mode-switches occur at call and
return sites. Erlang’s exception mechanism also introduces
mode-switches, viz. when an exception is thrown from code
executing in one mode, and the most recent catch handler
is in a different mode. We will refer to these cases as call,
return, and throw events, respectively.

4.4.2 When do switches occur?
How does the system discover that a particular instance of
a call, return, or throw event must perform a mode-switch?

Call Events

Older Lisp systems often use a dynamic test at calls to de-
termine the mode of the callee (e.g. compiled or emulated),
and then perform the appropriate action.

Another common choice is to use a fixed mode for calls,
usually native code. Emulated functions are represented as
small native code stubs which invoke the emulator when
called. The advantage of this approach is that no dynamic
type test is needed when both caller and callee are in native
code. The disadvantage is that calls between emulated-mode
functions are penalised since they have to make conversions
to and from the native-code calling conventions.

HiPE uses a pseudo-static approach in which calls always
use the mode of the caller. As described in Section 4.2, if
a native-code caller refers to an emulated-mode cal lee, then
the linker redirects the call instruction to instead invoke a
native-code stub, which in turn causes a switch to emulated
mode. If an emulated function is compiled to native code,
then the start of the original bytecodes is overwritten with a
special emulator instruction which causes a switch to native
mode. (The asymmetry between these cases is due to the
fact that the HiPE linker only has knowledge about call sites
in native code.)

Return Events

Whenever a recursive function call causes a mode-switch,
the return sequence must be augmented to perform the in-
verse mode-switch. Like calls, this is often implemented by
dynamic tests, a fixed-mode convention, or by same-mode
stubs.

If dynamic tests are used, then the return address is tagged
to indicate that a mode-switch is required when the callee
returns. Typically, either the lowest or the highest bit is
used. The lowest bit is available if return addresses are
aligned on some 2° > 1 boundary. Using the highest bit
imposes a limit to the usable address space.

If a fixed-mode convention is used for calls, then the same
mode is also used for returns. If that mode is native code,
then a call from an emulated-mode function must push a
“stub” native-mode return address which causes control to
flow back into the emulator.

HiPE uses a same-mode convention for returns. When a call
causes a mode switch, a new continuation (stack frame) is

created in the mode of the callee. The return address. in
this continuation points to code which causes a switch back
to the caller’'s mode. For returns from native to emulated
code, the return address points to machine code in the run-
time system. For returns from emulated to native code, the
return address points to a special emulator instruction. We
made this choice in HiPE because it causes no overhead ex-
cept during mode-switches, and it minimised the amount of
changes we had to made to the existing JAM emulator.

Throw Events

HiPE deals with exception throws in the same way as it deals
with function returns: a same-mode convention augmented
with mode-switching stack frames. When a call causes a
mode-switch, a new exception catch frame is created in the
mode of the callee. The handler address in this catch frame
points to code which switches back to the caller’s mode,
and then re-throws the exception. Thus, when a call causes
a mode-switch, two frames are pushed: first a catch frame,
then a return frame. The code at the return address in the
return frame knows that it also has to remove the catch
frame beneath it before switching mode.

4.4.3 Maintaining tail-recursion
The same-mode calling convention with mode-switch stack
frames is efficient and easy to implement. For many pro-
gramming languages, this would be enough. However, like
most other functional programming languages, Erlang relies
on tail-recursive function calls for expressing iteration. Con-
sider the following sequence of tail calls, where each ffisan
emulated function, and each fI is a native code function:

lg li)il 2y| tail ; taul r tarl
A correct implementation of Erlang is expected to execute
such a sequence in bounded stack space, regardless of its
length. Unfortunately, at each call, a new mode-switch
stack frame is pushed, to make the return perform the in-
verse mode-switch. Thus, stack space usage will grow lin-
early with the length of the sequence of tail calls, and tail-
recursion optimisation is lost.

HiPE solves this problem as follows. The return address in a
mode-switch stack frame will always have a known value: ei-
ther the address of the return mode-switch routine (in native
mode), or the address of the return mode-switch instruction
(in emulated mode). Thus, a simple runtime test is able
to distinguish mode-switch stack frames from normal stack
frames. Now, consider the following call sequence:
fe N gn ’i‘,’ he

When f€ calls g", it pushes two mode-switch frames on the
native-code stack: first a catch frame, then a return frame.
When g" tail calls h®, the system would normally push two
new mode-switch frames, on the emulated-code stack. In-
stead, HiPE implements a mode-switch call event as follows:

1. if the current return frame is a mode-switch frame,
then

(a) remove the mode-switch return frame from the
caller’s stack

(b) remove the mode-switch catch frame from the
caller’s stack

(c) invoke the callee;
otherwise
2. push a mode-switch catch frame on the callee’s stack
3. push a mode-switch return frame on the callee’s stack

4. invoke the callee

By preventing adjacent mode-switch frames from being cre-
ated, the test restores proper tail-recursive behaviour. The
test itself is not expensive, and is only executed when there
is a mode-switch call. This implementation refutes a state-
ment in [9, Section 4.4.3], where it was claimed that the
use of mode-switch stack frames loses tail-recursion opti-
misation. Although similar methods to maintaining proper
tail-recursion in the context of mixed mode execution have
been used in some Prolog implementations (e.g. BIM Pro-
log, SICStus Prolog) and perhaps elsewhere, these methods
are probably folklore: to the best of our knowledge, they
have never been in print.

4.4.4 Mode-switching in suspend/resume events

In addition to the call, return, and throw events described
above, HiPE may also need to perform mode-switches when
a process is suspended or resumed.

The scheduler in the Erlang runtime system has no knowl-
edge about the current mode of a process. It assumes, im-
plicitly, that each process is executed by the JAM emulator.
Therefore, when a process is created or resumed, the sched-
uler simply passes the process’ PCB to the JAM emulator
for execution.

When a process is suspended while executing in native code,
HiPE sets the resume address in the PCB to point to a
special emulator instruction. When the scheduler resumes
the process, the JAM emulator executes this instruction,
which transfers control to the suspended native code.

4.5 Modifications to the JAM emulator

As described in Sections 4.2-4.4, we have modified the JAM
emulator to support mixing native and emulated code. In
summary, these modifications are:

o The JAM loader registers the location of each func-
tion’s bytecodes with the HiPE linker.

® A native-code stack has been added to the PCB, to-
gether with a few native-code variables (stack pointer,
resume address).

e The garbage collector has been extended to scan the
native-code stack, and to repair catch frame links when
either stack is relocated.

e A small number of instructions have been added to the
JAM emulator, to support mode-switching between
emulated and native code.

A previous version of HiPE used dynamic tests in the
JAM emulator instead. At each call, a check was made
if the target also had a native-code version, and at
each return, throw, and resume, a check was made if
the return address was zero, which was interpreted as
a signal to switch mode. That design required changes
to many different locations in the emulator, compli-
cated the mode-switch stack frame management, im-
posed runtime overheads on emulated code, and was
generally ugly and difficult to maintain.

In contrast, our current design requires only a small
localised extension of the emulator, and imposes no
runtime overheads except during mode-switches.

4.6 Performance instrumentation features

To support performance analysis and benchmarking, and to
help users identify which parts of their code could benefit
most from compilation to native code, we have added two
kinds of performance instrumentation features to HiPE’s
runtime system: software event counters and hardware per-
formance counters.

The software event counters keep track of how often various
interesting operations are performed. These include: the
number of times each Erlang function is called, the number
of times each built-in library function is called, how many
times each JAM instruction is executed, and how many
times control is passed between emulated and native code.

The hardware performance counters are event counters in-
side the UltraSPARC processor®. They are used to measure
the number of clock cycles spent in code regions, and to pro-
vide hardware-specific information, for example the amount
of time Iost due to stalls and cache misses. The reason for
a stall can also be determined: data cache miss, instruction
cache miss, external cache miss, or a branch misprediction.
For more details on the instrumentation facilities, the reader
is referred to [14].

5. PERFORMANCE EVALUATION

We conducted our performance comparison on a 143 MHz
single-processor Sun UltraSPARC 1/140 with 128 MB of pri-
mary memory running Solaris 2.6. Although slow by today’s
standards, this machine was used because we could ensure
it was lightly loaded during the benchmark runs, and it had
enabled user-level access to the UltraSPARC’s performance
instrumentation facilities [22]. The latter was needed for
the performance results presented in the following section.
When using HiPE, all functions actually called in the pro-
grams were compiled to native code.

5.1 Erlang systems used in the comparison

Besides HiPE (version 0.90), three other Erlang systems
were used in this comparison: JAM, BEAM, and Etos. The
JAM and BEAM systems used in our measurements are
from Ericsson’s Erlang 47.4.1 (upon which HiPE 0.90 is
based). The version of Etos used is 2.3.° We describe BEAM

*Many modern processors have hardware performance coun-
ters, although their functionality and the level of OS support
varies.

*Versions of Etos & HiPE used in [8] are significantly older
than those used here.

and Etos below; HiPE and JAM have been fully described
earlier in this paper.

BEAM

The BEAM ([12] is a register-based abstract machine, influ-
enced by the Warren Abstract Machine (WAM) [26] used
in many Prolog implementations. Compared to JAM, the
translation of Erlang code to BEAM abstract machine in-
structions is more advanced. For example, the treatment
of pattern matching is better in the BEAM system, even
though a full pattern match compiler (like that in e.g. [20])
is not implemented. Also, BEAM uses a direct-threaded
emulator [4, 17] using gec’s first-class labels extension [21]:
instructions in the abstract machine code are addresses to
the part of the emulator that implement the instruction.

Etos

Etos, described in [8], is a system based on the Gambit-C
Scheme compiler. It translates Erlang functions to Scheme
functions which are then compiled to C. The translation
from Erlang to Scheme is fairly direct. Thus, taking ad-
vantages of the similarities of the two languages, many op-
timizations in Gambit-C are effective when compiling Er-
lang code. Among these optimizations are inlining of func-
tion calls (currently only within a single module) and un-
boxing of floating-point temporaries. Etos also performs
some optimizations in its Erlang to Scheme translation, for
example, simplification of pattern-matching. Process sus-
pension in Etos is done using call/cc implemented using
a lazy copying strategy; see [13]. When a process is sus-
pended, the stack is “frozen” so that no frame currently
on the stack can be deallocated. When control returns
to a suspended process, its stack frames are copied to the
top of the stack. When the stack overflows, the garbage
collector moves all reachable frames from the stack to the
heap. In general, suspending and resuming a process will
require its stack to be copied at least once. In contrast,
the JAM/BEAM/HIPE runtime systems handle processes
explicitly; saving or restoring the state of a process involves
storing or loading only a small number of registers. The
Etos compiler is work under progress, and it is not yet a full
Erlang implementation. We have therefore been able to run
only relatively small benchmarks on Etos.

5.2 Time on benchmark programs
We start our performance comparison using the following set
of “standard” small sequential benchmarks also used in [8]:

fib A recursive Fibonacci function. Calculates £ib(30) 50
times.

huff Huffman encoder. Compresses and uncompresses a
short string 5000 times.

length A tail-recursive list length function finding the length
of a 2000 element list 100,000 times.

nrev Naive reverse of a 100 element list 20,000 times.
qsort Ordinary quicksort. Sorts a short list 50,000 times.

smith The Smith-Waterman DNA sequence matching algo-
rithm. Matches one sequence against 100 others; all of
length 32. This is done 30 times.

| Benchmark || HiPE | Etos | JAM | BEAM
fib 33.8 31.8 281.4 120.6
huff 11.9 12.1 234.7 69.2
length 22.7 17.2 | 375.6 98.9
nrev 18.5 244 | 241.3 56.9
qsort 12.3 11.0 | 208.1 97.6
smith 114 11.6 | 114.6 53.9
tak 13.5 12.8 | 140.1 100.2
decode 22.8 | 524 67.8 49.0

Table 1: Times (in secs) for small sequential bench-
marks.

tak Takeuchi function, uses recursion and integer arithmetic
intensely. Calculates tak(18,12,6) 1000 times.

and a medium-sized one (= 400 lines):

decode Part of a telecommunications protocol. Decodes an
incoming binary message 500,000 times.

Table 1 contains the results of the comparison. In all bench-
marks, HiPE and Etos are the fastest systems: in small pro-
grams they are between 7 to 20 times faster than JAM and
3 to 8 times faster than the BEAM implementation; see also
Figure 3. Excluding length and nrev where HiPE and Etos
show complementary behaviour, the performance difference
between these two systems on small programs is not signifi-
cant. In decode, where it is probably more difficult for Etos
to optimize operations and pattern matching on binary ob-
jects (i.e. on immutable sequences of binary data), HiPE is
more than 2 times faster than Etos. HiPE is faster than
JAM and BEAM, but not to the same extent as for the
other benchmarks.

20 t ‘ElHiPE —

| {mEeTOS

] |

|OgaM

: 15 !————— i

2 |

o 1

=1

,g 1

o 10 * =

o

3

wm

o - - 1
nrev gsort smith tak decode

fib huff length

Figure 3: Speedup compared to JAM for small
benchmarks.

Next, we compare the Erlang implementations on concur-
rent programs. As mentioned in the introduction, most Er-
lang programs rely heavily on the concurrency primitives of
the language. Thus, these programs call for special attention
in good Erlang implementations. The benchmark programs
we used are:

ring Creates a ring of 10 processes and sends 100,000 mes-
sages. The benchmark is executed 100 times.

Benchmark || HiPE | Etos | JAM | BEAM
ring 37.1 76.0 101.6 72.5
stable 128 | 27.9 37.8 19.5
life 56| 20.1 13.4 8.7

Table 2: Times (in secs) for small concurrent bench-
marks.

stable Solves the stable marriage problem for 10 men and
10 women 5000 times.

life Executes 1000 generations in Conway’s game of life on
a 10 by 10 board where each square is implemented as
a process.

Table 2 contains the results of the comparison. Once again,
HiPE is the fastest system: it is around 2.5 times faster
than JAM, 55% faster than BEAM (95% on ring), just over
2 times faster than Etos on ring and stable and more than
3.5 times on the life benchmark; see also Figure 4. In fact,
Etos 2.3 does not seem to be significantly faster than JAM
and is slower than BEAM when processes enter the picture.
We suspect that Etos’ implementation of concurrency via
call/cc is not very efficient.

3

N

[

Speedup compared to JAM

Stable

Ring Life
Figure 4: Performance speedup for concurrent
benchmarks.

5.3 Time on real programs

To us, it was very unclear whether performance experiences
gathered from the study of small or medium-sized bench-
marks are applicable to real-life applications of Erlang. We
thus also compared the performance of HiPE on quite large
Erlang programs. The programs used in this endeavour
were:

JAM Compiler This “application” is incestuous, but large
nevertheless. The used portion of the compiler consists
of 30 modules totalling = 18, 000 lines of Erlang code.
The benchmark is to compile 11 of these modules using
the JAM compiler compiled in each of the systems.

Eddie An HTTP parser which handles 30 complex http-get
requests. Excluding the OTP libraries used, it consists
of 6 modules for a total of 1,882 lines of Erlang code.
The benchmark is executed 1,000 times.

AXD/SCCT This is the time-critical software part of the
AXD 301 switch mentioned in the introduction. Not
counting standard libraries, it consists of about 95,000
lines of Erlang code. This actual benchmark of the

[Program HiPE | JAM | BEAM
JAM Compiler 5.4 17.2 5.9
Eddie 18.8 93.6 40.0
AXD/SCCT 68.0 | 109.9 84.5

Table 3: Execution times (in seconds) for large pro-
grams.

ATM switch sets up and tears down a number of con-
nections 100 times; 501 functions are used in the bench-
mark which amount to =~ 15% of the code. The re-
maining code provides other ATM services or handles
errors that can occur in practice (but not during the
benchmark run!). These parts were not compiled to
native code.

Table 3 shows the results of this comparison.® HiPE is once
again the fastest system. However, as we move from bench-
marks to real-world applications of Erlang, programs tend
to spend more and more of their execution time in built-ins
from the standard library. For example, the AXD/SCCT
program extensively uses the built-ins to access the shared
database on top of the Erlang term storage; see the data
presented in the Section 6 and in [14].

As the implementation of these built-ins is currently shared
by all three systems, the percentage of execution spent in
these builtins becomes a bottleneck and HiPE’s speedup
is less than before. Still, HiPE is 24% faster than BEAM
on the largest benchmark, and considerably faster than the
JAM implementation on which it is based; see also Figure 5.

& —
|m HiPE
4 OJAM

__|SBEAM |

B

JAM comp Eddie AXD 301

Speedup over JAM

Figure 5: Performance speedup for large programs.

5.4 Code size

During benchmarking, all called functions of programs were
compiled to native code. This makes perfect sense in small
programs but might not be the best approach in all cases.
As mentioned, users of HiPE can selectively compile time-
critical parts of their applications to native code and use
the emulator for the remaining parts. Still, HiPE’s space
overhead is not prohibitive and compilation of whole appli-
cations to native code is a valid option.

Table 4 provides some evidence to that effect. For JAM,
BEAM, and HiPE it presents the size (in bytes) of the loaded
code that is used by the benchmarks in this section. In all
cases but AXD/SCCT all functions of loaded modules are

$Etos is not included here; it currently cannot handle these
large programs.

Program JAM | BEAM | HiPE || Etost
fib 616 1937 4080 17808
huff 2530 7691 | 38728 90744
length 678 2085 4400 22424
nrev 750 2145 4932 24444
qsort 850 3049 6308 24784
smith 1416 4709 | 13616 71760
tak 656 2057 4712 23684
decode 1933 8641 | 14012 || 100132
ring 784 2737 6920 29380
life 1400 5069 | 15280 63772
stable 1299 4701 | 14008 59264
Eddie 21717 81075 | 170308 N/A
AXD/SCCT | 83370 — | 244936 N/A

Table 4: Code-size (in bytes) for the programs used.

used in the benchmark; in AXD/SCCT only a fraction of the
functions is used. As the BEAM-based Erlang system does
not provide any means of obtaining the size of individual
functions (only of whole modules), we could not report the
corresponding number for BEAM. For small programs, the
code size increase of HiPE compared to JAM is between
7 to 15 times. Compared to BEAM, HiPE requires 2 to 3
times more code space (excluding huff). In Jarge programs,
the space overhead is on the low end; see e.g AXD/SCCT.
For comparison, we also present the sizes of stripped .o1
files produced by the Etos compiler; they are quite big partly
due to the aggressive inlining performed by Etos 2.3. It is
not clear to us to what extent Etos benefits from its use of
inlining. Note that the code size reported for Etos might
differ slightly from the code size of these programs when
loaded; however, not by much. Table 4 denotes this by a .

5.5 Erlang vs. other functional languages

We have compared the performance of HiPE with that of
several other functional language implementations (Bigloo
2.1c, CML from SML/NJ 110.0.6, CLEAN 1.3.2) on a few
small benchmarks (versions of the gsort, fib, huff, and ring
benchmarks described previously).

On the small sequential benchmarks, CLEAN was consis-
tently the fastest system. The other three systems showed
considerable variance in their performance, with no clear
winner. Compared to CLEAN, CML was from 1.75 to 4.4
times slower, Bigloo 1.33 to 13 times slower, and HiPE 1.88
to 14.8 times slower. HiPE and Bigloo had comparable per-
formance, except on gsort where HiPE was more than twice
as fast. On the concurrent ring benchmark, HiPE was 1.3
times slower than CML, while the JAM emulator was 1.7
times slower than CML.

See [15] for further details about this comparison.

6. MORE DETAILED MEASUREMENTS

To shed more light on HiPE’s performance characteristics
compared to the other two Erlang systems from Ericsson,
we present some additional measurements on three bench-
marks of different sizes: length, Eddie, and AXD/SCCT.
These measurements were obtained by enabling the perfor-
mance instrumentation features of the three systems (see
Section 4.6) during their installation; this explains slight

mismatches with performance numbers reported in the pre-
vious section. A more thorough analysis and comparison of
these systems can be found in [14].

length is a small sequential benchmark consisting of two
nested loops, one that traverses a list and one that
iterates a number of times.

On this benchmark HiPE is 16 times faster than JAM
and over 3 times faster than BEAM; see Table 5. The
byte-code emulation overhead is evident in this bench-
mark where HiPE executes only 6 million SPARC in-
structions while JAM and BEAM execute 49 and 10
million instructions respectively. JAM and BEAM also
have problems (10% and 14% of their run time, respec-
tively) with pipeline stalls from branch mispredictions;
see Table 7. The same table shows that all three sys-
tems have some problems with load stalls (a value is
needed before it has been completely loaded into a reg-
ister) but none of the systems suffers from instruction
cache misses.

Eddie is a mildly concurrent (only 5 messages are sent)
benchmark which parses HTTP requests. The parser
consists of four modules, another two are added for
the benchmarking purposes, 4.7% of the calls are to
built-in C functions, and some Erlang/OTP standard
libraries are heavily used. The benchmark consists
of 159 different Erlang functions that are called a total
of = 30,000 times.

On this benchmark, HiPE is 6.3 times faster than JAM
and over 2 times faster than BEAM. Here the improved
BEAM compiler almost makes up for the emulation
overhead: BEAM executes 4 million SPARC instruc-
tions which is not much more than HiPE’s 3 million
and a lot less than JAM’s 13 million. All three systems
have about the same percentage of pipeline stalls: 36%
for JAM and HiPE, and 37% for BEAM.

AXD/SCCT is a time critical part of Ericsson’s AXD 301
ATM switch. SCCT is responsible for setting up and
tearing down connections in the switch. The code we
have used is from version 6 of AXD 301, an earlier
version than what is used in the product today. This
benchmark is more concurrent than Eddie, with sev-
eral processes and over 3000 messages sent. It also
uses the built-in functions heavily: about 32% of the
execution time for JAM is spent in built-ins. In abso-
lute terms, this time is the same in HiPE; in relative
terms, it corresponds to 50% of HiPE'’s execution time
and built-ins start becoming a bottleneck. SCCT is a
large benchmark: the total size of the 501 called func-
tions is in native code 244,936 bytes (see also Table 4).

| JAM | BEAM | HiPE
length 1 4.5 16.1
Eddie 1 2.6 6.3
AXD/SCCT 1 1.4 1.6

Table 5: Speedups for BEAM and HiPE compared
to JAM calculated from the total execution times in
clock cycles.

Mc [Mi | CPT |

JAM | 63| 49| 1.30
BEAM || 14| 10| 145
HiPE 4| 6] 070

JAM || 18| 13| 1.39
Eddie |BEAM | 7| 4| 1.54
HiPE 3| 3| 107
JAM | 153 | 101 | 1.52
AXD/SCCT | BEAM || 111 | 62 | 1.79
HiPE | 97| 62| 1.6

length

Table 6: Measurements for the benchmarks. The
Mec column is rounded average execution times in
million of cycles. The Mi column is the average
number of millions executed instructions. The CPI
column is the number of cycles per instruction (the
lower the better).

On this benchmark HiPE is only about 1.6 times faster
than JAM and 1.15 times faster than BEAM. Here
the improved BEAM compiler completely makes up for
the emulation overhead. This is indicated by the fact
that BEAM and HiPE both execute about 62 million
SPARC instructions on this benchmark; see Table 6.

The execution times in millions of clock cycles (Mc) and
millions of executed instructions (M3i) for each system and
benchmark are shown in Table 6.

The high speedup on length for HiPE compared to JAM has
two reasons:

1. Because of compilation to native code and various opti-
mizations, HiPE executes less than 12% of the number
of SPARC instructions that JAM executes.

2. By utilizing the pipeline better, HiPE executes 1.86
times as many instructions per cycle as JAM.

With fewer instructions executed and better pipeline utiliza-
tion, HIiPE gets a speedup of 16 (8.6%1.86) times over JAM;
this is shown in Table 5.

On Eddie, as on length, HiPE and BEAM execute consid-
erably less instructions than JAM, and HiPE has a lower
CPI than JAM and BEAM. This benchmark uses built-
in functions and concurrency. This together with the use
of different types of calls probably is the reason that the
speedup for HiPE is not as great as it was on length. On
Eddie, all three systems spend more than 35% of the time
stalling, mainly on loads. HiPE has significantly higher in-
struction cache stalls than the other two system, while JAM
and BEAM suffer more from branch misprediction stalls; see
Table 7.

Because of the large size of the generated native code, on
AXD/SCCT the absolute number of instruction cache stalls
is about twice as many for HiPE (22% of 97 million) as for
JAM (6% of 153 million). But taken together, the number of
stalls from mispredictions and stalls from instruction cache
misses is about the same for JAM and HiPE. All three sys-
tems spend about 40% of their total execution time stalling

[GL | %M | %IC | %Total

JAM 12 10 0 22

length BEAM 9 14 1 23
HiPE 16 0 2 18

JAM 23 10 2 36

Eddie BEAM || 23 11 3 37
HiPE 18 4 14 36

JAM 23 12 6 41

AXD/SCCT | BEAM | 25 8 7 40
HiPE 16 5 22 43

Table 7: Percentage of the execution time spent
on the most common types of pipeline stalls. The
column %L shows the percentage of load stalls,
%M shows the percentage of branch mispredic-
tion stalls, %ZIC shows the percentage of instruction
cache stalls, and finally the % Total column shows the
total percentage of stalls. All numbers are based on
the number of executed machine cycles.

on this benchmark. This indicates that even though HiPE
runs into problems with the instruction cache, HiPE does
not suffer more from this than JAM or BEAM suffer from
other types of stalls. One reason why HiPE does not achieve
the same speedup as on smaller benchmarks is that much of
the time is spent in code currently outside HiPE’s control,
such as built-in functions and garbage collection. Ignoring
the time spent in built-in functions, the garbage collector,
and the operating system, HiPE is 2 times faster than JAM
on this benchmark.

7. CONCLUSIONS AND FUTURE PLANS

This paper has described the architecture and implementa-
tion of HiPE, a native code compiler for Erlang. HiPE offers
flexible, user-controlled integration between interpreted and
native code, is a complete implementation of Erlang, and
supports features crucial for telecommunication applications
such as concurrency, error handling, and hot-code loading.
As our performance evaluation shows, HiPE is the fastest of
current Erlang implementations.

HiPE is publicly available as open-source since March 2000.
The current release is based on Erlang 47.4.1. Since the Er-
icsson releases of open-source Erlang will exclusively use the
BEAM implementation from now on, we plan to port HiPE
to the BEAM run-time system. At present HiPE only runs
on one platform, the UltraSPARC. To improve the useful-
ness of the HiPE system, we are currently developing a code
generator for the x86 processor family. We are also develop-
ing a new front-end for HiPE so that compilation does not
necessarily rely on the outcome of a previous compilation to
JAM (or to BEAM). Instead, the new front-end will be based
on Core Erlang,” an intermediate representation for Erlang
developed recently. Since Core Erlang is a fairly high-level
functional language, we expect that it should be easier to
include optimizations, for example efficient pattern-match
compilation, at that level.

Our benchmark results indicate that real-world applications
spend a large fraction of their time in built-in standard pro-

"See http://wwv.csd.uu. se/projects/hipe/corerl.

cedures. We will therefore investigate this issue further, and
extend the scope of HiPE accordingly. This may require im-
proving the compiler, tuning the runtime system, or both.

Acknowledgements

HiPE has greatly benefited from the prior involvement of
Christer Jonsson and from various design discussions with
Thomas Lindgren, Sven-Olof Nystrom, and Richard Carls-

son.

We also thank some anonymous reviewers for comments

which helped improve the presentation of this paper. This
research has been supported in part by ASTEC (Advanced
Software Technology) competence center.

8.
(1]

(2]

(3]

(4]

[5

—

[6]

(7]

(8

[9]

(10]

[11]

REFERENCES

J. Armstrong. The development of Erlang. In
Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, pages
196-203, June 1997.

J. Armstrong, R. Virding, C. Wikstrém, and
M. Williams. Concurrent Programming in Erlang.
Prentice-Hall, second edition, 1996.

T. P. Baker and G. A. Riccardi. Implementing Ada
exceptions. IEEE Software, 3(5):42-51, Sept. 1986.

J. R. Bell. Threaded code. Communications of the
ACM, 16(8):370-373, June 1973

S. Blau and J. Rooth. AXD 301—A new generation
ATM switching system. Ericsson Review, 75(1):10-17,
1998.

P. Briggs, K. D. Cooper, and L. Torczon.
Improvements to graph coloring register allocation.
ACM Trans. Prog. Lang. Syst., 16(3):428-455, May
1994.

R. K. Dybvig. Three Implementation Models for
Scheme. PhD thesis, Department of Computer
Science, University of North Carolina at Chapel Hill,
1987. Technical Report TR87-011. Available from:
http://www.cs.indiana.edu/scheme-repository/.

M. Feeley and M. Larose. Compiling Erlang to
Scheme. In C. Palamidessi, H. Glaser, and K. Meinke,
editors, Principles of Declarative Programming,
number 1490 in LNCS, pages 300-317.
Springer-Verlag, Sept. 1998.

A. D. Gordon. How to breed hybrid
compilers/interpreters. Technical Report
ECS-LFCS-88-50, Department of Computer Science,
University of Edinburgh, 1988.

D. Gudeman. Representing type information in
dynamically typed languages. Technical Report TR
93-27, University of Arizona, Department of
Computer Science, Oct. 1993.

P. H. Hartel et al. Benchmarking implementations of
functional languages with “pseudoknot”, a float
intensive program. Journal of Functional
Programming, 6(4):621-655, July 1996.

(12]

(13]

[14]

[15]

(16]

(17]

(18]

[19]

(20}

[21]

[22]

23]

(24]

[25]

[26]

B. Hausman. Turbo Erlang: Approaching the speed of
C. In E. Tick and G. Succi, editors, Implementations
of Logic Programming Systems, pages 119-135. Kluwer
Academic Publishers, 1994.

R. Hieb, R. K. Dybvig, and C. Bruggeman.
Representing control in the presence of first-class
continuations. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 66-77, June 1990.

E. Johansson, S.-O. Nystrom, T. Lindgren, and
C. Jonsson. Evaluation of HiPE, an Erlang native
code compiler. Technical Report 99/03, ASTEC,
Uppsala University, 1999.

E. Johansson, M. Pettersson, K. Sagonas, and

T. Lindgren. The development of the HiPE system:
Design and experience report. Technical report,
ASTEC, Uppsala University, 2000. In preparation.

R. E. Jones and R. Lins. Garbage Collection:
Algorithms for automatic memory management. John
Wiley & Sons, 1996.

P. Klint. Interpretation techniques. Software —
Practice and Ezperience, 11(9):963-973, Sept. 1981.

G. Lal. MLRISC: Customizable and reusable code
generators. Unpublished technical report available
from: http://www.cs.bell-tabs.com/~george, 1996.

S. Peyton Jones, N. Ramsey, and F. Reig. C--: A
portable assembly language that supports garbage
collection. In G. Nadathur, editor, Principles and
Practice of Declarative Programming: Proceedings of
International Conference PPDP’99, number 1702 in
LNCS, pages 1-28. Springer-Verlag, Sept. 1999.

S. L. Peyton Jones. The Implementation of Functional
Programming Languages. Computer Science.
Prentice-Hall, 1987.

R. M. Stallman. Using and porting gcc. Technical
report, The Free Software Foundation, 1993.

Sun Microsystems. UltraSPARC™ User’s Manual.
Technical report, Sun Microelectronics, Palo Alto,
CA, 1997.

S. Torstendahl. Open telecom platform. Ericsson
Review, 75(1):14-17, 1997. See also:
http://www.erlang.se.

R. Virding. A garbage collector for the concurrent
real-time language Erlang. In H. G. Baker, editor,
Proceedings of IWMM’95: International Workshop on
Memory Management, number 986 in LNCS, pages
343-354. Springer-Verlag, Sept. 1995.

P. Wadler. An angry half-dozen. SIGPLAN Notices,
33(2):25-30, Feb. 1998.

D. H. D. Warren. An abstract Prolog instruction set.
Technical Report 309, SRI International, Menlo Park,
U.S.A., Oct. 1983.

ECOMP - an Erlang Processor

e L e

Robert Tjarnstrom, Ericsson
Radio

Peter Lundell, Ericsson
Telecom

Outline

§ Why an Erlang Processor
B The Processor

I Run-Time System

i Prototype

I Results

What Is an Erlang Machine

s e e o Ny

RS NY SRR P -y

I A (micro) processor dedicated for execution

of Erlang.
I Executes compiled Erlang code.

Why a Dedicated Erlang
Processor

I Increased use of Erlang

I Eliminating Performance and Power Dissipations
Concerns

I Low Power Important in Embedded Control
B Simplify use of Erlang for Embedded Control

B Eliminate cost for Real-Time Operating System
I Provide run-time functionality

Power Dissipation in
Processors

e et it 0 g e B

I Factors Increasing Power Dissipation
I Increasing functionality
I Less efficient code
I Less efficient languages
I Increasing speed requirements
I Factors Decreasing Power Dissipation
I Lower supply voltages
I Scaled down mfg. processes
I Increased level of integration

Instruction Set Architecture

I Optimized for Execution of Erlang Code
I Function calls, return from function
I Argument transfer
I list operations
I Register file management
I Clean register file upon start of new function
I No read/write-back of variables needed

Instruction Set Architgcture

1 Supports processes
I Supports local scope

I Three sub-instructions in each machine
instruction

I Sub-instructions for garbage collections

Processor Architecture

i Much in common with conven- @
i tional architectures Fetch
I RISC Decflde
I LIW mgi:-u. <
I Harvard
I Pipelined (3-5 stages) S

B No complex (advanced) features
I Not super-scalar

I No OOO-execution or speculative execution
I No branch-prediction (but will be added)

P

i B i i

Processor Architecture

I Real-time garbage collection
I GC performed concurrently in HW
I Currently supports one element size

I HW supported process-switching (~20 cycles)
B Currently 1 process-queue, (may have more)
i Clock-cycle limit for each process

1 (Basic type checking)

B (Prepared for Multi-Threading)

Run-Time Functionalit_y

I Switch, Spawn, Send, Message-queue handling,
Catch/Throw, Time-out

i External io, Atom-handling, Registered-
processes

1 Implemented in machine code
i Built-ins (e.g., element)
I Standard Libraries (e.qg. lists, ETS)

Prototyping

e RIS S

I HW model of the processor (developed in
Erlang)

§ VHDL implementation & test bench
I FPGA based demonstrator (VHDL-code)

Prototyping Il
o

Functional Block Diagram Of RC1000-BH
I PCI Board with Xilinx 40150 FPGA and 4 banks of
2 MB SRAM each

I Board has PCI bridge (slows down
communication)

Prototypil_jg 1]

e o e e T b AL N

I Using a PC (NT) to host the board.
I Board driver routines were only available for Win NT

I Messaging between Erlang-host to Erlang-board
is accomplished thru a dynamically loadable
driver (DLL).

I The external Erlang format is used for comm
between board and host.

i IO processes are running on both board and
host.

Performance

I About 3-4 lines of machine code per Erlang line
§ An approximate speed-up of a factor 30 can be
seen
I measured per use of clock cycles
I Tested a larger example

I Call Control (714 k dump)

I Increasing performance while decreasing power with
more than order of a magnitude

Near Future Activities_

b e e e I

B Compiler Improvements

I Product integration's

I Distributed control node, e.g., multi-processor
execution.

I Full-Scale Version.
§ Multi-threaded Processor.
I Prepare for Silicon Implementation.

Beasade Y-

Erlang/OTP User Conference 2000

An Erlang DTD

Richard A. O'Keefe
CS, University of Otago

Erlang/SGML is not an SGML parser for or in
Erlang.

If you want one, parse the ESIS output of an
‘sgmls’ or ‘nsgmis’ process (dead easy).

Or you could pick up Jan Wielemaker's sgml
package for SWI Prolog (the parser core is in
C; it calls foreign interface code to build Prdlog
data structures) and adapt that (considerably
faster than nsgmis but less capable).

Erlang/SGML is not an XML parser either (I've
done one 10-20% faster than expat in 950 lines
of C).

Erlang/SGML is not primarily a literate pro-
gramming tool for Erlang. Unlike most LP
tools, it cannot generate multiple source files
from a single document. Currently it does not
handle fragments, which Erlang has little need
of. It does handle cross-referencing.

Noweb, Nuweb, and Funnelweb work perfectly
well with Erlang, so we don’'t need a new LP

tool for Erlang.

If we did want one, there's Kristina Sirhuber's
YERL.

It's all about document indexing to support the
maintenance process.

Hypothesis:

Maintenance programmers seek-
ing information or trying to fig-
ure out the consequences of a

change have to find related doc-

uments.

Improving that step should help

maintenance.

Isn’'t “maintenance” a rather old-fashioned way
of thinking about a neat fast-development lan-
guage like Erlang?

No. Faster development means that the pro-
gram is useful sooner, which just means that
the maintenance phase is longer. (“Longer” is
not the same as “more expensive’.)

Extreme Programming involves continuing re-
design, which absolutely requires good tools
for finding related places in related documents
easily and quickly.

Erlang/SGML is part of the Large Scale Erlang
project. Approaches that work well for 300
kSLOC do not scale to 100 MSLOC.

One major requirement is a water-tight module
system. (I offered two papers this year; that
would have been number 3.)

Another requirement is more contextual infor-
mation, so that far less human filtering is re-

quired.

See the "SIF" problem later.

What are SGML and XML anyway?

SGML is a language in which one may define
document grammars, with rules like

<!ELEMENT module - O
(metadata,
(function|pattern|constant|
typedef | protocol|p) *,
section*,glossary?,index*)>
<!ELEMENT section - -
((function|pattern|constant|
typedef | protocol|p)*,
section*,glossary?,index*)>

Abstractly, a document is a tree, where each
node is either a text node or a labelled node; a

labelled node has a label, a set of attribute=value

pairs, and a possibly empty sequence of chil-
dren. Nodes may be given unique identifiers,
which are used for cross-references within a

tree.

Developing a document grammar is basically
an exercise in information modelling, rather
like the conceptual modelling phase of the Uni-
fied Process.

There are several semi-formal models of the in-
formation content of a document. The SGML
standard has Element Structure Information
Sets; HyTime and DSSSL have Graph Repre-
sentations Of property ValuEs. XML has sev-
eral not quite mutually compatible ones, but is
like SGML.

Erlang/SGML expresses

SGML XML
writable need machine help
readable need machine help e text (based on HTML with strong influence
concise amazingly bulky from TEI, but reasonable restraint)
standard, stable W3C, grows fast

(Namespaces, XBase, ...)

, - tables (based on HTML4 but not -
tricky to parse trivial to parse e (base u as pow

easy to process harder to process erful)

The Erlang SGML DTD and the Erlang XML e mathematics (not ISO 12083, not HTML
DTD both include the same grammar file; the 3.0, most certainly not MathML which is
SGML version enables human readability fea- not meant for human beings, but home
tures such as tag omission and short reference brew; nearly as concise as IATEXbut stricter)

strings.
e pictures (images via Encapsulated Postscript,
Erlang source: 39k; stripped: 21k; ' diagrams via Pic)

as SGML: 43k; as XML: 104k.
e ...continued ...

Status

e Erlang source code — markup:

Erlang/SGML expresses _
done in Prolog. Complete.

e Erlang source code (enforces all syntac- e markup — Erlang source code:
tic constraints except for what's allowed done in Prolog. Complete.
in guards; could do that too)
e parser:
e glossaries SP ‘nsgmis’ (a wee bit too complex for
‘'sgmls’), SWI ‘sgml’.
e indices
e SGML to XML conversion:
e Dublin core metadata done by ‘nsgmls’
e examples e document searching: LT XML toolkit (good)

or sgrep (poor).

11 12

.. Status: The context problem: is ‘SIF’

e the name of a Goddess?
e editing:
by hand (own editor) or Emacs SGML mode
(psgml). Free XML editors are disappoint-
ing. e a file extension (Smalltalk Interchange
' Format)?

part of a word ("SIFTER' perhaps)?

e formatting:

?
patchwork of AWK scripts; to be redone in some other acronym

Prolog. e a tag used inside some data structure?.
e manual: e a module name?

in IATEX; woefully incomplete but slowly

growing. e a function name without its module

and arity?

a type name?

Why Prolog? Because I have Prolog on my
home Macintosh but not Erlang. Also because
of SWI Prolog/SGML kit. Should migrate to If I'm looking for references to a module, I do

Erlang when compléte. not want to be distracted by Norse goddesses.
13 14

The context solution. Use a document gram-
mar which is based on Erlang syntax but en-
riches it with information people need and com-

pilers don’t.

<name myth/SIF/ goddess

<text/SIF/ text fragment

<atom u=ext/SIF/ file extension

<acr/SIF/ acronym (— <glossary>)
<atom u=tag/SIF/ data structure tag
<modname/SIF/ module name
<funcname/SIF/ local function name
<funcname m=x/SIF/ imported function name
<typename/SIF/ type name
<pidname/SIF/ PID name

15

<name>, <acr>, <abbr>. <modname>,
<funcname>, <patname>, <pidname> and <type
already existed for use in text; <text> already
existed for use in mathematical formulas. Al-
lowing them to be used where an otherwise
unclassified <sym> would have been used was

easy.

There is no way to predict all possible uses for
an atom.

<!ELEMENT atom - - (#PCDATA)>
<V'ATTLIST atom u NAME #IMPLIED>

says that the ‘u' attribute of a <sym> can be
any name.

16

<text> normally allows all sorts of markup in-
side it including mathematical formulas; that
doesn't make a lot of sense in atoms. SGML
lets us write

<!ELEMENT expr (...)
-(em|strong|math|...)>

The exclusion here says that certain tags are
not allowed anywhere inside an <expr> ele-
ment even if the rest of the grammar (such
as the definition of <text> says that they are.
XML does not have exclusions, more’s the pity
(XHTML really needs them).

17

What a system can't figure out, it can be told.
The u= attribute lets us tell Erlang/SGML
how an atom is being used.

If a system can figure something out, it should.
This is very like type checking, but it goes be-
yond current Erlang type systems. It should
be possible to automatically propagate usage
information.

But no type checker will analyse the Erlang

atoms that appear in the explanatory text, and
we do need to find them during maintenance.

18

Nothing in Erlang syntax expresses a relation-
ship between documents. Directives such as

-module(this) .
-export_to(that, [a/1,b/2]).
-import (the_other, [c/3]).

express relationships between this document
and some modules. The links are completed

at run time by loading files.

19

No official annotations express relationships be-
tween source files and other documents such as
standards, requirements, test plans, user doc-
umentation, you name it.

There are not even any clear suggestions about
how to use -author -vsn and so on.

There is an official set of document annota-

tions for cataloguing and indexing purposes:
the Dublin Core.

20

Dublin Core p1
Dublin Core p2

e <identifier/unambiguous formal reference

for this resource/ e <language/en_NZ/

_ one for each language used; I extend this
o <title/Name by which humans know this

resource/ o <type/software/

but useful in descriptions of other files
e <subject/keywords,key phrases, ACM codes,wh:

about,for indexing/ o <format>text/SGML</format>

_ but useful to describe other files
e <description/Reasonably full description

(lengthy abstract)/ e <creator/Repeat with name of everyone

_ taking major part in creation (-author?)
e <coverage/scope, e.g., which standards

supported/ e <contributor/Repeat with name of each

contributor (minor maintenance?)/
e <date/yyyy-mm-dd/
When this resource became available

21 22

Dublin Core p3

I propose adding a new directive to Erl X
e <publisher/Who caused this to be released/ i g ang

-dc(Attribute, Valuel, Qualifier(s)}]).
e <rights/State or cite rights held— ([Q (s)1)

like -copyright but more possibilities
pyrig P / ~dc(creator, "Karl Marx", [{type,architectl}]).

-dc(creator, "Groucho Marx", [{type,coder}]).
-dc(contributor, "Greasy Marks").
base of derivation
/ -dc(rights, "Copyright (c) 2001 FuBar Ltd").
-dc(rights, "See licence.txt").

e <source/unambiguous formal reference for
e <relation/unambiguous formal reference to

related document/

23 24

The difficult thing about doing this is SGML lets you attach macros to strings con-
textually. So

studying all the relevant literature to

glean techniques and ideas. e "abc" —
<str>abc</str>
e Should paragraphs be like HTML or TEI?
e ’abc’ —
(TED
<sym>abc</sym>
e What should tables be like? e [’2°,’b?,’C’] —

<elst><sym>a</sym><expn>
<sym>b</sym></expn><expn>
<sym>c</sym></expn></elst> in expres-
sions

e How to express mathematics in SGML so
that a human can type formulas with use-
ful syntax checking but without dying of
exhaustion? (I have used a point-and-click
equation editor and it stank. Even typing
MathML by hand was faster, which says a

PY [’a’,’b’,’C’] —
<plst><sym>a</sym><patn>
<sym>b</sym></patn><patn>

lot.) _

<sym>c</sym></patn></plst> in patterns

e How best to use the SHORTREF feature

to make typing Erlang easy? Makes Erlang code much more readable and

writable; not available in XML.
25 26

Erlang/SGML has type declarations and anno-
tations. When generating Erlang source code,
they can simply be ignored. Erlang/SGML has
protocol declarations; a protocol is a data type
for a process's message queue elements (as
in OCCAM). Purpose is documentation and
maintenance. When generating Erlang source
code, they are ignored. When you want to
know what P!{frazzle,X} means, it's nice to

have
<import m=nutwork><protoname p=nutty></import>
<send p=nutty>@P,{’frazzle’,@X}</send>

so we know at once where to look for the doc-
umentation.

27

For references to documents, file names are
too fragile, and in practice URIs are too. SGML's
Formal Public Identifiers are a time tested way
to provide stable names for documents. Cata-

logues provide local mappings.

79 formal public identifier = owner identifier,
w//", text identifier

80 owner identifier = ISO owner identifier |
registered owner identifier |
unregistered owner identifier

82 registered owner identifier = "+//IDN ", do-
main name | "+//", other data

83 unregistered owner identifier = "-//", data

28

84 text identifier = public text class, " ", un-
available text indicator?, public text de-
scription, "//", public text language desig-
nation, ("//", public text display version)?

E.g., "+//IDN cs.otago.ac.nz//DOCUMENT
Erlang/SGML report//EN"

FPI's are text telling people who the owner is
and what the document is called; ask them

where it is, update your catalogue.

FPI's may also be internet URN'’s.

29

Kristina Sirhuber found that Ellemtel and Up-
psala people

e Did not like the tangling step.

Not a problem: an Erlang compiler could
work straight from the Erlang/SGML source
(no reordering or fragments in the Erlang
DTD)

Did not like the idea of having to learn yet
another language

is a problem; if you want to produce well
documented programs you have to learn
a language other than Erlang. But the
Erlang manual set is written using SGML,
and it's rather simpler than IATEX.

Of course, “Bird tracks” would be even sim-
pler, but would not solve the context problems.

30

sl

ERICSSON Z

XMerL

Interfacing XML and Erlang

UIf Wiger, Senior Systems Architect
Network Architecture and Product Strategies

Data Backbone and Optical Networks Division
Ericsson Telecom AB

000922 ETXUWIG-99:093 1

T

@ Erlang/OTP is moving into vertical applications
@ XML is fast becoming an important standard
® Erlang and XML fit very well together

000022 ETRUWIG-8R 083 2

® Interest in Erlang is growing
® No longer just for embedded systems
® New interfaces must evolve

— Powerful GUI components
— Data exchange (COM, ODBC, XML, ...) =

® XML is a logical addition to OTP ol
— (ASN.1, HTTP, IDL, CORBA, ...) '

ol | e
® Real reason: Em_ I\
— 1 bought a book and became curious TN~

s
U R W R WS W e fea Bea) o4l ooedd]

Number of Requests to www.erlang.org

000922 ETXUWIG-99:083 3

@ “A Stricter HTML”

® “A Simpler SGML”

® Relatively Easy to Parse
® Content Oriented

® XML springs mostly from SGML
~ All non-essential SGML features have been removed
- Web address support taken from HTML, HyTime and TEI
- Some new functionality added
©® Modularity
@ Extensibility through powerful linking
@ International (Unicode) support
® Data orientation

000922 ETXUWIG-99:083 4

ERICSSON Z

® Large Web sites
— HTML is generated via special (XSL) stylesheets
— Internet Explorer has built-in support for XML
® Document management
- When machines must be able to read the documents
@ Machine-to-machine communication
— XML RPC, SOAP
— XML processors exist in many languages (even Erlang!)

000922 ETXUWIG-98:083 5

<2xml version="1.0"7> * All elements must have
<home.page title=“My Home Page”> a start tag and an end tag
<title> =
Welcome to My Home Page (exception: <empty.tag/>)
<title> * An element can have a
<text> . .
p— list of attributes
Sorry, this home page is still under '
construction. Please come back soon! dZI/
</para> [
</text> C)
</home.page>

Erlang analogy:
{Tag, Attributes, Content}

000922 ETXUWIG-88:093 6

ERICSSON Z

XML Erlang
<?xml version="1.0"7>
<home.page title="My Home Page”> {‘home.page’, [{title, “My Home Page”}],
<title> [{title, “Welcome to My Home Page”},
Welcome to My Home Page {text,
<Jtitle> [{para,
<text> ‘ “Sorry, this home page is still under
<para> “construction. Please come back soon!”}

Sorry, this home page is still under
construction. Please come back soon!
</para>
</text> -
</home.page>

I}
D
[
e
Almost equivalent

000922 ETXUWIG-99:093 7

@ XML is more complex than that
External DTDs
Global namespace

= Language encoding Example record definition
— Structural information should be
optimized for queries %% XML Element
® To parse XML properly, we use records "ecmd(’;:“nze"‘em’ {
@ To output to XML (or similar), parents = [],
we may use the simple form pos,
attributes = (],
content = [],
language = [j,

expanded_name = [],
nsinfo =[], % {Prefix, Local) | []
namespace = #xm!Namespace(}

D.

000922 ETXUWIG-89:083 B

ERICSSON Z

® A fast XML processor produces an
Erlang representation of the XML document

- Let's call this representation a “complete form”
@ Erlang programs can use an XML-like representation
— Let’s call this a “simple form”

@ An export tool can take either form
and output aimost anything

@ Plans to support XML Stylesheets (XSL, more on that later)
® Basic support for XPATH (needed for XSL, Xlink, Xpointer, ...)

000922 ETXUWIG-98:093 9

® Vsn 0.6 is a single-pass scanner/parser
implementing XML 1.0

® Has been tested on thousands of XML documents
— Appears to handle lots of different documents
— Appears to be fast and flexible

@ There are two ways to process an XML document:
— Tree-based parsing; the whole document at once
— Event-based parsing; one element at a time

@ The XMerL processor can do either

— The behaviour is specified through higher-order functions (“funs”)
- Validation can also be carried out in funs

000922 ETXUWIG-89:093 10

® Proper handling of

— Global namespace
Entity expansion
External and internal DTDs
Conditional processing
UniCode

@ Some support for infinite streams

000822 ETXUWIG-89:093 11

ERICSSON 2

@ The export tool takes a complete or simple form
and outputs some (almost arbitrary) data structure

— Translation takes place in callback modules:
CBModule:Tag(Content, Attributes, Parents, CompleteRecord)

- A callback module can inherit other callback modules
— A callback function can do three things:
® Return data on some output format
® Point to another callback function (alias)
® Return a modified (simple or complete) form for re-processing
® Existing callback modules
— HTML (not yet complete)
— XML (generic, not complete)

000822 ETXUWIG-99:093 12

foo() ->
xmerl:export_simple(simple(), xmerl_html, [{title, "pDoc Title"}]).

foo2() ->
xmerl:export_simple(simple(), xmerl_xml, [{title, "Doc Title"}]).

simple() ->
{document, [{title, "Doc Title"}, {author, “U1f wiger}],

{section, [{heading, "headingl"}],
[{"P', "This is a paragraph of text."},
{section, [{heading, "heading2"}],
[

{'p', "This is another paragraph."},
{table, [{border, 1}],
[{heading,
[{col, "headl"},
{col, "head2"}]},
{row,
[{col, "col11"},
{col, "col112"}]},

[{col, "col21"},
{col, "col22"}]}

000922 ETXUWIG-99:093 13

ERICSSON =

Tool) =2 Sample Code:

xmerl:export_simple(sin ’
\\~h"h‘““"**——~—-_-________ %%k section/3 is to be used instead of headings. !
section(Data, Attrs, [{section,_}, {section,_}, {section,_} | _], €) -> i

foo2() ->
. ; opt_heading(attrs, "<hd>", "</h4>", pata);
xmer]:export_simple(sin section(Data, Attrs, [{section,.}, {section,_} | _], E) -
opt_heading(Attrs, "<h3>", “</h3>", Dpata);
section(Data, attrs, [{section,_} | _], E) ->
opt_heading(attrs, “<h2>", "</h2>", pata);
section{Data, Attrs, Parents, E) ->
opt_heading(attrs, “<hl>", "</hl>", pata).

simple() ->
{document,

{title, "pg

section, [{heading.

ction, headTh .
ection, [{ opt_heading(attrs, StartTag, EndTag, Data) -»

{'p', "This 13 case find_attribute(heading, Attrs) of

table, [{border, {value, Text} -»

{ e, [{bo [StartTag, Text, EndTag, "\n" | patal;
false -»

000922 ETXUWIG-99:093 14

foo() ->
xmerl:export_simple(simple(), xmerl_html, [{title, "Doc Title"}]| «7xml version="1.0"7>

<document titles"poc Title"
author="ulf wiger"s
T] R heading="headingl">
foo2() -> <P>
i g i i J it This 95 a paragraph of text,
xmerl:export_simple(simple(), xmerl_xml, [{ritle, "bDoc Title"}1)| o = ° PA#arer

sacsino t

g="heading2">

simple() ->

{document, [{t Samplc COdC: ther paragraph,

{section, [{] %% The '#root#’ tag is called when the entire structure has
[{'P', "rhi] been exported.
{section, | %% It does not appear in the structure itself.

[‘#root#’ (Data, Attrs, [1, E) -»
{'r', " ["<?xm) version=\"1.0\"?>\n", Data).
{table,
[{headi] '#element#’(Tag, [1, Attrs, Parents, E) ->
[{col Tagstr = mk_string(Tag),
{col ["<", tag_and_attrs(Tagstr, Attrs), "/>\n"];
{row, | '#element#’ (Tag, Data, Attrs, Parents, E) ->
[{cel Tagstr = mk_string(Tag),
{col ["<", tag_and_attrs(Tagstr, Attrs), ">\n",
{row, pata, opt_newline(pata),
[{col "ef", Tagstr, ">\n"].
] }] } </tables
</sections
13. </secrions
</document>

000822 ETXUWIG-99:003 15

ERICSSON Z

® Stylesheet support is clearly needed

® Interpreting XML stylesheets is slow and cumbersome
(lots of independent, heavy XPATH queries)
® Possible approach:
~ Read the stylesheets using the XMerL processor
- Translate them into an Erlang program
— Optimization opportunity:
convert xsl:match statements into match criteria for a single scan
function

® Lots more work is needed here...

000822 ETXUWIG-89:003 16

® Current xmerl version, 0.6, is on Open Source

® Thanks to the beta testers:
— Mickael Remond
— Luc Taesch

000922 ETXUWIG-99:093 17

Extending ERLANG with structured
module packages

Richard Carlsson
Computing Science Department
Uppsala University
Box 311, S-751 05 Uppsala, Sweden
richardc@csd.uu. se

December 2, 1999

Abstract

This article describes a way to extend ERLANG with structured program
module packages, in a simple, straightforward and useful way.

1 Introduction

When ERLANG was conceived, it inherited a lot of its flavour from languages
like Strand, Prolog and Parlog, which (at least in many implementations) have
a similar concept of program modules: these are program files (“compilation
units”), each assigned a globally unique name (in the system), and each declaring
some or all of its functions as ezported. Non-exported functions can only be
referred to from within the same module, while exported functions are also
accessible from any other module in the system. In ERLANG, files containing
source or object code for a module must be given the same name as the module,
plus a suffix which is “.erl” for source files, and e. g. “jam” for object files for
the JAM abstract machine.

The name space for modules in these languages is flat, i. e., when a partic-
ular module is referred to, this is always done by its full name, regardless of
the context in which the reference is made: there is no way to express a refer-
ence to another module in relation to the current module. Furthermore, since
programmers like to keep names short, names such as “lists”, “math”, “queue”,
“shell”, “random”, etc., quickly become used (these examples all taken from
the standard library). When code from different vendors is combined in the
same system, each distribution possibly consisting of several hundred modules,
the likelihood of one or more name clashes becomes large. Also, because of the
meta-calls often used in ERLANG, it is not always an easy task in such cases to
rename the clashing modules uniquely without introducing errors, even if the
source code is available. To keep the risk of clashes down, some programmers
resort to giving modules abbreviated names such as “gb”, “rb” “dbg”, etc.,
which is uninformative and could be considered bad programming style, or us-
ing prefixed names such as “snmp_supervisor”, “snmp_error”, “snmp_generic”,

etc., which more or less solves the problem, but in a way that is clumsy and
limited by the maximum length of file names on the host operating system.

Section 2 of this article describes the package system of Java and introduces
the basic workings of a similar system for ERLANG. Section 3 describes exten-
sions to the ERLANG language in order to make life easier for the programmer
using packages. Section 4 discusses possible pitfalls, and section 5 is a summary
of the system and the necessary changes.

2 A package system

To solve this situation and bring order to the present chaos, I suggest a system
of packages whose basic structure is shamelessly borrowed from that of Java [2].

In Java, each compilation unit is a publicly available class, which is similar to
a module in ERLANG, the main difference being that ERLANG modules cannot
have distinct instances and do not support inheritance. Java source and object
files are, like ERLANG modules, given the name of the public class they contain
plus the extensions “.java” and “.class”, respectively.

In Java, however, classes can belong to a package: this is a way of structuring
the files, and is orthogonal to the class hierarchy of Java. The same concept
can therefore be applied to ERLANG, even though it is not an object-oriented
language.

2.1 The structure of packages in Java

If a Java class file (having the suffix “java”) contains a package declaration
stating a package name, then that class file belongs to the named package.
Furthermore, the package name also indicates to the Java implementation where
the object file is located.
A Java package name consists of a sequence of names separated by period
characters, such as
java.rmi.server

The full name of the class RemoteObject in this package, then, is
java.rmi.server.RemoteObject

When the Java implementation tries to load the object file for a class by
its full name, it uses its CLASSPATH setting. This is simply a sequence of file
system paths in the host operating system, which are to be used for the search
in the order they are given. The package name is then subdivided at each period
character into a sequence of one or more names. This is interpreted as a relative
path in the host operating system, in a way that is system-dependent: in a
Unix-like system, the relative path corresponding to the above package name
would be

./java/rmi/server/

An attempt is then made to, for each path ROOT listed in CLASSPATH, load the
file whose name is the concatenation of ROOT, the relative path for the package,
the class name, and the object file suffix (“.class”); in this example:

ROOT/java/rmi/server/Remote0Object.class

until such a file is found for some ROOT, or all paths in CLASSPATH have been
tried. With this approach, object files are thus located in a set of directory
trees, rather than in a set of flat directories.

When a Java program refers to a class that is not defined in the same file, and
by its class name only, the Java compiler will assume that the class is defined in
the same package as that of the current file, and will not confuse it with classes
of the same name in other packages. In this way, a package declaration creates
a distinct name space for classes.

For simplicity, and often useful for testing or writing simple applets, if a Java
source file does not contain a package declaration, it is automatically placed in
the “unnamed default package”, which is a flat name space just like the current
ERLANG module system.

2.2 Packages in Erlang

Today, ERLANG module names seldom or never contain period characters; one
reason for this is that since the module name declaration of an ERLANG module

has the form
-module (<A>).

where <A> is an ERLANG atom,! such a module would have to be declared as
e g.

-module(’foo.bar’).
stating the module name within single-quotes. Therefore, it can be expected
that the use of the period character as separator in module names can be adopted
with few (if any) existing ERLANG programs needing rewriting,.

My suggestion, then, is that ERLANG modules in packages be named sim-
ilarly to full class names in Java: for instance, the full name of a module m
in a package a.b.c should be a.b.c.m, while its object file would be named
“m.jam” (we assume for simplicity from now on that all object files are for the
JAM abstract machine) and reside in a directory ROOT/a/b/c/ for some ROOT
in the search path of the ERLANG code server. The object file for a module
whose full name does not contain any period characters, such as e. g. io_1ib, is
thus assumed to be located in some directory RO0T/, exactly as in the ERLANG
implementations of today; for this example, the file would be ROOT/i01ib. jam.

To handie this first step, only the code server needs to be modified, and
only when the name of a requested module does contain period characters will
the behaviour differ from that of today. It should also be apparent that this
convention is compatible with existing code: packaged code could pass a full
module name (generally as an atom) to old-style code, which could use the
name obliviously, even for making meta-calls, without errors; to the old code, a
module name does not have structure.

Existing standard modules could easily be moved into packages without dis-
turbing old code, by simply creating “stub” replacement modules in which all
exported functions make a direct jump to the function of the same name in the
corresponding packaged module; such stub modules will be small, and the extra

! Atoms are a primitive datatype in ERLANG; they can be seen as nullary constructors,
and are identified by their print names. Unless surrounded by single-quotes, their names
must begin with a Jowercase letter, and not contain other characters than letters, digits, or
underscore (‘.’). Examples of atoms are foo, mad hatter and ’foo®bar’.

call is a relatively small cost. In particular, the package erlang and all its sub-
packages should be reserved for standard library functions. A library module
such as 1lists could e. g. be renamed erlang.list - thus note that this would
present a very good opportunity to restructure (by renaming, splitting, moving
individual functions, etc.) the existing standard modules, preferably according
to the suggestion for a new set of standard modules made by Jonas Barklund [1].
However, details of such a structuring of existing code into packages is outside
the scope of this article.

3 Extensions to the Erlang language

So far, I have only described a structured way of storing object files in relation
to module names. If the ERLANG language itself remained unchanged, this
convention would force the programmer to write the full module names, always
within single quotes, in all situations. This would be cumbersome and ugly, and
miss one of the main points with a structured name space: to be able to make
references relative to the current package.

3.1 A new form of module declarations

It is a simple task to extend the ERLANG grammar to not only accept module
name declarations on the form

-module(<A;>).
where <A;> is an atom, but also more generally on the form
-module (<A;>.<Ag> - - . <A,>) .

for n > 2, where all <A;>, i € [1,n], are atoms. Each such atom could of course
be individually stated within single-quotes, and it is therefore necessary to check
that the atoms do not themselves contain period characters, and that they are
not the empty string (‘?’"). It is also recommended that some other characters,
such as e.g. ‘¢’ be reserved for future use in module names, for example for
auto-generated object files for sub-modules, if such a concept would be shown
to be useful.
We introduce a little terminology:

e The full module name is the concatenation of the print names of the atoms
<A;>---<A,> and the separating period characters. A full module name
should not contain two adjacent period characters.

e The module name is the atom <A4,>.

e The package name is the concatenation of the atoms <A1>--<A,_1> and
the separating period characters.

for instance, in a declaration -module(fee.fie.foefum)., the full module
name is given by the atom ’fee.fie.foe_fum’, the package name by the atom
’fee.fie’ and the module name by ’foe_fum’. For a module whose full name
contains no period characters, such as io_1ib, the package name is the empty
string, and the module name is the same as the full module name; thus, the
meaning of old-style declarations does not change.

3.2 Package-relative compilation

The main advantage with the extended form of module name declarations, how-
ever, is not to relieve the programmer from writing single-quotes: it is to signal
that the source file is part of a package, and that module references within it
may therefore be interpreted as relative to the same package.

Note that it is still legal to use a declaration such as -module(’foo.bar.baz’)
to give a full module name, but that this does not enable package-relative com-
pilation. Compilation of modules with such old-style name declarations is not
affected by the transformations described in this section.

3.2.1 Explicit remote calls
When a remote call on the form
<A>:<F>(...)

is encountered in a packaged module, where <F> is any expression and <A> is an
atom whose print name does not contain period characters, then that atom is
interpreted as the name of a module in the same package as the current module.

In this case, the compiler will automatically replace <A> with the correspond-
ing full module name, by prepending the package name to <A>, separated by a
period character. For example, if the call fred:f() occurs in a module whose
package name is foo.bar, it will be replaced by the call >foo.bar.fred’:£().

This allows the programmer to e.g. create a module named lists in a
package, and refer to that module directly by that name without confusion with
the standard module of the same name.

To simplify calling modules in specific packages, it is easy to extend the
ERLANG grammar to allow remote calls on the form

<A > <Ap>. <A F> (L)

for atoms <A;>, i € [1,n], n > 2, and an expression <F> (with the same restric-
tions on the atoms as in a module name declaration). Thus, a programmer is
not forced to write a full module name within single quotes, but still has the
possibility. For example, the calls

foo.bar.baz:f()

and
’foo.bar.baz’:f()

are equivalent. Thus note that if the module specifier is a single atom, then
that atom may contain period characters, but not otherwise.

3.2.2 Imported functions

Import declarations in packaged modules should be handled analogously to re-
mote calls. If an import statement

-import(<A>, [...]).

is encountered in such a module, and <A> is an atom whose print name does
not contain period characters, then that atom is interpreted as the name of a

module in the same package as the current module, and the full module name
is substituted by the compiler.

The ERLANG grammar should also be extended analogously to allow period-
separated full module names to be written without surrounding single quotes in
import declarations; 1. e., both

-import(’foo.bar.baz’, [...]).

and
-import(foo.bar.baz, [...]).

should be allowed, and be equivalent.

3.2.3 Forcing absolute module references

It is quite possible that a packaged module could need to refer to a module
that is not packaged (. e., whose package name is the empty string). For this
purpose, it is necessary to be able to refer to a full module name using a leading
period character, as in the call

.lists:reverse(X)

This form (more generally described as .<A;>---.<A,>, for atoms <A;>, i €
[1,n], n > 1), should therefore be included in the ERLANG grammar for remote
calls and import declarations.

The same effect could be achieved by giving the medule name with a prepended
period character within single quotes:

’.lists’:reverse(X)

however, this is not recommended in general, since two atoms ’m’ and ’.m’ do
not compare equal, but can be interpreted as references to the same object file.

3.3 Meta-call support

Meta-calls are often used in ERLANG, either for direct function calls as in the
following examples:
<M>:<F>(...)

and
apply(<M>, <F>, [...])

where <M> and <F> are any expressions evaluating to atoms, or for the evaluation
of a function call by a new process, as in:

spawn(<M>, <F>, [...])

spawnlink (<M>, <F>, [...])

or
spawn(<N>, <M>, <F>, [...])

where in addition, <N> is an expression evaluating to an atom that is taken to
represent the name of an ERLANG node.

It must then be remembered that the atoms yielded by evaluating expressions
<M> above must be full module names; the built-in functions apply and spawn
(and their variants) can and should not be modified to interpret module names
relative to the current module. As a simple example, consider a function

£(X) -> spawn(X, start, [...]).
defined in a packaged module foo.m, and a call
foo.m:f(’my._server’)

in some other module. It would then be impossible for the spawn in function
foo.m:£/1 to know if the module name my_server should be interpreted relative
to package foo or if it is a full module name whose package name is the empty
string. Thus, the apply and spawn functions should remain unchanged, always
interpreting the given module name as a full module name.

3.3.1 Getting the module name

Since it is generally a source of errors to be forced to write things more than once,
I suggest a new predefined (but not exported) function thismodule/0 which
returns the full module name of the module in which it occurs. For instance, to
ensure correct behaviour when spawning a process to execute a function run in
the current module, one could write

spawn(this module(), run, [...])

Another typical example is to pass the full name of the current module to
some other function, for general use including making meta-calls, as in

gen_server:start(thismodule(), ...)
The call this_module() could be defined as synonymous to
module_info (module)

using the already predefined function module_info/1.

It would also be possible to use the automatically defined preprocessor macro
MODULE for the same purpose, but the use of the preprocessor for any purpose
is strongly discouraged by this author.

3.3.2 Getting package-relative names

Where, in a situation similar to those above, it is necessary to refer to a module
other than the current, but in the same package, it would be convenient to not
have to specify the full package name. This could be accomplished by another
predefined (not exported) function this_package/1. For example, assume that
in a module m in package foo.bar, we are to spawn a function start/3 in a
module server in the same package. We could then write

spawn(this_package(server), start, [...]
which would be equivalent to

spawn(’foo.bar.server’, start, [...]

but not dependent on the actual name of the current package.

The call this_package (<A>) could be defined as a substitution of the print
name of <A> for the last component of the value of this_module(), if <A> does
not contain period characters and is not the empty string ‘?*".

3.3.3 No other predefined functions!

There should be no other additions to the set of predefined functions or ERLANG.
It might for some purposes be necessary to find the package name (the full
module name without the last segment) or the module name (the last segment
of the full module name) of the current module or of another module, or to
perform other operations on module names, such as concatenating a package
and a module name, or to map a full module name or a package name onto
a relative file path, but such functions would more suitably be placed in some
separate support module.

It could also be argued that special versions of call and spawn should be
added to handle this kind of name expansion automatically, but this is the wrong
way to go. It would add extra predefined functions without solving the general
problem when full module names need to be passed between functions, and is
not even a big advantage. It is no doubt easier (but more opaque) to write, say

spawn(start, [...])

instead of
spawn(this.module(), start, [...])

but e. g.
spawn_this_package(server, start, [...])

is not really simpler than
spawn(this_package(server), start, [...])

Furthermore it can be argued that, in particular for spawn, local functions
should if possible never be called via a meta-call, since this requires the target
function to be exported from the module, even if it is not part of the official
interface. A version of spawn which could initiate the evaluation of a named local
function, e. g. fun start/3, or an anonymous local function (a so-called “fun
expression”) fun (...) -> ... end, by a new process, would be much cleaner.?

3.3.4 Passing names of modules in other packages

When the full name of a module that is not part of the same package as the
current module is to be passed to some function for purposes as those described
above, it should be given explicitly as an atom, within single-quotes if neces-
sary. E.g., if we were to give the full name of module a.b.c as argument to
gen._server:start/3, from a module x.y.z, we would write

gen_server(’a.b.c’, ...)

21t has been hinted that this form of spawn will be included in a coming release of ERLANG.

The alternative would be to extend the syntax of period-separated atom
sequences to be allowed as general expressions, so we simply could write

gen_server(a.b.c, ...)

That, however, is taking the idea too far; we would then have introduced a
general kind of atom-concatenating operator in the language, which could be
used regardless of context, but there is no really good reason for being able to
write something like

{’R27.’D2’}
where the period character could easily be mistaken for a comma, or what is
worse, be mistakenly inserted instead of an intended comma.

3.4 Imported module names

The currently existing import declarations in ERLANG allow the programmer
to use functions in other modules than the current by their function names
only; e. g., a declaration -import (lists, [reverse/1]). allows a function call
lists:reverse(X) to be written more briefly reverse (X), where the imported
name overrides any locally defined function of the same name.

A more general form of such declarations would allow the definition of a local
alias for a remote function, where also the actual name used locally for making
a call could be individually selected by the programmer.

When a packaged module needs to refer to several modules that are not in
the same package, it would then either have to specify the full module name
in each call to those modules, or use import statements so that the individual
functions can be called directly by name. However, there is then the possibility
that the same function name exists in two distinct modules, where both modules
have long full names, or that for some module, many functions are used but we
do not wish to import them all, perhaps because of the risk of clashes with
locally defined names.

3.4.1 Importing packaged modules

To support easier access to particular modules in cases such as the above, I
suggest a new form of import declaration, on the following form:

-import (<M>).

where <M> is a full module name.

The occurrence of such a declaration in a module would allow the use of
the module name alone, i. e., without a package name, in calls to the imported
module. For example, a declaration

-import (foo.bar.baz).
in module a.b.c would make a call
baz:£(...)
in the same module be synonymous to

foo.bar.baz:f(...)

However, the behaviour of this_package(baz) would not be affected, as its
name suggests, yielding ’a.b.baz’.

In particular, note that since the imported module name is always a full
module name, a declaration -import (lists). would make a call 1ists:f(...)
in the same module be synonymous to .lists:£(...) thus correctly referring
to the module whose package name is the empty string.

It is important that all occurrences of this kind of import statement are pro-
cessed before any function-importing declarations are expanded, since the latter
should be interpreted relative to the former, as well as to the current pack-
age. Thus, the two declarations ~import (foo.bar.baz). and -import (baz,
[fred/1]). (given in any order) in a module a.b.c together make a call
fred(X) synonymous to foo.bar.baz:fred(X), and not to a.b.baz:fred(X).

3.4.2 Similarity to imported packages in Java
Java has a similar form of import declaration, on the two forms

package. class;
package. *;

where the former imports a particular class, and the latter all classes in a par-
ticular package. This allows the programmer to refer directly to any imported
class without its package name; however, if two classes with the same name are
imported, then neither can be used without giving its package name.

Java is a statically typed language, and needs information about the types
of all external classes referenced in a program file in order to compile that file.
The Java compiler therefore searches for object files for such classes, recursively
compiling source files where possible in order to produce any object files that
are missing. This makes importing of all classes in a package possible, because
the search order is well-defined, and all referenced classes must be present.

ERLANG, however, is dynamically typed, and the compiler never actually
needs to examine other source files in order to compile a particular file. It
would not be in line with ERLANG programming conventions to let the sets of
existing object files in two distinct packages decide from which of these packages
a particular module is imported; e. g., if we would import all modules from
packages foo and bar, then a reference to a module m would be resolved to
either foo.m or bar.m depending on which package actually defines a module m.
Therefore, a full module name must be given in the -import (<M>) . declaration
described above, and not just a package name.

3.5 Why no package-relative package references?

The reader may wonder why, in a “structured” package system, there are no
language constructs that allow the programmer to refer to a module in a sub-
package of the current package by a relative name, instead of by its full name.

For example, in a module a.b.m1, it would certainly be possible to let a call

c.m2:£()
be interpreted as equivalent to

’a.b.c.m2’:f()

10

There are however several problems with this approach. Most importantly,
it adds to the complexity of the package system, making programs difficult to
understand and being prone to errors. For instance, all calls to functions in
packaged modules that are not in subpackages of the current package would

have to be written as
x.y.z: 10

with a leading period character. This is annoying and could often result in

mistakes.
When there is a need to refer to modules in subpackages by a short name,

the general mechanism.for importing packaged modules suggested above should
be sufficient, and results in perspicuous programs. The same design decision
was apparently made in Java.

4 Caveats

4.1 Program transformations

If a source code transformation should want to rewrite a meta-call expression

such as
<M>:<F>(...)

if it can show that <M> will evaluate to a specific atom <A>, to
<A>:<F>(...)

(doing a so-called constant propagation), then it is important to keep in mind
that the result of <M> should be interpreted as a full module name, and never
relative to the package of the module containing the code.

In this case, either the resulting program must not be compiled in a package-
relative way (this can be done by expanding all package-relative references and
substituting an old-style module name declaration, which states the full module
name within single quotes), or the program performing the transformation must
be aware of this interpretation and instead substitute the expression

LKA D> A > <A <> (L)

where the <A’;> i € [1,n], are the period-separated (nonempty) segments of
<A>. Note the leading period character, which explicitly indicates a full module
name.

4.2 Other possible problems

There exist some modules in the ERLANG distribution which make assumptions
about the present way of storing object files in the file system, notably the
module filename. Such modules may need to be updated to handle the tree
substructure of the new object file storage.

11

5 Summary

I have described a system of structured module packages for ERLANG, which
is conceptually simple and easy to implement, and which should be backwards
compatible with practically all existing code. I have suggested straightforward
extensions to the ERLANG language for easier programming with packages, all
of which could be removed by a preprocessor pass if so desired. I have also
discussed why no further extensions should be necessary, or even motivated.

In brief, the following things need to be implemented in order to support
the package system as described:

e Extend the code server to analyse module names in order to find the search
path substructure for an object file.

e Add the new, package-relative compilation enabling form of module dec-
larations to the grammar.

¢ Allow period-separated full module names in remote calls and in import
declarations, including names with a leading period. (Note that this is not
dependent on package-relative compilation, and thus should be allowed
regardless of the form of module name declaration being used.)

¢ Extend the compiler to, for packaged modules, expand package-relative
remote calls to full module names.

¢ Add the predefined functions this module/0 and this_package/1.

e The preprocessor epp must be extended to handle the new form of module
name declarations, in order to correctly support the automatically defined
macro MODULE.

® Add -import (<M>). declarations for full function names <M>, and make
the compiler expand these before ordinary function imports are processed.

e The stdlib function filename:find.src will probably also need to be
made aware of the new structure of object file search paths.

References
(1] Jonas Barklund et al., Proposal 15: Built-in functions of Erlang. ERLANG

specification project, June 1998,
http://www.ericsson.se/cslab/“rv/Erlang-spec/index.shtml.

(2] David Flanagan, Java in a Nutshell. O'Reilly & Associates, Inc., 1997.

12

Highlights

Erlang 5.0/0TP R7B

This document points at the most important improvements in Erlang 5.0/OTP R7B. For
more detailed information, please check the release notes for the respective applications.

General

Some of the major new features in this version of Erlang/OTP are:

The bit syntax, a language addition which can be used to construct binaries and to match

binary patterns. :
The new CORBA services cosNotification and cosTime.

The new very capable cross reference tool Xref.

The new application Comet which makes it possible to call COM objects from Erlang on the

Windows platform.

A new interopability guide whose purpose is to give the reader an orientation of the different
interoperability mechanisms that can be used when integrating a program written in Erlang
with a program written in another programming language, from the Erlang programmer’s
point of view.

Note also that the Jive application has now been removed.

ERTS-5.0.1

Several changes has been made to the garbage collector and internal memory allocation
routines to reduce memory consumption and memory fragmentation.

The bit syntax, a language addition for constructing and matching binaries. For more
infomation, see Extensions to Erlang. Also, the handling of small binaries (up to 64 bytes)
has been optimized, as well as splitting of binaries.

Call tracing is greatly improved. It is now possible to trace local function calls (and calls to
local functions) set up with the erlang:trace_pattern BIF. Trace compilation for local call
is no longer needed.

There is now support for operating system threads in drivers. The file driver has been
modified to make use of this, which means that lengthy file operations no longer cause
everything on the node to pause. Currently, only supported on Solaris and Windows. The
number of threads in the thread pool can be set with the emulator system flag -a. The default
number of threads is 0, which means that this feature is turned off. The number of threads in a
node can be obtained by the call erlang:info (thread_pool_size).

The BIF erlang:monitor (process, Proc) has been extended to accept named processes,
local and remote. See the documentation for erlang:monitor/2 and erlang:demonitor/1.
The inet driver (inet_drv, i.e the driver for (TCP&UDP)/IP) has been replaced, as well as a
lot of supporting Erlang code in the Kernel application. The new code eliminates one data
relay process per socket and thereby gives a throughput boost.

The Erlang emulator now uses a 2 bit tag scheme internally. This change is not visible at the
language level, but it means that the Erlang emulator can now address the entire 4Gb address
space (OTP R6 could only address 1Gb).

1C-4.0.5

® Limited support for multiple file module definitions.
The current version supports multiple file module definitions for all backends except the C
oriented backends.
® The following new datatypes are now handled by IC:
O long long
O unsigned long long
O wchar
O wstring

Kernel-2.6.1

® On Unix, os:cmd/1 previously used a dedicated subprocess, which meant that calls to
os:cmd/1 were serialized. This is no longer the case.

® The gen_ family (mainly gen_server and gen_£sm) and rpc has been rewritten to use the
new BIF erlang:monitor/2 as much as possible. This should improve performance and
remove some possibilities of hanging gen_server calls. In particular,
gen_server:multi_call/2..4 and rpc:multi_server_call/2,3 should now never hang,
at least not when all nodes are of this release.
See also the documentation for gen_server and rpc.

® The inet driver (inet_drv, i.e the driver for (TCP&UDP)/IP) has been replaced, as well as a
lot of supporting Erlang code in the Kernel application. The new code eliminates one data
relay process per socket and thereby gives a throughput boost.

STDLIB-1.9.1

® The win32reg module has now been documented and made official. The module makes it
possible to access and manipulate the registry on Windows platforms.

® Calls using gen_server, gen_fsm and gen_event to a process on another node no longer
hang indefinitely if the timeout is infinity and the process doesn’t exist. The exit reason in
that case is noproc (for local processes, this change was made already in OTP RS5).

® The new module beam_11ib reads data from BEAM files.

Appmon-2.0.1

® There is now an Appmon User’s Guide.
® The main window is now similar to that of the other tools, showing only one node at a time.

Asnl1-1.2.9.3

® The ASN.1 language feature COMPONENTS OF is now implemented.

® The encoding and decoding of ENUMERATED and INTEGER with NamedNumbers is made
more efficient and thus faster in runtime.

® The compiler now also supports AUTOMATIC TAGS for BER (previously only for PER).

Comet-1.0

Comet is a new application.

Comet, a COM client for Erlang, is a way to call any COM-service in Windows from an Erlang
program. It’s a combination of a gen_server and a port program (or port driver) that enables Erlang
programs to call almost any COM-server.

Comet uses a gen_server in the module er1_com, together with a port program (or port driver), to
call COM-servers. Both the late-binding interface IDispatch and early-binding virtual interfaces can
be used. Erlang types are converted to COM types and parameters are returned.

COM stands for Component Object Model, (or sometimes Common Object Model), and is
MicroSoft’s technique for component-based programming. It allows programs on Windows
systems to call other programs and libraries across language boundaries. It is a competitor to Corba,
but has other functionality too.

COM is available on all 32-bit Windows systems, such as NT 4, Windows 95,Windows 98 and
Windows 2000. Comet can be used on any of these.

With Comet, an Erlang application can use (almost) any COM-service on
Windows from Erlang. Examples of what can be done include:

® Opcning webpages with Internet Exporer (or Netscape)

® Reading and writing data from Excel Worksheet

® Reading and writing from Word

® Calling C-code-libraries in an efficient way, without the hassle of creating a port-driver.
@ Executing scripts in VBScript or JavaScript

Compiler-3.0.1

® The compiler builds lists and tuples in a smarter way than previous versions did, meaning that
literal lists and tuples of practically any size can now be built. The previous limit was 1024
elements in a literal list or tuple.

® Several changes has been made to the garbage collector and internal memory allocation
routines to reduce memory consumption and memory fragmentation. Also, the compiler now
makes sure that references to any data that will not be used again will be killed, so that the
garbage collector can discard it as soon as possible.

® It is now allowed to use an expression within a pattern, if the expression uses only numeric or
bitwise operators, and can be evaluated to a constant at compile-time. E.g., case X of {1+2,
T} -> T end.

® The bit syntax, a language addition for constructing and matching binaries. For more
infomation, see Extensions to Erlang. Also, the handling of small binaries (up to 64 bytes)
has been optimised, as well as splitting of binaries.

® The compiler now supports inlining within a module, see the compiler documentation.
Numerous known problems and limitations have been corrected, and the optimisation is
better. For instance, tuples used in cases for grouping are no longer built.
The earlier compiler versions vl (R5) and v2 (R6) have been discontinued because there are
no longer any reason to use them.

Inets-2.5.3

® It is now possible to run more than one HTTP server in an Erlang node listening to the same
port but different addresses.

Jinterface-1.2

@ A new class, AbstractConnection, has been added to deal with most of the aspects of the
Erlang communication protocol, and which can be subclassed in order to provide different
levels of support to the application as necessary. OtpConnection is now a subclass to
AbstractConnection.

® OtpCookedConnection is a new subclass to AbstractConnection, which together with
OtpNode provides an intuitive mailbox-based communication mechanism. By using this
interface, applications are no longer required to manage connections explicitly, since the
OtpNode now opens and manages connections to remote nodes as needed. Outgoing
messages are sent through mailboxes and automatically dispatched through the correct
connections to the destination node, while incoming messages are queued in the destination
mailbox. This allows parts of an application to communicate with several peers
simultaneously without the need to sort and dispatch incoming messages. Additionally,
mailboxes can be linked with Erlang processes or with each other, in much the same manner
that Erlang processes can be linked together.

Mnesia-3.9.2

® Access to non-local tables avoids disc_only_replicas if possible.

® A new configuration parameter fallback_error_function has been introduced to let the
user handle the case when Mnesia has a fallback installed and another Mnesia goes down.
The default behavior is as it always been: to kill itself to avoid inconsistencies. The user can
now start Erlang with -mnesia fallback_error_function ‘{UserMod,UserFunc}’.

Orber-3.1.8

® Earlier, Orber did not use the IIOP/GIOP version specified in an external object key when
invoking an intra-ORB request.

® The OMG standard now supports an Interoperable Naming Service. Initially, there where two
proposals of which Orber earlier supported one of them. Now both standards are supported.

® It is now possible to start Orber as lightweight.

® It is now possible to create pseudo objects, i.e., not server objects.

cosNotification-1.0.2

cosNotification is a new application which implements the CORBA (OMG) Notification service.

cosTime-1.0.1

cosTime is a new application which implements the CORBA (OMG) Time service.

SNMP-3.2.1

® Debugging has been improved. It is now possible to debug all named processes (individually)
of the SNMP application. See the documentation for the snmp module for details.

® Filter (audit trail) logs on timestamp.

@ The MIB-compiler has been improved. It is now possible to include Description-field into

compiled MIB.

Tools-1.6

® Xref is a new very capable cross reference tool which works with beam files as input, works
fast and eliminates the problem that the old tool Exref had with include files.
Xref is intended to replace Exref in forthcoming versions of Erlang/OTP.

® Eprof has been optimised to minimise the measuring overhead. Typically, the measured
program runs at about 50% of its ordinary speed.

Comet - an Erlang-to-COM Port

® Comet is a port and a gen_server module that enables
Erlang programs to deploy COM components

m Comet is under development, an early version is part of
OTP release 7B

COM

® Common Object Model
m A standard for component development from Microsoft

® Windows-only (although a third-party version exist on
Solaris)

m Rival to CORBA on the Windows platform
All Microsoft programs use COM
Support for distribution, DCOM and COM+

COM Model

m Classes presents interfaces

® Interfaces are a bunch of related functions or methods

®m No data are exposed, only interfaces

m Properties of objects accessible through access-functions

COM Model continued

B IDL describes classes and interfaces

® IDL compiles into a type-library that can be browsed with
a tool

m Two ways to use a class
- Dispatch - a special interface for interpreted languages
- Virtual Interface - faster, for compiled languages

®m Comet can use both (although dispatch is safer)

COM Memory Handling

m Reference-counting
® Language support in Visual Basic, “Java” (and C#)
m Erlang programs must (currently) explicitly free interfaces

Erlang Ports

® A way to call external code from Erlang
B Implemented as a linked in driver (DLL) or a port program
m Comet offers both
- port driver is considerably faster
- port program is safer, if the COM server crashes, it
won’t bring the emulator down
m A gen_server module interfaces to the port program or
driver
m The Comet port driver and program are multithreaded

Comet as a Port Driver

B An application calling a COM Object
- Comet as a driver

Erlang process

some_application ErlComDrv.dll
erl_com
thread
-Q IWhatever
O

Comet as a Port Program

B An application calling a COM Object
- Comet as a port program

Erlang process

some_application ErlComDrv.exe

erl_com

thread

Q IWhatever

O

Calling COM from Erlang

®m All calls through the gen_server module “erl_com”
m erl_com provides methods for calling
®m er]l_com has functions for:

- creating objects

- fetching interfaces

- releasing interfaces and objects

- retrieving type information of objects and types

- creating threads for calling COM objects
asynchronously

A Simple Example

® An interface that implements some utilities

interface ISomeUtilities : IDispatch
(
{id(1))
HRESULT DaysBetween((in] DATE datel, ([in) DATE data2,
{out, retval} double* dayaBetween):
[id(2))
HRESULT ReplaceAll([in] BSTR inStx, [in] BSTR keyStr, [in] BSTR newStcr,
[out, retval] BSTR* outStri;

v
m Calling it from Erlang

S= "It was a dark and stormy night...",

I= erl_com:create_dispatch(T, *(class id for SomeUtilities)*),

S2= erl_com:invoke(I, “ReplaceAll”, [S, “stormy*, *still®]),

D= erl_com:invoke (I, “DaysBetween”, f{{vt_date, ({2000, L1, 1}, (0, 0, 0))},
(vt_date, erlang:now(})])

erl_com:release(I),

Mapping COM Types to Erlang

m COM uses a small set of types

®m Comet mapps Erlang types to COM types through the use
of tuples

- Basic types are converted properly: integers, floats,
strings and booleans

- Other types are prefixed in a tuple, e.g. (vt_date
{1999, 12, 12}, {}}

Constants in COM are enumerations

Strings currently 8-bits in Comet
m Complex types as structures, are currently not supported

Invoke (dispatch interface)

®m The invoke method in the dispatch interface is used to late-
bind to interfaces

m Comet provides the methods invoke, property_put and
property_get

Obj= erl_com:create_object (T, *“{class id}”*),
I= erl_com:query_interface(Obj, ®(a dispatch interface id)"),
Value= erl_com:invoke(I, “Method”, [parameters]),
erl_com:property_put (I, “Property’, [parameters], Value2),
Valueda erl_com:property_get(I, “AnotherProperty”),

EE TEN

W Errors returned as {com_error, code}
® Can have named parameters (not support in Comet yet)

Calling a Virtual Interface

m A virtual interface is an array of function pointers
- Virtual Method Table used for C++ objects
m Called in Comet using assembler glue
- Every parameter, including return value, must be
explicitly typed
- Address of virtual function must be specified
~ Only practical when code is generated
m Wrong parameters cause Comet to crash

[Outstr]= erl_com:com call(I_, 36, [(vt_str, InStr), (vr_str, out)]),

Browser Example

m The Internet Explorer browser presents COM interfaces
m Example: creating an Internet Explorer and navigating to a
URL
1 opens a Comet process and a thread in it
2 creates an object, retrieves its default interface
3 invokes the methods “navigate” and the “visible”

{ok, Pid)= erl com:start_process{), @
T= erl_com:new_thread(Pid),
Obj= erl_com:create _dispatch(P, *InternetExplorer.Application®,
?CLSCTX_LOCAL_SERVER) , @
erl_com:invoke (Obj, *Navigate®, ["www.erlang.org*]).
erl_com:property_put({Chj, *Visible‘, truel, @

obj.

-

Excel Example

B Excel is also accessible through COM

® Easiest way is to start with a Visual Basic-program
- The Excel macro recorder can generate these

®m Example: adding a graph

Visual Basic:
Charts.Add
ActiveChart.ChartType = x1PieExploded

Erlang:

Charts = erl_com:package_interface(E, erl_com:property_get(E, *Charts®}),
erl_com:invoke{Charts, "Add'),

C= erl_com:package_interface{E, erl_com:property_get(E, °®ActiveChart®)},
erl_com:property_put(C, °*ChartType®, ?X1PieExploded),

Generating Glue Code

B Can be used for both virtual- and dispatch-interfaces

Type libraries, compiled from COM IDL, describes COM
classes and interfaces

Comet reads information from Type Libraries
Erlang modules are generated with glue code
Each interface generates a module

Each enum (set of constants) generates a module and a
header-file with macros

Excel Example with Generated Code
- (Code is generated from the Excel type-library)

Visual Basic:

Charts.Add
ActiveChart.ChartType = xlPieExploded
ActiveChart.SetSourceData _
Source;=Sheets({"Sheetl®) . Range(*B2:C4"), _
PlotBy:=x1Columns
ActiveChart.Location Whers:=xllocationAsObject, Name:=*Sheatl*

Erlang:

charts :add{xc_Application:charts(E)),

ActiveCharts xc_Application:activeChart (E},
chart:chartType(ActiveChart, ?X1PieExploded),

Re= shests:range(xc_Application.sheets{E, *Sheetl”), *B2:Cd"),
chart:setSourceData(ActiveChart, R, ?xlColumms],
chare:location(ActiveChart, ?xlLocationAsObject, *Sheerl®),

Problems

m Combining an object-oriented approach with Erlang’s
semi-functional

Handling state

Memory management

Type conversions between Erlang and other system
Asynchronous operations

Performance considerations

Robustness

Future Improvements

m Feedback needed
W Improvements considered
- Full Unicode support

Calling Erlang from COM

- Event Sinks

- Erlang COM Servers
COM+ Distribution
Complex types
Other API’s on other platforms
Combining COM’s ref-counting with Erlang’s GC

References

m Comet documentation from OTP

Don Box: Essential COM (Addison Wesley)

® Box, Brown, Ewald and Sells: Effective COM (Addison
Wesley)

m Oberg: Understanding & Programming COM+ (Prentice
Hall)

W Jason Pritchard: COM and Corba Side by Side (Addison
Wesley)

10

e e,

6 The bit syntax

This section describes the "bit syntax" which was added to the Erlang language in
release 5.0 (R7A). Compared to the original bit syntax prototype by Claes Wikstrém
and Tony Rogvall (presented on the Erlang User’s Conference 1999), this
implementation differs primarily in the following respects,

1. the character pairs *<<’ and *>>’ are used to delimit a binary patterns and
constructor (not <’ and *>’ as in the prototype),

2. the tail syntax (’[Variable’) has been eliminated,
3. all size expressions must be bound,

4. atype unit:U has been added,

5. lists and tuples cannot be generated

6. there are no paddings whatsoever.

6.1 Introduction

In Erlang a Bin is used for constructing binaries and matching binary patterns. A Bin is
written with the following syntax:

<<El, E2, ... En>>

A Bin is a low-level sequence of bytes. The purpose of a Bin is to be able to, from a
high level, construct a binary,

Bin = <<El, E2, ... En>>

in which case all elements must be bound, or to match a binary,

<<El1, E2, ... En>> = Bin

where Bin is bound, and where the elements are bound or unbound, as in any match.

Each element specifies a certain segment of the binary. A segment is is a set of
contiguous bits of the binary (not neccessarily on a byte boundary). The first element
specifies the initial segment, the second element specifies the following segment etc.

The following examples illustrate how binaries are constructed or matched, and how
elements and tails are specified.

6.1.1 Examples
Example 1: A binary can be constructed from a set of constants or a string literal:

Binll = <<1, 17, 42>>,
Binl2 = <<"abc">>

yields binaries of size 3; binary_to_list(Binl1) evaluates to [1, 17, 42],and
binary to_list(Binl2) evaluatesto [97, 98, 99].

Example 2: Similarly, a binary can be constructed from a set of bound variables:

A=1, B=17, C 4

’ = 2[
Bin2 = <<A, B, C:16>>

yields a binary of size 4, and binary_to_list (Bin2) evaluates to [1, 17, 00, 42]
too. Here we used a size expression for the variable c in order to specify a 16-bits
segment of Bin2.

Example 3: A Bin can also be used for matching: if D, E, and F are unbound variables,
and Bin2 is bound as in the former example,

<<D:16, E, F/binary>> = Bin2

yields D = 273, E = 00, and F binds to a binary of size 1: binary_to_list(F) =
[42].

Example 4: The following is a more elaborate example of matching, where Dgram is
bound to the consecutive bytes of an IP datagram of IP protocol version 4, and where
we want to extract the header and the data of the datagram:

-define(IP_VERSION, 4).
-define (IP_MIN_HDR_LEN, 5).

DgramSize = size(Dgram),

case Dgram of

<<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,

ID:16, Flgs:3, FragOff:13,

TTL:8, Proto:8, HdrChkSum:16,

SrcIP:32,

DestIP:32, RestDgram/binary>> when HLen >= 5, 4*HLen =< DgramSize -~:
OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
<<Opts:OptsLen/binary,Data/binary>> = RestDgram,

end.

Here the segment corresponding to the opts variable has a type modifier specifying
that opts should bind to a binary. All other variables have the default type equal to
unsigned integer.

An IP datagram header is of variable length, and its length - measured in the number of
32-bit words - is given in the segment corresponding to ELen, the minimum value of

which is 5. It is the segment corresponding to opts that is variable: if HLen is equal to 5,
opts will be an empty binary.

The tail variables RestDgram and Data bind to binaries, as all tail variables do. Both
may bind to empty binaries.

If the first 4-bits segment of Dgram is not equal to 4, or if HLen is less than 5, or if the
size of Dgram is less than 4*HLen, the match of Dgram fails.

6.2 A Lexical Note

Note that "B=<<1>>" will be interpreted as "B =< ;<1>>", which is a syntax error. The
correct way to write the expression is "B = <<1>>".

6.3 Segments

Each segment has the following general syntax:

Value:Size/TypeSpecifierList

Both the size and the Typespecifier or both may be omitted; thus the following
variations are allowed:

Value
Value:Size
Value/TypeSpecifierList

Default values will be used for missing specifications. The default values are described
in the section "Defaults" below.

Used in binary construction, the value part is any expression. Used in binary matching,
the vValue part must be a literal or variable. You can read more about the value part in
the sections about constructing binaries and matching binaries.

The size part of the segment multiplied by the unit in the TypeSpecifierList
(described below) gives the number of bits for the segment. In construction, size is any
expresssion that evaluates to an integer. In matching, size must be a constant
expression or a variable.

The TypespecifierList is alist of type specifiers separated by hyphens.

Type
The type can be integer, float, Or binary.

Signedness
The signedness specification can be either signed or unsigned. Note that
signedness only matters for matching.

Endianness
The endianness specification can be either big or 1ittle.

Unit
The unit size is given as unit:IntegerLiteral. The allowed range is 1-256. It
will be multiplied by the size specifier to give the effective size of the segment.

Example:
X:4/little-signed-integer-unit:8

This element has a total size of 4*8 = 32 bits, and it contains a signed integer in
little-endian order.

6.4 Defaults

The default type for a segment is integer. The default type does not depend on the
value, even if the value is a literal. For instance, the default type in ’<<3.14>>’ is
integer, not float.

The default size depends on the type. For integer it is 8. For float it is 64. For
binary it is all of the binary. In matching, this default value is only valid for the very
last element. All other binary elements in matching must have a size specification.

The default unit depends on the the type. For integer and float it is 1. For binary it
is 8.

The default signedness is unsigned.

The default endianness is big.

6.5 Constructing binaries

This section describes the rules for constructing binaries using the bit syntax. Unlike
when constructing lists or tuples, the construction of a binary can fail with a badarg
exception.

There can be zero or more segments in a binary to be constructed. The expression
"<<>>" constructs a zero length binary.

Each segment in a binary can consist of zero or more bits. There are no alignment rules
for individual segments, but the total number of bits in all segments must be evenly
divisible by 8, or in other words, the resulting binary must consist of a whole number of
bytes. An badarg exception will be thrown if the resulting binary is not byte-aligned.
Example:

<<X:1,Y:6>>

The total number of bits is 7, which is not evenly divisible by 8; thus, there will be
badarg exception (and a compiler warning as well). The following example
<<X:1,Y:6,2:1>>

will successfully construct a binary of 8 bits, or one byte. (Provided that all of X, Y and
Z are integers.)

As noted earlier, segments have the following general syntax:

Value:Size/TypeSpecifierList

When constructing binaries, value and Size can be any Erlang expression. However,
for syntactial reasons, both value and size must be enclosed in parenthesis if the
expression consists of anything more than a single literal or variable. The following

gives a compiler syntax error:

<<X+1:8>>

This expression must be rewritten to

<< (X+1) :8>>

in order to be accepted by the compiler.

6.5.1 Including literal strings

As syntatic sugar, an literal string may be written instead of a element.
<<"hello">>

which is syntactic sugar for

<<$h, $e,$1,81, So>>

6.6 Matching binaries

This section describes the rules for matching binaries using the bit syntax.

There can be zero or more segments in a binary binary pattern. A binary ‘pattern can
occur in every place patterns are allowed, also inside other patterns. Binary patterns
cannot be nested.

The pattern ’<<>>" matches a zero length binary.

Each segment in a binary can consist of zero or more bits.

A segment of type binary must have a size evenly divisible by 8.
This means that the following head will never match:
foo(<<X:7/binary,¥:1/binary>>) ->

As noted earlier, segments have the following general syntax:

Value:Size/TypeSpecifierList

When matching value value must be either a variable or an integer or floating point
literal. Expressions are not allowed.

Size must be an integer literal, or a previously bound variable. Note that the following
is not allowed:

foo (N, <<X:N,T/binary>>) ->
{X,T}.

The two occurences of N are not related. The compiler will complain that the N in the
size field is unbound.

The correct way to write this example is like this:

foo (N, Bin) ->
<<X:N,T/binary>> = Bin,
{X,T}.

6.6.1 Getting the rest of the binary

To match out the rest of binary, specify a binary field without size:
foo(<<A:8,Rest/binary>>)

As always, the size of the tail must evenly divisible by 8.

6.7 Traps and pitfalls

Copyright © 1991-2000 Ericsson Utvecklings AB

A Tool for Verifying Software Written in Erlang

Thomas Arts!, Gennady Chugunov?, Mads Dam?, Lars-ake Fredlund?, Dilian
Gurov?, and Thomas Noll®

! Ericsson Computer Science Laboratory, Ericsson Utvecklings AB,
thomas@cslab.ericsson.se
% Swedish Institute of Computer Science,
gena@sics.se,mfd@sics.se,fred@sics.se,dilian@sics.se
8 Department of Teleinformatics, Royal Institute of Technology, Sweden,
noll@it.kth.se

Abstract. The present paper presents an overview of the main results
of the ASTEC project Verification of Erlang Programs, focusing in par-
ticular on the Erlang verification tool. This is a theorem-proving tool
which assists in obtaining proofs that Erlang applications satisfy their
correctness requirements formulated in a specification logic. We give a
summary of the verification framework as supported by the tool, discuss
reasoning principles essential for successful verification such as inductive
and compositional reasoning, and an efficient treatment of side-effect-free
code. The experiences of applying the verification tool in an industrial
case study are summarised, and an approach for supporting verification
in the presence of program libraries is outlined.

The verification tool is essentially a classical proof assistant, or theorem-
proving tool, requiring users to intervene in the proof process at cru-
cial steps such as stating program invariants. However, the tool offers
considerable support for automatic proof discovery through higher-level
tactics tailored to the particular task of verification of Erlang programs.
In addition, a graphical interface permits easy navigation through proof
tableaux, proof reuse, and meaningful feedback about the current proof
state, to assist users in taking informed proof decisions.

1 Introduction

Software written for telecommunication applications has to meet high quality
demands. Such software is often highly concurrent, and testing is not by itself
sufficient to ensure reliability requirements are met. At the Ericsson corporation
the functional language Erlang [1] has been developed for programming telecom-
munication applications. Today many commercially available products offered
by Ericsson are partly programmed in Erlang. The software of such products is
typically organised into many, relatively small source modules, and at runtime
consists of a dynamically varying number of processes operating in parallel and
communicating through asynchronous message passing.

Our approach to verification of software programmed in Erlang is code ver-
ification: we prove that Erlang code satisfies a set of properties formalized in a

2 Foundation

In this section we briefly highlight the foundations of the tool: the Erlang pro-
gramming language, a specification logic for capturing correctness requirements
of Erlang programs, and a proof system for proof derivation.

2.1 The Erlang Programming Language

Erlang/OTP is a programming platform providing the necessary functionality
for programming of open distributed (telecom) systems: a language Erlang with
support for concurrency, and middleware OTP (Open Telecom Platform) pro-
viding ready-to-use components (libraries) and services such as e.g. a distributed
data base manager, support for “hot code replacement”, and design guidelines
for using the components.

In the following we consider a core fragment of the Erlang programming
language with dynamic networks of processes operating on data types such as
integers, lists, tuples, or process identifiers (pid’s), using asynchronous, call-by-
value communication via unbounded ordered message queues called mailboxes.
Real Erlang has several additional features such as modules, distribution of pro-
cesses (onto nodes), and support for interfacing with non-Erlang code written
in, e.g., C or Java.

Besides Erlang ezpressions e we operate with the syntactical categories of
matches m, patterns p, guards g, and values v. The abstract syntax of Core
Erlang expressions is summarised as follows:

ex=V

I Op(ela"';en)

| begines,...,e, end

| eler,...,en)

| case e of m end

| catche

| receive m end

I 61!62
v = op(vi,... ,Un)
pu=o0p(p1,...,pn) |V
m = p; [When gi]->en,... ,€1;

Pn [when gp]->en1,...,enk

gu=e1,..., ey

Here V' ranges over Erlang variables, and op ranges over a set of primitive con-
stants and operations including the integers ranged over by 1, tupling {e;,es},
the empty list [], list prefix [e; |es], pid constants ranged over by pid, and atom
constants ranged over by a and f.

Note above that Erlang variables are always upper-case (F and Pid) while
atoms are lower-case (server, exec and spawn). The server function is con-
tinuously prepared to receive tuples containing the name of a function F and
a process identifier Pid. It then spawns off a new process evaluating the exec
function, which simply invokes the received function F and sends any result to
the process addressed by the process identifier Pid.

Since Erlang is an untyped language a possible outcome of sending a wrongly
typed message to the server process is that the newly spawned process will
terminate due to a runtime error.

A Semantics for Erlang The formal semantics of Erlang is given as an op-
erational semantics in the form of a set of rules for deriving labelled transitions
between structured states [26]. Our semantics for Erlang is a small-step oper-
ational one [11], which is motivated by the free intermixing of functional and
side-effect concerns found in Erlang.

A natural approach to handling the different conceptual layers of entities in
the language (i.e., functional expressions and concurrent processes) supporting
modular (i.e., compositional) reasoning, is to organise the semantics hierarchi-
cally, in layers, using different sets of transition labels at each layer, and ex-
tending at each layer the structure of the state with new components as needed.
Thus first the Erlang expressions are provided with a semantics that does not
require any notion of processes. The actions here are a computation step 7, an
output pid'v, read(g,v) which represents the reading of a value v from the queue
of the process in whose context the expression executes, and f(vi,... ,vs) which
represents the calling of a builtin function (like spawn for process spawning) with
side effects on the process level state.

Then the transition behaviour of Erlang systems (concurrent processes ex-
ecuting expressions in the context of a unique process identifier and a mailbox
of incoming messages) is captured through a set of transition rules separated
into two cases: (i) a single process constraining the behaviours of an Erlang ex-
pression and (ii) the (parallel) composition of two Erlang systems into a single
one expressed by the parallel composition construct “||”. The system actions are
computation steps 7, output pidlv and input pid?v.

Ezample 2 (Erlang Semantics).

We will illustrate the operational semantics by considering the case of a
built-in function with side-effects, like for instance spawn. On the level of Erlang
expression the evaluation of a built-in function like spawn is covered by the
transition rule:

isProcFun(f)

f(vla-..,’un)Mv

where isProcFun(f) tests whether the function f names a built-in function, and
v represents any Erlang value (akin to an input parameter). As seen in the above
rule the operational semantics is infinitely branching, due to occurrence of the

number of negations, to ensure that the corresponding fixed points exists (due
to monotonicity).

The syntax of the logic can then be summarised:

¢ =1t =1y | true | false| ¢ | d1 Ad2 | $1V ¢
| 3T :Ti.¢ |VT : T3¢0 | AT : T;.¢ | ¢ t (application)
| (@) ¢] [a]o
| vX.¢|pX.¢|X (fixed point reference)

This powerful logic is capable of expressing a wide range of important system
properties, ranging from type-like assertions to complex reactivity properties of
the interaction behaviour of a telecommunication system. As a syntactic conven-
tion fixed point formulas can be named, e.g., name < ¢ abbreviates the least
fixed point pX.¢[X/name] and name => ¢ abbreviates the greatest fixed point
vX.¢[X/name] (X is assumed fresh in ¢).

The semantics of a formula in the logic is defined in the usual (denotational)
fashion, as the set of Erlang systems that satisfy the formula (see [7] for details).

Ezample 3. The type of natural numbers is the least set containing zero and
closed under successor. The property of being a natural number can hence be
defined recursively as a least fixed—point, assuming the term constructors 0 and
+1:

nat < AN.(N=0V AV.(nat VAN =V +1))

2.3 The Proof System

Reasoning about open distributed systems written in Erlang requires reasoning
about their interface behaviour relativised by assumptions about certain system
parameters. Technically, this can be achieved by using Gentzen—style proof sys-
tems, allowing free parameters to occur within the proof judgments of the proof
system. The judgments are of the form I' + A, where I and A are sets of asser-
tions. A judgment is deemed vealid if, for any interpretation of the free variables,
some assertion in A is valid whenever all assertions in I" are valid. Parameters
are simply variables ranging over specific types of entities, such as messages,
functions, or processes. For example, the proof judgment v = - ¢ P(z) states
that object P has property ¢ provided the parameter = of P satisfies property
.

The proof rules of the proof system are mostly standard from accounts of
first-order logic in Gentzen-style proof systems, with rules like Vg and V. shown
below:

Io{v/V} F A
TV :T,.0F A"

(VL) eT;

Itk ¢,4

Vo) FEww T84 " fresh

defined. The introduction of subtyping in the underlying theory, can, as usual,
introduce typing proof obligations during parsing of terms and formulas.

For types considered to be freely-generated (intuitively the types where “se-
mantic equality” coincides with the syntactic notion of equality) such as e.g.
the natural numbers, recursive predicates can be automatically generated that
permit structural induction style arguments about elements of the type.

Sequents I'' - A are pairs of ordered sequences of formulas (assertions) I" =
¢1,--.,0n and A = Yy,...,¥,. These formulas may contain free variables,
which are of two kinds: parameters which are generated by rules such as Vg
above, and meta-variables, the result of postponing the choice of a witness in a
proof rule such as V.. To ensure that assignments to meta-variables are sound a
simple scheme based on associating indices to variables, from [27], is used. Bound
variables are represented using de Bruijn indices, to permit checking equality of
formulas quickly up to a-conversion, which is important for obtaining efficient
implementations of the discharge rule.

From a user’s point of view, proving a property of an Erlang program using
the verification tool involves “backward” (i.e., goal-directed) construction of a
proof graph (tableau). A proof graph is, here, an acyclic directed graph of proof
nodes containing sequents and rooted in an initial proof node. Each proof node
in the graph is either a leaf node, meaning that it either represents an open goal,
or that the sequent was solved by the application of an axiom proof rule without
premises, or it is a parent node that has been reduced by applying the proof
rule and such that its children nodes correspond to the premises of the rule. An
application of the discharge rule is represented in the proof graph by a directed
arc from the discharged node to its companion node. Arcs in the proof tree are
labelled by the proof rule that caused the arc to appear, to permit flexible display
of proofs and portable proofs (to allow for, as an example, proof carrying code
schemes [21]).

Open proof goals may also be (copy)discharged (or subsumed in more stan-
dard terminology) when instances of the goal can be found elsewhere in the proof
graph. In practice application of the copydischarge rule is absolutely essential to,
for example, combat the state explosion caused by the interleaving semantics of
Erlang. However, there are two restrictions to its use. First, no open proof goal
can be copydischarged against an ancestor proof node. Second an acyclicity con-
dition is enforced to prevent cyclic copydischarges, for example such that node N
is copydischarged against node M which is in turn copydischarged against node
N. A finished proof graph is a proof graph that contains no open goals.

The application of a proof rule can be canceled (undone), resulting potentially
in non-local cancellation effects on the proof tree when e.g. the companion node
of a copydischarge node is canceled, naturally also causing the copydischarge to
fail. Another such problematic case is when a meta-variable is assigned, and can-
celed in a proof branch, but where the meta-variable is also present in another
proof branch. In such a situation both the assignment, and cancellation, may
also affect the proof steps in the second proof branch. To permit a sound can-
cellation scheme in spite of these difficulties a global ordering of proof sequents

with tactic t1, otherwise tactic t2 is chosen. Finally t_fix can be used to write
recursive tactics, the first argument being an arbitrary initialization value, the
second a function of an arbitrary parameter and a “continuation”, and returning
a tactic.

As an example of the usage of such tactical combinators a derived tactic
forall.all.r is given below, that tries to apply the rule Vg to all right-hand
assertions. We assume that the number of assertions to the right is returned by
the function length assertions right:

val forall_all_r =

t_fix 1
(fn position => fn continuation =>
t_bool
(fn seq =>
position <= length_assertions_right seq)
(t_orelse

(t_compose
(forall_r position)
[continuation (position+1)])
(continunation (position+1}))
t_skip) : tactic;

3.3 User Interfaces and Commands

The standard user interface to the proof assistant is the conventional command
line interface of Standard ML (of New Jersey) to-which a number of commands
to interact with the proof assistant has been added. Conceptually the user in-
terface defines notions such as “which is the current proof graph” and “which
is the current proof node”. The commands of the proof assistant operate on
proof graphs, possibly with side effects. For instance, there are commands to
start a new proof, to define a lemma, to navigate proof graphs (to modify the
notion of the current proof node), to navigate the hierarchy of proof graphs, to
grow (or complete) a proof graph by applying a tactic to its current sequent
resulting possibly in new proof branches, and to cancel a previous proof step. As
another example the discharge and copydischarge proof rules are implemented
as commands rather than tactics, since they cause global effects to the graph
structure.

A clear alternative to combining tactics using tacticals is to directly use
the Standard ML programming language facilities to define functions executing
proof commands. This works reasonably well, but has the disadvantage that all
intermediate proof nodes are kept. In contrast, using tactical combinators, no
intermediate proof nodes are ever kept.

A second, graphical, user interface is under development. This user interface
consists of two parts: the first is programmed in Java and provides additional user
assistance through the implementation of modern theorem prover features [4]
such as “proof-by-pointing” (to suggest, based on the proof context, the next
proof rule to apply), a more structured database of lemmata, proof recording

selecting one progressing ordinal variable per discharge node, a total ordering <;
on these ordinal variables can be found such that if k <; k' then at the discharge
node where k' progresses, k is preserved. This corresponds to a lexicographical
ordering on the vector of related ordinal variables.

3.5 Embedding of Erlang

The Erlang program constructs are encoded as terms of the many-sorted first-
order logic. The current tool generation contains a definition of the transition
relations (on the expression and system levels) as recursive predicates in the un-
derlying logic. In addition, and to improve the speed with which new transitions
are computed, a set of low-level rules was implemented directly, for inferring
transitions e — ¢’ that trigger on the syntactic shape of the Erlang construct e.
An example of such a rule is shown below, for the case of input under parallel
composition to the left in a sequent (S is assumed fresh in I, A):

Lo P9 g o =S5y F A
id2e
17 Lo 2% 6 s =5 |SF A

PE
Lsiflse 22% ¢ F A

In general the handling of operational semantics in EVT is split into two parts:
one language dependent part where tactics corresponding to the operational
semantics of the language in question are introduced and a second, largely
language-independent part, for deriving valid transitions from such sets of oper-
ational semantics tactics. -

3.6 Tactics for Deriving Transitions

The present tool implements four high-level tactics, diasem 1, diasem r, boxsem_1
and boxsem.r, for reasoning about combinations of program terms and modali-
ties. For example, the diasem_r and boxsem_r tactics tries to achieve the result of
the rules (), and [], below, with intuitive definitions (assumingt = t;,... ,t —
t, and no other such continuation state t, exists):

() 'kFti:i,... ,th: 0,4
T I'Fs:{a)p, A

(] 'Fty:éd,A ... I'Fitn:d, A4
T I'kFs:|alp, A
Above, the syntax t : ¢ represents the statement ¢ has the property ¢, a synonyme

of ¢ t.

The means of realising tactics achieving the effect of these rules is by repeat-
edly applying language specific operational semantic tactics such as, e.g., || 7
shown before, together with simple general simplification steps like splitting con-
junctions and reasoning about term equalities. In addition language dependent
tactics for handling data are applied.

levels simultaneously, in manners which, when properly formalized, may be ex-
ceedingly complicated. Our proof theoretic approach, using loop detection, or
discharge, allows very substantial parts of this formalisation to be almost com-
pletely hidden from the user. In effect the discharge mechanism, as described in
the previous section, attempts to cast the proof as so far constructed as a proof
by simultaneous induction, by seeking an ordering that makes the dependency
relation between induction and co-induction variables a well-founded one. Main-
taining the constraints on this dependency ordering is done by the proof editor.
Thus there is no need for users to specify the sequence, nesting, or mutual depen-
dencies of simultaneous inductive arguments, or even to state that induction is
being used. All this is managed by the tool. However, the user will need to have
a basic understanding of the general principles of simultaneous induction for the
operation of the discharge rule to be understandable. And, most importantly,
the tool has no builtin support for finding inductive assertions. Such support
can be programmed (as tactics), or must alternatively be provided explicitly.

4.2 Compositional Reasoning

The essence of compositional verification is the reduction of an argument about
the behaviour of a compound system to arguments about the behaviour of its
components. A system P containing component @ can be represented through
term substitution as P[Q/X], where X is a variable ranging over entities of
the type of Q. We can relativise an assertion P[Q/X] : ¢ about the compound
object P[@/X] to a certain property 1 of its component @ by considering Q
as a parameter for which property 1 is assumed, provided we can show that @
indeed satisfies the assumed property 1. Technically, we achieve this through a
term—cut proof rule of the shape:

' Q:9,A NX:ykFP:¢ A
I''F PQ/X]:¢,A

(TermCut)

Very often, constructors occurring within the scope of recursion give rise to
unbounded state spaces. An example is a process spawning statement, giving
rise to the formation of an unbounded process set. In such cases we have to
combine (co-)inductive with compositional reasoning. For example, after a new
process P has been spawned off by a recursive process () one can apply the
above term—cut rule to relativise the proof on the specification of @ rather than
on its implementation, thus avoiding new processes from being generated by Q
explicitly in the process term, and thus allowing the (co—)induction through loop
detection and discharge to go through.

The above term-cut rule provides the basic low-level facility for composi-
tional reasoning. Applying the rule requires a suitable choice of the cut-property
. It should capture the essence of the behaviour of @ needed for completing the
proof. In some special cases we can give a concrete structure to the formation of
1, as illustrated in the next subsection, and give (and support through tactics)
more high-level decomposition principles exploiting this additional structure.

For example, a list sorting function sort can be specified as a satisfaction
pair sort(L) : prepost(L : list,8,0rs L) where type list is defined by:

L:list <
L=1]
v 3P, R : ErlangValue.
L=[P|R] AR :list

and type 8400t L is defined by:

Vil L =
isSortedV
A tsPermutation V L

A more detailed account of how to deal with side-effect-free Erlang code can
be found in [15].

5 Case Study: A Distributed Database Lookup Manager

Erlang is used extensively for writing robust distributed telecommunication ap-
plications. Central in many of these applications is a distributed database, Mne-
sia [28], also written in Erlang. The Mnesia system is crucial to the robustness
of many Erlang based products developed at Ericsson. It is, for instance, re-
sponsible for error recovery, the prompt and safe handling of which is essential
in telecommunication applications. These features make the Mnesia system a
rewarding object of study when trying out new verification techniques.

The case study at hand concerns only a small part of the Mnesia system,
a protocol for the evaluation of a query which is distributed over several com-
puters in a network. The starting point for this case study was the Erlang code
implementing the distributed database. We extracted, from the real implemen-
tation, the code for the distributed query evaluation protocol and added some
code to provide a very simple simulated interface to parts of the system that
were irrelevant for the problem at hand. The result was an Erlang program that
could be seen as a very precise, and in some sense formal, description of the un-
derlying algorithm. Isolation of the code responsible for the lookup mechanism
and analysing the intended behaviour of the code resulted, as a side effect, in a
clear and patentable picture of the underlying protocol [22].

As input the protocol receives a database query divided into subqueries.
These subqueries are distributed over the network in the form of processes on
those computers where the specific data for a subquery is stored. Whenever a
subquery process receives a message, it extracts the corresponding data from the
database tables and sends it along the network.

One process is responsible for initialising the lookup process ring, and for
collecting the resulting data. To avoid excessive delays and storage consump-
tion, query answers are collected in segments, managed by the lookup manager.

subqueries. The first one manages the original input list. The second one receives
a list of client names and returns a list of pairs of the form {Name, Number},
enumerating every phone number that is owned by the respective client. And
finally, for each of the numbers, the third subquery collects the target number
and the fee of every phone call that was originating from it, returning a list of
quadruples of the form {Name, Number, Target, Fee}.

After spawning the ring, the initial process P, is ready to receive a message of
the form {user request, UserPid, NrSolutions} where the triple represents
an atom user_request to identify the message type, the pid of the requesting
process and the maximum number of solutions that the latter process wants
to receive.Whenever this message arrives, a message is sent to the consecutive
process in the ring P,, which is the first process able to perform a subquery
lookup. The process P, subsequently calls the function counting, which collects
all answers that the subqueries of the ring produce. The idea is that for all
solutions that a process in the ring receives, it computes all new solutions using
its subquery lookup function. This might result in an increase or decrease of the
number of solutions. These new solutions are passed to the next process and so
on, until P; receives the answers and can present them to the user.

However, in order not to overload the network, the processes in the ring
are not sending all the answers they find, but just a fixed number given by
PacketSize, which is dynamically determined by P, and depends on the number
of requested solutions and the network load. Thus, the number PeacketSize is
sent along in the message from P; to the next process P, in the ring. The latter
process computes all answers it can find according to its subquery and sends
at most PacketSize of these answers to the next process, whereas the remaining
answers are kept in the store. All consecutive processes in the ring perform the
same actions and eventually P; receives at most PacketSize answers. The process
P, may now add these answers to its store and as long as the store contains less
than the demanded number of answers (NrSolutions) a message will be sent to
the process F, requesting to produce new answers. '

Except for the initial processes, all other processes in the ring, i.e., Py, ... , Py,
are evaluating the function process_in_ring having three arguments, the pro-
cess identifier (pid) of the next process in the ring, the function representing the
subquery, and the empty list representing a local store for the process. These
processes wait for a message containing at most PacketSize answers of the pre-
vious process and the value PacketSize itself. The number of stored answers is
compared to the number PacketSize of demanded answers and if enough answers
are already in the store, these are sent along to the next process and new answers
are computed. In case not enough answers are stored, first all new answers are
computed, whereafter at most PacketSize answers are sent to the next process
and all other answers are stored for the next round.

The property that we want to verify is informally described as:

Is the retrieval of the information terminating?

In other words, given an arbitrary query and an arbitrary positive integer, when-
ever we build a ring corresponding to this query and send a message of the form

and then, by continuing state exploration, to a subgoal of the shape

some assumptions F 4)
proc(mk ring(---),---) ||
proc(process_in_ring(---), -) : rootspec(:--)

The idea is to prove two lemmas, one stating the correctness of process_in_ring,

some assumptions (5)
proc(process_in ring(---)) : proc_wait_for_input(- - -)

and one concerning the composability of rootspec with proc_wait_for_input,

C1 : rootspec(--), ©)
C2 : proc_wait_for_input(---) F
C1|| C2: rootspec(- -)

Subgoal (6) states a compositional property of root and ring processes: putting
together a (possibly aggregate) process (P;) acting as a root with a (possibly
aggregate) process acting as a ring element results in an aggregate process which
again acts as a root. Obviously the correctness of this statement is crucially
dependent on input and outputs being properly connected, which are matters
we will not be concerned with here.

By themselves, (5) and (6) are not sufficient to conclude (4). However, using
(5) and (6) it is possible to reduce to a goal which is actually an instance of the
goal (3), and the remarkable fact is that, in principle, an inductive argument
can be set up such that at this point the proof can be completed (c.f. [7]).

Properties of the Separate Processes We are thus left with two main sub-
goals, one of the shape (5), and one of the shape (6). We do not comment further
on (6) other than observe that the ring process property proc_weit_for_input we
are looking for must be strong enough to permit (6) to be proved. Instead we
turn to proc_wait_for_input.

We start by observing the role of a special token that is initially sent by the
first process (P;) in the ring and implies termination as soon as it is also received
by this process, i.e., when the token has gone through the entire ring. This
special token ({[],PacketSize}), which we call the end_token for convenience,
is repeatedly sent by P; to P, after initially sending {[[]],PacketSize} once.
In case the number of demanded solutions is larger than the number of solutions
present in the database, the process P; can only respond to the user when this
end_token is received from the process P;.

The first process in the ring P; plays a special role and the abstract states
we distinguish for this process are

1. the process is waiting for a user_request,

A compositional reasoning framework will turn out to be useful especially
in connection with standard program libraries. Since these are developed to be
used frequently, it is worth spending much effort in analysing and describing their
properties since many applications will potentially benefit from this knowledge.

In our approach we try to capture the behaviour of library functions by speci-
fying their operational semantics on an abstract level, regardless of their concrete
implementation. -To this aim we provide rules in the style of Section 2.1 which
describe the possible transitions that any Erlang process evaluating the respec-
tive function can take, restricted by the shape of the environment if necessary.
Adding these rules to the general proof system of Section 2.3 enables us to argue
about any program that uses the library module without having to consider the
module’s source code. In this way we support a compositional style of reasoning
which is relativised by the assumption that the concrete implementation of a
library follows its specification.

From a pragmatical point of view we can argue that such assumptions are
justified since software libraries are usually well-tested, and since their frequent
use uncovers unexpected behaviour very soon. From a conceptual point of view
however, the consistency between the library-specific transition rules and the
concrete implementation with respect to the general proof system is an issue: do
the specific rules fully reflect the behaviour of the library functions, or are they
too abstract in the sense that certain details of the implementation are ignored
although they have an impact on the verification problem? Or, in other words:
is the (low-level) implementation of the library module correct with respect to
the (high-level) specification?

We now concretely demonstrate our ideas using a specific class of programs
which plays an important réle in open distributed applications. The essential
characteristics of this class are described in the following subsection.

6.1 Generic Client—Server Implementations

To support the software development process, the Erlang OTP Team has devised
a wide range of design principles which describe how to structure a concrete
Erlang software architecture. In particular several kinds of behaviour modules
are offered as templates to build concrete systems. Among these one finds the
gen_server behaviour which is widely used to implement client—server applica-
tions in a standardized way.

The gen_server module offers a number of interface functions which provide
synchronous communication, debugging support, error handling, and other ad-
ministrative tasks. The actual, application—specific implementation of the server
has to be provided by the user in a separate module, called the callback mod-
ule. Whenever the generic part of a server receives a request, the corresponding
callback function is being invoked.

For example, gen_server provides the call function which can be invoked
in the user process to send a request to a server:

Answer = gen_server:call(Server, Req)

If the handle_call function yields an answer, it is immediately returned to
the waiting user process, and the server changes into the idle state again:

(r[wait(pid')], pid, q) ||
({reply, enswer, newstate}, pid’', q')
— (r[answer], pid,q) || (Loop(newstate), pid’, q')

The remaining cases are handled in a similar fashion.

We are currently in the process of extending the proof system by appropriate
transition rules and applying it to simple examples, starting with systems which
consist of a finite number of clients and servers. Later, for more elaborated
case studies, we will-try to identify tactics and tacticals which automatically
take (most of) the decisions described in Section 3, and we will try to extend
the method to programs which involve dynamic process creation. The whole
approach is also easily adaptable to several other libraries in the Erlang distri-
bution, like systems of finite-state machines implemented by the generic gen_fsm
module.

7 Conclusion

The present paper gives an overview of the main results obtained in the ASTEC
project Verification of Erlang Programs, focusing in particular on the Erlang
verification tool, a theorem-proving tool which assists in obtaining proofs that
Erlang applications satisfy their correctness requirements formulated in a speci-
fication logic. We gave a summary of the verification framework as supported by
the tool, discussed reasoning principles essential for successful verification such
as inductive and compositional reasoning and reasoning about side-effect-free
code, summarized our experience from a larger industrial case study, and sug-
gested a practical approach for supporting verification in the presence of program
libraries.

The experience gained in the project shows clearly the potential of the chosen
approach to verification of Erlang programs. We were able to verify Erlang sys-
tems which are beyond the scope of most other existing verification approaches
due to their dynamic nature. The price to pay is undecidability of the general
verification problem. The verification task has to be split into automatable and
manually assisted parts. Thus, the success of the approach depends crucially on
the efficiency of the decision procedures employed and on the support provided
for minimizing the need for human intervention in terms of high-level reasoning
principles and user interface.

To make the presented verification method practically useful a considerable
additional effort is required in several research directions. These include provid-
ing automatic support for identifying appropriate induction schemes, providing
easy and context-sensitive access to the available proof machinery through the
GUI, and designing eflicient decision procedures automating the straightforward
low-level reasoning and finite state space exploration.

21.

22.

23.

24.

25.

26.

27.

28.

George C. Necula. Proof-carrying code. In Proc. POPL’97, 1997.

H. Nilsson. Patent Application, 1999.

S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS: Combining
specification, proof checking, and model checking. In Proc. CAV’96, Lecture Notes
in Computer Science, 1102:411-414, 1996.

D. Park. Finiteness is mu-Ineffable. Theoretical Computer Science, 3:173-181,
1976.

L.C. Paulson. Isabelle: A Generic Theorem Prover. Springer Verlag (LNCS 828),
1994.

G. D. Plotkin. A structural approach to operational semantics. Aarhus University
report DAIMI FN-19, 1981.

D. Sahlin, T. Franzén, and S. Haridi. An intuitionistic predicate logic theorem
prover. In Journal of Logic and Computation, 2(5):619-656, October 1992.

C. Wikstrém, H. Nilsson, and H. Mattson. Mnesia database management system.
In Open Telecom Platform Users Manual. Open Systems, Ericsson Utvecklings AB,
Stockholm, Sweden, 1997.

A Monitoring and Instrumentation Tool developed in Erlang *

Miguel Barreiro, Victor M. Gulias, Juan J. Sanchez

Lrcia, Department of Computer Science
University of A Coruna, SPAIN
{enano, gulias, juanjo}@lfcia.org

Abstract

MONET is a simple and flexible monitoring tool,
suitable for network monitoring, host perfor-
mance tracking, and for the instrumentation of
complex systems, among others. The whole foun-
dation for MONET is the Erlang/OTP platform
which was chosen for its robustness features, ease
of integration and speed of development.

In order to keep MONET independent from
the output device used to present system in-
formation, all data is generated as XML docu-
ments which are transformed by ERLATRON, a
distributed XSLT processor also implemented in
Erlang using a C++ library.

Keywords: monitoring, instrumentation, dis-
tributed systems, functional programming, Er-
lang, XML

1 Introduction

MONET is a simple and flexible monitoring tool,
suitable for network monitoring, host perfor-
mance tracking, and for the instrumentation of
complex systems, among others. It was originally
developed as a debugging and monitoring aid for
a video-on-demand server under development at
the LFcIA lab, and then evolved and generalized.

The whole foundation for MONET is the Er-
lang/OTP (1] platform, including MESH, EVA,
SASL and Mnesia. Erlang has been chosen for its
robustness features, ease of integration with the
rest of the system, speed of development, and the
functional background of many LFciA members.

*Partially supported by FEDER TIC-1FD97-1759 and
Xunta de Galicia PGIDT99COM10502

MONET was initially intended as a replacement
for simple monitoring tools as MON [5], with addi-
tional support for variable tracking and graphing,
as well as more complex instrumentation features.

The paper is structured as follows: Firstly,
the main ideas of MONET operation are pre-
sented, paying attention to the classes and orga-
nization tree, the measurement objects (including
the adapters for MON monitors), alarm and event
handlers, and the alarm destinations. Section 3 is
devoted to the external XML interface and how
the ERLATRON subsystem can be used to perform
XSL transformations to browse such output in-
formation. Section 4 presents a small example of
MONET output, an alarm report, transformed to
fit different output devices. Finally, some conclu-
sions are presented in section 5.

2 Principles of Operation

MONET follows the MESH and EVA design, lever-
aging the infrastructure they provide and extend-
ing it. Figure 1 presents the modular structure
of the system. For each measurement an MO
(measurement object) is created, supervised by
an MRP (measurement responsible process). A
master handler (main_handler) receives MESH
and EVA events and alarms, and may invoke spe-
cific action handlers according to complex con-
figured conditions. Event and alarm logging is
performed through the standard MESH logs; ad-
ditionally, custom loggers can be plugged into
main_handler or directly into EVA. The user in-
terface is implemented through a web adaptation,
using ERLATRON (see section 3) and INETS from
erlets.

ERLATRON s Tae:
——————— monetXML |

.‘nandl er‘

/ "h.andle;i
/ handle}

i /.‘___,,-a-’
hnn:l.le ‘‘‘‘‘‘‘
" Installed ™

‘. adaptation.”

D UK. g

| Intertace

: Application APP

Figure 1: MONET structure

2.1 The Classes Tree

Instead of defining MESH Measurement Objects
one by one, MONET creates a tree of monitored
object classes, together with the measurement ob-
jects that will take objects of that class as mon-
itored resources, like the one shown in figure 2.
Each object class — a tree node — can be fur-
ther specialized as desired.

Leaf nodes usually represent individual hosts
or resources, but are not special in any way.

The tree is traversed from the root towards a
node to determine the measurement classes suit-
able for that node.

CPUkoed 1 CPU sarvers D sbrvers [Fros space

RPC ping
a a SMB sarvary NFS aarvern

rpe kocked chack)

Figure 2: A sample classes tree

2.2 The Organization Tree

Resources to be monitored are defined as a di-
rected graph, reflecting the logical grouping as

managers see them. This logical grouping is com-
pletely artificial, and can be based on their phys-
ical, topological or simply organizational struc-
ture. Note that, despite its name, this structure
is a directed graph and not strictly a tree, because
branches can merge at any point (see figure 3 for
an example). It is supposed to make sense to hu-
mans and has no other constraints, and does not
even require all monitored resources to be present.

Each resource can have an attached list of
classes; these classes position the resource in the
classes tree, thus implicitly declaring the mea-
surement objects that will monitor it.

Resources can also contain additional data
in order to store their physical position, net-
work connections, desired graphical representa-
tion, etc. This information can then be used by
measurement objects to get additional configura-
tion or by the user interfaces when representing
the tree.

Coardinates I
Description 1

IP network

Netmask
| Descrotion || Coordinates

1P natwork
Whati

Natmank
Descrgtion || Coordinstes

Figure 3: A sample organization tree

2.3 Measurement Objects

Following the MESH conventions, specific mon-
itors are Measurement Objects, supervised by a
Measurement Responsible Process. Measurement
Objects can run in remote nodes.

In order to ease the development of simple,
common monitors, MONET provides two generic
measurement types which act as bridges between
MESH and Erlang functions or Unix executables,
respectively. Thus, existing monitor scripts and
executables — such as those from MoN— or Er-
lang code can be used as monitors without addi-
tional coding.

2.4 Alarm Handlers

Alarm handlers are called from main_handler
when the appropriate alarms and conditions are
triggered. Again, they can be either external ex-
ecutables or Erlang functions.

2.5 Alarm Destinations

Whenever an event or alarm is received, MONET
checks whether it should call a handler. Alarm
destinations are currently defined as functional
expressions in order to define complex conditions,
such as:

[

% Call dumphandler whenever an alarm is received.

% (ie., when stddeps:alvays/5 returns true)
{ always, dumphandler},

% Call myHandler if the sender is enano2@borg
{ {sender, [enano2@borgl}, myHandler},

% Call thisHandler if extmodule:extfunc/5
%4 returns true (called as

% extmodule:extfunc (Name, Sender,

A Severity, Class, [LocalArgsl))

{ {extmodule,extfunc, [localargs]},thisHandler},

% Call dumper if either always()
% or never() are true:
{ {any, [{always,[1},{never,(]}]}, dumper },

% Call selHandler if the two former are true:
{ { all, [{any, [{always,[]},{never,[]} 1},
{extmodule,extfunc, [localargsl} 1},
selHandler}

This allows for composition of arbitrarily com-
plex conditions as long as they can be expressed
in Erlang. The use of higher-order functions to
express complex configuration conditions is also
employed in stylesheet selection (section 3.3).

2.6 XML Interface

The main MONET user interface is implemented
as a set of erlets called from INETS. They never
produce HTML output directly, but call the ap-
propriate XML interface functions and transform
the result instead, using ERLATRON (see sec-
tion 3).

Aslong as MONET information can be retrieved
from different devices, it is advisable to provide
a general mechanism to adapt this content to the
specific features of such output devices. Contrary
to when style information is hard-coded into the
content, separation of style from content allows
for the same data to be presented in different
ways. This enables:

e Reuse of fragments of data:

Same content should look different in differ-
ent contexts.

o Multiple output formats:

Different media (paper, online), different
sizes (manuals, reports), different classes of
output devices (workstations, hand-held de-
vices).

o Styles tailored to the reader’s preference:
Print size, color, and so on; easier support
for blind or visually impaired users.

o Standardized styles:

Corporate stylesheets can be applied to the
content at any time.

e Freedom from style issues:

Technical writers do not need to be con-
cerned with layout issues because the correct
style can be applied later.

e Fasy interface with third-party software:

Simple, standard interface for data inter-
change with other applications.

In order to achieve such goals, MONET gener-
ates most of its results as XML documents which
can be transformed at a later stage according to
an XSL stylesheet.

3 The Erlatron Subsystem

To perform the XSL transformation, MONET
uses ERLATRON, a distributed XSLT processor
implemented in Erlang using a C++ library
(SABLOTRON [4]).

3.1 Overview

Figure 4 presents the actors involved in the
ERLATRON subsystem. ERLATRON adapts the
SABLOTRON library by using a port which per-
forms basic transformations of a couple of Erlang
binaries representing the XSL stylesheet and the
XML source. SABLOTRON is based on the EXPAT
library (3] and has been designed for performing
fast and compact transformations. The port is
managed by a generic server that offers XSLT
services to any client. This slave server consti-
tutes the basic processing unit and, considering
the CPU cost of performing XSL transformations,
low additional overhead is expected when used
from Erlang.

= ;0‘0] t-)r-wmkﬂs

eriatron server

Figure 4: ERLATRON actors

In order to exploit a distributed framework,
such as the Beowulf cluster introduced in [2], a
simple master/slave architecture is deployed. In
this setup, a master server is used to distribute
requests to different slave servers running on a
pool of computer nodes. The state of the mas-
ter server is a collection of pending transforma-
tions as well as the information about idle slaves.
The dispatching of requests, carried out by the
master scheduler, consists of pairing a pending
transformation with an idle slave server. Figure 5
shows the interaction among actors when solving
an XSLT service.

| client | : I master] [slave | I adaptar
T ! T r

...... R R e by -
' i

I '
| '
xsh '
xsll
' f=——=
' read h
resull ey
i
'

Figure 5: Interaction among actors

Clients interact with the master server through
a global registered name, making an ERLATRON

server takeover possible in case of failure without
disturbing client interaction.

3.2 Benchmark

As the reader can guess, ERLATRON architecture
seems to be quite interesting for web sites with a
high number of requests which involve many XSL
independent trasformations for dynamic content
generation. We are going to present some prelim-
inary results when using ERLATRON on a Linux
Beowulf cluster with a frontend and up to 22
nodes. The frontend (Dual Pentium II 350MHz
384MB) runs INETS, serving a 64KB HTML
generated using a 25KB XML document and a
small XSL stylesheet; each node (AMD K6 300-
266MHz, 96MB) hosts an ERLATRON slave. All
the nodes are linked using a switched 100Mb Fast
Ethernet.

Figure 6 shows the requests per second
achieved when running Apache Bench (ab), a tool
for benchmarking an HTTP server, at the fron-
tend. As new XSLT processors are added to the
slave pool, the server is able to increase its ser-
vice rate until the concurrency level (C, number
of simultaneous requests, -c) matches the pool
size. Figure 7 presents the time taken to attend
a collection of requests, varying the concurrency
level.

40

ab-c10-n500 ——

as | ab-c15-n 500 ~--w-— |
ab -¢ 25 -n 500 -

ab -¢ 50 -n 500 —=—

w
o
i
"

N
wn

requests per second

t 2 4 8 12 16 22
number of slaves (P)

Figure 6: Requests per second

Figure 8 shows how the average time for a
request can be kept almost constant while con-
currency level is not greater than the number of
slaves. It should be pointed out that the overhead
for the case slaves = 22 and C low is due to the
use of nodes 17-22 which are AMD K6 266Mhz,
while nodes 1-16 are AMD K6 300Mhz. The mas-
ter scheduler should take this fact into account

200 g7 ab-cC-n250 ——

150

execution time (s)
8

[4)]
o

124 8 12 16 20 24 48
concurrency level (C)

Figure 7: Execution time

and introduce some kind of priority among slaves.
This is particularly interesting when some slaves
run at the frontend because that will reduce net-
work communications.

5000 -
ab -c C -n 500 (slaves=22) ——"

4500 ab -c C -n 500 (slaves=16) - o
ab -c C -n 500 (slaves=12) .»w

4000
3500 |

average time (ms)

ol . .
16 12 24 48 96
concurrency level (C)

Figure 8: Average service time

3.3 Stylesheet Selection

Given a valid XML document, one of the ERLA-
TRON duties must be the selection of an appro-
priate XSL stylesheet based on the type of the
requested document and the nature of the out-
put device, even though other parameters can be
taken into account such as system workload (e.g.
a simpler formatting can be chosen under heavy
load condition). In order to accomplish this re-
quirement, ERLATRON subsystem incorporates a
module with two basic features:

e Stylesheet registration:

A Mnesia database is used to store the bind-
ing between a document type and an XSL

stylesheet. As the same document type can
have different stylesheets, the database also
stores a rule that decides whether the style
can be applied.

e Stylesheet selection:

Using the information stored in the XSL
repository, a stylesheet, matching its rule in
the given context, is chosen.

A rule for a given stylesheet is defined as a func-
tion that takes a context and an extra argument
and returns true if the stylesheet can be applied
to the document in such context. The context
is defined as a list of pairs {Key, Valuel}, tipi-
cally the result of parsing the QUERY_STRING or
the environment of an HTTP query. Some use-
ful functions are provided to test for an specific
{Key, Value} pair (equal) or for matching a reg-
exp (match). For example, a rule to trigger an
stylesheet when using the Lynx browser is 1ynx,
defined as:

lynx(Context, _Extra) ->
match({"User-Agent", "Lynx"}, Context).

Higher-order functions are used to define com-
plex queries combining simpler rules. For exam-
ple, the rule all takes a list of rules (functions
and, optionally, the extra parameters) and tests
all the conditions. As an example, the following
Erlang term binds the document type meas with
the XSL http://my.host/xsl/style.xsl when
using Lynx and a simple style is required.

{meas,
"simple lynx style for meas",
"http://my.host/xsl/style.xsl",
{all, [1ynx,
{equal,{"style", "simple"}}]}}.

4 Examples

The following small example shows a simple
alarm list browsed from Netscape, Lynx, and a
WAP emulator, all with different styles.

The initial XML was, in all cases:

<ALARMS>

<ALARM>
<NAME>ping_borg24</NAME>
<SENDER>borg24</SENDER>
<CAUSE>unknown</CAUSE>
<SEVERITY>major</SEVERITY>
<CLASS>equipment</CLASS>

</ALARM>

<ALARM>
<NAME>cluster_temp</NAME>
<SENDER>environ_mon</SENDER>
<CAUSE>Possible air cond failure</CAUSE>
<SEVERITY>major</SEVERITY>
<CLASS>environmental</CLASS>

</ALARM>

<ALARM>
<NAME>response_time</NAME>
<SENDER>adapt_module</SENDER>

<CAUSE>Service queune length too long</CAUSE>

<SEVERITY>minor</SEVERITY>
<CLASS>processing</CLASS>
</ALARM>
</ALARMS>

If the User-Agent is Lynx, the style chosen is
a very simple one, without tables (figure 9).

T i AR PO AL AN O AORATE IO EATIDN AT AL s X
Alaras |
% ping borg24: equipment, borg24 (unknown -- major)
clysler Llemp: environmental. environ_mon (Posslble
air cond failure -- msjor)
" response.time: processing. adapt_module (Service
queue length too long — minor)
Comminidi: Uie arrow keyl Lo wove. "7 For help, “q° Lo quil, "¢ °

Arrow keys: Up and Down to move, Hight to follow a link: Left “ﬂ
Help O)ptions Pirint G)o M)ain screen Muit /=search [deletel=his!

Figure 9: Alarms browsed from Lynx

In the User-agent is Mozilla (Netscape) in-
stead, a richer XSL is chosen, displaying the
alarms as a table (figure 10).

[Metscaps. oo M

Fle Edit View Go Hc_p__
(€93 BHed 343 & =

il " Bockarks I_G_OTT;;E“;;: //borg: 8083 /erlet s /monothtal /alarms7et: 4
Currently active alarms

LFGA—
Internal Monet testbed
W'ﬁ_—? _{ Sender T Cmme Eeverity]
org | Spdpmd T Trgpl 1T Wk
cinter_temp & =00 | o
roponse thin prccmming . pspt_model | S S8 | e

Produced swith Munet from erusto/y release, processed with Erisoron vL61

o TR |

s waem 2|

Figure 10: Alarms browsed from Netscape

Figure 11 shows a compact alarm list produced
for a WAP terminal. In order to speed download
time, specific alarm details are included as WML
cards in this WAP style, as shown in figure 12.

Figure 11: Alarms browsed from a WAP terminal

Figure 12: An alarm card from a WAP terminal

5 Conclusions

MONET is a simple and flexible monitoring and
instrumentation tool, developed in Erlang, mak-
ing use of the OTP facilities and interfacing to
external monitors and handlers if desired. All
information presented is produced as XML and
transformed using XSL according to the user pro-
file, browser or other variables.

During the development, Erlang/OTP is show-
ing an extremely high productivity in absolute
and relative terms, after an initial learning curve.

References

(1] J. Armstrong, M. Williams, and R. Virding.
Concurrent Programming in Erlang. Prentice-
Hall, Englewood Cliffs, NJ, 1993.

(2] M. Barreiro and V. Gulias. General Issues on
Cluster Administration. In Rajkumar Buyya,
editor, High Performance Cluster Computing,
volume I. Prentice Hall, 1999.

(3] J. Clark. Ezpat - XML Parser Toolkit 1.1.
http://www.jclark.com/xml/expat.html.

[4] T. Kaiser. Sablotron. Ginger Alliance Ltd.
http://www.gingerall.com.

[5] J. Trocki. mon, Service Monitoring Daemon.
http://www.kernel.org/software/mon/.

EUC’2000 - Participants

Conference chairman and speakers

Ulf Wiger

Kostis Sagonas |Uppsala University Sweden kostis@csd.uu.se

lllllalzguel Barreiro Universidade da Corufia [Spain enano@ceu.fi.udc.es

Per Bergqvist CellPoint Systems AB Sweden per @cellpt.com

Richard Carlsson [Uppsala University Sweden [richardc@csd.uu.se

Jakob Cederlund |[UAB/OTP Sweden l_jakob@erix.ericsson.se

Lars-Ake SICS Sweden fred @sics.se

Fredlund

Sc-ott !_.y stig Sendmail Inc USA scott@sendmail.com

Fritchie

Sean Hinde one2one UK Sean.Hinde @one2one.co.uk

Peter Lundell Ericsson Telecom AB Sweden |peter.lundell @etx.ericsson.se

Kenneth Lundin [[UAB/OTP Sweden kenneth@erix.ericsson.se

Patrik Nyblom UAB/OTP Sweden Patrik.Nyblom @uab.ericsson.se

Richard A. . ! New

O’ Keefe Otago University Zealand ok @atlas.otago.ac.nz

Mikael Pettersson |Uppsala University Sweden Mikael.Pettersson @csd.uu.se

Bengt Tillman i%csson Radio Systems Sweden bengt.tillman @era.ericsson.se

Robert Tjamstrom|Ericsson Telecom AB Sweden erandig @al.etx.ericsson.se
Ericsson Telecom AB Sweden [etxuwig @etxb.ericsson.se

Program chairman and organizers

Bjarne Dicker UAB/CSLab Sweden [bjarne@cslab.ericsson.se

Tuula Carlsson UAB Sweden Tuula.Carlsson@uab.ericsson.se

Anna Fedoriw UAB Sweden Anna.Fedoriw @uab.ericsson.se

I%Ic;;til?arsson UAB/ErlSys Sweden [lotta@erlang.ericsson.se

Eeva Lintunen UAB Sweden Eeva.Lintunen @uab.ericsson.se
Participants

X(l))lrizllzlllsamsson i%csson £Xa010 Sysiems Sweden epktoab@lmera.ericsson.se

Ola Andersson WiseOne AB Sweden Ola.Andersson @wiseone.se

Peter Andersson [Ericsson Expertise Inc [Ireland Peter.Andersson @eei.ericsson.se

Ingela Anderton |[UAB/ErlSys Sweden ingela@erlang.ericsson.se

Marcus Arendt Marcus Arendt AB Sweden marcus @arendt.se

Joe Armstrong Bluetail AB Sweden joe @bluetail.com

Thomas Arts UAB/CSLab Sweden thomas @cslab.ericsson.se

Ericsson Radio Systems

Gosta Ask AB Sweden Gosta.Ask @era.ericsson.se
Bjorn Axelsson |[UAB/ErlSys Sweden bjorn @erlang.ericsson.se
Knut Bakke Ericsson AS Norway Knut.Bakke @eto.ericsson.se
Didier Begay France Telecom R&D France didier.begay @francetelecom.fr
Clara Ben;; Earle [UAB/CSLab Sweden clara@cslab.ericsson.se
Per Bengtsson TeliaPromotor AB Sweden
Johan Bevemyr [Bluetail AB Sweden [jb@bluetail.com
CB}ieercailcle(rlbeck gﬁﬁf:gﬁilg(éﬁb}l Germany [|Gerald.Biederbeck @eed.ericsson.se
Martin Bjorklund [[Bluetail AB Sweden mbj @bluetail.com
Hans Bolinder UAB/OTP Sweden hasse @erix.ericsson.se
Kent Boortz UAB/OTP Sweden kent@erix.ericsson.se
Thomas Buksholt [Ericsson AS Norway |Thomas.Buksholt@eto.ericsson.se
Mikael Bylund [TeliaPromotor AB Sweden
Goran Bage i%csson Eacio Systems Sweden goran.bage @era-t.ericsson.se
Emil Bickmark |[Ericsson Telecom AB Sweden etxelar @etxb.ericsson.se
Markus Cech gzs:ssgﬁi:gcéﬁb}l Germany [Markus.Cech@eed.ericsson.se
grea;r:;;:sico Cesarini Consulting Ltd. UK francesco@home.se
Gennady SICS Swed @si
Chugunov weden gena@sics.se
Ornella Ciotti Ericsson Lab Italy Italy ornella.ciotti@tei.ericsson.se
Pierre Crégut France Telecom R&D France pierre.cregut @francetelecom.fr
Mats Cron-qvist Ericsson Telecom AB Sweden [letxmacr @etxb.ericsson.se
Mats Cullberg Ericsson Telecom AB Sweden |mats.cullberg @ericsson.com
Mads Dam SICS Sweden mfd@sic&.
gf:?;;ilo e Ericsson Lab Italy Italy teimads @tei.ericsson.se
Niclas Eklund UAB/OTP Sweden nick @erix.ericsson.se
Eli?elft;o. Ericsson Expertise Inc Ireland Dermot.OFlaherty @eei.ericsson.se
Dick Forsberg Ericsson Telecom AB Sweden etxdifo@tb.etx.ericsson.se
Henrik Forsgren |[Starthouse Sweden henrik @starthouse.se
Magnus Froberg [Bluetail AB Sweden magnus @bluetail.com
Ericsson
Li Ye Ge Communications China rdcliyg @ecnshsr201 .etc.ericsson.se
Software
Luke Gorrie Bluetail AB Sweden luke @bluetail.com

Catrin Granbom [UAB/ErlSys Sweden catrin @erix.ericsson.se

Pér Grandin g?ﬁf::ﬁi‘g(éﬁbfl Germany |[Paer.Grandin @eed.ericsson.se
Joakim Grebens [Bluetail AB Sweden |jocke @bluetail.com

Rickard Green UAB/OTP Sweden rickard @erix.ericsson.se
gﬁgmun dsson UAB/OTP Sweden [|dgud@erix.ericsson.se

Victor M. Gulias [Universidade da Corufia [Spain gulias @dc.fi.udc.es

Dilian Gurov SICS Sweden |dilian@sics.se

Bjorn Gustavsson |[UAB/OTP Sweden bjorn @erix.ericsson.se

Siri Hansen Ericsson Expertise Inc Ireland Siri.Hansen @eei.ericsson.se
Per Hedeland Bluetail AB Sweden per @bluetail.com

John Hughes ICJl;?‘l,r;:LsyTechmcal Sweden rjmh@cs.chalmers.se

Gunilla Hugosson [UAB/OTP Sweden [gunilla@erix.ericsson.se

Peter Ingels Ericsson Inc USA EUSPEIN @am1.ericsson.se
Jonas Jacobsson i%csson KagielSystems Sweden |[jonas.k.jacobsson @era.ericsson.se
Patrik Jansson Sﬁ?igizﬁyTechmcal Sweden patrikj @cs.chalmers.se

Erik Johansson [Uppsala University Sweden ||Erik.Johansson @csd.uu.se
Thomas Johnsson g:;ﬁ;i%;eseamh & Sweden [johnsson@crt.se

?g:;g:oa: BlueLabs AB Sweden Per-Johan.Josefsson @sth.frontec.se
Bertil Karlsson [UAB/OTP Sweden bertil @erix.ericsson.se

Hakan Karlsson [[UAB/CSLab Sweden hakan.karlsson @ericsson.com
Magnus Karlson [UAB/OTP Sweden mk @erlang.ericsson.se
Mathias Karlsson i%csson Radio Systems Sweden mathias.karlsson @era.ericsson.se
Mikael Karlsson [Creado Systems Sweden [mikael.karlsson@creado.com
Torbjorn Keisu [UAB/SARC Sweden | Torbjorn.Keisu@ericsson.com
Hékan Larsson |[UAB/CSLab Sweden |lhakan.larsson @ericsson.com
Edmond Lew Ericsson Australia EPA [Australia [edmond.lew @ericsson.com.au
Magnus Lille WiseOne AB Sweden

Fredrik Linder BlueLabs AB Sweden [fredrik.linder @bluelabs.se
Thomas Lindgren |[Bluetail AB Sweden thomasl @bluetail.com

Olof Lindstrom [[Ericsson Inc USA EUSOLL @am] .ericsson.se
Rutger Ljungqvist [Consafe Infotech AB Sweden rutger.ljungqvist@ericsson.no
Leslaw Lopacki [Ericsson AS Norway [etolel @eT-iésson.no

Matthias Ling UAB/CSLab Sweden Matthias.Lang @ericsson.com

Arild Lgvendahl [[Ericsson AS Norway [Arild.Sigmund.Lovendahl @ericsson.no
Héakan Mattsson [[UAB/CSLab Sweden hakan @cslab.ericsson.se

Ingvar Meyer UAB/OTP Sweden [ingmey@erix.ericsson.se

=Y-:a.hiel Milman |Amdocs Israel RONITBEN @ Amdocs.com
Ilzda(l;isatgl?eghi Ericsson AS Norway [Parastoo.Mohagheghi @eto.ericsson.se
g:ﬁiingbauer TeliaPromotor AB Sweden [Hans.H.Nahringbauer@telia.se

Per Nehlin Ericsson Telecom AB Sweden |per.nehlin@etx.ericsson.se

Daniel Neri Sigicom AB Sweden daniel.neri@sigicom.com

Anna Neovius Askus AB Sweden Anna.Neovius @etx.ericsson.se

Hans Nilsson UAB/CSLab Sweden hans@cslab.ericsson.se

Raimo Niskanen [UAB/OTP Sweden raimo @erix.ericsson.se

Thomas Noll ?gg’}i]] (I);lsg}tlute o Sweden noll @it.kth.se

Arto Nummelin [Ericsson Telecom AB Sweden arto.nummelin @etx.ericsson.se

Aragon Fondkommission

Peter Nystrom AB Sweden |pnystrom@aragon.se

IS\I‘;Itlr-thnllOf Uppsala University Sweden [svenolof@csd.uu.se

Simon Olofsson |[Ericsson Telecom AB Sweden [simon.olofsson @etx.ericsson.se

Rex Page University of Oklahoma [USA page @ou.edu

David lg Paul Ericsson Inc USA ex1-1dpau @exu.ericsson.se

Tony Pedley Ericsson Intracom UK tonyp @terminus.ericsson.se

Oswaldo Perdomo |[UAB/ErlSys Sweden [Oswaldo.Perdomo@uab.ericsson.se
Ericsson

Liu Qi Communications China rdcliuqg @ecnshsr201.etc.ericsson.se
Software

Anders Ramsell [TeliaPromotor AB Sweden

Mickaél Rémond [IDEALX France imickael.remond @IDEALX.com

Tony Rggvall Bluetail AB Sweden [tony@bluetail.com

Per Romin gﬁf\iﬁ:ﬁi?gness Sweden [Per.Romin@ebc.ericsson.se
Ericsson

Zhou Rong Communications China rdczhro@ecnshsr201.etc.ericsson.se
Software

Dan Sahlin UAB/CSLab Sweden [dan@cslab.ericsson.se

Bo Samuelsson [Ericsson Telecom AB Sweden [etxsamo@etxb.ericsson.se

Ola Samuelsson [Cyberode IT AB Sweden [qtxolas@etxb.ericsson.se

Juan J. Sanchez |Universidade da Corufia |[Spain [juanjo@dc.fi.udc.es

Staffan Sjodin UAB/OTP Sweden |[Staffan.Sjodin@ebc.ericsson.se

Hal Snyder Vail Systems USA hal @vailsys.com
Igor Solovyev Ericsson Telecom AB Sweden Igor.Soloviev@etx.ericsson.se
Mikhail Solovyev [Ericsson Telecom AB Sweden [etxmsol@tn.etx.ericsson.se
David Sonnek SEB Foretagsinvest Sweden David.Sonnek @seb.se
Denise Stack Ericsson Expertise Inc Ireland denise.stack @eei.ericsson.se
Milorad Stanic BlueLabs AB Sweden [Milorad.Stanic @sth.frontec.se
Hékan Stenholm [Ericsson Telecom AB Sweden |etxhste@etxb.ericsson.se
Per Sternas Ericsson Business Sweden Per.Sternas @ebc.ericsson.se
Networks AB
Kr'lnstma UAB/ErlSys Sweden star @erlang.ericsson.se
Stjdrngren
Sebastian Strollo |[Bluetail AB Sweden seb@bluetail.com
Per“Emar Ericsson Telecom AB Sweden etxnep @etxb.ericsson.se
Stromme
Goran Stupalo UAB/OTP Sweden |[lstupalo@erix.ericsson.se
Henrik Swerin UAB/ErlSys Sweden henriks @erlang.ericsson.se
Lars Thorsén UAB/CSLab Sweden |[lars@erix.ericsson.se
T?rbjbm Bluetail AB Sweden [[tobbe @bluetail.com
Tornkvist
Robert Virding [|Bluetail AB Sweden rv@bluetail.com
Jane Walerud Bluetail AB Sweden Ljane @bluetail.com
Jorn Wegener UAB/ErlSys Sweden [Jorn.Wegener@uab.ericsson.se
Sverker Wiberg |[UAB/OTP Sweden |sverkerw @erix.ericsson.se
Daniel Wiik igcsson Radiomystems Sweden ||daniel.wiik @era.ericsson.se
Claes Wikstrom |Bluetail AB Sweden |klacke @bluetail.com
le.StOP her Ericsson Expertise Inc Ireland chris.williams @ericsson.com
Williams
Patrik Winroth [Bluetail AB Sweden |[patrik@bluetail.com
Ericsson
Gao Yu Communications China rdcgayu@ecnshsr201.etc.ericsson.se
Software
Lulseged Zerfu ||Ericsson Telecom AB Sweden [letxluze @tb.etx.ericsson.se
Lennart Ohman S)Clands& Thysclius Sweden |lennart.ohman@st.se
Telecom AB
.. = Sveriges .
Goran Ostlund Verkstadsindustrier Sweden Goran.Ostlund @vi.se

UAB = Ericsson Utvecklings AB

CSLab = Computer Science Laboratory
ErlSys = Erlang Systems

OTP =

SARC = Software Architecture Laboratory
OTP Product Unit

—_—— —

