
l{th International Erlang/OTP
IJser Conference

Stockholm, November 13, 2008

EE

TüT

*
H E

t
IT
TT

!ËrU

î

Proceedings

Hilu

lrr

http: ,//www. erlangr .se/euc/08/

QuviQ ,r,.'i ¡i ili't RØ
=+-l
(ü
õ

L

o()ERTCSSON ,

KREÞÏTfiR

w
@

j
R,çp"F,F"s.*t,, su! ¡rÊ85É!

Siöland&Thysetius SynEtpsg n1<>hitç s-l*tw*s'ks s"u.

Conference Programme
08.30 Registration.

Session I
09.00 Update on the EU project ProTest.

Thomas Arts, Quviq, Göteborg,
Francesco Cesarini, Erlang Training & Consulting, London, and

Simon Thompson, University of Kent.

09.45 Progress of the RefactorErl Project.
ZoLtën Horváth, Eötvö s Loránd University, Budapest, Hungary.

10.05 Formal Specifïcations for Free!
John Hughes, Quviq, Göteborg.

10.30 Coffee.

Session II
11.00 The Erlang Web - an Open Source Fault Tolerant and Scalable Web Framework.

Michal Slaski, Erlang Training & Consulting, London.

11.30 Ad Serving with Erlang.
Bob Ippolito, Mochi Media, San Francisco.

12.00 Erlang DTRace.
Garry Bulmer, Coventry.

12.30 Lunch.

Session III
14.00 Gradual Typing of Erlang Programs.

Kostis Sagonas, University of Uppsala.

t4.30 Testing a SIP decoder with QuickCheck.
Hans Nilsson, Ericsson.

15.00 An ABNF (Augmented Backus-Naur Form) Parser Generator for Erlang.
Anders Nygren, Telexpertise de Mexico.

Autocoding State Machine in Erlang: A Case Study of Model-Driven Software
Development.
Yu Guo, University of Southern Denmark, Sønderborg,
Torben Hoffman and Nicholas Gunder, Motorola, Glostrup.
(Only in the proceedings.)

15.30 Coffee.

Session IV
16.00 ETIIDE - The Erlang Eclipse Plugin.

Jacob Cederlund, Ericsson, and
Vlad Dumitrescu, HiQ, Stockholm.

16.30 LFE (Lisp Flavoured Erlang).
Robert Virding, Stockholm.

17.00Inside the Erlang VM, focusing on SMP (plus Erlang/OTP News).
Kenneth Lundin, Ericsson.

17 .30 Close followed by bus transport to the ErLounge.

-'r,Ì.,'.,ftSt
prcperty b*sed testinE a

,,ñ---Ë-ä
f/

ffiii{ i.i;'"., ew Q-v.u¡ Q uHxqfifrûÀnc û{{:*}a$$

lT University
of Göteborg

h tt p :drwww, p rotest- P t'o! ect. eut'

. Testing Erlang Data TYPes with
QuickOheck

. Refactoring with Wrangler

. Early fault detection with model-based
testing

. Erlang Testing and Tools SurveY

http ://www. p rotest- P roj ect. e u/

Thomas Arts
Laura Castro

John Hughes o

úffq*Testþ aoropeny Þaseg test¡ng #

aa ,#uvl lT Universih¡
of Göteborg

M i rrlr¡nadù'^en:r

s ur|rlmm*nrmm¡r*

Erlang libraries supply a number of data
types, but sometimes you want to design
your own.

We presented a method that ensures full
testing of an ¡mplementation of a home-
made data type.

Full paper published at Erlang workshop 200g

ffstrJ"fftþ QguiQ ffi
o

ú
lT Universit¡r
of Göteborg

rc : ø;!À!eirâû*!û?

lmplementation of data type for decimals

How to test this implementation?

decimal- () ->
?LET(Tuple, {intO,natO }' new(Tuple)) .

prop sum-comm O ->
?FORALL ({D1,D2t {decimal- (),decimal O }'

sum (DI tD2) :: sum (D2,D]-)) '

QuickCheck generates thousands of tests

ill.Tfl,l "" aprooerly based test¡ng .,:i:i:'

a

UVIa
/¡q,*¡GH.

H<F
t ¡i lÌT*6tü*Fg O* ËSAç*l

ot
lT University
of Göteborg

Which other properties do we add?

When do we have sufficiently many properties?

Use a Model

[sum(Dl,DZ)] = [D1] +lD?l
[subs(Dl ,DZ)] = [D1] -lDzl
[mulr(Dl ,D2]) = [D1] * [D2]

tlt(Dl ,D2))r= [D1] < [D2]
a

ú
r11¡$ç;!'.,' aixûp€rty based ttsting.,,::ri

uv¡Q
.ñ**{E}
Õ

tMlrsã[ßíDf ft4 {t¡fi [1Êå

lT University
of Göteborg

use symbolic data structures instead of real
data structures in test generation:
easier to analyze errors

decimal () ->
?LET (Tuple, {int O, nat O },

{ calÌ, decimal, new, ITuple]]) .

ill;;il.Ëft=i",, a aa æ

o

úuvr lT University
of Göteborg

.l{e4. : {i\:¡Èo¡tr!¡¡vi"irt
{iÞtå UÈlWnrm,¡f¿ n* U,ùnUli¡

Translate symbolic value to real value in
property

prop_surn () ->
?FORÄLL { {S¡l-, SDz}, {decimal (},decimal () },

b,egin
D1 : eval (SDl),
D2 : eval_ (Sn2 ¡ ,
model(sum{D1,D2) } ::

modef (D1) + modet(D2)
end) . o

ú, ,, , Test Ouvioproperlybasedtesting",:: l***- -
- tr¡tWX8"Sm,lfn ffi fi¡EËltl

lT University
of Göteborg

We run QuickCheck....

Faíled! After 9 tests.
{ { call-, decimal, new' I {2 , L} I } ,

{ cal-1, decimal, new, I {2 , 2J) } }

Shrinking.. (2 times)
{ {call, decimal, nevv, [{ 0, 1 }] },
{call-, decimal, net^// t { 0, 2} I i }

f al-se

Thus: 0.1 + 0.2 -l= 0.3 ?? o

ú
i:# .çÍ

-u,, a9roßerty bã5ed teet¡ng .irlii;j'

aa -#-æ'uvl lT University
of Göteborg

.'{M i i,¡:r¡!q.ì üt¡vi"r¡_
umrgnsftntt ß"ì u*ntÐr¡

lndeed !

Unavoidable rounding error according to
lEEE754-1 985. Our model is incorrect.

fal se

5.55LI2e-L]

uv¡Q
g
"ãFmgçnam*n*r¡* ru¡nuu

a

ú
lT UniversiW
of Göteborg

rc : dr;lFrKrÌi\ù; *?
l-jL:ì[ç5,1",i',, aprúperty bâsed testing ,ur::!'

Property prop_sum$ passes thousands of
test cases.

Similarly, we can add a property
prop_mult().

But... although we will obtain 100% code
coverage, we miss testing combinations of
mult and sum t .

ffi,mÏmtþ auvra .* ta

ü9* tHt*nffmJtüä aÀ ü{}Ddtqr

lT Universitl¡
of Göteborg

.læ ¡ çùrbçturrf,rvMsrr

decimal- O ->
?SIZED (Size, decimal (Size)) .

decimal (0) ->
{cal-l, decimal, new, [{intO,natO }] };

decimal (Size) ->
Smaller : decimal_(Size d.iv 2),
oneof ([

decima] (0),
?LETSHRINK ([D1 , D2], ISmaller, Sma]lerl ,

{cal-1, decimal, sum, ID1, D2]]),
?LETSHRfNK ([D1 , D2], ISmalIer, Smaller] ,

{call, decimal, mult, IDl, D2)]
l). o

ú
ffsffiLfftþ Q.W¡Q #

ngTtcffi{fttfli fdfttÍ{r
lT University
of Göteborg

ffi i drrsÀ\r;rrN¡ræF?

Add subs and divs to generator and test same
property again:

..Failed!
After 13 tests.
Shrinkinq. . . . (4 times)
Reason:
{'EXIT', { {not-ok, {error,decimaf-error} },

t...1ÌÌ
{ {call,decimal,divs,

[{call,deci-mal,new, [{0, 0}] },
{call,decimal,nevr'' l{0'0}l }l },

{cat], decimal, neul, t { 0' 0} I } }

false

ii.;",ftg{ "ilr,,,, aprrperty based testing .,::::.:"
uviQ

-¡ñ¡-*rüÞ
æ lT University

of Göteborg
Uh*lItå,-qf&l!Ë üiI t ¡3$"t

We do want to test that division by zero results ¡n
an error... in prop_divs, not in prop_sum

prop_divs () ->
?FORALL ({SD1 , SD2}, idecimal- O, decimal O } '

begin
Dl : eval(SDl),
D2 : evaf (SD2),
case catch (modeI (D1) /modef (D2)) of

{ 'EXrr ' , _} =>

is-error (divs (D1' D2)) ;
Value ->

equiv (model- (divs (D1, D2l) ,
Value) a

ú
end

end) .

uviQ
.ñ*.rçÞ-

æ
L{ftl}r8xrffiUfi ñiT t1ffi lilûs

i::' i'{.t,Test'i'',,,',
prúperty baled testing ,!:ii¡i

lT Un¡versíty
of Göteborga

t

we find the error in prop_divs and we do not want to
generate decimals in'w-hich we divide by zero.

decimal () ->
?SIZED (Size, well__def ined(decimal (Size))) .

well_defined (G)
?SUCHTHAT (E, G, def ined(E)) .

defined (E) ->
case catch {ok, eval (E) } of

{ ok, _} ->
{ 'EXrr' , _} ->

end.
a

{Ë..*¡IEüå
æ

f/
l;;* .çst',:, auvta bf ûrft rf A,rH nÀ ùüBti¡È{

lT UniversiSr
of Göreborg

Bûæ I (itrrv¡lt ,j'n.r?r t)
@$&

a

uxnt¡xm¿ng ¡¿ {nnçn*
lT University
of Göteborg

Method:

l.Chooseamodel
2. Write symbolic (recursive) generators
3. Write one property for each operation,

consider expected failing cases
4. use a well-defined trick to avoid errors in generation

When following the proposed method, one has a
guarantee that the data structure is fully tested.

a

ll{,1 *,*,,, auvta €ræ
f/a

Huiqing Li

Simon Thompson

University of Kent

Melinda Tóth

George Orosz

Eötvos Loránd Univ

ffin#Test%
property based t€sting ^w'

0ni4Êitv of

]Gnt

Refactoring means changing the design

or structure of a program ... without
changing its behaviour.

Modify

Wn*TestXw
proÞerty based testing"#

Refactor

unkEhv ot I L
l@rit i3,ï".""

-module (test).
-export (lf /1-l) .

-module (test.) .

-export (tf /l-l) .

add_one

IH+1 I

ilH lrl) ->
rr#

add_one (T) I ;
add int.

IH+I'] I

(Ì'1, tH I Tl) ->
add_int (N, T) I ;

add_one (tl) -> add int (N,[]) -> tl.

ffr*Test%
propÊrty based testing .#

Udve6ityof i r\

lGrit .*;;",,,,

-export ([printlist/1]) . -export ([printLi st / 2]]

printlist([HlT]) *>
ic : fc¿:mat { "-p\lr*, [].1]),
printlist (T);

printlist([]) -> true.

ro* printlist (r, lH lTl) ->
r(fi),
printlist (F, T);

printlist(F, []) -> true.

print.Llst (11,2, 3l) printlist (

fun (H) ->
io : for'¡ir¿-it"- (" -pt\n", i.:.I])

^.'Jç1iLl,

lIt2t3l).
ffr*Test%
property based testingÆ

UniìÆFiþof i Ë.

lGrit iS,",*

Bureaucratic and
diffuse.

Tedious and error
prone.

Semantics: scopes,
types, modules, ...

Undo/redo

Enhanced creativity

:: ,,..Test r,
pvooÈrty ba5ed ¿est¡ng.,. "

å&TÎt, l,*.,,,

Embedded in Emacs and Eclipse.

Structural, data type and module refactorings.

AAST-based analysis and transformation.

Works with multiple modules.

Supports undo of refactorings

Preserves layout and comments as much as
possible.

Respects aspects of the macro system.

i i:,,Tç"çt il.äfii,.:.r,*,pfrp€rry caseu ftstrng..

'FltÈ Ed¡l Optioæ &¡flsr T6$

DÞExHH, lÀdqt

td¡r

Syntar Híghtighting

TAgS

5keleÌoN

Shêll

€ompdc

Didd

V+¡ø

ex¿ead_bãs&ça3ds1:r, *ce*d_fe$ðrds/31 ì

te{, ':: ii..t t -

refål

Êi:'J

{C-¡l

Cûrlôniue

Fold Exprrsien Ågaind Fuñstian

-,: : gLãgt (''::r:s.: r::;:: ji r:r.:.:-Ì :r:i::i.:.i, xi:

Â = refài_g]Eiùicage e*F!_asçæRt

retqc_e!.açèE : add_as, { { ¡èÞÈÈ, {:i :. i ¡ ::;:. }

Co_eéri_EÐqÊ (!i*i*,'j iii l
{:. ¿! - rÊf,åã

RÊñã@ Vakbl€ Nðme

Reñôõ! FsErtioa N¿ma

Reoam< Module N¡o<
ûmæli* Fucctlo¡ Oefi nitioo

t'lové Fusct ios ts ,Anothr [¿odrle

FunrtÞr E*rn{tio¡

Ðuf¡i¿ãted Cod€ in Cqn$t nrtod0lÊ

Ðlpl¡rÈted CodÊ i¡ Di¡edorië

Êrprsion Seanh

Undo

Fron Tup,lr Io Ræord

luple fun{Îion Àrgrñ€sts

Fæn¿me ¡ 9¡ocg
Àdd ¿ T¿g to iresÊ96

R¡giçts. Pecõ:
From Fsctiæ tr Proaèg

-èxÞÞ!i. I ådd_¡e4 ge/'z I .

âdd_raâge lil¡5]'i¿, i,i;) ->

-mduie (tÈri¡ .

-s¡rûrE (æfac rçit?

i:l:. = eãEezd-lof,úêrda (:inkr, i:::.. i,Ìi -:-r . t
l:liì :. = èaËeã _bècks¿!d5 {:: ni.:, ì1,:, . l,r:,,ì . }
!èt¿c_el.åf,u:add_ss,{ {Eugê. i::: :, :::}

ro3d ex¡i= ->
Ìr : ref4e_ã!B¿ü! cè*d_e*p-_t¡Êq3e¡ (
r': r gbeêdi::.,r'1....-..: .. r: . ,--
:.:" - Ei-est i,, i4:.::,r.r... t:Ì. 1..: ; aji:.. :: i: ai.. :: 1Ì.:r.:.
{5:, -!:i = geÈ_¡åage(1d},
{_:j ¿ !: i = get_tårqe t;-r i,

fèJc letåc_glEtèx:
cage_exp¡ ->

,: I!ì :,!: :ir¡'r::j l1-,r:3. .r],y*r,;t -rrj j...:j:his rrjjs j:li:îr* f¡,
. ¡¡ri: +ri:l rir. i+irr,:i ::i
I iì,+tiìri,{,ìi:rJ3iì: r; .if¡rÌJ, Ìaili; - ii!:l

..! I r.r: ^,a l:.- -.-

i i rûl iaürrÀ, fqlrvr,¡Ì,i.,,i,

I r3!FilS r:r,ìîir rì.,,, ¡i:, .ì.
i :+.2.: r..:... ..-.;.1

f i &¡om :år u"¿

;¡ 'ì
:l*

j.: î. 't1

l]i;¡e*'.

:w tffibd

tutb ÍS-oa *sdr.

t4

br41&r.t¿ iLr,M
fl..'c 8¡.v.)

íta,';:'lgst þ
prûpe rty based testi n g .iìi-,Þ..ir l@rit,Y¿,,,,,

a Renaming variable,

function, module,

process

Function
generalisation

Move function

Function extraction

. Fold against defn.

. Tuple function

arguments
. Register a process
. From function to

process
. Add a tag to

messages

o

a

a

Ëþr*Test THw
property based i€st¡ng #

uñiwEitvof | +\

lGnt i.ï;î¡.'.0

Especially for Erlang/OTP programs.

Report syntactically well-formed code

fragments that are identical after consistent

renaming of variables ...

... ignoring differences in literals and layout.

lntegrated with the refactoring environment.

ffigtrJHtþ ffii¡h*.*

. Variable use/binding information.

. Caller functions.

. Caller/callee modules.

. Case/iflreceive expressions nested more than a
specified level.

. Long function/modules.

. Non tail-recursive servers.

. Non{lushed unknown messages

trrq*test Un¡ffiityof | \

lGrÌt:.1;i,,,,,,,property based testing

. Continue the integration of Wrangler with
Eclipse + Erlide

. More refactorings are being added including
introduce macros, from module to process, etc.

. To investigate the use of trace information to
help the refactoring process, especially
process-related refactorings.

ffr*Testlw
property based testinq#

UnìMiwof | il

lGút ihu".""

http ://www. cs. ke nt. ac. u k/p roj ects/fo rse/

ffr*ïest THw
property Þasrd testing #

Uñi$itvof : \
lGrit i.,ï,;",,,,

Aniko Nagyné Víg
Tamás Nagy

Francesco Gesarini
Erlang Training and Consulting

trr*Test%
properiy based testing"#

agy

' Published an online survey. Advertised it by email:
- Erlang Questions, approx. 1000 users* Erlang Training and Consutting Newsletter list,
approx. 1000 users
- Smaller Brlang rel-ated mailing lists

. Trapexit User Group, 500 users. ProTest Mailing List,50 users. London / Stockholm Erlang User Groups, 100 users. 200 direct emails to relevant contacts at ETC
- lt{erged wj-th the main survey after the results were
si-mi1ar

. 40-45o/o of total(200) responses were from developers

Fr*Test *ftre
property bäsed testing Æ' egr'

wffir*TestXw
property based tesiing "#

We asked 20 questions about

. The Erlang development environment

. Usage and Knowledge of existing tools and open
source applications

. Submitter's job role and Erlang background

. ldentify common processes to improve tools support

u:;,

i't..,TeSt'i...,.
troperty baSed test¡ng .,:i:ir:r'

6,gy

Erlang Tools

Common Test Ênv.

CEAN

D¡alzyer

D¡stel

Erlver

Eun¡t

Fãx¡en

McÊriang

OTP Test Seruer

Quickcheck

Refâcto rErl

S¡nan

Tsung

Wrangler

o 10 20 30 40 so 66

ËG used tools according to thê suruey x Known tools àccording to the survey

iì,. .i, iT€ St "':.:¡.:.

properfu based testing,ii::rrr'

ao

Editors Operating system

lEclipse tEmacs INetBeans eSciTe :::Vim Other I Lìnux ¡ Mac * Solar¡s rli Windows , ,Other

uil"i',., St ""',,,.''.,

prooerty ba5Êd iesting :,:::::'
6gy

. Weaknesses of most Erlang tools and projects were
found to be

I l,acl< of docuinentat-ion
" Lack of exanples and tutorials
I Incompfete and untested. tools. Design issues included
: Badly layered software
' lJot extensi-ble and not. structured. Doubts about sustainability & support. Hard to install and use
' Especially for non Erlang users
r Ext.ensive nanual configuration requlred

f"¡lq,ftst "',..i..
prcperty based testinç ,:;i:::i:'

e*Y

. No tools for stub generation

. Testing tools lack high quality results display
I Vüeb i.nterface or dashbord

. Load testers are not available for all requirements
r Especía}11.- state based protocols

. Continousintegration
. Hooks towards version co¡itrol sysLems
. InteErated into a general framework

. A complete framework that integrates different tools

í:"i i:..,,îest ".tn¡u,

ûrorerty bãsed testing .,r;iii::'
ag?

W.'hat are the key faetors for huitrdlng a
sueeessful Erlang tool?

Reliable software

User friendliness

Good documentation

Support
Well promoted!!

i:''s o;Tg51
proÞerty based test¡ng

êgy

Faper frorn the AeM SIGFTAN Hrlang
Werkshop and Cemplete $urvey

Results are availahle at

ffirrtrrËs.prüÊqst*p ffi eet.eurpnxhB åcnt&n ns. hän* *

Pr*Test
THp

property based iest¡ng # 6,9r'

ffiwffifest
property based testing

o

ú
lT University
of GöteborgffigtrJfftþ Ëfi{i}**'' W Qy"u¡Q M i ?¡yrsùzr,rr:?Á6a,

h &¡ t*ÞI6t krda eñ @W ds. t,ÉÞd wtutb d a5
¡r¡l¡ôr f,ds 6wr ltd Ëù..lN esNd 6 ldÞ ld ds sùd,
PrcjÊct (s¡l$

¡ dMlrp ?*d,e àrin@.,fu @rù.h, B û¡t¡nê ,#¡k ¿l sü.3 4ùÌèi

¡ srrsrÞdr4úaddòsrnrhñioi$idkw.d*òi& %h

¡ bú¿ Þbi!ùC in* lrrt th adi¡áb È3 rùn b-!8. ñdb .e!&¡ .t
ra.S..dtursrbts $lS,

Con*ortlum Pàrtngß

!as*:l:@SW
!wìj,ffi*Ma

fl,rplHtþ
ffiffiffiffifffi

o

ú

ffinffiTmtþ íöï:ítì-!"*,."", W Qg.uiQ
lT University
of Göteborg

!..
,.þ

, :r,:'::!';

¿t

l-tuiqing Li

Simon Thompson

University of Kent

Melinda Tóth

George Orosz

Eötvos Loránd Univ

ffit *@rit
.;:,:1

' irl
l,¡."

.:il

..'':
i:.
'..-.a

t

i

Refactoring means chang¡ng the design
or strLåcture of a program ... without
changing its behaviour.

h,4*dlfy Refactor

nmÐ lGrit l';.",

-module {test) .

*exporr. Hf /1j) .

-modul-e (test)
-export (Ifi 1l)

add_one (IH lTl)
W

adrl_inr (T.J, iÏi lTl) - >

[]i+l$ | add*int (]J, T) I ;[H+r i add_cne (T)] ;

add_one (tl) -> add_int. (l-r, il) ->

f iX) - > add one {X) f (X) - > add inl (1, X)

flHffiT! l@rÍt *', ,

-export { lprintf,ist,/f 1) -export (lprintlisti/2])

pr:-ntlist,{tHlTl) ->
j.r> : fcrn:¿l.t i ì' *þ.r\n", [H.])

printl,ist- ('1) ;
print.List([]) -> Lrue.

:iW prinrlisr (F, tÌ{ l Tl) - >

,î iH) ,

printLis'L (F, T) ;

print.List (F, il) -> true

pr j-ntlist (t l- . 2 , 3I) printList (

f urr iä) -))

ì.,:: : f crrm¿l.t í ', -Þ\ i. " , IHI)

*ncl,

ti,2,3i).

l@nt

:Rèfactorin'g toöl support ,,, ,,,
!

Bureaucratic and
diffuse.

Tedious and error
prone.

Semantics: scopes,
types, modules, ...

Undo/redo

Enhanced creativity

ffiffi.: ï{:nt

Embedded in Emacs and Eclipse.

Structural, data type and module refactorings.

AAST-based analysis and transformation.

Works with multiple modules.

Supports undo of refactorings

Preserves layout and comments as much as
possible.

Respects aspects of the macro system.

m¡ l@nt :'.

À - ¡efãs_g!Èt¿a: aasê_e4l_aagæñ!
:.t = q¡aei{'r::?i:: :ii:... jiri:

etac_eÏÞÈêa:ãdd_æa1{¡õger {ilj_ ::, i::t: l

reiac_Èftd : câÞá_e$a_s1aæa9
gieaCl 1::i:ri:- ;:::.: ji:i:-(::iii. 1::.rì
q¡åsc 1':::,:::i:,:::j:-. i r.i. ¿rijrJ..1f,rìrì.

-i:) È ge¿_:æqê (rrti .
::l) - gè¿_¡ægeiì.¡).
ex¿$É_fc¡r-åds i':r\3/ 1.., .'jrii.f:
exi*_bacþrêrCs l:!t:1:, ii:.,)jirìj

-fåc_sTrtax:add_ær ({:ægê, I.i.. :., î.)

dr_ad¿_rêrge llir:.;i; :.,?sl
{:¿ ;¡ = rela. sFaä

Dcf;tu

¡
)

-ir,¡nrc (refac_Ëril,

fdô, OÊriw &'ts

{Èk. irt:.1 =

Indert

tdh

Enb H¡ghrghting

1Á65

lkddonr

Shell

isñåil.

l::i. -

DÞEx Em

-rxiþr! (a#_rdze./2t .

åúd_14Ëe (ìr::irrr. i:::i) -t

û::ìr:? ;eiaa_sfæ
€9Ê_æ! ->

êfreñd_b.cFsEi9/3, *çeDd_frrlra:d!13Ì l

Êðld &Fr6¡cn ¡{!Ðt túdjfi

f€n løFL To R€@rd

lql€ tun¿ù6 À¡gsmet!

Add.l¡gÞÀls3qe

Froñtmdioñ bP.æ6

Dùpl¿ád tsd. Èr CuÌ.d ¡iôÅil.
elpided Ëùd. h 0iÉrie,
6çr*irñ sêÈch

Urdo tf'o,

R€rÈn. Vðri# Þmr
REùm! fundoñ fi.mê

RrIw. i*od!l! ¡¡êru
Gærdli!! Fudion 06f iritim
t;lore furà6 to Añcths Modulè

'\ i:r ::r:: ìi::: .::l i.:.j :, (r r::,:i .:; r::::t.. , ¡r,: .::.:.r..:r ar

: ¡r:ì:-_,.:ri¡r¡ ;j jitlìì,iítì: ií3ìì

.a:1^i1.i .-.,

:,{tii1!D5; ;{t¡s¡r:,i. : :

¡3+r:isdi:*r'it:1:,.i.r- I ; ...
: :.j.t 1. '...r.- :.:_rr..l

:çi*iiâ.ñr Ë,þ*.'

h's $;rt :

:6¡Þ'

..-i.:rl1s1î1-'

L :1:.rvrB

ffis krit'"Ì;,,"-,,o

. Renaming variable,

functlon, module,

process
. Function

generalisation
. Move function
. Function extraction

rc

. Fold against defn.

. Tuple function

arguments
. Register a process
. From function to

process
. Add a tag to

messages

l@it l&,* t

t.

I

I.
{
:

Especially for Erlang/OTP programs.

Report syntactically well-formed code

fragments that are identical after consistent

renaming of variables .. .

... ignoring differences in literals and layout

lntegrated with the refactoring environment.

reÐ lGrit };--*

mffir; l€nt

. Variable useibinding information.

. Caller functions.

. Callericallee modules.

. Case/iflreceive expressions nested more than a
specified level.

. Long function/modules.

. Non tail-recursive servers.

. Non-flushed unknown messages
a

nffis :Ëi -

nffiffit lGrit Ì;-*',

. Continue the integration of Wrangler with
Eclipse + Erlide

. More refactorings are being added including
introduce macros, from module to process, etc.

. To investigate the use of trace information to
help the refactoring process, especially
process-related refactori n gs.

l&rit.":r.*@

h tt p : //vnvw. cs . ke n t. a c. u k/p roj e cts/fo rs e/

l@rit.}.",*Froïestþ

Automated syntax manipulation in RefactorErl*

R.óbert Kitlei
Zoltá.n Horváth

István Bozó

LâszIó Lövei
Tamás Kozsik

Csaba Hoch

Melinda Tóth
Roland Királv

Dániel Horpácsi

Department of Programming Languages and Compilers
trötvös Loránd University, Budapest, Hungary

e-mail: {hz, kto, kitlei, lovei,kiralyroland,bozoj,hoch,toth-rn,daniel-h}@inf.elte.hu

Abstract
Refactorings often have to change the source code by adding, changing

or replacing parts of the syntax tree. It is important to make these changes

convenient and secure for the developer of refactorings.
In this paper, v/e introduce a method that helps us create, replace and

insert syntactically correct subtrees in an Erlang refactoring tool.

1 Introduction
Refactoring is the systematic changing of source code while retaining the
semantics of the code. Some refactorings, e.g. renaming a variable or
a function, do not cha.nge the shape of the syntax tree, only update the
information in the nodes, while most of the other refactorings construct,
delete, move, insert or replace subtrees in the syntax tree. Deletion does

not pose a problem, and moving a subtree is equivalent to its removal and
reinsertion, therefore the most intriguing questions of the above are the
construction, insertion and replacement of subtrees.

In addition to the above, refactorings have to gather additional infor-
mation about semantic aspects of the source code as well. Since these

bits of information can only be collected by visiting diverse parts of a
syntax tree, another representation design may prove more efficient. A
novel graph representation is proposed by the Erlang refactoring group

at Eötvös Loránd University (ELTE, Budapest, Hungary). The ELTE
group proposed this representation after previous experience with refac-
toring [5, 8]. Details about the representation and the refactoring tool
RefactorErl are found in [4].

The structure of this paper is as follows. Section 2 and 3 describe
methods that facilitate the creation, insertion and replacement of subtrees.

*Supported by trLTE IKKK and Ericsson Hungary

1

Section 4 describes our experience with the above methods through a case
studv.

2 Subtree construction
One possible solution for constructing AST subtrees would be to use the
parser itself by providing the source code that corresponds to that of the
desired subtree. This approach would require the user to manually fill in
all the punctuation, and would require separate grammars for each non-
terminal to be generated. Another possibility is to do all the construction
by hand, which is tedious and error-prone. Here we present another al-
ternative.

The user has to supply two pieces of information for the node creation
algorithm. One is the contents of the newly created node, which also
contains its node type. By supplying the type of the node, the relevant
rule structure can be selected from the grammar. The other piece of
information required is a description of the desired contents of the node.

Since ke¡'words and separator tokens can be automatically generated,
and the skeleton determines the structure of the nodes, these tokens are
not included in the description. All other tokens (e.g. variable names or
function names) and all symbols have to be listcd in order.

The algorithm processes the rule description and the content descrip
tion. If the rule prescribes an automatically created token, it is created;
otherwise, one or more elements supplied by the user are consumed when
creating the next symbol or construct from the rule description.

Subtrees can be created by repeated use of the above algorithm. When
constructing a new node, previously created nodes can be used as well as
nodes that were already present in the graph.

3 Subtree replacement or insertion
Node replacement is done in a similar way to that of node construction.
As parameters, the new nodes to be inserted and the place ofinsertion or
replacement has to be specifled. One of the following can be specified.

¡ Replacement of all or part of nodes of the same type.
¡ Replacement of a range of nodes.

¡ Insertion before or after a node.

The insertion-replacement algorithm scans the grammâr description,
the given description and the actual structure. It determines the afiected
part in the syntax tree, makes the change and controls whether the re-
sulting structure conforms to the grammar description.

All of the algorithms described above use an automatically generated
scanner to check whether the tokens given in the descriptions are valid.

2

4 Case study: extract function
Refactorings usually consist of three different parts: collection of necessary

information, checking preconditions and performing the transformation.
The first and second part are used to reject the refactoring if its precondi-
tions are not met, and the requested actions would change the behaviour
of the code. The first and second part are necessary to guarantee the
semantic consistency and preserve the externally observable behaviour.
When performing the transformation, new code parts are created from
the previously collected data. The new code parts strongly depend on the
representation of the source, and have to be syntactically valid. Most of
the time, the parts to be created and inserted cannot be composed only
of parts that were present in the original code.

The "extract function" transformation extracts an expression or a se-

quence of expressions to a new function. Its parameters are the name
of the containing file, the selection that will be extracted and the name
of the new function. The transformation creates a new function defini
tion, and replaces the selection with a function application. The variables
which are used inside but bound outside the selection become the formal
parameters of the new function. (See in Figure: 1).

Extracting expression X+2
func(X) ->

Y = X + 2.

Result after extraction
func(X) ->

Y = ner¡fun(X) .

---+

newfun(X) ->
X+2.

Figure 1: Extracting expression X+2 into function newfun.

The created function definition (See in Figure: 3) contains opening and
closing parentheses, an arrow and a stop token as punctuation, and the
function name, the parameters of the function and the expressions of the
body of the function. Also, if multiple parameters or body expressions are
present, additional separating comma tokens are present. The function
application contains a function name, opening and closing parentheses

and the parameters with separating commas. (See in Figure: 4)

Most of the above tokens can be automatically generated. Creating
the function definition requires only the function name, parameter names
and the body expressions; creating the function application requires the
function name and the actual parameters. The syntactical and lexical
representation of the body of the extracted function are available from
the selection, but the other pa,rts have to be constructed.

Previously, this refactoring constructed all parts using manually crafbed

code. Such code proved to be long, hard to maintain and error prone. In
contrast, using the utilities in section 2, the corresponding code consists
of only a few lines. Furthermore, the code is much more readable, as it
highlights those parts that cannot be automatically generated.

J

.\, ,

!

I

sub/l

Figure 2: The representation of X+2, which is about to be extracted.

sub/l

sub/1

Figure 3: The representation of the function application that replaces the selec-

4

expr 13

match_expr

pattem 9 expr t2

Y +

expr t0 expr n
X 2

expr l3

match_expr

pattern 9 expr 12

Y application

expr t0 expr 11

newfun X

tion.

clause 2

fundef

expr r8expr 14 pattem l5

X +newfun

expr l6 expr t7

x 2

nmey'l body/l
¿t

ì..i

Figure 4: The representation of the newly created function definition.

5 Conclusion
In this paper, we have presented methods for creating, replacing and in-
serting subtrees in the RefactorErl refactorer. Our experience shows that
it greatly enhances the readability and reliability of the invocation of these

operations, in contrast to their hand coded equivalents. Using these meth-
ods, we were able to implement rudimentary functionality of twelve new
refactorings in a time frame of two months, compared to only two before.
The two already implemented refactorings werc Ertract funct'ion and' Moue

functi,on ilef,nition, which were improved using the methods described in
this paper. The new refactorings a¡e the following: Rename uar'iable, Re-

narne funct'ion, Rename module, Rename record, Rename record field, Re-

ord,er function arguments, Tuple Juncti'on arguments, Elimi'nate aariable,
Merge suberpression d,uplicates, Moae record,, Inli,ne tunction, Generalize

function.

References

[1] G. Fischer, J. Lusiardi, and J. Wolff v. Gudenberg, Abstract syntaæ

trees and thei,r role i,n model d,ri.uen software deuelopmenÍ. In ICSEA
online proceedings. IEEE, 2007.

f2] J. Barklund and R. Virding, Erlang Reference Manual, 1999, Available
from http: f fwww.erlang.org/download f erl-spec47.ps.gz.

[3] Greg J. Badros, Jauaml: a markup language for jaua source code.

In Proceedings of the 9th international World Wide Web conference

.;:rJ

.rri;;:ì
...f

! -l

- , .'1,

l. rÍ..,
.r ylì:

I

¡

r
_'l'

5

on Computer networks: the international journal of computer and
telecommunications networking, pages LS\ITT. North-Holland put>
lishing Co. Amsterdam, The Netherlands, The Netherlands, 2000.

[4] Róbert Kitlei, László Lövei, Tamás Nagy, Zoltrín Horváth, Tam¿ís
Kozsik, Preprocessor and, whitespace-,,uare toolset for Erlang source
cod,e manipulat'ion. Abstract submitted to the 20th International Sym-
posium on the Implementation and Application of Functional Lan-
guages, Hatfield UK.

[5] R. Szabó-Nacsa, P. Divinszky, and Z. Horváth, prototgpe enu,ironment
for refactoring Clean progr.&rns. In The Fourth Conference of phD
Students in Computer Science (CSCS 2004), Szeged, Hungary, July
I-4,2004.

[6] H. Li, S. Thompson, L. Lövei, Z. Horváth, T. Kozsik, A. Víg, and
T. Nag¡ Refactoring Erlang Programs. In proceedings of the 12th
International trrlang/OTP User Conference, November 2006.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactor-
'ing: Irnprouing the Design of Eri,sting Code. Addison-Wesley, 19gg.

[8] Lövei, L., Horváth, Z.,Kozsik, T., Király, R., Víg, A., a^nd Nagy T,
Refactoring 'in Erlang, a Dynam,i,c Functional Language. In proceed-
ings of the 1st \Morkshop <-rrr Refactoring Tools, Berlin, Germany, July
2007, pp. 45-46.

[9] Jonathan I. Maletic, Michael L. Collard, and Adrian Marcus, Source
code fi,les as structured documents.In Proceedings of 10th IEEE Inter-
national Workshop on Program Comprehension (IWpC,02), pp. 2gg_
292. IEEE Computer Society Washington, DC, USA, 2002.

rt

2008-ro-29

JÛT

aqÍsriõr?rwlifbSðit?g üffüy'5eì¡€'nð$dqüsrJeslísts"siraPle

ot

,4 *sfsretTce
såir-#I* {¡sr

¡Þ6é?f¡rcldmfu*w

Þ{o*¡r tlxe*aen
*ahn ñughee
Slck $r¡ts!ib***

Specifications

ÐTjr'4hxË5

Forma l

I

l

¡

I

Alge bra ic Specifications

. Relate functions in an API to each other

- Capture useful properties

- Don't really say what they do

. Good for data-structures

. Only pure functions need apply!

1

2008-to-29

tBEût'l) Ê,mu¡.ðt{rr vsrsinri 5-ü.4 [sflp:21 [asgnc-threadslS]

US.ú.lr {abort ryith *t}

l+rXç*åXs e @Xllis ++ Ysl == [3{lfisl ++ ç5

t

goad terns.
I nqt¡ncsq - -

I1
Ts Zs

I ar,rç $lã{çs ()listfig'l
t Êr$t5 çlassFsSil¡+ ç0ntsiSping trrm$11?*aíning

l€ don*cting
tï rtn$Ëprltn
++ NS

++ ++t+Xg
,

¡2sXs Ts)

DEMO
gpectfl c*tiÛnr

o¡1¡q{ttLs

Add reverse to the mix

ssirging tern5..- óp$ classes, containin

(Ys) ++ reuerse(Xs| == rpversp{Xs ++ Vs}
freoerse{lts}l -= Xs

I 1q49 terns

grSe

Iaus :iaus{listsiq!,S,r€rrerse} -

good terms-.- donÈ

(!ls) ++ f¡ll == r?uerse{[:tlNsl]
tering inst¿ncps.,. done

(txl) -- t1{}{il} == tI

tp€éiftcåüon!

5ççt{les

2

2008-to-29

What about sorting?

sifginq terns"., l0ûS classesn contaíning Èlt$ te¡'ns

r
{X¡ .* rïs). =: i¡s{¡rt{Ns)
{Tç +* 8s¡ ** t¡sûrt{Xs ++ 15}

1

r

F

lãlrs :låros{listsig3, 3, Isûrt,usort]] "

erting gaod terns-," donp
iltering ínstances... done

t{Ys t+ Xs} -- ¡ort(lfs ** Ys)
t{rfusrsê{¡{5} } -- strttils}
t{strt(¡tç}} ** sort(X5}
t{usort(l{s} } == usart{Xs}
tt$ç1) == t¡{l

t{reu*rse{¡çs} } *= tsart{Xs}
t{5ûrtt¡{5}} -- ussrt{Xs}
t{ussrt{$s}} -- $sçrt(å{s}
til¡{l} == tNlt{tl) *= ¡1

$Pec¡f¡rstsont

DLIh4¡{1Ë:

Ì'

!

t

[>]årls ;]år+s{listsig4,ô,t¡rap},
Elãsçifgir¡g terÍ¡s... üBq classes, containing 181f terBs
selÊrtíng gord trrñs-.. done
Filtering instsnces*., done
[rðF{F,lts} ++ r}eptF,Ts) -= FTaF{F,¡{s ++ ls}
fiäp{F,[]) == []
rru*rsp(il}ð[(F,¡ls]] =- nâp{F.rerrers€{ï5})
trua5)l
a

1r ryt '.w4 # t&
hìËi *:: ri

I

What about map?
tpåcit¡(åt¡on3

¡1;qr{lr.5

3

2008-10-29

The new array library

. Flexible arrays, indexed from 0

. Purely functional updates

terns... 1¡rú0 clåsses, containing 2ó6ó terms
ood terns-.. done
nstänces--. done

t(I,neu()) == Oe+ault_element()

neür())) == default_element()
,set{J,¡{,neür(} } }
,fi)
,set(J,¡{,fi}}

l{'â¡¡ == ¡
default_element() ,
l{,nen(¡¡¡ == gettI
I ,Y,Ê)) == set(I ,l(
I ,¡l ,Ê)) == set(I ,ll

r>l

s
I.

ue

t
t
t
t
t

2) laus: trrs (,3) -Ia
ng

I,set(I
I,set(J
J,set(I
I ,l.f , set
J,l{,set

assifgi
lecting
Itering

Get and Set
tPûc¡ll(¡ltlûne
p1;.¡r'$rti)

4

2008-10-29

Adding Reset

. Elements can be reset to the default value

electing good terns - -. done
iltering instances--- done
et{ I ,reset{ I ,Ê} } == default_ele¡nent(}

(I,reset(J,neu(l)l == default_ele¡nent()

t(I,N,resÊt(I,Ê)) == sÊt(I,:(,Êl
t(I ,default_element() ,Êl == reset(I ,Ê)

et(I ,default_ele¡nent() ,reset(I,B)) == reset{ I ,B}

é>l
rue

et(I,reset(I, == reset{ I rÊ)
== reset(I ,fi)
== reset(I,reset(J,Ê))

Ê)l
Ê))
Ê)l

set(I,set(I,X,
set(J,reset(I,

Specifying reset
5p€cilicåüons

DUN4J'4iÊ5

5

2008-to-29

Fix and Resize

. lt is possible to fix the size of an array...

Specifying Fix and Resize

iltering instances..- done
ix(fix(A)) == fix(Ê)
et(I,fi¡t(neu())) == undefined()
et{I,resize(J,neu(}}} == default_element(}
et{J,resize(J,Ê} } == get(I ,resizã(I ,fi} }Bset{I,fix(neu(}}) == undefined(}

I,resize(I,netlr())) == reset(I,neru())
(I ,resize(I ,Êl l == resize(I ,û)(J,fix(G)l == fir(resize(J,t!)
l{,f ix(ner'r(} }) == undef ined(}ll,resize(I,new(l)) == set(I,!{,neu¡(}}

sll

lass
elec

I- n ert frt5 23 cl ¡l55eS con Iatn ngfg 4654q
tin fto d t trtSer d neoq g

eset (
esize

sI.ze
t(I ,
t(I ,
uÊ

tps(¡f¡{aÚ{rn5

6ç51t'{IÉ:5

6

2008-to-29

What use ¡s this?

. Fun!

. Understanding

- We learn things about the code by studying
equations

. Design

- Missing equations are a clue to possible

improvements

. Testing

- Easy to generate a QuickCheck test suite for
regression testing :.

j

t'-
i,. .;:
t

I

):
I
:

!,: .

How does it work?

7

2008-L0-29

How does it work?

Xs++Ys

reverse(Xs)
reverse(reverse(Xs))

Specifying which functions...

2008-t0-29

Specify¡ ng which va ria bles...

A few Quickcheck generators...

. A generator for arrays is constructed
automatically

9

t.
I

i.
i ...,. ,

1.. a.
I

t.: :

I
l¡ r:'

[' ti,;', ¡' ;

The Hard Part...

ele

u

del_elem

unton
unr

unton

union(
union(
union(
union(
union(
union(
union(

union(S,I),
union(S,I),

union(
union(
true

ion(S,U))

))

))

2008-IO-29

-m,dilIe iilEaysig3t .
- in.j I rrde*.ì. ib (" ñ.:È¡' i. ar :.,:f,.,, ¡:qrr , iìr ; ¡¡

)
-ccsprfe (cxporr_alt) .

fN!..irÞe$O ->
[{årrá9¡nêw, [] , ôE!ay].
{arråy. ge!, [ÍÀdex, ürayl . eIÈh),
{ array, se¿. I i¡dex, eìm, array] , array] ,
{qrray,rÊseÈ, Ilndex¿årray] ¡ürêy],
{ ?it.li1i-ril¡defautt_Êtenèû9. Il /elen],
{ ar ray, f ix, IaL !ay] , array] ¡
{aEray, resi¿e. I indêx, arrôg], arrayl

t.

elcr0 ->
elereDÈ5 i Ia,b¿ e, d, e] ¡ .

oneof { [choose f 0. 4l .9, 10, 99])

defculL...Êle¡iletrt{l ->
årray:aÈl (1.ùÈay:ner(l)

Ogtw T¡dr ÉtrE ,14

\:u¡_t,yFaêil ->
l{ [x,y, ¿],eleb].
{ [4,b, cl , array] ,
{ [i.j, k],1¡dex]l

That's lt !

10

Extensions

. Better filtering of equations

. Preconditions:

- l/=J ==> set(l,X,set(J,lA)) == set(J,lset(l,X,A))

. Abstractions:

- For queues, tail(in(X,Q)) /= Q, bul abstractly They

are the same

. Code with side-effects?

2008-10-29

¡t

I

T

ffiffi

wtu#
wffiffiqk Get# trätu&

wffiwffiffie
#

Æk
w #

#
ffië

yours
*

ffiffi
ffiffi%e

ffiw # NOUJIII

TL

The Erlang Web

an Open Source Fault Tolerant and Scalable Web Framework

Michal Ptaszek, Michal Slaski, Michal Zajda
Erlang Training and Consulting Ltd

Erlang \ileb

The Erlang V/eb is an open source framework for applications based on HTTP
protocols, giving the developer better control of content management. With Erlang
Web's simple but extensible concept of including both static and dynamic content in
pages, libraries of reusable components can be built. Currently it supports INETS and
Yaws servers, but others are planned in the future. The Erlang Web platform has been

developed by Erlang Training & Consulting Ltd. for the past three years and has been
used in many commercial and high profile projects.

Key features

In the Erlang Web generation of dynamic pages is done by merging XHTML code

with a dedicated XML tag called wpart. V/ith the concept of wparts, it is possible to
develop pieces of functionality that can be reused in different pages, providing solid
framework for developing dynamic web services. A set of frequently used patterns has

been implemented as a common library of wparts. Some examples of wparts include:

oretrieving data
oforms building
omanipulating and iterating over a list of Erlang terms
otranslating a string
obranching constructions

Moreover, the wtype mechanism allows formatting basic types like date, time,
numbers and validating the data that came with GET/POST request. Formatting and
validation can be done also for user defined complex types. Such complex types can
consist of basic or other complex types and can be defined using Erlang record
syntax. This is convenient when data is kept in the Mnesia database, however the data

can be kept in other databases like MySQL or PostgreSQl as well.

To make URLs easier to remember, Erlang Web provides a dispatcher engine based
on regular expressions which maps URLs to controller calls. Each call to the
controller function can be preceded with and followed by calls to the so-called
dataflow functions, which allows adding aspects. V/ith the template inheritance and
support for multilingual sites, the Erlang Web is a complete tool for building web
applications.

¿

Wparts

Having wparts defined as XML elements allows the Erlang V/eb to validate apage
with an XML parser ensuring that what is sent to the client browser is free of XHTML
errors. A parsed flrle is converted to Erlang binary and cached on disk or kept in the
memory.

\iltypes

V/type module is responsible for validating and formatting the data of some type. The
Erlang V/eb provides over 10 simple basic types like dates, integers, strings, etc. and it
is easy to add new ones. Developer can build his own complex types on top of them.
Without additional development effort validation and generation of forms for create/
update operations can be automated.

Example Code - simple case

The below diagram shows an example of wpart people,that is used to add dynamic
content to the page. V/hen"lapplmod/func/people.html" URL is visited, the controller
function mod:funcQ is called. The function reads data from the model and prepares it
for the wpartpeople.Duringpage rendering, wpart tag is expanded with the dynamic
data.

tËrvèr

people.html - renders data from the model
<htmf>

<head>
<title>Erfang Web Sample page 4</title>

</head>
<body>

<center>
<wpart :peopfe rows:"2" key:'1i"a"t

<tr>
<td><wpart: lookup key:"item:person" /></Ld>
<td>(wpart : lookup key:"i¡".'uge" format:" age" /></ td>
<td><wpaIt : lookup key:'i"".'sex" folmat:"sex"/></td>

</Lt>
</wpart: people>

<,/center>

</bodY>
</html>

install.erl - initialises mnesia database and puts sample data into it.

-module (instalf) .

-export ([instaf]/01),
install O ->

mnesia : create_schema (Inode () I)'
appJ-ication: start (mnesia)

'mnesia : create*tabf e (person,
[{disc_copies, Inode O I],
{attributes, record_info (fiefds,Person) }l)'

mnesialdirty_write (#person{name : "Lucy", â9ê : "20", sex="femafe"}),
mnesia:dirty_write (#person{name = ",fohn", â9ê = "22", sex:"ma.Ie"}),
mnesia:dirty_wríte (#person{name : "Anna", â9ê : "22", sex:"female"}),

mod.erl - controller function writes data into the request dictionary

-module (mod) .

-export (fvalidate/1, func/O,]) .

-export ([insta]r/0J) .

-record(person, tname, age, sex))

validate (func) ->
{ok, tl };

func O ->
Keys : mnesia:dirty_all_keys (person),
Records : fmnesia:dirty_read(person, Key) I I Key <- Keys]'
Persons : l-ists:map(fun([#person{name=Name, age:Age, sex:Sex}]) ->

[{"Person"'Name},
{ "age"

'
Age } ,

{"sex"'Sex}l

eptic: fset ("fist",
template.

end,
Records),

Persons),

wpart¡eople.erl - wpart module handles formatting and retrieves data from the

request dictionary

-modufe (wpart_people) .

-export ([handle_caÌl/1]) .
-include tib ("xmerf/incl-ude/xmerl.hrl") .

handle_cal1 (E) ->
Start : case catch fist_to_integer(eptic:fget("get", "start")) of

S when is_integer (S) -> St

end, - -> 1

Rows : case catch list_to_integer(r^rpart:has_attribute("attribute::ror¡¡s",
R hrhen is_inleger (R) -> R;

_> 10
end,

Key : i^rpart:has_attribute ('rattríbute: :key", E),
List : eptic:fget(Key) '

E)) of

Prev : if Start-Rows) 0 -> link_prev(Start-Rol^ts);
Start := 1 -> "Prev | ";
true -> link Prev(1)

end,
Next : if Start+Rows > length(List) -> "Next"'

true -> línk next (Start + Rows)
end,

F : fun(rtem, {N,Start'End,Acci) when N>:Stsart¡ N<End ->
eptic:fset ("item", Item),
{N+1, Start,End, Iwpart:evaf (E#xmlElement.content) lAcc]] ;

(_, {N,Start,End,Acc}) ->
{N+1, Start, End,Acc}

end,
í , , ,labfeRows) : Lists:foldl(F, {l,Start,Start+Rows, []], List) '

[#xmlText{vafue : "<table)", type:cdata},
lists : reverse (Tab.leRows) ,
#xmlText{vafue : "</tabfe>", type:cdata},
#xmlText{value : Prev, type:cdata},
#xmlText{vafue : Next, type:cdata} I .

link_prev (Start) ->
["<a href:1"?start:", integer_to list (Start),,'\">prev I "] .

frnk_next (Start) ->
["<a href:\"?start:", integer to list (Start), "\">Next</¿>"1 .

Example Code - Iisting the person with given Id and
adding new person

The example illustrates dispatching request with the dispatcher, logging the request
with a dataflow function, validating, automatic form building and error handling.

dispatch.conf - dispatcher configuration file that defines regular expressions
{ dynamic,
{ st.atic,
{ dynamic,
{ static,

"^/person", {people, list} i.
"^/add_persong", "add_person.html-,,)
"^/create person$", {peopte, add} }

"^/index.htmf$", "index.html"Ì .

index.html - contains a link to the page that lists the person description stored in the
database

(a href:"/person">T,ist the flrst pcrson<,/a>
and to the page where a new person can be added to the database:
(a href:",/add_person")Add a person(/a)

person.hrl * contains person and person_types records
-record(person, {id, name, sex, age}).

-record (person_types,
{id : {integer, [{description, "Person ID.,},

{primary_key},
{min,1}l},

[{description, "Person name,,},
{nin l-ength, 3},
{max length,20}),

name : {string,

sex :

-export ([get_record_ínf.o/I, validate/1])

{bool, l{description, ..Is person male?,,}l }})

wtypeJerson.erl - defines the wtype person using Erlang records
-modufe (wtype person)
-import ("person. hrf")

get_record_info(person_types) -) #person_types{ };
get_record_info (person) -> #person{ },

valídate (From) ->
wpart_valid: validate (get_record_info (person),

get_record_inf o (person_types),
From ++ ["person,,]) .

people.erl - implements controller function. Call to the function will be proceded
with calls to the /og function and get_arg or validate functions.
-module (people . erl) .

-export ([dataflow/1, error/2]l

-export (llog/2, geL_arg/2t validate/21) .

-export ([list/1, add,i 1]) .

-include ("person. hr1")

dataflow(list¡ + [1o9, get_arg];
dataflow(add) - [fog, vafídate]

error(_, {cannot_write_to_fog, _LogName' _Fun} = Reason) +
error_logger:error_msg("-p module' error: -P-n" ¡ [?MODULE, Reason]),
{redirect, "/index.html"} ;

error (add, not_vafid) +
Err = wpart: fget (" error") ,
Msg : *g¡*aR: Incomplete input or hrrong type in forml Reason: " ++ Err,
wpart: fset ("error_message", Msg) '{templ-ate, "error add.html"} .

log(Fun, _) +
case my_logger:logt("people.Loq", \?MODULE, FunÌ) of

arrr. + {ok, []i;
fal-se + {error, {cannot i"rrite to 1og, "people.log"' Eun} }

end.

get_arg(list, _) +
case catch list_to_inteqer(wpart:fget("geÈ", "id") of

P when is_integer(P) + {ok' lPl};

end. - - {ok' l1l }

validate (add, _) +
validate tool-:vaÌidate cu(?MODULE, add)

list (Id) +
IPerson] : mnesia:dirty_read(person, Id),
rrpart: fset ("person:name", Person#person.name),
vrpart: fset ("person: sex", Person#person. sex) ,
wpart: fset ("person'. age", Person#person.age),

Prev : if

liir:T... .
'":1"1 - ;
r:-..'i:r. l

"..,.i:,
.a

:ri.ì, :,,'j
: "'; ril..,l

rd>l-+
"Prev</

true - 'Prev |"
end,
Next : ..<a href:,,?id=\",, ++ integer to list(Id+1) ++ "\">Next",

wpart : fseÈ ("person : next", Next) ,
wpart : fset ("person : prev", Prev) ,

{template, "person.html"}

add(Person) -
mnesia : dirty_write (Person),
{redirect, "/person?id=" ++ integer_to_Iist (Person#person. id) "}

person.html - renders a person

<html->
<head>

<tit.Le>Erlang Web Example Page<,/title>
</head>
<body>

<center>
Person

Name:
Aqe:
Sex:

i,
I
i

I
I
i
!
ì

(id = <wpart:lookup key="personzid" />\ details:
(wpart:Iookup key:rrperson:name" />

<l¡part : lookup key:"person : age" forma¡:" ¿gç" /><bx />
<wpart:Iookup key:"person:sex" format:r'sexrr/>

<wpart : lookup key:"person : prev"/><wparÈ : lookup key:"person : next"/)
(/center>

</body>
</html->

add person.html - generates form used to create a new person
<html->

<head>
<title>Erl-ang lrÌeb Example page</titfe>

</head>
<body>

<center>
<wpart: form type:"person,, action=,,/create person,,/>

</center>
</body>

</html>

error_add.html - displays error
<html>

<head>
<title>ErÌang Web Exampl-e page</title>

</head>
<body>

<center>
<wpart : lookup key:"error message,,/>

(/center>
</body>

</htnl>

install.erl - initialises nmesia database and puts sample data into it
-module (instalJ-) .

-export ([insral1/01)

-import l "person, hr1,,)

instal-l () ->
mnesia:create schema (Inode O I),
application: sEart (mnesia) ,
mnesia : create_tab1e (person,

[{disc_copies, fnode O J],
{atlributes, record_info (fieJ_ds,person) } I),mnesia:dirty_write (#person{name ='.Lucy", agJ= "20", sex:',female"}),

mnesj-a:dirty_write (#person{nane : "John", age ='122il, sex:"mafe"}),
mnesia:dirty_write (#person{name = "Anna"r age :',22't, sex:',female"}),

Ad Serving in Erlang

Bob lppolito
Mochi Media, lnc.

Erlang User Confer€¡ce 2008 - St@kholm

November 13, 2008

Author:
Date:
Venue:

Bob lppolito

November 2008

Erlang User Conference 2008

1. I :

+r'glfl
*,*i*.
ii.,fi:t,,
!::: t
i:,....;
"¡

-?¡f.t'-'

$..Fì,:i,
ff.È'.r¡,
WS'iil

rì,iil: '

What's MochíAds?

MochiAds:

¡ Monetization platform for Flash game ecosystem

e Advertising solution for game developers

e Revenue share and distribution for publishers

Road to Erlang

MochiBot:

e (Originally) Python w/ Twisted
r Fast, but not fast enough (CPU bound)

¡ Wanted easy multi-node distribution

Previous Experience

Python:

e Non-blocking sockets are tedious

* Threads are too heavy

(i1++'
-I -', ', '

e Too low-level

Why Ërlang?

r Performance

c Concurrency

e Distribution

¡ Fault Tolerance

(Bad) Benchmarks

ab -c 50 -n 10000 localhost

o Apache: Lx

e Twisted: 1.12x

l mochiweb: 2.5x

e nginx: 3.9x

ärlang at Mochi Media

MochiAds, MochiBot

e High-performance HTTP seryers

e Ad targeting
c Real-time analytics

¡ Social gaming

e Lots of internal use

MochiAds Service

e Front-end

c Data warehouse

o Ad server

What's Not Ërlang

Front-end:

r Python and PostgreSQl

Data warehouse:

c Python and Vertica

I
\,

l

I
I

i

Ad Serving Platform

r Juniper Routers

e Cisco Switches

e OpenBSD load balancer

r Nginx HTTP load balancer (Linux)
c Erlang/OTP R12B-3 (Linux)

Ad Server Stack

r Erlang/OTP R12B-3

o mochiweb (http)
o egeoip (geolocation)

o eswf (SWF file format)

Ad Server

o Gather information about client

o Choose an ad

o Log impression data

o Log click data, redirection

Gathering Client lnfo

r Mostly client-side Flash code

r SharedObject (like cookies)

e Feeds targeting decisions for ad choice

¿i

i
;
i

! ,.Ì1:¡ ,.
i;i l:.r
t-,- _ r It
lrl :,.':i
¡ ',' r{':
I
i. ,ì

f ¿ :.1ì
t, .t

f;:ì -ì:ì

,¡
';t.¡
t'.
I ..:t,'
t'

Choose an ad

r Fold over in-memory data structure
e Filter out ads thãt don't match targeting info
e Weight the rest

s Choose a random number; 0 <: N < sum(Weights)

Log impression data

e Validation

e Stream to hourly disk log

c lncrement counters in RAM db

Log click data

o Validation

c Stream to hourly disk log

e lncrement counters in RAM db

r Redirect (HTTP 302) to destination URL

Cheap ïricks

e Ad request data in URL

e Long-term state in SharedObject

i

,

t

I
l
t

Short-term Feedback Loop

e Client state
r RAM db counters from previous serves that day

Analytics Feedback Loop

e ETL processes adjust per hour

o Campaign weights, budget adjustments, etc.

Lessons Learned ipart 1)

e Network partitioning sucks

e Network partitioning sucks

o Network partitioning sucks

Lessons Learned {part ?)

o pg2 is broken

e mnesia is too slow (for us)

n lnter-node distribution protocol can be flaky

r Erlang open source not always robust

r Lists are not a good data type for strings

i.,.{r '
¡l

li

I

I

I

i.,
Ii:

Favorite Eriang Features

¡ Module reloading

e Pattern matching
r Binaries

c Lightweight processes

c Concise but not cryptic

More Frlang at Mochi Media

c MochiBot

o MochiCrypt

o MochiScore

o IRC bot
o SVN deployment

e Monitoring system

c Node discovery

Erlang-DTrace
Garry Bulmer

Team DTrace:Tim Becker

Copyright Garry Bulmer 2008

What I'm going to tall<

about
o lntroduction to DTrace & DTrace Architecture

o Demo of DTrace with'one liners'

o Erlang + Dtrace = ?

o ErlangVM Architecture

o Current Erlang DTrace Scope

o Erlang-DTrace Demo

o Questions

Copyright Garry Bulmer 2008

What is DTrace?
"DTroce is o comprehenslye dynomic trocing þcitity ,.,

that con be used by odminlstrotors and developers on lÍve
production systems to exomine the behovior of both user
Þrograms ond of the operoting system itse/fl

DTroce enobles you to explore your system to understond how it
works, trock down þerformonce problems ocross mony layers
of software, or locote the couse of oberront behovior.

DTrace lets you creote your own custom programs to
dynamicolly Ínstrument the sys¿em and provide immediote,
concise onswers to orbitrory guestions"

Copyright Garry Bulmer 2008
Source: Su n M icrosystems "So laris Dynamic Tracing G uide,'

How does DTrace work?

o KEY: Dynamically enabled probes -'safe' for producrion

o Probes observe function entry, exit & parameters

o Probes observe events, and capture data

o Probes in OS kernel = 'Zero cost' when disabled *

o 'Proyiders' - subsystem managing a group of probes

o Providers forward events and data to'D programs'

o 'PlD' Provider observes User applications

Copyright Garry Bulmer 2008
* SUN say cost < 0S%

When is DTrace Useful?

Browser Web Server Application Server Database Server

Copyright Garry Bulmer 2008

DTrace End-to-End

W
Copyright Garry Bulmer 2008

DTrace D-Scri pts

optiona Pre icates

{

)

optional action statements;

{

)

printf (%- | 5s\n", probefu nc) ;

Copyright Garry Bulmer 2008

Providers

pid - userland processes, function entry, exit or instruction
sdt - Statically Defined Tracing

- programmer defined probes

syscall - entry and return of every system call
profile - time-driven probes, nanosecs. to days, across CPU's
fbt - entry & return of almost all kernel functions

sched - scheduling thread on/off CPU, sleep/wake,..
io - l/O events, start/complete/wait
proc - process creation and lifecycle
vminfo - uses vm kstat updates
sysinfo - uses sys kstat

Copyright Garry Bulmer 2008

DTrace r'one liners'
Qr"resti*n:Vt'hich applieati*ns are making che rnsst sysËeffi callsf

Questicn:Whå*[r $yscern caåls is the Hråar"rgVF{ makingf

Qucsti*n:Whae func{i**s is cha erlangVF4 caläingl

Quresti*n: þ{e>w much ffieã"nüry is beann.srnp aål*eatlngf

Copyright Garry Bulmer 2008

Erlang-DTrace End-to-
End

Copyright Garry Bulmer 2008

:. .::::.:: :.... 1.,: ::a:::::.: : ::t: ::: ::I::::.

:dtrace :: : :

i-r.
ì,r .

ErlangVM Architecture

Copyright Garry Bulmer 2008

Erlang's DTrace'Fit'
o DTrace'PlD' Provider can observe C programs

o Good: ErlangVM is C

r Bad: user needs to understand ErlangvM internals !

o ErlangVM-managed, Fine-Grain'Process'

o Erlang Process = 'opâgue data' ... invisible to DTrace

o Erlang data is dynamically typed

o DTrace uses static'C-style' data types

o Erlang scripts are'opaque data' to DTrace
Copyright Garry Bulmer 2008

Erlang has Dynamic Tracing

o Aim: to complement ErlangTracing, not replace it

o DTrace is system-wide including OS kernel

o Longer term integrate Erlang tracing and Erlang-
DTrace

o Provide Erlang-DTrace interface functions

o First cut - erlang:dtraceO'bif'

Copyright Garry Bulmer 2008

¿l

Erlang DTrace
lmplementat¡on

o DTrace Statically Defined Tracing (SDT) Probes

o lnsert SDT probes (C) into ErlangVM C source

o Probes in key parts of ErlangvM

o Process management, GC, Messaging, Code Load ...

o Add new dtrace() functions for Erlang Developers

Copyright Garry Bulmer 2008

¡

SDT r Erlang DTrace
Provider

Copyright Garry Bulmer 2008

SDT r Erlang Source
addition

Copyright Garry Bulmer 2008
* source is trimmed down from the original for readability

V002 Erlang-DTrace
Scope

o Statically Defìned Tracing Probes added to ErlangVM

o Processes (spawn), Memory (GC),

o Global State (Registry)

o New DTrace BlFs (explicitly use DTrace probes in
Erlang)

Copyright Garry Bulmer 2008

¡11,i;l¡"-:'
ln , 'r it.:k
Â,, i ,. '1¡-'
J r .t:'¿-r,,I , -::

:,.
ii':
ai :,:".

L ,r:-:.,:::'
1.. i:: .;t -¡

Erlang-Dtrace Demo

Copyright Garry Bulmer 2008

'Proxy'Code (tri mmed)

Copyright Garry Bulmer 2008

Future D¡rect¡ons
o Better use of existing ErlangTrace facilities

o Dynamic DTrace Probes

o Correlate Messages across Erlang Processes

o Extend to Erlang Data Types (".g. Lists) in DTrace ...

o ... and not flatten to strings in probe code

o Dynamic DTrace Type extens¡ons

o Distributed/Clustered DTrace (one d"y ...)

Copyright Garry Bulmer 2008

Where we are now?

o lt appears to work, and showing some promise

o Lots more to do, and looking for help

o Google Group: Erlang-DTrace

o Source will be at opensolaris.org

o Tim Becker & Garry Bulmer can be reached at that
grouP

o Thanks to Bryan Cantrill, Sun Microsystems for
encouragement and support

Copyright Garry Bulmer 2008

DTrace

o Mac OS X 10.5

o Solari/OpenSolaris

o FreeBSD

o QNX

o Maybe Vtrace

Copyright Garry Bulmer 2008

auest¡ons or
Feedback?

Kostis Sagonas

This talk aims to document and promote a different
mode of Erlang program development:

' one where most typos, interface abuses, type errors,
etc. are idenf,ified a¿¡fc maticaf/y using static analyzers

. one where {ypæ inforn¡ation &ecoræes parf of ff¡s code
and cfreckç d f*t'de#¡'¡ife viafatio,r¡s after program
modifications

' one where all the above are opfiomaf, can take place
graduaffy, and can be refined af afiy p*int to the extent
desired by the programmer

Kostis Sagonas GradualTyping of Erlang Programs

o we have been practicing this development mode
in large Erlang code bases:

- dialyzeî
Èyper

- hipe (a very large part)

stdlib & kernet (many key modules)
o Also tried it in code with which we were not

familiar - see the pape r @ Erlang'O8

Kostis Sagonas GradualTyping of Erlang Programs

Use Dialyzer

Kostis Sagonas GradualTyping of Erlang Programs

o Released January 2007
o 25 modules
o 35,000 lines of code
o Many modules are slight modifications or clones

of Erlang/OTP ones - mainly of syntax tools

Kostis Sagonas Gradual Typing of Erlang Programs

o Run as s¡mply as

o 67 warnings in less than 2 minutes
o about 50 of them due to abuse of rile: open/2

file: open (Name, read) VS. fiLe: oPen (Name, lread])

o After fixing this and one s¡milar interface abuse,
15 warn¡ngs remain

- all genuine bugs

Kostis Sagonas GradualTyping of Erlang Programs

handle_caII (CaII, DefinedVars, State) >

case is_c_atom (Mod)
true >

andalso is_c_atom (n¡n) of

[r{ = atom_val (Mod) ,

case {M_Loc , Cal'l Loc } of
t{tl , ct!,, lL2, C2Il >

if (r1 <
((L1==L2) and ((c2-c1) > Lengrh (M)))

refac_atom_info. erl : 715 :

Guard test length(M: :atomo) can never succeed

Kostis Sagonas GradualTyping of Erlang Programs

get_new_nane (Sub, NewRegExp) >
Index = string: str (NewRegExp, "*"),
case Index of

o>
N>

Prefix = string:sub_string(NewRegExp , L, N-1) ,
ease Sub of

tI >

get_neïr_name (tl (Sub) , prefix++Sr¡b1++. . .)
end

end.

refac_batch_rename_mod. erl : 1 61 :

The call erlang:exit('error',stringO) will fail
since it differs in argrrment 1 from the success
Èyping arguments (pidO I portO,stringO)

Kostis Sagonas GradualTyping of Erlang Programs

expand_fíles ([File I Left] , Ext, Acc)
case filelib:is dir (File) of

true >

false >
case fiteJ.ib: is-regular (File)

filename : extension (File)
true >
false >

end

and
=: Ext, of
Ext, IFi].e lAccl) ;

end;

o)
Kostis Sagonas GradualTyping of Erlang Programs

o

a

o

Released January 2008 - one year after 0.1

25 modules

27,000 lines of code

I

I

Kostis Sagonas GradualTyping of Erlang Programs

&

o Run as simply as

o Analysis takes 50 secs - produces many warnings
o Many due to fire :open/2 and due to confusing

lists: concaE/L with lists: append/L
o After fixing these, 10 warnings remain

- all genuine bugs

- two of them are remains from Wrangler 0.1

- not very surprising: they are in uncommon code paths
Kostis Sagonas Gradual Typing of Erlang Programs

Expose type informat¡on:
make it part of the code

Kostis Sagonas GradualTyping of Erlang Programs

Can happen in either of the following ways:
o Add expåãcåt type guards Ën key pEaces ån Ëhs code

Ensures the validity of the information

Has a runtime cost - typically small

Programs may not be prepared to handle failures

' Add type de*Ëaratãons and contracts

Documents functions and module interfaces

lncurs no runtime overhead

Can be used by dialyzer to detect contract violations

Kostis Sagonas Gradual Typing of Erlang Programs

Often Edoc G spe c annotations

*ù

':

Tsrning ßspecs into -specsI
::::: t

t
i

z%

z%

%%

z%

ß spec batch_rena¡.me_mod (OldNamePattern : : string () ,
NewNamePattern : : string (),
SearchPaths : : Istring O])

ok | {error, stringO }

Can easily be turned into -spec declarat¡ons

- spec batch_rename_mod (OldNamePattern : : stríng () ,
NewNamePattern : : string (),
SearchPaths : : Istring O])

'ok' I {'error', stringO}.

Kostis Sagonas Gradual Typing of Erlang Programs

ln some other cases

8* Gspec duplicated_code (FileName : : filename (),
ZZ Minlines ::integerO,
tt MinClones: : integer O) -> term o

Type declarations are also required

-t1æe filenaneO :: string$.
-spec dupJ-icated code (FileName : : filename (),

Minlines ::integerO,
MinClones: : integer O) -> term$.

Kostis Sagonas GradualTyping of Erlang Programs

A problem w¡th Edoc annotations is that often they
are not in accordance w¡th the code

Not surpr¡sing - they are comments after all!

For example, to be correct, let alone precise, the
prev¡ous case should read:

-t1æe filenameO :: stringO.
-spec duplicated code (FileNames: : Ifilename O] ,

Mintines : : [integer O],
MinClones : : [integer O]) >

Kostis Sagonas GradualTyping of Erlang Programs

How t ßspecs into -spees
Optton 1: Convert Gspecs into -specs in one go

Brave and quick

- Typically not a good idea: results in many Dialyzer
warnings which may be hard to debug

Experiment. 162 warnings on the code of Wrangler 0.3

Optlon 3: Convert Gspecs gradually and fix the
erroneous ones using Dialyzer

First locally (on a module-by-module basis)

- Then globally

--- We strongly recommend Option 2

Kostis Sagonas Gradual Typing of Erlang Programs

il,rË{¡åtË; ßspecs

n:*duå* &specs Jnc*l gl*haå

r*f ae -batch-r *nane-snd
ref ac-duplicate,C-c *d*
refac-expr-search
r * f ac -f o 3-d-eapr * s s i Õ s
r*fac-gea
ref s.c-rn*ve-fuc
ref ae -*.er"-f un
ref *.cJenarneJun
ref ae -rena¡ne-u:*d
ref *.sJenãmë-r¡ä,r
ref ae -*.til-
wraegÃer

I
t

I

:
T

r
1

I
1
J

3t
il

r

:
s

å

5

I
Tahle ?. Elr'*¡lg Ðxpecs lm 1&'rangtr*: ü.3; trilank *ntri** drnste ü

Kostis Sagonas Gradual Typing of Erlang Programs

Fix bugs exposed by
-spec declarations

Kostis Sagonas Gradual Typing of Erlang Programs

Strengthen and factor
-ty¡>e declarations

Kostis Sagonas Gradual Typing of Erlang Programs

o Type declarations can be refined to the extent
desired by the programmer

-t!æe pos$:: any o

-type pos () :: tuple0.

) {any {) , âRyO !.

-t1'pe pos
::

O :: {¡um¡erOr' ouo,berO}. :

integer O) .

0..200).

Kostis Sagonas GradualTyping of Erlang Programs

i

Strengthen u nderspec¡fied
-sPec declarat¡ons

Kostis Sagonas Gradual Typing of Erlang Programs

Can take place semi-automatically using Dialyzer

Kostis Sagonas Gradual Typing of Erlang Programs

Add -spec declarat¡ons
for all exported functions

Kostis Sagonas Gradual Typing of Erlang Programs

Can take place semi-automatically using Typer

Kostis Sagonas GradualTyping of Erlang Programs

i;i..
t.
:
t

¡-.:
I
I

{

s

ru*dule frrËsËÌ]Ë rTBr*smë

r sf a.c -h'atcb-rena:ne -uod
:r ef a.e -dup} i caË e d-c o de
refac-expr-search
rsf as-f ç3d-*xpressi*n
ref a.cgen
x*f ac-nsúule4e"aBh
ref a.c-.u*r¡e-fua
:relac-¡re¡¡Jr¡¡
f ef AcJer-ra.rne_fun
r*f ac--fenørnsgpfl
ref ac-seugr[.s-ìra'g
:ref an-uti.l-
wrangler
urang).er-d.åste3
H:.n¡tg}ar_opÈicne

I
l
i
?
3

3

:
t
t
3
?t
il

I
I

,+

I

1

r

ä3

!3
I

Tnble 5, N*¡trbcr CIf rxisting ns¡S misuing øpecs für nIË *x¡rmted
frxneËinnx of w*rungler ff.3 rr.rodulnx; hl*nk entries dçn*te ü

Kostis Sagonas GradualTyping of Erlang Programs

Test the validity of contracts
using runtime monitoring

Kostis Sagonas GradualTyping of Erlang Programs

. beam files debug-compiled
. beam files

test suite test suite results

contract violations
(recorded in the error_Iogger)

out of the 106 -spec declarations of wrangler
- 55 were exercised by the test suite

- 4 of them were detected as erroneous

Contract Checker

Kostis Sagonas GradualTyping of Erlang Programs

o Described a methodology for how to:

use static analysis for detecting definite type errors

- add type information to existing Erlang applications

become confident about the validity of that information

' Showed both the benefits and common pitfalls of
the approach on a non-trivial case study

. Type information is not a panacea but makes code
more robust, easier to understand and maintain

Kostis Sagonas GradualTyping of Erlang Programs

i

!
¡
t

I
t.
g

i

Testing a SIP decoder with QuickCheck
- extended abstract

Hans Nilsson, Ericsson
Ha:rs . R. Nilsson@ericsson. coro

October 30, 2008

1 Introduction
SIPI] is a protocol that recent years has gained high attention in the telecoms
industry for services in connection with telephony over IP.

The messages in the protocol are text based and the syntax is defined by
Augmented BNF[2] in RFCs. Unfortunatel¡ the SIP grammar is not suitable
as input to a traditional parser generator without radicaì re-writing. Left for
the decoder/encoder implementor is a monotone programming session lasting
for weeks.

The result is like all such code usually full of errors which makes systematic
testing necessary. This paper describes a successful automatic test of a SIP
decoder/encoder using QuickCheckfl]. The test code was generated from the
BNF grammar and was therefore free from the test case implementators miss-
understandings and errors.

In traditional testing, a number of test cases are programmed where the test
object is given known input and the result is compared to the knovqn output
in the test case. This has some disadvantages. Only the cases that the tester
can imagine and write as a program are tested. Usually only a few parameters

in the test cases are varied in such code and only within the limits the tester
believes are relevant.

There are alternatives gaining a growing interest. One is property based

test'ing where the tester specifies the properties the test object shall have. The
test system generates test cases to show that the properties are fulfilled. In
the case of QuickCheck, the test input is randomly generated according to the
specification. When an error is found, so called shrinki'ng is applied and the
tester is presented a m'i,n'imal example that triggers that error.

Property based testing therefore generates a large number oftest cases, often
with value combinations that are a surprise for a human reviewing the generated

test data. In that \May a very good coverage is obtained.

2 The test
With QuickCheck the tester has to supply two things:

!. a generator that specifies the type of test input data that QuickCheck
shall randomly generate

1

2. a property that decides if a result is valid or not with the actual input

In a simple example - a square function - the generator could be the Quickcheck
built-in function generating integers. Those integers are given as arguments to
the square function to be tested. The property could be very simple, for example
just testing that the function return value is a positive integer or be more exact
and really checking that the value is the square of the input.

For the sIP decoder/encoder there were two alternatives: either generate
the internal Erlang form or the external text form. The text form was selected
because that generator could be automatically obtained from the BNF in the
SIP specifications.

The property shall test, that for all SIP messages M:

1. the semantics of. M in text format is the same as the semantics of M
decoded into the internal representation

2. the semantics of M ín the internal representation is the same as M encoded
into the text format

why not just compare the syntax? obviously the internal form differs from the
text form. Two different messages in text form could however be semantically
equal due to differences in case, number of blanks, line breaks and even line
ordelirrg. By sorue kintl clf normalization it could be possible to compare the
syntax. Such a normalization is not trivial, and is probably error prone.

To avoid trying to extract the semantics out of both text form and internal
form or to write a normalizer, a simpler but anyway useful middle way was
chosen:

decode(M) == decode(encode(decode(M)))
where M is a message generated in text format by QuickCheck.

This is actually a syntactical normalization of the messages, since the decoder
is such that differences in case etc are lost. Surely some test cases are missed
but the testing is hopefully "good enough" - more about this later.

2.t Example of generators and properties
The BNF is large - about 1000 lines in 20 RFCs. As an example of the direct
generationl of code from BNF we could look at a sligthly edited example from
lal,

= Request ,/ Response
= Request-Line

*(message-header)
CRLF

I message-body J

= Method SP Request-URI SP SlP-Version CRLF

= REGISTERm / INVITEm / ACKn / 0PTIONSn
/ eyEn / cANcELn / REGISTERTTT / extension-nethod

= '/,x49.48.56 .49.54.45 ; INVITE in caps
lThanks to Joe Armstrong who gave nre a BNF parser

SIP-roessage
Request

Request-Line
Method

INVITEûI

2

extension-method
token
tok-char

= token
= 1*tok-char
= (alphaaun / "-" / tt.tt / tttr / t.foil /'*'/ u-'

/ "+" / r(n / r,r / r-r)

Naively converted to generators this will be

eSIP-messageO -> oneof([eRequestO, eResponseO]) .

eRequestO -> leRequest-LineO,
l"ist-of (emessage-header O) ,

eCRLFO,
oneof ([[], [enessage-bodyOJ J)

l.
eRequest-LineO -> [eMethodO, eSPO, eRequest-URIO,

eSPO, eSIP-VersíonO, eCRLFOI .

eMethodO -) oneof(IeREGISTERmO ,eINV]TEnO,eACI¿rnO ,e0PTI0NSO ,

eBYEO, eCANCELO, eREGISTERO, eextension-nethodOl)
eINVITEnO -> UINVITE".

etokeno -> [etok-charo I lisr-of(etok-charo)].
etok-charO -> oneof([ealpham¡nO,45,46,33 ,37 ,42,95,43,96,39,126]) .

eextension--methodO -> etokenO .

where oneof /1 is a QuickCheck function that selects on of the elements in the
list in the argument and list-of/l generates a list (maybe empty) where the
elements is generated by the generator in the argument of list-of/l.

The property to test is basically:

prop-sÍp-decode-encode O ->
?FORALL(M, eSÏP-messageO,

decode(M) == decode(encode(decode(M)))).

The ?FORALL(Var, Generator, Property) macro is a QuickCheck provided
macro that generates a value by calling Generator, assigns it to Var and finally
calls Property which returns true if the property is fulfrlled.

3 Problems
There are of course some problems with the naive generation

1. The BNF is not always correct. "1:FF" is for example a correct IPv6
address according to both the SIP grammar[4] and the IPv6 grammarf3]!

2. Some constructs results in infinite loops

3. Different branches in the BNF tree have different sizes of the sets of pos-

sible values, but the branches have same probability to be chosen when a
value is to be generated. This gives the unwanted situation that some test
cases will have higher probability than others. In the worst case, some
constructs could be left untested while others are tested more than once.

t

.f

4. When calling eSlP-message/0, all generator functions will be called. The
resulting data structure and fun's will have the possibility to generate øny
SIP construct. Out from this, QuickCheck will only use one path and the
rest will be thrown away.

The obvious solution for the BNF problems (1-2) is to re-write the BNF. For the
unbalanced probability problem 3), the solution2 is to add weights depencling on
the sub tree sizes. The size was simply calculated as 1 for a leaf and as the sum of
all sub trees for an internal node. The QuickCheck function frequency,/1 takes
as argument a list of {Probability, Generator} as argument, and selects one
Generator depending on the Probability.

Problem 4) was solved with inserting the LAZY macro around all generator
bodies. Theresult isthat for agenerator gO as argument, afunO -> gO en¿
will be returned instead. QuickCheck will then only eval gO if needed.

The resulting generator code for the example is:

eSlP-messageO -> ?LAZY(frequency([{463,eRequestO },
{377,enesponseO}J)).

eRequest O -> fUZy(feRequestlineO ,

list-of -snal1er (enessage_header O),
eCRLFO,
oneof ([[], lenessage-bodyOJJ)

l).
eRequest-LíneO -> ?LLZY(leMethodO, eSpO, eRequest_URlO,

eSPO, eSlP-VersionO, eCRLFOI) .

eMethodO -> ?LAZY (oneof (IeREGISTERnO, eINVITEnO, eACI¿'nO, e0PTI0NSO,
eBYE O , eCANCEL O , eREGISTER O , eextension-nethod () I))

EINVITENO -> ?LAZY(''INV]TE") .

erokeno -> ?LAZY(letok_charO I list_of_snalIer(erot_charo)]) .

erok_charO -> ?LLZY (frequency([{S, ealphanun()}, {f ,4S}, {1,46},
{1,33}, {1,37}, {t,42}, {1, 9s},
{ 1 ,43} , { 1 , 96} , { 1 , 39} , { r , rZO}1)) .

eextension-methodO -> ?LAZY(etokenO) .

4 Results and discussion

Most important: a lot of errors was found. Many of them was in legal messages
of strange sorts that normally would not have been tested. Even if such messages
do not occur in practice, some components are sometime present. If such an
error would have been left in the decoder, there would have been some sporadic
and hard-to-catch errors lefb.

It is interesting that no errors was found in the encoder/decoder neither when
it was tested conventionally nor during heavy usage in labs and at customer
premises. Another part of the sIP stack was not tested by Quickcheck and was
written by the same author. Conventional testing found some errors, but when
tested by QuickCheck later, additional errors was found

The QuickCheck testing was extremely valuable and saved time and therefore
money also for other parts of the system, since the decoder/encoder is very

2Thanks to John Hughes who actually pointed out this problem and the one in 4) for me
and also solved them

4

central in the whole system. An error here will defrnitely stop most other test
cases.

The approach of generating the generators from the "formal" BNF speci-
fication gave test code that is as correct as possible. The limited test in the
property seem to have had no impact of the final test quality.

References

[1] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing
telecoms software with quviq quickcheck. In ERLANG '06: Proceed'ings of
the 2006 ACM SIGPLAN workshop on Erløng, pages 2-10, New York, NY,
USA,2006. ACM.

12] D. Crocker and P. Overell. Augmented BNF for syntax specifications:
ABNF, 1997.

[3] R. Hinden and S. Deering. IP version 6 addressing architecture (RFC2373),
1998.

14] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session initiation protocol
(RFC3261), 2002.

l

5

¡l

31t1012008

An Augmented Backus-Naur Format, (ABNF),
Parser Generator for Erlang

Anders Nygren
anygren@txm.com. mx

Contents

. ABNF

. Using abnfc

. lmplementation

. Todo

txrn

txrn

1

31t10t2008

Why abnfc?

. ABNF used for specifying many important
protocols, e.g. HTTP, SlP, SDP

. Handwritten parsers are

A lot of work

Error prone

. Not practical, (impossible?), to use yecc

What is ABNF?

. Augmented Backus-Naur Form

. Used by IETF for specifying protocols

. lnitially informally defined in the RFCs where it
was used

. later defined in a series of RFCs, currenfly in
RFC 5234

2

txrn

txrn

31t10t2008

Rule

Name = elements CRLF

EX,

Request-Line = Method SP Request-URl SP

SIP-Version CRLF

Terminal Values

Binary, Decimal, Hex

CR = %d13

CR = %xOD

Sequence

CRLF = o/od13.10

Strinq, (case insensitive)

3

t¡rrrr

txrn

rule = "abc"

31t10t200t

Concatenation

Rule = Rulel Rule2 ... RuleN

foo=%x61 ;a
bar= %x62 ;b
mumble= foo bar foo

Accepts "aba"

Alternation

Rule = Rulel / Rule2 I ... lRuleN
foo=o/ox61 ;a
bar= %x62 ;b
A-or-b=foo lbar
Accepts "a" arìd "b"

4

t¡rrn

t¡crn

31t10t2008

Value Range

DIGIT = %x30-39

ls equivalent to

DIGIT="0" 1"1" 1"2" 1"3" 1"4" 1"5" 1"6" 1"7"

| "9" 1"9"

Sequence Group

Rule = (Rule1 Rule2 ... RuleN)

txrn

txrn

5

31t10t200t

Repetition

*rule
; 0 or many occurrences

<n>*rule ; n or more occurrences
*<m>rule

; 0to moccurrences
<n>*<m>rule ; n to m occurrences
<n>rule ; exactly n occurrences, equivalent

to <n>*<n>rule

Optional

ffoo barl

Equivalent to

0.1(foo bar)

txrn

txrn

6

31t1012008

"lmported" Rules

Rules defined in other RFCs are frequently
reused.

But there is no formal way of specifying the
imports. Normally it is done with

. A comment in the ABNF specification

. A note in the RFC text

Using abnfc

Grammar definition file: my_mod.abnf

Name = elements : Erlang_Code.

Ex.

callid = word ["@" word] : lists:flatten(-YY)

7

txrn

txrn

txrn

31110t200t

Variable Bindings

ln the Erlang code the following variables are
available

. _YY : Bound to the complete match for the rule

. _YY1 to _YYn : Bound to each part of the
match

ex.

opt-name = "(" name ")" : {opt_name, _yy2}.

Var,able Bindings

Allow = "Allow" HCOLON [Method.(COMMA
Method)l :

Allowed = case YY3 of

[] -> il;

ttMl,Msll -> [M1 ltMll['COMMA',M]<-MslI
end,

{'Allow', Allowed}.

I

t¡<rn

31t10t2008

lmplementation

Three main parts

. Syntax specification parser

. Tra nsformations/opti m izations

. Code generation

Syntax pec. Parser

. Originally hand written using parser
combinators

. Later generated by abnfc, (ABNF is specified in
ABNF)

. Generates a simple AST

I

txrn

txrn

tj

i,. .'

¡,,:'

:-

i

txrn
Transformations

. Convert AST to an internal representation

. A number of passes that performs
transformations on the internal format

Remove {repeat, 1, 1I

Remove alternation with only one element
Remove concatenation with only one element
Merge num_val elements, (pending)

lnline imported rules when possible to improve
optimizations, (pending)

Code generation

. The generated code currently uses parser
combinators

Simple

Not very efficient

. Parser functions for all rules are exported

. A my_mod.hrl is always included, this makes it
possible to import rules from other modules

31t10t2008

txrn

10

Request = Request-Line *(message-header)

CRLFImessage-body]:

{'Request', _YY1, _YY2, _YY4}.

'Request'Q ->
fun (T) ->

_P=abnf_rt:seq (['Req uest-Line'O,
abnf_rt: repeat(0, infinity,'message-header'0),
'cRLF'0,
abnf_rt:repeat(O, 1,'message-body'0)l),

case _P(T) of
{ok, [_YY1 , _YY| _YY3, _YY4]=_YY, _Rest] ->

_Ret = begin

{'Request' , _YY1 , _YY2, _YY4 }
end,

{ok, _Ret, _Rest};
fail ->

fail
end

end.

31t1012008

l

:

I

i

i:.
i:-. ,.
i.fr. .
t:¡*:: . :.
1

I¡'
1.'

i -: 1.::, .

i :-ri::rt :'r' ::

txrn

txrn

11

Limitations

. Limited backtracking

Some workarounds
. Reorder alternatives

. Handwritten parsers for difficult cases

. No error ;"ï:liJures
and do varidation in Errans

Todo

. More transformations/optimizations

. Better code generation

. Support older ABNF syntax

. Generate encoding functions (?)

31110t2008

txrn

txrn

12

Expertise Makes lt simpte

Anders Nygren
SL, product development and solutions

Telexpertise de México S.A. de C,V.
Phone : +52 (844)438-4800

nnygren@txm.*ont.mx
www.txm.com.mx

rrwu¡.fxm"t03Tr,mr(

31t10t2008

¿l

I
:

I

txm

13

EUC 2OO8

Autocoding State Machine in Erlang: A Case
Study of Model-Driven Softïvare Development

Yr Guo
Mads Clausen Insti.tute

Uni,uersity of Southern Denmark
Soenderborg, Denmarle

Torben Hoffmann I\icholas Gunder
Motorola A/S

GLostrap, Denmarlc

Abstract
This paper presents an autocoding tool suit, which supports development of state ma¡hine in a model-driven
fashion, where models are central to all phases of the development process. The tool suit, which is built
on the Eclipse platform, provides facilities for the graphical specification of a state machine model. Once
the state machine is specified, it is used as input to a code generation engine that generates source code in
Erlang.

Keyuords: model-driven development, state machine, autocoding, Eclipse, tools

1 Introduction
In Motorola's TWSD organisation, r'^,e have been working with Erlang/OTP for a
while now and the need for a higher level of abstraction than code has surfaced a

couple of times.
The Erlang IOTP code is very clean, but sometimes it is a lot easier to com-

municate using pictures and models. It is always a practical problem to keep the
pictures and models in sync with the code, so any tool support which can help out
with that would be appreciated. Even though writing Erlang/OTP code is a lot
faster than doing the same code in other languages, you still have to write some

boilerplate code to implement a component using Erlang/OTP. As a first step, a

state machine model is typically conceptualized in some form before this is done.

So a method that could auto-generate code from a state machine model offers some

benefits to an Erlang developer.

The semantic gap between Erlang/OTP state machines and formal models of
state machines is quite small, and this poses a tough requirement on any modeling
tool: To make the tool more useful than writing the code by hand.

Guo, HoTnMANN AND GuNtnR

The scientific work of Mads Clausen Institute for Product Innovation, University
of Southern Denmark was brought to the attention of Motorola, and the potential
for solving the problems outlined above seemed so promising that a case study was
initiateti. [1i]

Traditional methods used to develop software are plagued by the problem that
the implementation is not always consistent with the specification. Model-driven
software development [1][3] seems promising to give the solution, since the impte-
mentation can be derived from, or generated directly from the specification. The
method requires a modeling language for specifying the application and a code
generation engine that translates application models into code. However, it needs
adequate tools that automate the steps between specification and implementation.

This paper is intended to give a solution of above problem. When thinking of
model-driven software development, the immediate und.erstanding is that models
drive the development of the state machine, in the sense that the state machine is
constructed by transforming models from higher levels of abstraction to the point
where we reach a piece of executable code.

The autocodi'ng tool suzt is built on the Eclipse platform. Thanks to the wealth
of modeling approaches the platform supports, most of which are based on well-
established and popular projects. We use the Eclipse Modeling Framework (EMF)
project as the modeling facility and the Eclipse Graphical Modeling Framework
(GMF) project to provide a graphical modeling environment. The tool supports
both a textual notation as well as a visual one. The Acceleo can be fruitfully ex-
ploited for a transformation engine to develop the tool for the code generation.
It has built-in facilities to read models that support the smooth integration with
modeling tools in the Eclipse. Developed in such way, the state machine autocod-
ing tool suit contains a set of trclipse plug-ins, therefore, a uniform development
environment can be obtained.

The rest of the paper is structured as follows: Section 2 presents state machine
used in Erlang. Section 3 deals with the metamodel and constraints of the state
machine. Section 4 describes the generation template. The implementation in
Eclipse is presented in Section 5. Section 6 discusses the development process using
the tool. A future work is discussed in Section 7, and a summary is given in the
concluding section of the paper.

2 Finite state machine in Erlang

The finite state machine used in Erlang is described as a set of relations of the form:

State (S) x Event (E) -> Actions (A) , State (S,)

The relations are interpreted as meaning: If we are in state S and the event E
occurs, we should perform the actions A and make a transition to the state S,.[4]

The finite state machine can be further considered as a mealy state mach,ine
[14], where an output (or action) is generated based on its current state, and. an
input (or event). A transition is marked with a trigging event, a guard expression
and an action. The guard is a boolean expression. A developer should think in the
following manner: if an event associated to a transition occurs, and the guard on

2

Guo, HorTMANN AND GUN¡cR

the transition is satisfied, the transition is fired. Consequentl¡ the state machine

reacts to the event by performing the action on the transition; state maybe changed,

too.
?Erer*t 1 {Ëu rrd '1

¡lÅÇt¡Õn1

?Ëv*nttIGuard2]i
,4.ciianË

?Event4[Guard4þ¡
Àcti*n4

?frvc'¡rt3[6uard3ll
,qüiüfl3

Fig. 1. The meaiy state machine model

According this state machine model, for each transition of a state, a transition
clause should conform to the following convention, when using the Erlang gen-fsm

behaviour to implement the state machine:

StateName(Event, StateData) when Guard ->
code for actions here

{next-state, NextstateName, NextstateData}

3 Metamodeling the state machine

Metamodeling plays a fundamental role when using the model-driven software devel-

opment approach. A metamodel describes possible structure of models, by defining

the constructs and their relationship of the modeling language, as well as constraints.

It is also the basis for building tools, concerning construction of the state machine

model, validation of models against constraints, as well as generation of code. A
constraint specifies a restriction of the metamodel element it is applied to. It can

be written in natural language or in the Object Constraint Language (OCL) [5].

To define a metamodel, a metamodeling language is required. The trclipse Mod-

eling Framework Project provides facilities to create a metamodel, with the support
of a meta-meatmodeling language - the Ecore metamodeL The language is consid-

ered to be at the M3 layer of the Meta-Object Facility (MOF) Four Layer Metadata

Architectures [2]. In EMF, a metamodel described by the Ecore metamodel, known

as Ecore model, contains structural requirements and constraints for the model,

which are information contents that the model editor will manipulate. It extends

the Ecore metamodel by instantiating classes, in the sense that a new class with new

attributes in the Ecore model is created as an instance of an existing one defined

in the Ecore metamodel. A metamodel is at the M2 layer of the MOF Four Layer

Metadata Architectures. (see Fig. 2)

The Fig. 3 presents the metamodel of the mealy state machine. The metamodel

is fairly intuitive and easy to understand. The state machine container is the root

.)

åtatet

ECüñ.-
ùÂÈåånêdèã

$töÍ*Mschtne
MûtäffiüdÈ[

VðfiSiii'ig
M,ÈthlnS

[r4orJ,*l

& Ven$¡Êg
il{,schine

Guo, HonnMANN AND GuNoeR

IrS3 La¡.c:r

h.lc(rì-

$¡e¡.sr*(¡d*1

de*<rfib*s

h{? loycir
.þleurnrr¡ùoI

drs¿¡ibcç

h{l layur
þf rrcl¿rl

duÈr:rib*ç

ETü lay*r
Irtst*ni:c.

R¡¡¡¡l K¡errrÍd

Fig. 2. MOF Four Layer Metadata Architectures

element of all instances. Il llrust contain one state machine instance, and an arbi-
trary number of action ås well as event's instances. The instances of the action and
the event are referenced by transitions of the state machine model.

j$Ë$fs

1.,1
s{ôfËM.icnirTÊ

1..1

'i..1

Fig. 3. The state machine metamodel

Esent

SialehiacÍr i¡:e ts¡,lalr¡er

dêc¡ûråiiùnå: Strillg

nr.s :*tdrìS
type: Hr¡ÉntTyps
deÍinitirn i Sliin$

Aûli0n

name j Sltinç
æde r Strång

ÊtalåMåchhlÈ

nêËtÈ: Sltríng

tTl;r$*tiùn$¿Ìurtd

0..' oüfgotnstfrðr¡stlio&"$

Transit¡sn
fËr¡tiålsrsi€ ÊtÊtÉ

ÌnÍfí.vJSf¡te ü"1åJ8S

rníù.:ãi

ß.."

l#ñsí{íen$

inítiâlÐåt ; stf¡ng naü&: $tr¡Íu

ñcût¡a,s

6Offô¡¡$

ÉvèÈl

nfrme ; Slrin$
ñrdwr: lñl€gÈË
guårs : string
slåteÐåtå : Strinü
nsxt8ätä; SlÉing

4

Guo, HoTnMANN AND GuNooR

Typically, a transition has state instance as "sourceState" or "targetstate".
But, the state machine in Erlang has the feature that an event can arrive at
any state. The event is sent with the gen-f sm: send-a1l-state-everrt /2 in-
stead of sending the event with gen-f sm: send-evenLf 2, so that only one clause
Module : hand1e-event/3 is needed to handle the event [A]. In order to model this
feature, an event-triggered transition can have the state machine as source, mean-
while, the tvpe of the event on this kind of transitions must be "all-state-event".
That is why both the "StateMachine" and the "State" class implement the interface
"ITransitionSource" .

The state machine in Erlang is deterministic, as the sequence of the clause for
each transition matters while executing the program. The clauses are to be matched
according to the order of precedence in the source file. If the first match failed, this
second one will be picked. This is why an "order" attribute is used on the transition
of the state machine model. It is an integer value. All outgoing transitions of a state
must have different order. It determines the appearance sequence of the transition
clauses in the source file at the generation stage.

To obtain a complete domain model, the metamodel needs to be accompanied
with constraints. It will not allow you to perform a code generation without doing
the series of static checks. The constraints in a model-driven fashion are categorized
into two levels: the platform independent level and the platform specific level. The
platform independent constraints have not concerns with which target code is going
to be generated, whereas the platform specific ones are bound to the target language,
in this case study - the Erlang language. But in case of creating an Erlang state
machine specific model, constraints from two levels can be combined.

For instance: according to the metamodel, both "State" and "StateMachine"
are subclass of the "ITransitionSource" so that they can have outgoing transitions.
However, the state machine turns into dead end if there were not any outgoing
transition from a state. Thus a constraint like "each state has at least one outgoing
transition" is a platform independent one. On the other hand, "the names of the
states and the events must start with lowercase letter" is an Erlang platform specific
constraint, since this rule has to be satisfied to make the generated code compliable.
In case of C code generation from the state machine model, the constraint is not
necessaïY.

4 Generation Template

After the metamodel has been built, a model, which is instance of the metamodel,
can be used together with the templates for generation. Having models as central
to all phases of the development, the generation process is independent from the
concrete syntax of the model. No matter which format a model is stored as, the
metamodel is always of special significance in the context of model-driven develop-
ment. Generation templates should not be written based on some specific format
that the model stored as, but on the metamodel.

To make the autocoding feasible, the way of programming a finite state machine
needs to be normalized. The result of the normalization plays the role as the
generation template. This step requires the answer of the question: where the

5

l
t,

Guo, HomMANN AND GuNoeR

static code, dynamic code and manual code are located in the template. The static
code is always the same for all different models, whereas the clynamic code is the
one transformed from the model.

STÅTIÏ*NP.Ì"{[. {liïËI'IT*l$Åï4Ð]., $TliTII*I}ÊrT}"i3. } i¡hen rì1"}ÄP"il1 *}
tü)itËRstËÞ &NTIüI{1,
*Tr¡ra;:ual" cc,de fnr ¿cli¡:r¡
3l* ä; t $ Ð å l e * TS.R,[ÌE'f -!1'J'¡, T F:_ïE.ql"f !: 1 .
l\TÊx{.Ëtrit Ê-.r'*lu* *' t¡F,TÌl'l :irÍ;*r. n¿+;-ru,il e*ie

i :ilÊxt_s t å l:*, N#x.t.s t ål.s r ?.1Èi{fl nÌ.ffi t.*",.ia"[ue i ;

ËTÊ.TE*¡.i"cï.lË {E!'ÊI{l*r'ië"}4ii2 É siF-Tg*f.åTè.: } '*+hr*n rJtf.sgüt -;a
ËËt{Ë É.;qt' gÞ Aü.J,LûI,} :l ¡
?,t?üianl:eå r:ù*È f t) r. a*t."ii],x
$*x t ;Í _,iì å t * = Tp-F.üf; T 5yJ¡"TE--_1'¡¡\Þ,1n3 ¡

){*xt.Í.tåt*Talu* ,= ilS.?&3 trY;*r *r*.nuÉ1 üùd.É
{next_*tate, l'ìezttìt.ate, ld*ntät'rrle'r.}*.lue },

Fig. 4. The generation template

The piece of pseudo code (Fig. 4) reveals the structure for one state with two out-
going transitions in the generated code. Words all in uppercase are dynamic code,
which will be generated from the model. As mentioned in the previous section, the
sequence of the two clauses depends on the value of the order attribute of outgoing
transitions. The value of the variable NextstateValue could be generated from
the "nextData" attribute of the transition if specified, or be written manually if it
is empt¡ which is dependent of whether or not this value should be calculated by
manual code. The STATE-NAME for two transition sections must be identical be-
cause they represent the same state. The rest dynamic code such as EVENT-NAME,
STATE-DATA or GUARD could be either the same or different for each outgoing
transitions. No manual code is allowed between the assignment of NextStateValue
and the statement next-state, Nextstate, Nextstatevalue. It is only al-
lowed to add manual code to the specified place. Otherwise, it will be lost in case
of regeneration.

5 Implementation

The model-driven software development approach has been adopted to develop the
autocoding tool suit in the Eclipse platform (www.eclipse.org), so as to reduce the
amount of manual work needed to develop tools in a conventional manner. The
Eclipse Graphical Modeling Framework project provides means to ease and speed
up the development of graphical editors for modeling, which can be used for the
rapid development of standardized Eclipse graphical modeling editors, by providing
a generative component and runtime infrastructure for developing graphical editors
[10].

The majority of the state machine model can be created graphically, but there is
something that a graphical editor does not necessarily be applied. The Eclipse pïo-
vides property sheet as complementary to editors, with basically two functionalities:
set or display property of a model; create model instances that cannot (necessarily)

6

Guo, HoTTMANN AND GUNoBR

be created using the graphical editors. Therefore models like actions and events can

be instantiated within property sheets, otherwise the diagram that is supposed to
emphasize the relation between states and transitions will be polluted with those
less important ones to the visualization.

The Acceleo (www.acceleo.org) is an Eclipse based code generator transforming
models into code. It works with any metamodel, implementing MOF as specifled
by the OMG (The Object Management Group). It needs templates that describe

the information required to generate source code from a metamodel. Acceleo deals

with incremental generation, by deflning specific protected area. Code, which is

modified by developers, is surrounded by special tags in the protected area. These
tags do not pollute target code because they are implemented as explicit comments.

On the next generation, the whole text in the protected area is kept.

A nice feature that the Acceleo offers is that Java functions can be invoked as

services within the generation template. Acceleo is a hybrid with respect to the
generation template. The advantages of an expressive template language and the
power of the Java language are well combined, in such a way that parts of the
template is written in the template language, while the complicated algorithm are

implemented in Java.

Fig. 5 shows the graphical development environment in the Eclipse. A vending
machine model is built with the editor. In order for a correct code generation
process, the model has to be validated. The Fig. 6 presents the case when two states
are identically named, thus, with the support of the GMF runtime, the models that
violate the constraint are highlighted.

Fig. 5. The graphical development environment

Once the state machine model has been built, the tool can deserialize it into XML
format, which gives the ability to maintain interoperability among tools based on

the metamodel, as well as the 3rd party tools.

7

I

Guo, HonnMANN AND GUNIBR

lil i¡ :. .:.,.......,t;,¡,r,..,.

ú
:t*rt*.ra¡tu. ólraa

Wrèx.s¡*ftxe **tiçèÉ¡+^,t4*! ô<
,¡s4ÐSràsÞrú¡::,;!***r:: Ì3*.r'
,h+t]l@?c4! ráþ&:tù6|r F)!¡À, :

Fig. 6. Violation of a constraint

State machine code will be generated then from the model. The vending machine
code and model, as a reference, used for code generation in this case study is not
something that Motorola markets, but the vending machine problem and original
code is quite similar to most of the state machine code Motorola has written so the
results from the case study applies to the real world code as well.

6 Development Process

It is well known that, even when using the model-driven development approach,
some code still has to be handwritten. The handwritten code could come frorn
any legacy code that has not been integrated into the model. While the state
machine model can express when the actions are invoked, the implementations and
algorithms of those actions are not represented. So, after generating the skeletons of
the state machine, developer still needs to fill those actions skeletons with business
logic.

Usually a balanced approach is considered to be the best, in the sense that
generating the initial code base from the model and then just start from there. It
can save some of the initial tediousness of translating the model to code" Users
should not modify the generated code unless the changes are in the protected area.
otherwise, these changes will be lost in the next generation iteration.

The obvious way to lower the burden of the developer is to generate 100%
code from the model. To achieve this goal, an iterative development process can be
considered when using the tools. At the beginning, the developer should concentrate
on the application logic to design the model. He needs to specify states, transitions,
events as well a^s the names of the action, and put some dummy code (like comments)
inside the action method. Once the state machine skeleton has been generated, he
needs to fill out the actions method with the business logic code in the protected

8

Guo, HonnMANN AND GuwrpR

area.

When the state machine code passed tests, the handwritten code can be further
integrated back into the model by replacing the dummy action code. (This has to
be done manually, at the moment.) Consequently these code will be generated in
the next generation. Finally, the developer will end up with a state machine model

integrated with all action code. In this manner, it is possible to generate complete

code if all actions are just predefined function calls from some library.
However, bear in mind that the complete model is not a platform independent

model anymore. It becomes a platform independent model mixed with the platform
specific code. In case of generation of another target code from this model, for
example C code, the platform speciflc part in the model has to be changed.

It is possible to make improvement by introducing some kind of textual language

that specifies the action. In this case the language has to be defined or even be

invented. Meanwhile all the tooling needs to be created, too. It is not a trivial task
since the semantics of the language has to be correct. As a result, the flexibility is

obtained at the cost of the increased complexity.[3]

7 Future 'Work

The work that has been described in this paper is an initial step towards devel-

opment tools for application in Erlang/OTP, in a model-driven fashion. It can be

continued in several possible directions to further improve developer productivity
by introducing more features as described in following sections.

7.1 Confi,gurati,on Management

One of the biggest practical problems Motorola has experienced with various model
driven approaches has been the management of different versions of a model com-
ponent.

Being large organization with many development centers in the world, Motorola
is challenged to share common tools and code with other teams who are not neces-

sarily located in the same region. Typically, these teams have their own additions
and changes, sharing a common code base. One problem deals with the task of
being able to integrate individually created functionality, as well as that created by
separate development centers) into a common code base. The fundamental problem

resulting in this becomes an issue of potential rework and many headaches when

the same code is changed by different people. \Morking at the source code level, this
is a merging problem which requires a significant about of labor to do consistently.

When moving to model-driven approaches, the problem does not go av/ay - it is

merely lifted to a higher level of abstraction, where models and changes to models

need to be merged. This is a problem that so far has not been solved well enough to
be of practical use. The practical problems in this has so far resulted in a situation
where models are used to generate the first version of a component, and then all
additions and changes are done at the source code level.

Clearty, there are two basic problems that need to be solved in order to make a

model-driven approach a good fit for Motorola:

I

i

li.

Guo, HoTTMANN AND Guxtnn

. Integration of manual changes back into the model. (Fig. Z)

' Merging of a new version of a model with the source code based on a previous
model plus some manual changes. (Fig. 8)

f*j Fêrs.

øçenuaj¿

f'd y*rs.

<

--

f? .æfl

Fig. 7. Integration of manual changes

fur tr¡*f,s.

¡]?sfi¿r*få=år,r*y

fd vers.

Ë.erl

rT¡erü¡¡ng

år.r riltfc2.erl

3 f"erj

Fig. 8. Merging of a.new version of a model with the source code

When these two problems are solved, it becomes possible to solve the general
problem of merging two changes to the same model. (Fig. g)

10

.€ff

r

å
1*t

I
I
¡

ú

Guo, HoTTMANN AND GUNTBR

?'*t u*rs.

gnd vçrs.

7.2 Refactori,ng

Sometimes you have an existing code base and would like to introduce a model-
driven approach - more often than not, this is a major practical issue since most
freely written code does not easily fit with a model framework.

In order to overcome this obstacle it would be interesting to investigate the use

of refactoring tools that assist the programmer in transforming a legacy code base

to a format that allows easy reverse engineering of the code into a model.

In this case, a given state machine code needs to be transformed back into the
model that is at a higher level of abstraction. Adding reverse engineering for the
current tool suit makes it possible to offer a visual content of the state machine from
legacy code as higher-level document. Applying model based analysis technique i.e.,
model checking [7] to the model is also feasible, once the model has been built from
the legacv code.

Wrangler [8] is a refactoring tool providing a collection of basic refactorings to
the program. With the help of the tool, the legacy code can be refactored as close

as possible to the generation template. Subsequently, A text-to-model transform
engine can be applied to take the refactored program as input and produce the
model correspondingly.

7.3 Arti,fact generat'i,on

Besides the state machine source code, more artifacts can be generated from the
model such as supervisor, application, makefile, etc., as they require certain informa-
tion contained in the state machine model, too. This information can be exploited
as much as possible in order to minimize the amount of manual work. However,
the current state machine model does not necessarily contain all information for
these artifacts. Depending on what to generate, proper metamodels, editors and
generators could be added to the current development environment. Following the
introduced approach, it is not hard to extend the current tool suit with the new
components.

If a complete metamodel that covers all the concepts of the domain was devel-

oped, equipped with right tools, a component framework and a set of predefined

11

I

I
l

+

?
¿f

Fig. 9. Merging two changes l,o the same model

Guo, HorrtvrANN exo GuNlpR

components, the developer is able to model the whole telecommunication application
and generate 700% code from it. The ErlCoM 112], as a domain specific language
for robust reconfigurable components, tries to introduce a component layer on the
top of Erlang environment, so that the developer concentrate on the system design
at a higher level. It provides a useful packaging framework that enables program-
mers to organize their applications written in Erlang in such a way that they could
be easily reconflgured either so that they could adapt in a rapidly changing run-
time environment or they could be reused. [13] Modeling and code generation tools
have been developed based on the Generic Modeling Environment. However, its
rnodeling concept mainly focuses on one of the static aspects of an application -
component configuration management. The dynamic aspect of the application, that
could be modeled using state machine, is not yet covered.

7.4t Model debugging

The current tool suit enables the developer to visualize the state machine as a
diagram. The diagram and model could be further exploited within a debugging
session by providing animation functionality. An executing state machine could
send certain information, which is embedded into the generated code, back to the
diagram. This information is used to synchronize the graphical notation to trigger
the animation. States and transitions with the synchronous data should be high-
lighted. If the developer recognizes a mistake in the diagram while debugging, he
can instantly change the model, and generate the code once again. However, the
current stage of the development of the trclipse modeling projects does not yet pro-
vide such a framework for the graphical debugging according to a given metamodel.
More research needs to be done in this area.

8 Conclusion

The paper has presented an autocoding tool suit specifically designed to support
finite state machine development. It facilitates the development by providing the
developer with a specialized graphical editing environment to specify the state ma-
chine model, and a code generator to produce Erlang code. An initial prototype
of the tools has been developed on the trclipse platform following the model-d.riven
software development philosophy. The model-driven approach for tool development
has been experimented, in which models are central to all phases of the d.evelopment
process.

References

[1] The Object Management Group, MDA Guiite Version 1.0.1,I2th June 2008

[2] The Object Management Group, Meta Object Facility(MOF) Speci,ficati,on, Version 1.1, April 2O02

[3] Stahl,T., M. Völter, J. Bettin, A. Haase, S. Helsen, K. Czarnecki (Foreword by), B. von Stockfleth
(!a¡sf3!eÇ^t-y) "M-odel-Driven Software Development: Technology, Èngineering,

-Management',,
ISBN:

978-0-470-02570-3, Wiley, 2006

[4] Ericsson AF, OTP Design Princi.ples Version 5.6.1

12

Guo, HoTTMANN AND Gu¡¡npR

[5] Warmer, J, A. Kleppe, "Object Constraint Language, Getting Your Models Ready for MDA", Second- - Edition, Publisher : Addison Wesley, Pub Date : August 29,2003, ISBN : 0-321-17936-6

[6ì Chikofsky, E.J.; J.H. Cross II, Reuerse Engineeri,ng and, Desi,gn Recoaery: A Taxonomy i,n IEEE- '
Software, IEtrE Computer Society: 13C17. January 1990

[7] Gerd Behrmann, Alexandre David, and Kim G. Larsen, A Tutorial on Uppaal, Updated 17th November" - 2004. Department of Computer Science, Aalborg University

[8] Huiqing Li, Simon Thompson, George Orosz, and Melinda Toth, Refactori.ng with Wrangler, updated:' ' DaLã and process reJactorings, and, inlegrati,on with Eclipse, Proceedings of thè Seventh ACM SIGPLAN
Erlang Workshop, page 12pp. ACM Press, September 2008.

[9] FYank Budinsky, Dave Steinberg, Ed Merks, Ray Ellersick, Timothy J. Grose, "Eclipse Modeling- - Flamework", Published Aug 11, 2003 by Addison-Wesley Professional

[10] Fbederic Plante, Introd,ucing the GMF Runtime, Eclipse Corner Article, January 16th,2006

[11] C. Angelov, Xu Ke, Yu Guo and K. Sierszecki, Reconf,gurable State Machine Components for Embedd,ed,' Appti,õati.ons, Proc, of the 34th EUROMICRO Conference on Sofbware Engineering and Advanced
Applications SEAA 2008, Parma, Italy, Sept 2008

[f 2] Gabor Batori, Zoltan Theisz and Domonkos Asztalos, Robust Reconfi,gurable Erlang Component System,
In The Proceedings of 1lth International Erlang/OTP User Conference, Stockholm, Sweden, November
2005.

[13] Gabor Batori, Zoltan Theisz, and Domonkos Asztalos, Confi,gurati,on Aware Di,stri,buted System Design
in Erlang, In The Proceedings of 12th International Erlang/OTP User Conference, Stockholm, Sweden,
November 2006.

[f4] Mealy, GH, A Method to Synthesi,zi,ng Sequential Circuits. Bell System Technical J, 1045-1079. 1955

13

¡

ErllDE

A modern GUI for erlang development

Eclipse

. An extensible platform for developing
applications

' 100o/o Open Source

' 100o/o java

' created by IBM

' Many platforms
(Windows, Mac, Linux, Solaris)

1

Why Eclipse?

' Mature framework

' Large ecosystem of useful tools

. A picture is worth a thousand words

' Somewhat bloated and memory hungry.
Better with Java 6.

. lmpedance mismatch with Erlang

ErllDE

' A set of plugins for Eclipse

' Project started in 2000, restarted in 2002 and
getting "real" from 2005.

. Mainly 2 developers, we'd like to see more!

2

ErllDE

' Originally 100% Java

' Code: 80o/o Java, 20o/o Erlang

' Functionality: 50% java, 50% Erlang

i
i

i'

Architecture

' Eclipse workspace uses an Erlang backend
to do the work

' Each project may be compiled by a separate
backend

. Another backend is used to run the projects

3

Architecture

IDE lunrl¡ond¡ty (onìFilÉ erecutddebug

Architecture

' Erlang side provides services to Java side

. RPC

. event based

. lnfrastructure to make communication as
seamless as possible

' implement Java interfaces in Erlang

4

ErllDE and OTP

' Requires R1 1B-5 or later

' Special versions of jinterface, scanner,
parser, syntax_tools, edoc, debugger

Features
. Editor

.lndentation of Erlang code

.Syntactic highlighting

.Bracket matching

.Automatic completion of erlang functions and records

.Selective display of functions and declarations (folding)

. lndentation and code formatting

.Automatic indentation

.Formatting and pretty-printing

5

:. ' '':

i.\

rt\.,
it.,

Features

' Hover

' OTP documentation shown for external calls

. Show declaratlon of macros and records

' Outline

' Code outline of the structure of an Erlang
module

' Filtering of Erlang functions and declarations

' Quick outline for selecting Erlang function or
declaration

Features

' Navigation

. Go to declaration of function, macro or record

' Project lmport

. Erlang-aware import of projects

' Creation wizards

. Create Erlang projects

' Create Erlang modules with code skeletons

€

Features

. Debugger

' Erlang debugger within eclipse debugger
framework

. Breakpoints, single-stepping

. lnspection and modification of local
variables

' Distributed debugger, debug on multiple
nodes

Features
. Erlang runtime handling

' Provision for different runtimes, local or remote

. Develop on one runtime, test and debug on another

. Warnings, errors, TO-DO-markers

' Show errors and warnings in code and in problems
view

' Automatically mark and list comments with TODO and
F¡XME

. Erlang log printouts with link to code line

7

qrùþ sr¡r Lc4Þd4r
qÈr2þ-9èv¡ lFÞN¿ft.

¡ .¡ c¡!ùÞ-¡:sr-dnll
s QrcF ùpenri ¡t'
6 m'E4_9.È¡¡¡ ú qGnlj

Demonstration
l-Ì'; ;iþ'(à.(¡'-j r"{':.r., i. .

.:,1.:ætls¡¡

! @.ró-iÉfriE..: ttout

4..r .- Èt-!:rt-dir_rrtrôrúir, tr!.rù),
,lirr_d:._ôrt.{r.orr * i¡rçi, Ðcn-.rt. - :j?.)Ì

it- 1,r.r:rir¡ . ì'r.:,
1r.! .. Ir..:i((.rrñ, r_ a.a:, c),
ti-i.. ¡:':] ! scr_c6r.rì_¿ir(:.... :._.,:.,..,: . , r.r_..).
,"r::::ic¡os!, i.r),

Y! t(rr :rf i:.,:rrr:a..i::::.,i ¡ùe

1(¡, *¡!r i¡- riiijl . :i* r(:):
r{:) .h. L'-'q<or¿i, . *en¡rÞ) . @*Ì,_r(:),
r(::) ,, r(; , rù .ry_{rô-t-2fiîr_.i4a¿.rrç/:J.

.d.{ jriri , ¿ð-.1(! r :ri:r,,.1rìt ,r

, :r.r ., t¿4rú, i.r!?)

'Kro-saä8nìi
t!ñ-{

r¿cra-î€titridù: stfiaJ
D¡cû dclßle uficrfù
frso_deln8øn,!iRh

. üdù'

c¿-t(r. ti,:{ì. . r) .-
l:r",r: - rêt.r.uuriìrr,

i .: ^ lç,,{{1r.r, r. ,:ji,j, ú1,
Lj ¡t. r41: - q(1_(.ilr.J¡.¿irrlj,j¡ É,..rr.:,:, .:.r:::),
!;.,:i.ior!, !.r),

>I rrn:r ::f jr.1rlrrl i:: ìrnt n_,Ë ¿::i,r 1r .il

rr(,) d& t\¡¿ßì ., ¡!r_!r.(.)l
ltijl hsrù r< rc¿&d{i, !Ê¡r:¡¡Þ1 .} rE.:!!..tri:¡ì
ttli:) .! {(!. rin .ù"-tôrar.ir! ..iÕ_"r.1rt.

rcøùdÈtuilÈr. ø¡i),
¡Étrd d¿lû¡N¡ z:p-S
Èørr-delñùr ¡úLis
nød-dè,rdrø: òæ¡?;
¡èrN¡_d€hr¡LN oAè¡¿a

k¿úuc
RIDUC

RDU!
RgLW

Demonstration
' i .+ l:Ìr' t¡,. ' ..r. : E go"l's,1.Ûl¡,

ùulltm

¡l

h3nd

hôña

inti¡

ErlüB corrrde

ii ¡..n I iì tdchd i ii òþx.ed : -
=;l

Èl t¡rcrlpiiùi li¿r.¿rir1g rûit y.:nrri4rr
'11 {ei.,r'ñs: ir.{:r, fi<f}!, iii.i:¿i
)' ¡i(,rl!. Rrr{lt, \r,jr¡., :...lrr: :

{¡ i¡r/,:Èt2.1rút,j; iÏr: ì¡..arì...,i|iì¿:..Y,..c:.r.
tl¡; l!Le!. ñ€r:5!':, neciI,:ti:t!; | <rsr^:!:i.r...; rr iüt¡¿jl
i^ iilDÞ. I+,:,i1.:rÌ,;r,.j i.1,...:.:r,tr l:: (r::.jrÌ

rûyt) - {ok, rêrr},
{¡¿Bly, lir,'r ., :,i:.i:c};

''Loßr't<-cs11({f?(tcriaì, l},,::rc":, jr;:r:r) .}
Èry,¡ Þ {ok, fùrriÌ)},
{f¿pì!. (È1r., :.i..:r.*:

'hrn¿¡<-caIl(lìtop-brrú.r, ri, :r]. ..i:::::. :r{{ï) .}
Þ,:!i, - {ok. ¿o_{ho9-b{ñ¡.yi!u. +. []J].
{¡{pìy, h'}È'., ::rt:l,*ì

' hrndl€..coi!(ticcj:o3!, ..|j.ûr, :,i...),)
ri.., i i " {(Fror, (rnrnor¡_r<eùc1t, : : jr.. rr,ì}.
t.èr1y, tiÈrri!, 5trt11,

:

:

:

l

.

:

fr
Ifl
Ht
til
Qì

ei¡

:

:

:

"> llrtz

È Litr2 s ltèrmol

ã list$oh

iì> ..i:.s.:, !;tt¡t::)
lirtsìr6s6v:ë(rJl,

hdndle,.c.rr({rrle¡5€,

':.}

- {!k,

-, -, -Ì. -i,'.i. 1t'1..1 .".

I

Demonstration
iq ¡)ilr,..cs: i.¡, ù:a1{1i{.1

,,.oce,{hoh3¿i-ni,}\i,,. !ri3rr:r, _Ir.rr;} .:
{¡k, !r¿lr},

<ú?_rhr8€fj (-

f¿dd¡¡|.¡l rN¡

8¡ n<iþ_c¡ lt¡3

haf,útÉ_es¡/z {,b
l¿fldfe-inio,rz {-h
ùr¡l (0,

u¡mid¡el2 LRÉ¿

RJ¡.ll t{, B, cl

' iìct(i¡) ?.h,:û i.-iñtèqé.(ill -'
í,. {.¡écr(}¡..l:,

. ¿ô-.bcp-biñú.vt:r, i;-.'>, .(rr)''

r.Ji: rllbinnry, ¡)i:tlilne.y,7 ,-3

d6-<fupj!no.vt:ìr, lirrt. tri i '1!!l)ì

!rlà¡9 cúnsêic I:l

liat5: ¡evi¡rùl¡.<);

I iátr:4

Refregh ì Colsrcd

il¿R!nJl
fùl-t€ùçßU1
ùàënçújì

f¡{drt¡
il¿rùrplJ
ldda4
tìtúrl4
i¡herJì

: Wrñ¿ble 3ñ6
'ñred

lS4 : 2û

= luB(Elem, À(<h) -> À(toul

* Accl * Accln - À(Sut * te.ml)

g6r
t€li.riÈh¡

IAD. €nd.

AccO. L¡sÙ -i Acct

= lterûoÌ

vo¡d. {1.2,ìlt

Demonstration
..--.-.--*...-'.'-.:'--**...,,-l ¡19: j*!$Sl3il-3i'ifl:i1.:*l'!t:3!9f;,-:,,.¿::::t;;--.:*::..'-.¿-'¿::.'

-'--';. i.l ' '. ,.:: ' . Í:" tbDc¡gg *-!'l
Outliôè)

iüir¡d
ñodu

a ìist-di
Ð fisld¡

6 OFúr!

& op(ü

qr tablÈ/

ú r/1

Erlang console Prsarr lí9t

fìiÊ.hrlij ¿¡sx.crl 2:1,-: ìi te6ler ¡e&er-ed i:j try c¿r¡¡,erl ¡.erlru(ro thi¡q¡.all

; reÉ@d drfhftior: m¿¡t ops
q únziçlt t9i
,, aú¡tpl2 iF, oûrþns,
ñ ê¡--r4i?&J? rF, 9*hr)r
ü ç€r_unrip_@t,r3

.., ll@hed IRÉ5i, Íln¡ç-opbloFe*-op$ -
ê vêrbùsè_ubzip,rì {Fñ)

ã tJ¡i,uzip-@lioos/2 {F, üptiBn!)

t.l

6et-umrp-optiItlit

': ç€t-1i !t-di r-3pt{[È6¡l:ed I l?srl. fìist-úif-opis{6¡€n-ûpt! * ttrj " d}i:;}

i!,{.!{ÈôziÞ-rsts{f6€dbcrk - t}i v6rþoså-üñÈip.'.{}};

r É ç€r-?-lÌles,¿5
= (]frêt * ZiÊfrle I RÈrl,

.:€€t liåtdir-apt{[], i¡ir]

itat) ah¿r is,Þi¿t,) '' zip-tt{i:);
tt(i:'r nh6il is-rG(ü.¿i_.n, opeôzip) -7 qrer¿ir-tt(i:ì
tttrl a tl: iùr rüf-lorg-?rrrr-ì,ìlù-err/:).

Tìl <r:ÈlLrr: ß!!lr
set-¿r;ip-tpti.[]. iìrl:.) .'

tot-¡¡rzip-olt{[rorborc ¡ t.:::r]. arÌ::] .:

i l: - . {!r-on e
grL.-otr¿iÍ-opt(Ê

sat orzi!-spt([{fil:

{ I live ir Ed6 Ëì H'sroryì,; fÈÉh

9

Demonstration
:tfþc¡ J:!rc,!ir' 1i(1¿:r,,t't L:l:et,, 3!\a-

1.,. Çlìt.ü.rii, tt.þ i ..,,:,,;.. i.: Í;¡*q I tìðrg {,rJ¡r¡

. êfl. \ ttiiii i:eÉ l:)
i! ¡ei i€d¡4¿r¡rtr¿i4j

: 1g <0.n6 r> lbre¡kì þrù.ù¿ßßv¿){crþe-dòÈdèbu9æd.mrç k.tì
* ¡p¡,r, 9i9
¡;: ¿e*.èil l7ú
ã 2¡É¡.eri: lò¡

g
ts

= riür.Êd li&

S¡<16 ¡.o.0,0.¡¿.q,¿:.o,¡t!,t,:

tir¡i,úsdr dbg._;<v¡r, I ì,ìrr4oJù.{{¡Þ'.

1^\ 3ri: rrir .,-'xr¡,rì ¡!.¡,:j¡r! t¡.; r?ir ..rtìj!ù
ç(t...rñtrri_¿rr(rì1¿, r:::,11.r",¡L¡¡-., 1Ì,1.'),.!

{r:,) i1: " qdt.¿nd ¿n .ènr.ùt ¿..lti.r, ¡ ì, i,:: iirr:ìr . .1:. 1::i r:"":.).
It,,, ;. dr. r:1rk¡) c *ùør-ffiôr^trc-¡tnlNl,
ir.. r:4-r(G.c!. bf, Ij !¡@rr,otrt¿r1. j-rt)
i - iìì(:lJr..d.eåtrt&,

i. L ¡ it-.r1.(:iìr,.,, b¡¿$Ì_r.-.tr+(!:r:..r.r). \-,!¡ ¿i.+:r.
ç¡r cd_Ì¿ù:{s, jr;:, I i:...'j.rr¡ ì....¡r, ¡"_aj.

i: .: . r'Jl ..
{:Ì\r.rzrÈr¡.¡{r:, Dl. r,}¡

g{L.d.,1orF(.,, rr*, irr.!rr.rr.r. l:;_r, rrJr¡) -.
O:, alJj . i:r:-l({-raú, ii,.ir,.,,:,:..,,11.¡.1,,,.,r.,*t,

..r'. : -¡. _:!l :r.ili: :!rlìuÌc. (ear1ùìndrñ: , r!tt_
_,: *i.ü(¿ùn_rÈñl':; dr.ùctofv)

iì

:

a,

.J¡.ù*..riiss.D.rù)ì, r,... :

lì sd6 tßê¡t cte r

Some future features
' Semantic highlighting in editor (function calls,

variable usage, etc)

' Show documentation of user functions

. Erlang-aware search

' Refactoring

. xref-based indexing and searching

' Tracing viewer

' Syntax error correction

' What tools do you need?

10

Resources

' http ://erl id e.sou rceforqe. net

' htto://erl ide.sou rceforqe. net/u pdate

http://eclipse.org

http://erlanq.org

11

e-w råI
LUç
ËRI.ANG

å-fisp F$mwma*n*d ffi nåffisr#

LFffi

Å#dinç # m*rry fiæv*ur t* ffin$me"rç

ffi*h*rt Vlrdit-lç

t:"f,ì:Èi
.t ,: i:'. : .,ri

l.- .. .'

,,:t -
-'.,.:.
-...'...

l l . .: i.

w Whæt å-Fffi Ësr:,å
r
L

-l
;{

I RI"ANG

. lt isn't an implementation of Scheme

. lt isn't an implementation of Common Lisp

ln fact neither are possible on the Erlang VM

(Global data, destructive operations, ...)

200a-10-27 2

1

w Whæ€ LFfr ãm

/-ll,7l
Ë I tÂNG

. LFE is a (proper) Lisp based on the
features and limitations of the Erlang VM

. LFE is attuned to vanilla Erlang and OTP

. LFE coexists seemlessly with vanilla
Erlang and OTP

2008-10-27 3

w LFffi F*mËuxr#s

. The usual good lisp stuff - macros,
sexprs, code ê data, '

. Extensive use of pattern matching

. Uses Erlang data types

. Uses Erlang BlFs

. Functions of same name but different arity

. Built on small core extended with macros

. Compiler, interpreter, (simple) shell

f-lt;{
E RTANG

2008-10-27 4

2

w Syn:tmw
{
L

-Il;I
Ë RT ANG

. Pure lisp sepxrs

. [...] alternative to (...) (Scheme)

. Symbol is any atom which isn't a number

- lquoted symboll
. () tl {} .'',,@#(#b(separators
. #(...) tuple constant
. #b(...) binary constant
. "abc" ê (97 98 99), needs quoting @
. #\a or #\xab; characters

2008-10-27 5

t,

w #*næ f*nms
1-l
I,, UT
E RTANG

. (case expr clause ...) ;An erlang case

. (if test true false) ;A lisp if

. (receive clause ... (after timeout body))

. (catch body)

. (try expr (case ...) (catch ...) (after ...))

. (lambda (arg ...) body)

. (match-lambda clause ...)

. (let ...), (let-function ...), (letrec-function ...)

. (cons ...), (list...), (tuple ...), (binary...)

. (func arg ...), (funcall var arg ...)

. (call mod func arg ...) ;Eval all args

. (define-function name ...)

62008-10-27

3

w tmn* ntffitË.#s
r-ILUI
rN tANG

. (: mod name arg ...) ;Literal mod name

. (flet...), (fletrec ...)

. (let*...), (flet* ...)

. (cond ...) ;(?= pat expr)

. (andalso...), (orelse ...)

. (do...) ;Scheme. (lc (qualifier...) expr ...) ;[expr ll qualifier ...]. (bc (qualifier ...) expr ...) ;<< expr ll qualifier ..

. (fun name arity), (fun mod name arity)
' (+* ...)
. Bunch of CL inspired macros - defun, defmacro, ...

2008-10-27 7

W t-åmp-{ vffi åËmp-ff t,*t
. Tried Lisp-1 in LFE 0.1 but it didn't really

work, resulted in funny behaviour
. Core Erlang tries to help but still see

difference
. Lisp-2 "fits" Erlang VM better
. So Lisp-2 from LFE 0.2 onwards
. Result more cons¡stent and better (l think)

2008-10-27 I

4

W t$sp-r vffi. LËsp-ä
l-ïLut
Ë RtÁNG

. ln Lisp-1 :

(define (foo x V) ..)
(define (bar x y)

(let ((foo (lambda (a) .)))
(foo x y)

))
. Which foo should be used?

- Local foo variable and bad_arity error

- Global fool2 and succeed

2008-10-27 I

W ffiust*åË*n dæfËr:ãåã*n
r-I
LrT

(defun member (x es)
(cond ((=:= es 0) 'false)

((=:= x (car es)) 'true)

(else (member x (cdr es)))))

(defun member

((x (e . es)) (when (=:= x e)) 'true)

((x (e . es)) (member x es))
((x 0) 'false))

E RtA NG

102008-10-27

5

W Fun*tÊ*ru s**p$rug
{-rt;I
Ë R LAN6

. Within a module

- Default predefined Erlang BlFs

- Explicit imports

- Top functions in module

- Local functions defined by flet and fletrec
. So no problem redefining Erlang BlFs or

imports. Macros!
. Core forms can never be shadowed!

2008-10-27 11

w &Vl**n*s

. Macros are UNHYG¡ENIC!

- Does hygiene really work when distributing
compiled code?

. No (gensym)

- Unsafe in long-lived systems

- But probably must have
. Really only compile time at the moment

- Except in shell

f-l

Lu{
T RTANG

2008-10-27 12

6

w ffq Æ^ÃæÃ^
$rgff;-{H :Ë Ë $\;
Þ w äMwË vw

. CL based macros, w¡th pattern matching
(defmacro foo (a b) ...)

(defmacro foo

(pat [guard] ...)
(pat...))

. Pattern matches whole argument list

. Scheme based syntax-rule macros with
RSRS ellipsis

rt
Ë

-l
Uç

I LÂNG

20a840-27 13

ù

:

Ii

w ffi&m*rËæqËd&å TUE äUU

l-I
LUT
I RtA NG

. (binary bitseg ...)

' bitseg = integer | (value bitspec ...)

- (1.5 float big-endian (size 32))

- (bin binary)

- (bits bitstring)

- ((foo a 35) integer little-endian (size 36))

- But must do ((foo a 35)) @

2008-10-27 14

7

w Pætt*rrum

. Like in vanilla Erlang patterns look like
constructors

- (binary (f float (size 32)) (rest binary))
. Use quote 'to match literals

- (tuple 'ok val)
. But not for lists @

-(abc)
- (h .t)

1-tl'l7l
ËR¡.ANG

2008-10-27 15

W Fætå*nrxs
{-Tl,ïl
E R TANG

. Have aliases

- 1= (tuple 'ok a b) tup)

- Checked in lint
. Can be used in

- let, case, receive, match-lambda, macros

- cond, lc , bc
. Anonymous variable

2008-10-27 16

I

w ffi$T# #q-amndm

(when (and (t x 5) (. x 10)))

. Guards are a (when <test>) expression
directly after the pattern in clauses

. LFE guards are Erlang guards

. No implicit equality tests for patterns

{X,X} à (tuple x x1) (when (=:= x x1))
. Can be used after any pattern
2008-10-27

r
I'
E

-ïUI
RLANG

17

I

:

'ì.

w ffipnmnr$EF \VWVã WV

{
L
ER

.I
;{
tANG

(defrecord name field-def-1 field-def-2 ...)
field-def = field-name | (field-name default-value)

> (make-name field-name val field-name val ...)
(is-name rec)

(match-name field-name pat field-name pat ...)
(name-field-1 rec)

(set-name-field-1 rec val)

2008-10-27 18

I

w LFil nrffi#siä*
f-l
l, ri
EITANG

. A module consists of
- Macro definitions

- Macro calls

- Function definitions

- Compile time function definitions
. Macros can be defined anywhere but must

be defined before being used
. Macros can define functions and other

macros

2008-10-27 19

w å-Fffi r"ffi#dur$*

(defmodule foo
(export (a 2) (b 1) (c 0))
(export all)
(import (from bar (x 2) (V 3))

(rename baz ((m a) bm)))
(other-attri bute (value)))

. Module definition must be the first non-
macro form

f-l

Lu{
E RTANG

2008-'lo-27 20

1 0

&w tFm ffi#rrtpËå*n
I
I'
E*

-rTI
tANg

. 3 passes

- Macro expansion

- Linting

- Code generation

. Lint and codegen only see LFE core forms

. Generates Core erlang

. LFE core forms ë Core erlang

- So compiler relatively simple

2008-10-27 21

&W tFffi ##H"npËåæn
r-ILrI
E RTANG

. Uses back-end of Erlang compiler

. Output should be closer to Erlang compiler
core output) better optimisation

2008-10-27 22

11

W LFffi mhmËã [3{
ËR[ÂNG

. Simple REPL

. Can evaluate all LFE expressions

. BUiltin Vafiables + ++ +++ - * ** ***

. Some builtin commands

. (slurp file) to load file and interpret all
functions and macros

. Cannot define functions and macros yet

. No (spit file) yet either

2008-10-27 23

W T'h* ffiHffi qffiffiffitË*rì
1-IL;I
E RTANG

Apart from the Answer to Life, the Universe, and Everything

Will LFE end the complaints
and moaning about Erlang

syntax?

2008-10-27 24

12

,w Tåtæ ffirÌ$w#t
f-t
LUI
ENf.AN6

42

NO!

2008-'t0-27 25

¿t

:i.,

I
Iw f-lt;{

E RTANG

å ræ på*rx'n*måË mç Hæmç LiffiW#$ ##'Ï

åþt* tr$ffiffiffi VËVf

Å *rË*f d**cnipiim¡"1 *f the ffiråmnç
**mpiå*r

ffi.*h*rt Virding

13

&W åeæp$ffinyr#n"ït m åffiBr#LËffiffffi
-I|;Ir

I'

lmplement language by:
. Writing an interpreter

- Easier but slower, more versatile
. Compiling to erlang

- Code format complex, to file?
. Compile to "internal" language

- Core erlang, kernel erlang

ËRtANC

272008-10-27

W #*srtpË$*n mwffirvå*w
/-ll';!
ERTANG

Erlang Core
Erlang

Kemel
Erlang

LFE compiler

Eeam

Core
optimisatlon

200a-10-27 28

14

wF' ffi nËm rì# ##r"a":r pë $*r-
{t
Ë

-l
Uç

ILANG

. Core Erlang

- simple functional language

- lexically scoped

- local recursive functions

- pattern matching

- basic Erlang constructions (case, try etc.)

- but misses some useful constructions @

- Erlang features make it slightly strange

2008-10-27 29

W #mr* ffinåæn:ç fmnffirffi

. (case expr clause ...) ;An erlang case
a

. (receive clause ... (after timeout body))

. (catch body)

. (try expr (case ...) (catch ...) (after ...))

. (lambda (arg ...) body)

.@

. (let ...),{ffiiun-}, (letrec-function ...)

. (cons ...), (list...), (tuple ...), (binary...)

. (func arg ...), (funcall var arg ...)

. (call mod func arg ...) ;Eval all args

. (define-function name ...)

l-ïL;I
E RtA NG

2008-10-27 30

15

w ilrEærÌffi rffiræpüå*n
l-r
I, UT
E RTÂ NG

. Kernel Erlang

- flat code

- lambda lifted

- pattern matching compiled @

- no nested code

- receive expanded

2008-10-27 31

w ffinËmrÏ# ##mpå$*n
f-tL;{
E RTANG

. sys_pre_expand
- Expand records, packages, annotate funs

. v3_core
- List comprehensions, add lexical scoping,

return exported variables, sequentialise code,
expand =, add explicit fail clauses

. v3_kernel

- Compile pattern matching, lambda lift local
functions and funs, flatten nested calls

2008-10-27 32

1 6

Rev A

1

lnside the Erlang VM
with focus on SMP

Prepared by Kenneth Lundin, Ericsson AB
Presentation held at

Erlang User Conference,
Stockholm, November 13, 2008

lntroduction
The history of suppoft for SMP (Symmetrical Multi Processor) in Erlang started
around 1997-1998 as a master thesis work by Pekka Hedqvist with Tony Rogvall
(Ericsson Computer Science Lab) as supervisor.

The implementation was run on a Compaq with 4 Pentium Pro 200 Mhz CPU's
(an impressive machine in those days) and showed a great potential for scalability
with additional processors but suffered from bad lO performance.

The work with SMP did not continue at that time since it was so easy to increase
performance by just upgrading the HW to the newest processor. There simply
was no business case for it at the time.

The SMP work was restarted at 2005 and now as part of the ordinary
development. The work was driven by the Erlang development team at Ericsson
with participation and contributions from Tony Rogvall (then at Synapse) and the
HiPE group at Uppsala University.

The strategy was (and still is):

. First, "make it work"

a

a

Second, "measure" and find bottlenecks

Third, "optimize" by removing bottlenecks

The first release of a stable runtime system with support for SMP came in OTP
R11B in May 2006.

This ended the first cycle of the strategy and a new iteration with "measure",
"optimize" and "make it work" started. Read more about it in the next pages.

ERTCSSoN t

2

ER|CSS0N ç

2.1

2.2

lnside the Erlang VM

How it works

Erlang VM with no SMP support

The Erlang VM without SMP support has 1 scheduler which runs in the main process
thread. The scheduler picks run able Erlang processes and lO-jobs from the run-
queue and there is no need to lock data structures since there is only one thread
accessrn them.

ffinlmvçs, {vo,#r*r. #,¡'4F} V-ed h*dgU
r'-"é-

Erlang VM with SMP support (in R11B and R128)

The Erlang VM with SMP support can have 1 lo 1Q24 schedulers which are run in 1

thread each.

er1"anø vM

sohed*Ler

RevA 2008-11-06 @ Ericsson AB 2008 2 (10)

ËRlcssoN ,

2.2.1

lnside the Erlang VM

The schedulers pick run able Erlang processes and lO-jobs from one common run-
queue. ln the SMP VM all shared data structures are protected with locks, the run-
queue is one example of a shared data structure protected with locks.

First release for use ¡n Products, March 2007

Measurements from a real telecom product showed a 1.7 speed improvement
between a single and a dual core system.

It should be noted that it took only about a week to port the telecom system to a new
OTP release with SMP support, to a new Linux distribution and to a new
incompatible CPU architecture, the Erlang code was not even recompiled.

It took a little longer to get the telecom system in product status, a few minor
changes was needed in the Erlang code because Erlang processes now can run
truly parallel which changes the timing and ordering of events which the old
application code did not count for.

The performance improvements achieved on a dual core processor for a real
telecom system where encouraging and after that several other telecom systems
have also taken benefit from the SMP support in Erlang.

schedwLeY #t

.schedwl¿rfz

Yuw qwue

schedwl¿r #N

çYLawøvl/t

RevA 2008-11-06 @ Ericsson AB 2008 3 (10)

ER|C550N t
2.2.2

lnside the Erlang VM

SMP in R12B

From OTP R128 the SMP version of the VM is automatically started as default if the
OS reports more than 1 CPU (or Core) and with the same number of schedulers as
CPU's or Cores.

You can see what was chosen at the first line of printout from the erl conìñìând.
E.g.

Erlang (BEAM) emulator version 5.6.4 [source] [smp:4]

The t smp: 4I above tells that the sMP VM is run and with 4 schedulers.

The default behaviour can be overridden with the
"-"rnp Ienable ldisabte lauto]" auto is default and to set the number of
schedulers, if smp is set to enabl-e ot auto use "+s Number" where Number is the
number of schedulers (1..1024)

Note ! lt is normally nothing to gain from running with more schedulers than the
number of CPU's or Cores.

Note2 ! On some operating systems the number of CPU's or Cores to be used by a
process can be restricted with commands. For example on Linux the command
"taskset" can be used for this. The Erlang VM will currently only detect number of
available CPU's or Cores and will not take the mask set by "taskset" into account.
Because of this it can happen and has happened that e.g. only 2 cores are used
even if the Erlang VM runs with 4 schedulers. lt is the OS that limits this because it
take the mask from "taskset" into account.

The schedulers in the Erlang VM are run on one OS-thread each and it is the OS that
decides if the threads are executed on different Cores. Normally the OS will do this
just fine and will also keep the thread on the same Core throughout the execution.

The Erlang processes will be run by different schedulers over time because they are
picked from a common run-queue by the first scheduler that becomes available.

3 Performance and scalability
The SMP VM with only one scheduler is slightly slower (10%) than the non SMP VM
This is because the SMP VM need to use locks for all shared datastructures. But as
long as there are no lock-conflicts the overhead caused by locking is not that high (it
is the lock conflicts that takes time).

RevA 2008-11-06 O Er¡csson AB 2008 4 (10)

ËRrcSsoN t lnside the Erlang VM

This explains why it in some cases can be more efficient to run several SMP VM's
with one scheduler each instead on one SMP VM with several schedulers. Of course
the running of several VM's require that the application can run in many parallel tasks
which has no or very little communication with each other.

lf a program scale well with the SMP VM over many cores depends very much on the
characteristics of the program, some programs scale linearly up to I and even 16
cores while other programs barely scale at all even on 2 cores.

This might sound bad, but in practice many real programs scale well on the number
of cores that are common on the market today, see below.

Real telecom products supporting a massive number if simultaneously ongoing
"calls" represented as one or several Erlang processes per core have shown very
good scalability on dual and quad core processors.

Note, that these products was written in the normal Erlang style long before the SMP
VM and multi core processors where available and they could benefit from the Erlang
SMP VM without changes and even without need to recompile the code.

Our strategy w¡th SMP
Already from the beginning when we started implementation of the SMP VM we
decided on the strategy:

"First make it work, then measure, then optimize".

We are still following this strategy consistently since the first stable working SMP VM
that we released in May 2006 (R1 1B).

Another important part of the strategy is to hide the problems and awareness of SMP
execution for the Erlang programmer. Erlang programs should be written as usual
using processes for paralleltasks, the utilization of CPUs and cores should be
handled by the Erlang VM. lt must be easy and cost effective to utilize multicore and
SMP HW with Erlang this is one of our absolute strengths compared to other
programming languages.

There will be new BIF's for SMP related stuff but we try to avoid that as much as
possible. We think it is preferable to configure SMP related things such as number of
cores to use, which cores to use on the OS level and as parameters to the Erlang
VM at startup.

The principle is that an Erlang program should run perfectly well on any system no
matter what number of cores or processors there are.

4

RevA 2008-11-06 @ Ericsson AB 2008 s (10)

ERICSSON t lnside the Erlang VM

Next steps w¡th SMP and Erlang
There are more known things to improve and we address them one by one taking the
one we think gives most performance per implementation effort first and so on.

We are now putting most focus on getting consistent better scaling on many cores
(more than 4).

The SMP implementation is continually improved in order to get better performance
and scalability. ln each service release R12B-1 ,2,3,4,5 , ..., R13B-0, 1, ..., R148
etc. you will find new optimizations.

Some known bottlenecks

Below some of the most significant bottlenecks that we know of are described, there
are for sure more bottlenecks than this and we intend to address them one after one
It is worth noting that after removal of one bottleneck there might be new ones
coming up and the already known ones may have got changed importance.

The common run-queue

The single common run-queue will become a dominant bottleneck when the number
of CPU's or Cores increase.

This will be visible from 4 cores and upwards, but 4 cores will probably still give ok
performance for many applications.

We are working on a solution with one run-queue per scheduler as the most
important improvement right now. Read more about this later in the document.

Ets tables

Ets tables involves locking. Before R12B-4 there was 2 locks involved in every
access to an ets-table, but in R12B-4 the locking of the meta-table is optimized to
reduce the conflicts significantly (as mentioned earlier it is the conflicts that are
expensive).

lf many Erlang processes access the same table there will be a lot of lock conflicts
causing bad performance especially if these processes spend a majority of their work
accessing ets-tables.

The locking is on table-level not on record level. An obvious solution is to introduce
more fine granular locking.

5

5.1

5.1.1

5.1.2

Rev A 2008-1 '1-06 @ Ericsson AB 2008 6 (10)

ER|CSSON t
5.1.3

5.1.4

lnside the Erlang VM

Note! that this will have impact on Mnesia as well since Mnesia is a heavy user of
ets-tables.

Message pass¡ng

When many processes are sending messages to the same receiving process there
will be a lot of lock conflicts. There are ways to optimize this by reducing the amount
of work being done while having the lock.

A process can block the scheduler

lf a process is blocked waiting to get a lock for example to access an ets-table the
whole scheduler is blocked doing nothing until the lock is accuired and the process
can continue it's execution. This can be improved by introducing what we call
"process level locking"which means that if a process is blocked waiting to get a lock
it will be scheduled out and the scheduler will schedule in the next process from the
run-queue instead. We have already implemented and measured on this solution and
concluded that it probably can be introduced when the separate run-queues are in
place. We still need to verify that it does not degrade performance for certain special
cases.

l

¡

i ,.
ii)

:
ii

¡

'

Rev A 2008-1 't -06 @ Ericsson AB 2008 7 (10)

ERTCSSON t
5.2

lnside the Erlang VM

Separate run-queues per scheduler

The next big performance improvement regarding SMP support in the Erlang runtime
system is the change from having one common run-queue to having a separate run-
queue per scheduler. This change will decrease the number of lock conflicts
dramatically for systems with many cores or processors. The improvement in
performance will in many applications be significant already from 4 cores and will of
course be even more noticeable in with 16 or even more cores

5.2.1

ry. -.$ *, '* à rlh È ¡È a .,,^1
*Þ"t$qtuq"fr *þ$4$r \/fbt fi't'#.'qf Sfff)vi

Migration logic

When there are separate run-queues per scheduler the problem is moved from the
locking conflicts when accessing the run-queue to the migration logic which must be
both efficient and reasonably fair.

The implementation we have so far will need a lot more benchmarking and fine
tuning before it works optimally. lt works roughly like this:

The maximum number of run able processes over all schedulers is measured
approximately 4 times per second. This value divided by number of schedulers is
then used to trigger migration of processes from one scheduler to another scheduler

When a scheduler is about to schedule in a new process it will first check if its
number of run able processes is above the max value described above and if it is it
will migrate the process to another scheduler according to the migration path set up.

Yr w qtuLetÅ.eschedwL¿v ft

bøbYuwqweußschedy¿l.cY#2

v1'€vM

¡
a

YUw qtÀetrLesohedvtl¿r #¡.1

RevA 2008-11-06 @ Ericsson AB 2008 I (10)

ER|C550N t lnside the Erlang VM

There are also 2 other occasions in addition to the "schedule in" of a new process
when a process migration can occur:

1. lf a scheduler gets out of jobs it will stealjobs from other schedulers

2. Underloaded schedulers will also stealjobs from heavily overloaded
schedulers in their migration paths.

Below follows some measurements that show early indications of the improvements
the system with separate run-queues per scheduler and the migration logic described
above will give.

The graph below shows the results from running the benchmark "big bang" with 1,2,
4, I schedulers on both the current system with one single run-queue and on the
next to come system with multiple run-queues one per scheduler.

The benchmark spawns 1000 processes which all sends a 'ping' message to all
other processes and answer with a 'pong' message for all 'ping' it receives.

The "fat" lines in the graph shows the multiple run-queue case and as can be seen
the improvement is significant.

¿l

¡

t

big:bang(1000)

45

40

Eru
-t 30
]L ^-,- ¿c

9zo
oe15
o
.E ro

5

0

lntel Core2 Quad Q9300

@ 2.50GHz plain

lntel Core2 Quad Q9300

@ 2.50GHz mrq

-2

x Quad lntel Xeon
E5310 @ 1.60GHz plain

-)

x Quad lntel Xeon
E53'10 @ 1.60GHz mrq

1 24
Number of schedulers

I

\
\--

\\

\. -'.\
\

-.t

RevA 2008-11-06 @ Ericsson AB 2008 e (10)

ER|C550N â
lnside the Erlang VM

6 Freq uently Asked Questions

ls there any difference in the .beam file depending on if it
should run in a SMP or non SMP system?

As long as the module is not compiled with "native" option with a H|PE enabled
system the .beam files are the same and can be run in both SMP and non SMp
systems.

Can an Erlang process be locked to a spec¡f¡c processor
core?

An Erlang process can not be locked to a specific processor by the programmer and
this is intentional. ln a future release it might be possible to lock a scheduler to a
specific core.

6.3 What is the relation between asynch threads and SMP?

The asynch thread pool has nothing with SMP todo. The asynch threads are only
used by the file driver and by user written drivers that specifically uses the thread
pool. The file driver uses this to avoid locking of the whole Erlang VM for a longer
time period in case of a lengthy file operation. The asynch threads was introduced
long before the sMP support in the VM and works for the non sMP vM as well. ln
fact the asynch threads are even more important for a non SMP system because
without it a lengthy file operation will block the whole VM.

6.1

6.2

RevA 2008-11-06 @ Ericsson AB 2008 10 (10)

Erlang/OTP News, EUC,Stockholm Nov 13,

2008
2008-1 1-06

tr-l
LTT
tt[Àñe

"Erlang/OTP News"
Erlang User Conference,

November 13, 2008, Stockholm

Kenneth Lundin
Manager, Erlang/OTP team at Ericsson

enrcsson* f
taxrrc Yôu ËonwÀRþ

¡

r - ! ilä * Ëffi*q r*:uËsh*qøsud ***É *"sr*e"r*Ë{

L UT
+ s E fi*Í*"r t*r E l-ÉEEråAL"?*â\.i +c-+LJt uv\ds"dr\

f ttAhtG

* R12B-5 released November 5
. Highlights

Eunit, a toolfor unit test of modules now included ín the
distribution
Experimentalfeatures for loading from archive files added
to code server
Escript enhancements, Options to emulator startup can be
given, ...

foo/l allowed in user defined attributes
new SSL much improved , can soon replace old SSL
Improved locking in lO-handling for better smp
performance.
¡'r..n

-,',-ì, "fl¡ru !¡¡uui¡ rìlûf-* ...

Edang/oP NêÆ. Euo,Stodhdm Nov 13.2@8 2oßj1{6 tnfssm J

I

:
I

I

1Ericsson AB 2008

Erlang/OTP News, EUC,Stockholm Nov 13,
2008

2008-1 1-06

t ir{ Fç*xt ffiffij#r t#Í*ms* ffit #ffi
ÊNIANü

* The next major release R138 is planned for April 2009
* A beta called R13A planned for March

" Service releases approximately every second month

3 Edang/OTP NeÆ, Euc,Slodhdm Nov 13, 2m8 20æ i1{6 earosw $

t i{ T*+rtæÈË*r* stmw-s $*ru*tå*ms $n ffif #fiffi
INIANç

SMP with multiple run-queues and other optimizations
re, new regular expression implementation officially supported
More features in the "standalone" Erlang direction
Completed the distr:ibution of doc source with built support to
produce html and pdf.

WxWidgets based GUI library included in the distribution, plan to
remove GS from R14
Major XML improvements, both speed and functions

ð Unicode su pport as described in EEP-10
Fast search in binaries
FFl, Foreign Function lnterface or loadable BIF's
Scanner which can preserve complete source (withespace,
comments)
Megaco improved SMP performance

O Eñcssd AB 2æ8 Edânq/OTP Neß, EUC,Sto*hdm Nov 13.2@8 20æ-1146 :mw f,

2Ericsson AB 2008

Erlang/OTP User Conference 2008
Speakers

Thomas

Garry
Jakob
Francesco

Vlad

Zoltán
John

Robert

Kenneth

Hans

Anders
Kostis

Michal

Simon

Robert

Arts
Bulmer
Cederlund
Cesarini
Dumitrescu

Horváth

Hughes
lppolito
Lundin

Nilsson

Nygren

Sagonas
Slaski
Thompson

Quviq

Ericsson AB OTP

Erlang Training & Consulting

HiQ

Eötvös Loránd University

Quviq

Mochi Media

Ericsson AB OTP

Ericsson AB
Telexpertise de Mexico

University of Uppsala

Erlang Training & Consulting

University of Kent

Göteborg

Coventry
Stockholm
London

Göteborg

Budapest
Göteborg

San Francisco

Stockholm
Stockholm

Uppsala

London

Canterbury
Stockholm

Sweden

England

Sweden

England

Sweden

Hungary

Sweden

USA

Sweden

Sweden

Mexico

Sweden

England

England

Sweden

thomas.arts@quviq.com
gbulmer@gmail.com

francesco@erlang-consulting.com
vladduS5@gmail.com

hz@inf.elte.hu
john.hughes@quviq.com

bob@mochimedia.com

kenneth.lundin@ericsson.com

Hans.R.Nilsson@ericsson.com

anders.nygren@gmail.com

kostis@it.uu.se

michal@erlang-consulting.com

S.J.Thompson@kent.ac.uk

Tomas
Roberto

Kristoffer

Peter

Robert

lngela

Abrahamsson
Aloi
Andersson
Andersson
Andersson
Anderton-Andin
Anesiadou-
Hansen

Arendt
Armstrong
Ayaz
Back
Bauner
Bergqvist
Bian

Björklund
Black
Bodunov
Bohlin

Bolinder
Bozic
Bylund

Båge
Canady
Cant
Carlsson
Cronqvist
Crowe
Dahlberg
Ðahlin

Dempsky
Däcker
Eklund
El-Haraty
Engström
Eriksson
Escurel

Flaig

Fröberg
Gudmundsson
Gustavsson
Hansen
Harvey

Linköping

London

Stockholm
Stockholm

Uppsala

Stockholm

Euskirchen

Stockholm
Stockholm

Aachen

Uppsala

Stockholm
Stockholm

London

Stockholm

Seaftle

Espoo

Sweden

England

Sweden

Sweden

Sweden

Sweden

Germany

Sweden

Sweden

Germany

Sweden

Sweden

Sweden

England

Sweden

USA

Finland

Ericsson AB
Erlang Training & Consulting

Synapse Mobile Networks

Ericsson AB OTP

University of Uppsala

Ericsson AB OTP

Synapse Mobile Networks

Ericsson AB

com

tomas.abrahamsson@ericsson.com
roberto@erlang-consulting.com
kristoffer.andersson@synap.se

robert.andersson.4S0l @student.uu.se
ingela@theheartofgold.org

anna.a-hansen@web.de
marcus@arendt.se
joearms@gmail.com

tuncer.ayaz@gmail.com

Henrik.back@mobilearts.se
john-olof.bauner@ericsson.com
per@synap.se

bian@erlang-consulting.com
mbj@tail-f.com

bb@oyent.com
ivan.bodunov@gmail.com

mikael.bohlin@itancan.com

hans.bolinder@ericsson.com

Franc@akcija.net
mikael. bylund@teliasonera.com
goran.bage@mobilearts.com

laca 1 583@student.uu.se
nem@erlang.geek.nz
Richard.Carlsson@Kreditor.se
Mats.Cronqvist@Kreditor.se

graham.crowe@ericsson.com

anders@dahlinenergy.se

matthew@mochi media.com

bjarne@cslab.org
nick@erix.ericsson.se

emad@mochimedia.com

Martin.Engstrom@Kreditor.se

Maxim.Escurel@Kreditor.se
gefla@google.com

Magnus.Froberg@Kreditor.se
dgud@erix.ericsson.se
bjorn@erix.ericsson.se

rainer.hansen@ericsson.com
dale@hypernumbers.com

Anna

Marcus

Joe

Tuncer
Henrik

John-Olof
Per

Xingdong

Martin

Benjamin

lvan

Mikael

Hans

Franc

Mikael

Göran

Larry

Geoff
Richard

Mats

Graham

Björn-Egil

Anders
Matthew
Bjarne

Niclas

Emad

Martin

Sverker
Maxim

Gerd

Magnus

Dan

Björn

Rainer

Dale

Stockholm

Radovljica

Uppsala

Stockholm

Uppsala

Paris

Stockholm

Stockholm

Stockholm

Stockholm

Stockholm

San Francisco

Stockholm

Stockholm

San Francisco

Stockholm

Stockholm

Stockholm

Zürich

Stockholm

Stockholm

Stockholm

Bonn

London

Sweden

Slovenia

Sweden

Sweden

Sweden

France

Sweden

Sweden

Sweden

Sweden

Sweden

USA

Sweden

Sweden

USA

Sweden

Sweden

Sweden

Switzerland

Sweden

Sweden

Sweden

Germany

England

Mobile Arts AB
Ericsson AB
Synapse Mobile Networks

Erlang Training & Consulting

Tail-f Systems AB

Joyent
Nokia Siemens Networks

Itancan Consulting
Ericsson AB OTP

eXcenter d.o.o.

TeliaSonera Sverige AB

Mobile Arts AB
University of Uppsala

Process-One
Kreditor
Kreditor
Ericsson AB
Ericsson AB OTP

Dahlin Energy AB
Mochi Media

CSLab
Ericsson AB OTP

Mochi Media

Kreditor
Ericsson AB OTP

Kreditor
Google
Kreditor
Ericsson AB OTP

Ericsson AB OTP

Ericsson AB
Hypernumbers

Partici nts

Andreas
Dragan

Per

Pekka

Anders
Andreas
Magnus

Søren

Sean

Anders
Henrik

Klas

Mikael

Micke

Mikael

Roland

Bengt

Mikael

Huiqing

Tobias
Adam
Christopher
Mikael

Mattias

Peter
Peter Henry
Tomas
Håkan

Sean

Peter
Hunter
Chandru
Peter
Daniel

Raimo

Linus

Patrik

Jan-Henry
Kim

Nicolae

Anders
Mickaël

Tony
Christophe
Mikael

Dan

Jan-Erik
Andreas
Rahul

Håkan

Erik

Ben

Sebastian
Göran

Hans

Gunnar
Marcus

Fredrik
Robin

Melinda

Zoltán Peter
Michael

Hasselberg

Havelka

Hedeland

Hedqvist

Heimer

Hellström

Henoch

Hilmer

Hinde

Hjelm

Hoffström

Johansson

Kardell

Karlsson

Karlsson

Karlsson

Kleberg

Laaksonen

Li

Lindahl

Lindberg

Lindbergh

Lindmark

Ljunggren

Lund

Mander

Mannerstedt

Mattsson

McEvoy

Mechlenborg

Morris

Mullaparthi

Nagy

Nibon

Niskanen

Nordberg

Nyblom

Nyström

Olsson

Paladi

Ramsell

Rémond

Rogvall

Romain

Roseen

Sahlin

Sankala

Schumacher

Singh

Stenholm

Stenman

Stovold

Shollo

Stupalo

Svensson

Sverredal

Taylor

Thulin

Thunell

Tóth

Tóth

Truog

Stockholm

Stockholm

Stockholm

Stockholm

Karlstad

Uppsala

Göteborg

Allingåbro

Christchurch

Uppsala

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

Denmark

England

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

England

Sweden

England

Sweden

Sweden

Sweden

Sweden

England

Sweden

Sweden

Sweden

Denmark

England

England

Hungary

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

France

Sweden

France

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

England

Sweden

Sweden

Sweden

Sweden

England

Sweden

Sweden

Hungary

Hungary

USA

Kreditor

Mobile Arts AB
Tail-f Systems AB
Optimobile

TietoEnator
TeliaSonera Sverige AB

Erlang Training & Consulting
wideTrail

Synapse Mobile Networks

Consoden AB

Ericsson AB
Ericsson AB
Kreditor

Mikadako AB

Creado Systems

Erlang Training & Consulting

Ericsson AB

Mobile Arts AB

University of Kent

Kreditor

Erlang Training & Consulting

Streamnow AB

Kreditor

Synapse Mobile Networks

Synapse Mobile Networks

T-Mobile

Combitech AB

Ericsson AB OTP

Erlang Training & Consulting

Mu

Smarkets Ltd.

T-Mobile

Ericsson AB

Mobile Arts AB
Ericsson AB OTP

Net lnsight

Ericsson AB OTP

Erlang Training & Consulting
Ericsson AB

lT University of Göteborg

TeliaSonera Sverige AB

Process-One

Rogvall lnvest AB

Process-One

Kreditor

Erlang Training & Consulting

Streamnow AB

Ericsson AB
Ericsson AB
Kreditor

Kreditor

Blue Tomato Ltd.

Tail-f Systems AB
Ericsson AB OTP

lT University of Göteborg

TeliaSonera Sverige AB

Erlang Training & Consulting

University of Stockholm

Ericsson AB
Eötvös Loránd University

Ericsson AB
Nokia Siemens Networks

Linköping

Stockholm

utö
Stockholm

Stockholm

Stockholm

Stockholm

Canterbury
Stockholm

London

Luleå

Stockholm

Stockholm

Stockholm

Hatfield

Stockholm

Stockholm

Stockholm

Aarhus
London

Hatfield

Budapest

Stockholm

Stockholm

Stockholm

Stockholm

Uppsala

Stockholm

Göteborg

Uppsala

PariS

Gustavsberg

Paris

Stockholm

Stockholm

Luleå

Stockholm

Stockholm

Stockholm

Stockholm

London

Stockholm

Stockholm

Göteborg

Uppsala

London

Stockholm

Stockholm

Budapest

Budapest

San Francisco

Andreas. Hasselberg@Kreditor.se
dragan.havelka@mobileañs.com
per@tail-f.com

Pekka.Hedqvist@OptiMobile.SE
Anders.Heimer@tietoenator.com
andreas.hellstrom@teliasonera.com
magnus@erlang-consulting.com
sh@widetrail.dk
sean@synap.se

Anders.Hjelm@consoden.se
hen ri k. hoffstrom @ericsson.com
klas johansson@ericsson.com

Mikael.Kardell@Kreditor.se
micke@mikadako.com
mikael.karlsson@creado.com
roland@erlang-consulting.com
bengt.kleberg@ericsson.com
mikael.laaksonen@mobilearts.com
H.Li@kent.ac.uk

Tobias.Lindahl@Kreditor.se
adam@erlang-consult¡ng.com
christopher@scg.nu
Mikael. Lindmark@Kreditor.se
mattias@synap.se
peter.lund@synap.se

Peter. Mander@t-mobile.co.uk
mannerstedt@gmail.com
hakan@erix.ericsson.se
sean@erlang-consulting.com
peter@mu.dk

hunter.morris@smarkets.com
chandrashekhar.mullaparthi@gmail.com
peter.nagy@ericsson.com

daniel.nibon@mobilearts.com
raimo@erix.ericsson.se
linus@nordberg.se
pan@erix.er¡csson.se

jan@erlang-consulting.com

kim.xx.olsson@ericsson.com
n.paladi@gmail.com
anders.ramsell@teliasonera.com
mickael.remond@process-one.net
tony@rogvall.se
christophe.romai n@process-one.net
Mikael. Roseen@Kreditor.se
dan@erlang-consulting.com
js@scg.nu

andreas.schumacher@ericsson.com
rahul.singh@ericsson.com
hokan@kreditor.se
Erik.Stenman@Kreditor.se
bstovold@gmail.com
seb@tail-f.com

hanssv@gmail.com
gun nar.sverredal@teliasonera.com
marcus@erlang-consulting.com
ft@it.su.se
robin.xx.thunell@ericsson.com
toth_m@inf.elte.hu
zoltan.peter.toth@ericsson.com
michael.truog@nokia.com

Torbjörn

Marc

Hasan

Mats

utf
Claes

Stefan

Chris

Dominic
Patrik

Hao

Jimmy
Jonas
Lennart

Lennart

2008-1 1-04

Törnkvist
van Woerkom
Veldstra
Westin
Wiger
Wikström
Willehadson
Williams
Williams
Winroth
Zhang
Zhao
Aman
öhman
Östman

Stockholm
München

Edinburgh

Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Paris

Stockholm
Stockholm
Uppsala

Linköping
Stockholm
Stockholm

Sweden

Germany

Scotland

Sweden

Sweden

Sweden

Sweden

Sweden

France

Sweden

Sweden

Sweden

Sweden

Sweden

Sweden

Kredltor

Mayflower GmbH

Hypernumbers

Teligent
Ericsson AB

Tail-f Systems AB
Synapse Mobile Networks

Ericsson AB

Esmertec

Synapse Mobile Networks

Mobile Arts AB

Ericsson AB

Ericsson AB
Sjöland & Thyselius Telecom
Synapse Mobile Networks

Torbjorn.Torn kvist@Kreditor.se
mvanwoerkom@acm.org
hasan@hypernumbers.com
mats.westin@gmail.com
ulf@wiger.net

klacke@hyber.org

stefanw@synap.se
sailingareus@gmail.com
dwilliams@esmertec.com
patrik.winroth@synap.se

hao.zhang@mobilearts.com
Ming@zhao.nu
jonas.aman@ericsson.com

Lennart.Ohman@st.se
lennart.ostman@synap.se

2m0m0

1AI0m0

r $0m0

1¡fiÐm0

I æ0m0

1m0fno

$0 m0

d)0 rxto

{00 m0

æ0 m0

Requests per month to www.erlang.org

I

It/nr

dec- jrn
91 99

dêc- jur
99 00

dec- jun- dec- jun
00 01 0t 0z

dec- jun
02 03

dec- jun
03 04

dec- jun- dêr- j¡¡t
04 05 05 05

dec
06

jun- dec- jun-
ot 07 0¡

!ù

;:

.t

