14th International Erlang/OTP
User Conference

Stockholm, November 13, 2008

Proceedings

http://www.erlang.se/euc/08/

e
6

KREDITOR @ § process

QuviQ

-
ERICSSON =

corelatus

INSTAMT MESSAGES CREATIVE BUSINESSES

sisland& Thyselius synapse m

Conference Programme
08.30 Registration.

Session 1

09.00 Update on the EU project ProTest.
Thomas Arts, Quvig, Goéteborg,
Francesco Cesarini, Erlang Training & Consulting, London, and
Simon Thompson, University of Kent.

09.45 Progress of the RefactorErl Project.

Zoltan Horvath, E6tvos Lorand University, Budapest, Hungary.
10.05 Formal Specifications for Free!

John Hughes, Quviq, Goteborg.

10.30 Coffee.

Session 11

11.00 The Erlang Web - an Open Source Fault Tolerant and Scalable Web Framework.
Michal Slaski, Erlang Training & Consulting, London.

11.30 Ad Serving with Erlang.

Bob Ippolito, Mochi Media, San Francisco.
12.00 Erlang DTRace.

Garry Bulmer, Coventry.
12.30 Lunch.

Session 111

14.00 Gradual Typing of Erlang Programs.
Kostis Sagonas, University of Uppsala.

14.30 Testing a SIP decoder with QuickCheck.
Hans Nilsson, Ericsson.

15.00 An ABNF (Augmented Backus-Naur Form) Parser Generator for Erlang.
Anders Nygren, Telexpertise de Mexico.

---- Autocoding State Machine in Erlang: A Case Study of Model-Driven Software
Development.
Yu Guo, University of Southern Denmark, Senderborg,
Torben Hoffman and Nicholas Gunder, Motorola, Glostrup.
(Only in the proceedings.)

15.30 Coffee.

Session IV

16.00 ErlIDE - The Erlang Eclipse Plugin.
Jacob Cederlund, Ericsson, and
Vlad Dumitrescu, HiQ, Stockholm.

16.30 LFE (Lisp Flavoured Erlang).
Robert Virding, Stockholm.

17.00 Inside the Erlang VM, focusing on SMP (plus Erlang/OTP News).
Kenneth Lundin, Ericsson.

17.30 Close followed by bus transport to the ErLounge.

Update on EU project ProTest

Test

property based testing o

L]
Univorstyof ;. %—.‘ IT University
Kent ' & 6% Q};IVI Q UNVERSIDADE DAceRUA O OteDOrS.

http://www.protest-project.eu/

« Testing Erlang Data Types with
QuickCheck

 Refactoring with Wrangler

« Early fault detection with model-based
testing

« Erlang Testing and Tools Survey

http://www.protest-project.eu/

Testing Erlang Data Types
with QuickCheck

Thomas Arts
Laura Castro
John Hughes o
: = C
#mp'my b:!:delg,lntu Q u V l Q [INIVERSIDADE D CORINA EL&’E??%

Erlang libraries supply a number of data
types, but sometimes you want to design
your own.

We presented a method that ensures full
testing of an implementation of a home-
made data type.

@
Full paper published at Erlang workshop 2008 D

@
g TESt .. Q VI Q % IT University
praperty based testing Ql:.lo UNIVERSIDADE, DA CORURA of Gmm“":ﬂ

CHALMERS T GO ERNG LN IBERLITE

ﬁTesnng

Implementatlon of data type for deC|maIs
How to test this implementation?

decimal () ->
?LET (Tuple, {int(),nat()}, new (Tuple)) .

prop_sum_comm() —>
?FORALL ({D1,D2}, {decimal(),decimal()},
sum(D1,D2) == sum(D2,D1)).

o
QuickCheck generates thousands of tests D

§ Te Q uvi Q % IT University

rogerty based o UNIVERSIDADE D CORUNA &Ggfffﬁr‘?_\

fTeshng

Which other propertles do we add’?
When do we have sufficiently many properties?

Use a Model

[sum(D1,D2)] = [D1] + [D2]
\ [subs(D1,D2)] = [D1] — [D2] /
[mult(D1,D2]) = [D1] * [D2]
[t(D1,D2)] =[D1] < [D2]

..... o
Te Quuvi = : uoty

ty based t PN UNIVESSIIADE T4 CORUBA _of Goteborg

Symbollc data
Use symbollc data structures mstead of real
data structures in test generation:

easier to analyze errors

decimal () ->
?LET (Tuple, {int (), nat ()},

{call, decimal, new, [Tuplell}) .

Test . QuviQ = . Q

DYO{)Eﬂy based Le sting % % o U?\I‘«'ER!:[D\DEBM?{HI[’M of Gdteborg

cacuEAy

ijmbollc data

Translate symbollc value to real value in
property

prop_sum() ->
?FORALL({SDl,SDZ},{decimal(),decimal()}
begin
D1 = eval(SDl),
D2 = eval(SD2),
model (sum(D1,D2)) ==
model (D1) + model (D2)

end} . o
. - C

Tt QuiQ & .~
property based testing &3 UNIVERSIDADE 1% CORUNA “SL_GSffE’,_‘jr_?_

4

;Testmg model equnvalence

We run QunckCheck

> egc:quickcheck (decimal_eqgc:prop_sum()) .
........ Failed! After 9 tests.
{{call,decimal, new, [{2,1}]1},
{call,decimal,new, [{2,2}]}}

Shrinking.. (2 times)
{{call,decimal, new, [{0,1}]1},
{call,decimal, new, [{0,2}]}}

false

Thus: 0.1 + 0.2 =/=0.3 ?? @

~rolest ™ QUViQ = m ubty

property based testing . Hpa] UKIVERSIDADE Di CORUNA of Goteborg

CHALMERS | COTERURG UHIVERTY

‘Testlng model equnvalence

Indeed!

Unavoidable rounding error according to
IEEE 754-1985. Our model is incorrect.

T

> (0.1+40.2) == 0.3.
false

> (0.1+0.2) — 0.3.
5.55112e-17

C

Q uvi Q —% IT University

nrcmerty based testing o UNIVERSIDADE Tt CGRURA of Goteborg '

CHALMERS @ 3

Testing model equivalence
Property prop_sum() passes thousands of
test cases.

Similarly, we can add a property
prop_mult().

But... although we will obtain 100% code
coverage, we miss testing combinations of
mult and sum! pa

Test QuviQ = T ubty

property based Lesting PRI UNIVERSIDADE DA CORUNA o Gt‘)teb?rg“

CHALMERS | GOTEBURG GRT 3

Recursive generators

decimal () ->
?SIZED(Size, decimal (Size)).

decimal (0) ->

{call, decimal, new, [{int(),nat()}]1};
decimal (Size) ->
Smaller = decimal(Size div 2),
oneof ([
decimal (0),
?LETSHRINK([D1, D2], [Smaller, Smaller],
{call, decimal, sum, [D1l, D2]}),
?LETSHRINK([D1, D2], [Smaller, Smaller],
{call, decimal, mult, [D1l, D2]} @
1).

Test QUViQ % L Ugy

property based testing vae UNIVERSIDADE T4 CORURA of Géteborg

CHALMERS © GO3 EAUKG LNIVERAIEY

_Testmg model equwalence

Add subs and d|vs to generator and test same
property again:

> egc:quickcheck (decimal_eqgc:prop_sum()) .

............ Failed!
After 13 tests.
Shrinking.... (4 times)

Reason:
{'EXIT', {{not_ok, {error,decimal_errort}},
[...1}})
{{call,decimal,divs,
[{call,decimal,new, [{0,0}]},
{call,decimal,new, [{0,0}]}]}, =

{call,decimal, new, [{0,0}]}} @
false C ,
Test Q Q % IT University
property based testing -+ @l:leI UNIVERSIIADE Dt CORURA of Goteborg

o | (VTR LRI

Negative testing

We do want to test that division by zero results in
an error... in prop_divs, not in prop_sum

prop_divs () —->
?FORALL ({SD1, SD2}, {decimal(), decimal()},
begin

D1 eval(SD1l),

D2 = eval(SD2),

case catch (model(Dl)/model(D2)) of
{'"EXIT',_} —>

is_error (divs (D1, D2));
Value ->
equiv (model (divs (D1, D2)),
Value) [J

end
end) %%%

i Te St Q Q IT University
pmpnrty based testing. u VI UNTVERSIDADE [14 CORUNA of Gélteborg

B & &

CoLME UL R

Generate Well deflned values

We flnd the error in prop_ d|vs and we do not want to
generate decimals in which we divide by zero.

decimal () ->
?SIZED(Size, well_defined(decimal (Size))).

well defined(G) ->
?SUCHTHAT(E, G, defined(E)).

defined(E) ->
case catch {ok, eval(E)} of
{ok, _} -> true;
{'"EXIT', _} —-> false @

end. l::/

Test ™ Q uvi Q % IT University

DrO. rty based Lesting .. N UNIVERSIDADE D CORUNA of Goteborg

cHALGERS | (e

;’Conclusmn

Method:
1. Choose a model
2. Write symbolic (recursive) generators
3. Write one property for each operation,
consider expected failing cases
4. Use a well-defined trick to avoid errors in generation

When following the proposed method, one has a

guarantee that the data structure is fully tested.
o

C

Test Q UVI Q % IT University
based testing./ UNIVESSITADE I CORUNA of Goteborg.

& P

O

Refactoring with Wrangler

Huiging Li Melinda Téth
Simon Thompson George Orosz

University of Kent E6tvos Lorand Univ

property based Lesting

Refactoring

Refactoring means changing the design
or structure of a program ... without
changing its behaviour.

Modify Refactor

property based testing.

Generallsatlon and renamlng

e e R LI

-module (test).

—export ([£/1])

([HIT])

add_one(T)];

add_one ->

[H+1 |
add_one

() —> I11.

f(X) -> add_one(X).

cTest

property based testing .

.......

-module (test).
—export ([£/1]).

add_int (N,
[H+N |

[HIT])
add_int(N,T)];

->

add_int (N, []1) -> [].

£(X) -> add_int (1, X).

Unlvensity of | \";’

I@nt Cu:;?pu?im,-

Generahsatlon

—export ([printList/1])

printList ([H|T])
ic:format ("~p\n",
printList (T);

printList ([]) -> true.

->
(H1),

printList([1,2,3])

properly based testing

—export([printList/2]).

— printList (F, [H|T]) ->
" r,
printList (F, T);
printList(F, []) -> true.

printList(

fun(H} ->
io:format ("~p\n", [H])
end,
(1,2,31).
Unberstyof
K@nt Cnm;u ing

Refactoring tool support

Bureaucratic and
diffuse.

Tedious and error
prone.

Semantics: scopes,
types, modules, ...

Undo/redo

Enhanced creativity

property based Lesting

Wrangler

Embedded in Emacs and Eclipse.

Structural, data type and module refactorings.
AAST-based analysis and transformation.
Works with multiple modules.

Supports undo of refactorings

Preserves layout and comments as much as
possible.

Respects aspects of the macro system.

property based testing .

£ emaculbHLAT w) g
e Edt Options Buffers Tools [Edang) Help

Indent - !.
D & B X < Edit »

-module (vest). Syntax Highfighting v T L _:-_m
: TAGS *
—imporT (refac_ucil, [ger_ra extend backwards/%, extend forwardsa/3]).
) Skeletons L3
-2xport (add_range/2}. |
Shelf »
{ 2dd_raage z ->
= ¥
f (ck, Tokat = refac epp COMPHe :
refac gtid:fuil buTE('l Distet y Foxs.
i : e oy Refactor Ll Rerame Varisbie Name
{L, ©h = “efaf‘ _SYTLEK: " 1 .
Tade refac_syntaxitype Oy I Rename Functicn Name
case_expr ~» . Rename Module Name
;4 = refac sgn-.ax case_expr argumem:{‘ say G lite Function Del
lo = glmst(”: oo |
:efa.- _syntexicase expr claus Meve Funchion to Another Module i.
- gee_tmel-_»h | Function Extraction

= gac_range(i<),
Zil = axtend forwazis(iois,
£2% = ‘exvend baciwarda(lsis,
refac syntax:add an: ({racge,

cond expv-— - - Tuple Function Arguments {

Fold Expressien Agaifst Functicn

From Tupte To Record

Rename 3 Process
Add a Tag to Messages

get range

Register a Process
get_range ;')
= extend forwards(From Function to Process
= exzend backwarda Al) ;
refac syntax:add x| (_M;, o Dupticated Code in Current bedule
end. Dupliczted Code in Ditectories

Expression Search

- Unde (C-uj
' MMI‘EF__'_]__EW Lo <.
Pt| Wew function name: Customize

Fenew eV, B oui =z §
- oty wrang &' deva
Pomacen ¢ walie. i ¥ = & i
= 3 N raes = . o 3
Ll B = LRt ¥ “;un = sl ot L= corducad e S o r
Yot mcovmnins, .. - ¥ e
» et MRS S f L)
S BT PR e (1ars A Hases, ¥ sapory
i B el
i PR
tups‘nt-er D ST | et = mdm,,‘:j,
. mpweeds (lebilivian, eqlaseel, Lk
’ LIRS TR
ror v xs Lir voll, a5 AR €3 i i 8 Madaiw A A
A w FOUE e
& tadifS
' ST ¥
LT
B =) & el
i {) & bRy
re L
< »
- B oanle o P B v 5 ot e B) o sl |
e e e & . Al . —
s etk o froet 5€ 12y

FroTest™

properly based testing .

Univensityof 3
C\M:I.um.lr:g

Refactorings in Wrangler

Fold against defn.
Tuple function

 Renaming variable,
function, module,

process arguments
« Function » Register a process
generalisation » From function to
* Move function process
* Function extraction + Add atagto
messages
“Test Kent ..

property based Lesting

Duplicate Code Detection

Especially for Erlang/OTP programs.

Report syntactically well-formed code
fragments that are identical after consistent
renaming of variables ...

... ignoring differences in literals and layout.

Integrated with the refactoring environment.

Te St i’z%"“‘:ﬁ': Q::,Zmung

praperly based testing

Code Inspection Support

* Variable use/binding information.

* Caller functions.

« Caller/callee modules.

« Case/if/receive expressions nested more than a
specified level.

* Long function/modules.

* Non tail-recursive servers.

¢ Non-flushed unknown messages

ProTest s

Elon
property based testing K@nt i Computing

Ongoing and Future work

* Continue the integration of Wrangler with
Eclipse + Erlide

* More refactorings are being added including
introduce macros, from module to process, etc.

» To investigate the use of trace information to
help the refactoring process, especially
process-related refactorings.

Test N

Ny
property based testing. Kent i Compising

http://www.cs.kent.ac.uk/projects/forse/

oTest Kent e

properly based Lesting .

Protest Survey on
Erlang Testing Tools

Aniko Nagyné Vig
Tamas Nagy

Francesco Cesarini
Erlang Training and Consulting

properly- based testing w

SEHES R T L s i e e e et 4

Research Method |

Published an online survey
Advertised it by email:
— Erlang Questions, approx. 1000 users

- Erlang Training and Consulting Newsletter list,
approx. 1000 users

— Smaller Erlang related mailing lists

. Trapexit User Group, 500 users

. ProTest Mailing List, 50 users

. London / Stockholm Erlang User Groups, 100 users

200 direct emails to relevant contacts at ETC
- Merged with the main survey after the results were
similar

40-45% of total(200) responses were from developers

FroTest 6%/
property based testing

Geographical Diversion

o
I~ =
TP

P sl

FroTest ™

property based testing.

Survey Structure

We asked 20 questions about

= The Erlang development environment

= Usage and Knowledge of existing tools and open
source applications

= Submitter’s job role and Erlang background
= |dentify common processes to improve tools support

“roTest Sulerd
progerly biased Lesting -

éErlang Tools Knowledge / Usage

Erlang Tools

Common Test Env.

CEAN | ———e
Dialzyer wmm—ss— e e—carm == s ey — .
Distel —_
ErlVer pms i
Eunit e ———
Faxien M
McErlang e
OTP Test Server | ——
QuickCheck H - —
Refactorkrl h t
Sinan Eeee ey
Tsung e e : |
Wrangler mme—— | wiid |
0 10 20 30 40 50 60 70 80 |
E¥ Used toals according to the survey B Known tools according to the survey

LoTest e

iEditors and Operatihg Systems

L....._.::_. S

Editors Operating system

M Eclipse ™Emacs ¥ NetBeans #®SciTe *Vim Other

®linux ®Mac ®Solaris & Windows = Other

ProTest w/
property based testing

Problems Identified by

the Survey

= Weaknesses of most Erlang tools and projects were
found to be
" Lack of documentation
®* Lack of examples and tutorials
® Incomplete and untested tools

= Design issues included
¥ Badly layered software
® Not extensible and not structured

» Doubts about sustainability & support

» Hard to install and use
®* Especially for non Erlang users
" Extensive manual configuration required

FroTest W
property based testing.

Missing Functionality

= No tools for stub generation
= Testing tools lack high quality results display

= Web interface or dashbord
= | oad testers are not available for all requirements
= Especially state based protocols

= Continous integration
= Hooks towards version control systems
® Tntegrated into a general framework

= A complete framework that integrates different tools

property based Lesting . @/

Conclusion

What are the key factors for building a
successful Erlang tool?

= Reliable software

= User friendliness

= Good documentation
= Support

= Well promoted!

rolTest” w/
praperty based testing

Further Readmg

Paper from the ACM SIGPLAN Erlang
Workshop and Complete Survey
Resuits are available at

www.protest-project.eu/publications.htmi

Prolest) deds
property based lesting

Questions?

Test

property based testing

“i'r : Ryt 3 IT University
-l W E " LJervt\.lsvty(:fE -,
property .b-als:ggintg kent ::";r‘““"g (w Q u VI Q of Gdtebo gw

Subscribe to our RSS feeds and
newsletter @fw.prg!gst-projt_a_c.t.eu_

Y e

B #oles - crrpeity maed lroig bor Lesy - Ao frri L] T T i=
Bbe [8e gww Hgine Bemaranbs losh s
‘* O AT e prtelpisie el e [TR O &

e Waked o Lot Mabass & Ulirg Comptng _ Uachdel

P ?OTESt)

property based testing

| tn 2007 tiie froTosk U th 5 weh: ¢ Nnancal ol 25
| Iriltion Earos from theo Europrn Cuntdssian o Licdp frod thy groject,
| Project Goals
I
, devetop s5ftare snpnosing approathes t praee sedatiity of snvicy oriented
e twerbs

n suppart auitAnding 203 disginds nesed o5 Spacifled propestias of the ustem
buitd sutomatad taols that il generats and run tasts. marltor ssecution et

tun thwe, and kg svents fr amalais.

———

Consortium Partners

 —

IT University
of Goteborg

Coninamne | TR SRS RATY

cralest™ e

property based Lesting Comijuting

Refactoring with Wrangler

Huiging Li Melinda Téth
Simon Thompson George Orosz

University of Kent E&tvos Lorand Univ

i@t ©

Refactoring

Refactoring means changing the design
or structure of a program ... without
changing its behaviour.

Refactor

Generalisation and renaming

-module (test). -module (test).
-export ([£/1]) . -export {[£/1]).
s "'"';
IL—'_—_;_
add_cne ([H|T}]) -» add_int (W, [E|T]) -»>
[H+l | add_one(T)]; [H+N | add_int(N,T});
add_one ([]) -> [Il. add_int (m,{)) -> 1.
£(X) -> add_one(X). £(X) -> add_int(1, X).
'.'--—‘:.1_-..»‘
Kent =
-export { [printList/1]). -export { [printList/2]).
printList {[H|T]) -» = wh printiist (¥, [H|T)} ->
io:format {*-p\nt, [H]Y,D ¥ #{H},
printList(T); printList (¥, T):
printList({}) -> true. printList (F, [1} -»> true.
printList ([1,2,3]) printList {

fun{zgy -»

iorformat ("-pi\nt, [H])
and,
[1,2,31).

Lievrmrvity ol

Kent - .

Refactor’ing tool support

Bureaucratic and
diffuse.

Tedious and error
prone.

Semantics: scopes,
types, modules, ...

Undo/redo

Enhanced creativity

Wrangler

Embedded in Emacs and Eclipse.

Structural, data type and module refactorings.
AAST-based analysis and transformation.
Works with multiple modules.

Supports undo of refactorings

Preserves layout and comments as much as
possible.

Respects aspects of the macro system.

B e
f¥e fan Options GuMers Took {Ermng]| Hep)
Indent .

73]

excend_packwards/3, excvend forverds/E}).

UL

x .
Dedx@ s :
-wadule (neac)., =T Syntax Highfighting '
T
—impare (xefs Til, fget_xa A '
Skeletons .
—=xpert (add_zange/2),
Shell 3
i ada_range . - - .
i{ck, T = refac 1 Compite g
! zefac uEr¥ifeld mAv(r oo N
j| 85_sad_reng: sy = Eatector ¥
{%, I} = vefac_syntax:
rerac_Syntaxityps Versicn

cage_=xpr —>

= glast{ Ll bl
refac syntaxicass expr clause
5 = ger_range (i),
i) = ger_xangm{ir),
= extend ferwa=dail ko,
i o= extend backunrda{lols,
ac_syrtaxiadd _ann((range,
ooRg_=XpT <
: = refag_syntax:icond e

extend_feo
2 extens backwards (Il .
ra2fac_syntax:iadd ann ({zange, {

s auyse eaat

| 1 133,804 [Ezlang |
Hau functien name
. ———

Rename Variable Name

Rename Function Name

Rename Module Name

Generalise Function Definition
Mave Functien to ancther Module
Function Extraction i
Fold Expressicn Agamst Functicn

From Taple To Record
Tuple Funchion Arguments

Rename & Process
Add a Tag to Mersages
Register & Process

Fsom Function to Process ‘

Duphcated Code in Current Module
Dupkeated Code in Directariez

—-—

Wl

Expression Search
Unde (C-u) c
Custamize =

A ¢ ' O, hunadns]

Lam Frncammt s P

P s e] el 8 g

= 2 L salaghsi,i o

D it it Lo P e e o ivetipemax B Gk

rldy Tl et S

e T AR

cnin i £

i@t -

Refactorings in Wrangler

Renaming variable,
function, module,
process

Function
generalisation

Fold against defn.
Tuple function
arguments
Register a process
From function to

* Move function process

» Function extraction + Addatagto

messages
Kent

Duplicate Code Detection

Especially for Erlang/OTP programs.

Report syntactically well-formed code
fragments that are identical after consistent
renaming of variables ...

... ignoring differences in literals and layout.

Integrated with the refactoring environment.

i@t ¢

Demo

Code Inspec_ti'on Support

* Variable use/binding information.

» Caller functions.

« Caller/callee modules.

» Caselif/receive expressions nested more than a
specified level.

* Long function/modules.

* Non tail-recursive servers.

* Non-flushed unknown messages

Kent &

e

Demo

Kent

‘Ongoing and Future work

« Continue the integration of Wrangler with
Eclipse + Erlide

 More refactorings are being added including
introduce macros, from module to process, efc.

* To investigate the use of trace information to
help the refactoring process, especially
process-related refactorings.

ient ©

http://www.cs.kent.ac.uk/projects/forse/

Kent - .

Automated syntax manipulation in Refactorkrl*

Robert Kitlei Laszl6 Lovel Melinda Téth
Zoltan Horvath Tamas Kozsik Roland Kirdly
Istvan Bozé Csaba Hoch Déniel Horpéacsi

Department of Programming Languages and Compilers
Eo6tvos Lorand University, Budapest, Hungary
e-mail: {hz, kto, kitlei, lovei kiralyroland,bozo_i,hoch,toth_m,daniel_h}@inf.elte.hu

Abstract

Refactorings often have to change the source code by adding, changing
or replacing parts of the syntax tree. It is important to make these changes
convenient and secure for the developer of refactorings.

In this paper, we introduce a method that helps us create, replace and
insert syntactically correct subtrees in an Erlang refactoring tool.

1 Introduction

Refactoring is the systematic changing of source code while retaining the
semantics of the code. Some refactorings, e.g. renaming a variable or
a function, do not change the shape of the syntax tree, only update the
information in the nodes, while most of the other refactorings construct,
delete, move, insert or replace subtrees in the syntax tree. Deletion does
not pose a problem, and moving a subtree is equivalent to its removal and
reinsertion, therefore the most intriguing questions of the above are the
construction, insertion and replacement of subtrees.

In addition to the above, refactorings have to gather additional infor-
mation about semantic aspects of the source code as well. Since these
bits of information can only be collected by visiting diverse parts of a
syntax tree, another representation design may prove more efficient. A
novel graph representation is proposed by the Erlang refactoring group
at Ebtvés Lorand University (ELTE, Budapest, Hungary). The ELTE
group proposed this representation after previous experience with refac-
toring [5, 8]. Details about the representation and the refactoring tool
RefactorErl are found in [4].

The structure of this paper is as follows. Section 2 and 3 describe
methods that facilitate the creation, insertion and replacement of subtrees.

*Supported by ELTE IKKK and Ericsson Hungary.

Section 4 describes our experience with the above methods through a case
study.

2 Subtree construction

One possible solution for constructing AST subtrees would be to use the
parser itself by providing the source code that corresponds to that of the
desired subtree. This approach would require the user to manually fill in
all the punctuation, and would require separate grammars for each non-
terminal to be generated. Another possibility is to do all the construction
by hand, which is tedious and error-prone. Here we present another al-
ternative.

The user has to supply two pieces of information for the node creation
algorithm. One is the contents of the newly created node, which also
contains its node type. By supplying the type of the node, the relevant
rule structure can be selected from the grammar. The other piece of
information required is a description of the desired contents of the node.

Since keywords and separator tokens can be automatically generated,
and the skeleton determines the structure of the nodes, these tokens are
not included in the description. All other tokens (e.g. variable names or
function names) and all symbols have to be listed in order.

The algorithm processes the rule description and the content descrip-
tion. If the rule prescribes an automatically created token, it is created;
otherwise, one or more elements supplied by the user are consumed when
creating the next symbol or construct from the rule description.

Subtrees can be created by repeated use of the above algorithm. When
constructing a new node, previously created nodes can be used as well as
nodes that were already present in the graph.

3 Subtree replacement or insertion

Node replacement is done in a similar way to that of node construction.
As parameters, the new nodes to be inserted and the place of insertion or
replacement has to be specified. One of the following can be specified.

e Replacement of all or part of nodes of the same type.
e Replacement of a range of nodes.

e Insertion before or after a node.

The insertion-replacement algorithm scans the grammar description,
the given description and the actual structure. It determines the affected
part in the syntax tree, makes the change and controls whether the re-
sulting structure conforms to the grammar description.

All of the algorithms described above use an automatically generated
scanner to check whether the tokens given in the descriptions are valid.

4 Case study: extract function

Refactorings usually consist of three different parts: collection of necessary
information, checking preconditions and performing the transformation.
The first and second part are used to reject the refactoring if its precondi-
tions are not met, and the requested actions would change the behaviour
of the code. The first and second part are necessary to guarantee the
semantic consistency and preserve the externally observable behaviour.
When performing the transformation, new code parts are created from
the previously collected data. The new code parts strongly depend on the
representation of the source, and have to be syntactically valid. Most of
the time, the parts to be created and inserted cannot be composed only
of parts that were present in the original code.

The ”extract function” transformation extracts an expression or a se-
quence of expressions to a new function. Its parameters are the name
of the containing file, the selection that will be extracted and the name
of the new function. The transformation creates a new function defini-
tion, and replaces the selection with a function application. The variables
which are used inside but bound outside the selection become the formal
parameters of the new function. (See in Figure: 1).

Extracting expression X+2 Result after extraction
func(X) -> func(X) ->
Y =X+ 2. Y = newfun(X).
—

newfun(X) ->
X+ 2.

Figure 1: Extracting expression X+2 into function newfun.

The created function definition (See in Figure: 3) contains opening and
closing parentheses, an arrow and a stop token as punctuation, and the
function name, the parameters of the function and the expressions of the
body of the function. Also, if multiple parameters or body expressions are
present, additional separating comma tokens are present. The function
application contains a function name, opening and closing parentheses
and the parameters with separating commas. (See in Figure: 4)

Most of the above tokens can be automatically generated. Creating
the function definition requires only the function name, parameter names
and the body expressions; creating the function application requires the
function name and the actual parameters. The syntactical and lexical
representation of the body of the extracted function are available from
the selection, but the other parts have to be constructed.

Previously, this refactoring constructed all parts using manually crafted
code. Such code proved to be long, hard to maintain and error prone. In
contrast, using the utilities in section 2, the corresponding code consists
of only a few lines. Furthermore, the code is much more readable, as it
highlights those parts that cannot be automatically generated.

match_expr

Figure 2: The representation of X+2, which is about to be extracted.

newfun

dam B vatiable 36
nowtin X

Figure 3: The representation of the function application that replaces the selec-
tion.

clause I 2
fundef

name/l -~ - .-ﬁntwmﬁ' A

of.pgren 1[_|I pattern 15 ll'-.l'"l"““ 10

L X b
aom 20 vartihle 31
newlun A

Figure 4: The representation of the newly created function definition.

5 Conclusion

In this paper, we have presented methods for creating, replacing and in-
serting subtrees in the RefactorErl refactorer. Our experience shows that
it greatly enhances the readability and reliability of the invocation of these
operations, in contrast to their hand coded equivalents. Using these meth-
ods, we were able to implement rudimentary functionality of twelve new
refactorings in a time frame of two months, compared to only two before.
The two already implemented refactorings were Extract function and Move
function definition, which were improved using the methods described in
this paper. The new refactorings are the following: Rename variable, Re-
name function, Rename module, Rename record, Rename record field, Re-
order function arguments, Tuple function arguments, Eliminate variable,
Merge subexpression duplicates, Move record, Inline function, Generalize
function.

References

[1] G. Fischer, J. Lusiardi, and J. Wolff v. Gudenberg, Abstract syntaz
trees and their role in model driven software development. In ICSEA
online proceedings. IEEE, 2007.

[2] J. Barklund and R. Virding, Erlang Reference Manual, 1999, Available
from http://www.erlang.org/download/erl specd7.ps.gz.

[3] Greg J. Badros, Javaml: a markup language for java source code.
In Proceedings of the 9th international World Wide Web conference

-

-

(5]

[6]

[7]

[9]

on Computer networks: the international journal of computer and
telecommunications networking, pages 159177. North-Holland Pub-
lishing Co. Amsterdam, The Netherlands, The Netherlands, 2000.

Robert Kitlei, Ldszlé Lovei, Tamds Nagy, Zoltan Horvéth, Tamés
Kozsik, Preprocessor and whitespace-aware toolset for Erlang source
code manipulation. Abstract submitted to the 20th International Sym-
posium on the Implementation and Application of Functional Lan-
guages, Hatfield UK.

R. Szabé-Nacsa, P. Divinszky, and Z. Horvéth, Prototype environment
for refactoring Clean programs. In The Fourth Conference of PhD
Students in Computer Science (CSCS 2004), Szeged, Hungary, July
1-4, 2004.

H. Li, S. Thompson, L. Lévei, Z. Horvath, T. Kozsik, A. Vig, and
T. Nagy, Refactoring Erlang Programs. In Proceedings of the 12th
International Erlang/OTP User Conference, November 2006.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactor-
ing: Improving the Design of Ezisting Code. Addison-Wesley, 1999.

Lovei, L., Horvéth, Z., Kozsik, T., Kiraly, R., Vig, A., and Nagy T,
Refactoring in Erlang, a Dynamic Functional Language. In Proceed-
ings of the 1st Workshop on Refactoring Tools, Berlin, Germany, July
2007, pp. 45-46.

Jonathan I. Maletic, Michael L. Collard, and Adrian Marcus, Source
code files as structured documents. In Proceedings of 10th IEEE Inter-
national Workshop on Program Comprehension (TWPC02), pp. 289—
292. IEEE Computer Society Washington, DC, USA, 2002.

| wetgaing with eguutions
for simple lists, queves

Formal
specifications

FOR

DUMMES

A Reference
for the

Rest of Us!

FREE eTips at dummiles.comr

and even groys

Koun Claessen
John Hughes
Nick Smallbone

Algebraic Specifications

e Relate functions in an API to each other

— Capture useful properties
— Don’t really say what they do

* Good for data-structures
* Only pure functions need apply!

2008-10-29

2008-10-29

Formal
specifications

Bijics DEMO

i DLW
Erlang (BEAM) emulator version 5.6.4% [sap:2) [async-threads:z8] °

Eshell ¥5.6.4 (abort with "G)
1> laws:laws(listsig1,3).
Classifying terns... 534 classes, containing 1129 ternms
Selecting good terms... dome
IFilterina instances. .. itone

#s ++ [] == Xs

{X5 ++ V5} ++ 25 == X5 ++ (Y5 ++ 25}
ITX1 ++ Xs == [X|Xs]

[[] ** Xs == Xsg ° @
[K]Xs ++ ¥5] == [X{Xs5] ++ ¥s '
true

2> i

.

Formal
s;get:il‘icmitms

Add reverse to the mix

2> lauws:laws{listsig2,3,reverse).
Classifying terms... 690 classes, containing 1449 terms
Selecting good terms... done

iltering instances... done

everse{Xs) ++ [X] == rewverse{[X]Xs]}

everse{reverse(is}) == Xs
reverse([X]) == [X]
reverse({]) == [}

Formal
specifications

What about sorting?

= W A%

3> laws:laws{listsig3,3,{sort,usort]).
Classifyping terms... 1089 classes, containing 2209 terns
Selecting good terms... dene

iltering instances... done

sort{¥s ++ ¥s) == sort(is ++ ¥s)
sort{reverse{isi) == sort(is)
sort{sort(Ns)) == sert{Xs)
sort{usort{¥s})) == usort{is)
sort{[¥]) == [X]

sort{f1y == [1
lusort{Xs ++ Xs) == usort{¥s)
usort{¥s ++ X5) == usert{Xs ++ ¥5)
usort({reverse{8s)) == usart{is)
usort{sort{Ns)) == usort{¥s)
SOrt(uUsSort(Xs)) == usart(ys)
sort{[R]) == [¥]

sort{[1) == [1]

rue
4>

Formal
specifications

DLESS What about map?

3 2Tt ptate e A

-l iR A ¥
4> laws:laws{listsigh,3,map).
Classifying terms... 884 classes, containing 1811 terms
iSelecting goed terms... done
Filtering instances.., done
map{F ,Xs) *+ map{F,¥s) == map{F,Rs ++ ¥s}
map{F,[1) == {]
reverse(mapi(F,Xs)) == map(F,reverse(ys})

2008-10-29

The new array library

* Flexible arrays, indexed from 0
* Purely functional updates

Formal
specifications

DUMMIES

Get and Set

B L EE | . —
2> laws:laws{arraysig1,3). "
Classifying terms... 1460 classes, containing 2666 terms
Selecting good terms... done
Filtering instances... done
iget(I,new()) == default_element()
get(I,set(I,X,R)) ==
jet(I,set(J,default_element(),new())) == default_element()
get(J,set({I,X,new())) == get(l,set{J,X,new{)))
iset(I,X,set(I,¥,R)) == set(I,X,A)
iset(J,X,set(I,X,n)) == set(I,X,set(J,X,A))

set(LX,set(IY,A)) == set(JY,set(l,X,A))?

It needs I/=1

2008-10-29

Adding Reset

* Elements can be reset to the default value

Formal
specifications

IMHIED Specifying reset

-] wim| A %]
iSelecting good terms... done
Filtering instances... done
get{I,reset(I,A)) == default_element()

get({I,reset(J,new{))) == default_element()
reset(I,reset(I,A)) == reset({l,n)
reset(I,set{I,X,A)) == reset(l,A)
reset{J,reset(I,A)) == reset{l,reset(J,n}))
set(I,X,reset(I,A)) == set{l,X,RA)

set(I,default element{},A) == reset(I,A)
et{I,default_element{),reset(I,B)) == reset{I,B)
true

2008-10-29

2008-10-29

Fix and Resize

* Itis possible to fix the size of an array...

Formal
gpecifications

=] Biw) Al B i ullg
Classifying terms... 2324 classes, containing 4654 °
iSelecting good terms... done

Filtering instances... done

fix{fix(A)) == Fix(A)

jget({I,fix{new{))) == undefined()
ﬁget(l,resize(J,new{))) == default_element()
iget(J,resize{J,n)) == get(l,resize({I,A))
ireset{I,fix(new())) == undefined()
ireset{I,resize(l, new())) == reset{I,new())
resize(I,resize(1,A)) == resize(I,A)
resize(J,fix(C)) == fix(resize(J,C))
Iset(I,X,fix(new())) == undefined()
Qset(l,x,resizetl,new(})) == get{l,X,newl))

true
18> i

<

Missing: resize(l,resize(!,A)) == resize{l,A)

What use is this?

Fun!

Understanding
— We learn things about the code by studying
equations
Design
— Missing equations are a clue to possible
improvements
Testing

— Easy to generate a QuickCheck test suite for
regression testing

How does it work?

2008-10-29

How does it work?

'7 Prmto'tthe equa :

dlscovered

Xs++Ys
reverse(Xs)
reverse(reverse(Xs))

Specifying which functions...

ay,set, [andex'etem,array] arrayf,

{a rray,:eset,_[mdex array],ar ray},

{2MODULE, default_ element [,elem},
. :’{array,ﬁx (array], arrayl,
array,resize,[index,array rray}

2008-10-29

2008-10-29

Specifying which variables...

A few QuickCheck generators...

* A generator for arrays is constructed
automatically

2008-10-29

That’s It!

T e TABLET2067
Fir Edt Options Guffors Tools Eiang Hep
~medule= (arraysigdy . -

SR I Y T

—cowpllie (export_all).

var_typez () ->
[t[x,7,2],elem ,
{[a,h,cl,array},
{[i,3,k],index}].

Lo vypes() ->

[{array, nev, [], array},
{array,get, [index,array],elemn},
{array,set, {index,elem,array] ,array},
{array,reaet, [index, array) ,array) ,
{?2RIPLE, default_element, [],elem},
{array, fix, [array] ,array},
{array,resize, [index, array] ,array}

1.

elawm() ->

elementsi[a,b,e,d,e]).

indax () ->

oneof {[c¢hoose (0,4),9,10,99]) ., r
defgult element () ->
acray:oct (1, array:nev()) . _l
-
Tizs arreymigdierl - (Felang) —lide-hlio———

The Hard Part...

el | e |, walmn(€,03)
PE

£ 5
e :L':Ivﬂl
M) = waian (S a0l f 0 |

10

Extensions

Better filtering of equations

Preconditions:
—1/=) ==> set(l,X,set(),Y,A)) == set(J,Y,set(l,X,A))
Abstractions:

— For queues, tail(in(X,Q)) /= Q, but abstractly they
are the same

Code with side-effects?

yours

+100S nowt!

2008-10-29

i€

11

The Erlang Web

an Open Source Fault Tolerant and Scalable Web Framework

Michal Ptaszek, Michal Slaski, Michal Zajda
Erlang Training and Consulting Ltd

Erlang Web

The Erlang Web is an open source framework for applications based on HTTP
protocols, giving the developer better control of content management. With Erlang
Web's simple but extensible concept of including both static and dynamic content in
pages, libraries of reusable components can be built. Currently it supports INETS and
Yaws servers, but others are planned in the future. The Erlang Web platform has been
developed by Erlang Training & Consulting Ltd. for the past three years and has been
used in many commercial and high profile projects.

Key features

In the Erlang Web generation of dynamic pages is done by merging XHTML code
with a dedicated XML tag called wpart. With the concept of wparts, it is possible to
develop pieces of functionality that can be reused in different pages, providing solid
framework for developing dynamic web services. A set of frequently used patterns has
been implemented as a common library of wparts. Some examples of wparts include:

erctrieving data

eforms building

emanipulating and iterating over a list of Erlang terms
etranslating a string

ebranching constructions

Moreover, the wtype mechanism allows formatting basic types like date, time,
numbers and validating the data that came with GET/POST request. Formatting and
validation can be done also for user defined complex types. Such complex types can
consist of basic or other complex types and can be defined using Erlang record
syntax. This is convenient when data is kept in the Mnesia database, however the data
can be kept in other databases like MySQL or PostgreSQL as well.

To make URLSs easier to remember, Erlang Web provides a dispatcher engine based
on regular expressions which maps URLS to controller calls. Each call to the
controller function can be preceded with and followed by calls to the so-called
dataflow functions, which allows adding aspects. With the template inheritance and
support for multilingual sites, the Erlang Web is a complete tool for building web
applications.

Whparts

Having wparts defined as XML elements allows the Erlang Web to validate a page
with an XML parser ensuring that what is sent to the client browser is free of XHTML
errors. A parsed file is converted to Erlang binary and cached on disk or kept in the
memory.

Wtypes

Wtype module is responsible for validating and formatting the data of some type. The
Erlang Web provides over 10 simple basic types like dates, integers, strings, etc. and it
is easy to add new ones. Developer can build his own complex types on top of them.
Without additional development effort validation and generation of forms for create/
update operations can be automated.

Example Code — simple case

The below diagram shows an example of wpart people, that is used to add dynamic
content to the page. When "/app/mod/func/people.html" URL is visited, the controller
function mod:func() is called. The function reads data from the model and prepares it
for the wpart people. During page rendering, wpart tag is expanded with the dynamic
data.

My website '

in ingex, hmi;

Tndex
. EEEEII e =a hrel="/app/mog/unc/
m E html l peopie.himi >people<ias

v

Model

b L.erl
S i wpart_people
{"Lucy”, 20, temala} Sou %

{"John", 21, mala}

epliciget/l gots datn from
{"Anna", 22, female}

dictionary

Gmndmnhm;ﬁmmmwnmn
put tham into the dictionary.

people.html — renders data from the model

<html>
<head>
<title>Erlang Web Sample Page 4</title>
</head>
<body>
<center>
<wpart:people rows="2" key="list">
<tr>
<td><wpart:lookup key="item:person" /></td>
<td><wpart:lookup key="item:age" format="age"/></td>
<td><wpart:lookup key="item:sex" format="sex"/></td>
</tr>
</wpart:people>

</center>
</body>
</html>

install.er] — initialises mnesia database and puts sample data into it.

-module (install).
-export ([install/0]).
install () ->
mnesia:create schema ([node ()1},
application:start (mnesia),
mnesia:create table(person,
[{disc_copies, [node()]},
{attributes, record info(fields,person)}l]),

mnesia:dirty write (#person{name = "Lucy", age = "20", sex="female"}),
mnesia:dirty write (#person{name = "John", age = "22", sex="male"}),
mnesia:dirty write (#person{name = "Anna", age = "22", sex="female"}),

mod.erl — controller function writes data into the request dictionary

-module (mod) .
-export ([validate/1, func/0,1) .
-export ([install/0]).

-record (person, {name, age, sex}).

validate (func) ->
{ok, [1}:

func () ->
Keys = mnesia:dirty all keys(person),
Records = [mnesia:dirty read(person, Key) || Key <- Keys],
Persons = lists:map (fun([#person{name=Name, age=Age, sex=Sex}]) ->
[{"person",Name},
{"age",Age},
{"sex", Sex}]
end,
Records),
eptic:fset ("1list", Persons),
template.

wpart_people.erl — wpart module handles formatting and retrieves data from the
request dictionary

-module (wpart people).
-export ([handle call/1]).
-include_lib("xmerl/include/xmerl.hrl").

handle call(E) ->

Start = case catch list_to_integer (eptic:fget("get", "start")) of
5 when is_integer (S) -> S;
-> 1

end,
Rows = case catch list_to integer (wpart:has_attribute("attribute::rows", E)) of
R when is_integer (R} -> R;
_-> 10
end,
Key = wpart:has_attribute ("attribute::key", E),
List = eptic:fget (Key),

Prev = if Start-Rows > 0 -> link prev(Start-Rows};

Start == -> "Prev | "
true -> link prev(l)
end,
Next = if Start+Rows > length(List) -> "Next";
true -> link next (Start + Rows)
end,

F = fun(Item, {N,Start,End,Acc}) when N>=Start, N<End ->
eptic:fset ("item", Item},
{N+1,Start,End, [wpart:eval (E#xmlElement.content) [Accl};
(., {N, Start,End,Acc}) ->
{N+1,Start,End,Acc}
end,
{_,_,_,TableRows} = lists:foldl(F, {1,Start,Start+Rows,[]}, List),

[#xmlText{value = "<table>", type=cdata},
lists:reverse (TableRows),

#xmlText{value "</table>", type=cdatal},
#xmlText {value Prev, type=cdata},
#xmlText {value Next, type=cdata}].

[T

link prev(Start) ->

["Prev]I,
link next (Start) ->

["Next"].

Example Code — listing the person with given Id and
adding new person

The example illustrates dispatching request with the dispatcher, logging the request
with a dataflow function, validating, automatic form building and error handling.

dispatch.conf — dispatcher configuration file that defines regular expressions

{dynamic, ““/person”, {people, list}}.
{static, ““/add person$”, “add _person.html”}.
{dynamic, “"/create person$”, {people, add}}.
{static, “"/index.html$”, “index.html”}.

index.html — contains a link to the page that lists the person description stored in the
database

List the first pecrson
and to the page where a new person can be added to the database:

Add a person

person.hrl - contains person and person_types records

-record (person, {id, name, sex, age}).

-record(person_types,

{id = {integer, [{description, “Person D"},
{primary key},
{min, 1}1},

name = {string, [{description, “Person name”},
{min length, 3},
{max_length, 20}1],

sex = {bool, [{description, “Is person male?”}]}}).

wtype_person.erl — defines the wtype person using Erlang records
-module (wtype person).
-import (“person.hrl”) .

-export ([get_record info/l, validate/1]).

get record_info(person types) -> #person types{};
get_record info(person) -> #person{}.

validate (From) ->
wpart_valid:validate (get_record info (person),
get_record info(person types),
From ++ [“person”]).

people.erl — implements controller function. Call to the function will be proceded
with calls to the /og function and get_arg or validate functions.

—-module (people.erl).
—export ([dataflow/1, error/2]).

-export ([log/2, get arg/2, validate/2]).
—export ([list/1, add/1]1).

-include (“person.hrl”).

dataflow(list) — [log, get argl;
dataflow(add) — [log, validate].

error(_, {cannot write to_log, _LogName, Fun} = Reason) —
error logger:error msg(“~p module, error: ~p~n”, [?MODULE, Reason]),
{redirect, “/index.html”};

error (add, not valid) —
Err = wpart:fget (™ error”),
Msg = “ERROR: Incomplete input or wrong type in form! Reason: “ ++ Err,
wpart:fset ("error message", Msg),
{template, “error add.html”}.

log(Fun,) —
case my logger:log (“people.log”, {?MODULE, Fun}) of
true — {ok, []};
false — {error, {cannot write to log, "“people.log”, Fun}}
end.

get_arg(list,) —
case catch list to integer(wpart:fget(“get”, “id”) of
P when is integer (P} — {ok, [P}
_ — {ok, [1]}
end.

validate(add,) —
validate tool:validate_ cu(?MODULE, add).

list(Id) —
[Person] = mnesia:dirty read(person, Id},
wpart:fset (“person:name”, Personifperson.name),
wpart:fset (“person:sex”, Person#person.sex),
wpart:fset (“person:age”, Person#person.age),

if
Id > 1 —

Prev

“Prev</

true —
“Prev | ™
end,
Next = “Next",

wpart:fset (“person:next”, Next),
wpart:fset (“person:prev”, Prev),

{template, “person.html”}.
add (Person) —

mnesia:dirty write(Person),
{redirect, “/person?id="” ++ integer_ to_list (Person#person.id)”}.

person.html — renders a person

<html>
<head>
<title>Erlang Web Example Page</title>
</head>
<body>
<center>
Person (id = <wpart:lookup key="person:id”/>)} details:
Name: <wpart:lookup key="person:name" />

Age: <wpart:lookup key="person:age" format="age"/>

Sex: <wpart:lookup key="person:sex" format="sex"/>

<wpart:lookup key="person:prev”/><wpart:lookup key="person:next”/>
</center>
</body>

</html>

add_person.html - generates form used to create a new person

<html>
<head>
<title>Erlang Web Example Page</title>
</head>
<body>
<center>
<wpart:form type="person” action="/create person”/>
</center>
</body>
</html>

error_add.html — displays error

<html>
<head>
<title>Erlang Web Example Page</title>
</head>
<body>
<center>
<wpart:lookup key="error message”/>
</center>
</body>
</html>

install.er] - initialises mnesia database and puts sample data into it

-module (install).
—export ([install/0]).
—import (“person,hrl”).

install() ->
mnesia:create_schema([node()]),
application:start (mnesia),
mnesia:create table(person,
[{disc_copies, [node()1},

{attributes, record info(fields,person)}]),
mnesia:dirty write (#person{name = "Lucy", age = "20", sex="female"}),
mnesia:dirty write (#person{name "John", age v22", sex="male"}),
mnesia:dirty write (#person{name "Anna", age "22", sex="female"}),

o

Ad Serving in Erlang

Bob Ippolito
Mochi Media, Inc.

Erlang User Conference 2008 - Stockholm

November 13, 2008

Tich ipiae (1 LM 2003) = - — Wonpenhnr 11,000 143

Author: Bob Ippolito
Date: November 2008
Venue: Erlang User Conference 2008

e lpprdite. LU =7 = ag- i - Mo 14 008 270

What's MochiAds?

MochiAds:

@ Monetization platform for Flash game ecosystem
¢ Advertising solution for game developers
@ Revenue share and distribution for publishers

Road to Erlang

MaochiBot:

o (Originally) Python w/ Twisted
@ Fast, but not fast enough (CPU bound)
@ Wanted easy multi-node distribution

L babindne UCom Bt S B T L R

Previous Experience

Python:

@ Non-blocking sockets are tedious
@ Threads are too heavy

C/C++:

@ Too low-level

Nowmraar 11000 43)

Tist hyiien (LU, 2000)

Why Erlang?

@ Performance

@ Concurrency
o Distribution
@ Fault Tolerance

oviritonr 130088 /0]

(Bad) Benchmarks

ab -c¢ 50 -n 10000 localhost
@ Apache: 1x
o Twisted: 1.12x
@ mochiweb: 2.5x
@ nginx: 3.9x

b TL 0 S

Erlang at Mochi Media

MochiAds, MochiBot
@ High-performance HTTP servers
e Ad targeting
@ Real-time analytics
@ Social gaming

@ Lots of internal use

MochiAds Service

e Front-end
e Data warehouse
o Ad server

Noywober 113008 837

What's Not Erlang

Front-end:

@ Python and PostgreSQL

Data warehouse:

@ Python and Vertica

Wah tpoudite. (EVIC 200) NESTYT z . e N T

Ad Serving Platform

@ Juniper Routers

@ Cisco Switches

@ OpenBSD load balancer

@ Nginx HTTP load balancer (Linux)
Erlang/OTP R12B-3 (Linux)

Hvaretes 11 X0

Wi

Ad Server Stack

Erlang/OTP R12B-3
mochiweb (http)

egeoip (geolocation)
eswf (SWF file format)

Nonshas 1%, 2000

ik LI 55

Ad Server

e Gather information about client
o Choose an ad

@ Log impression data
e Log click data, redirection

Wed Ipmoirs: (5O J00) Mowwnbar 13, X6 Li 02
Gathering Client Info
@ Mostly client-side Flash code
® SharedObject (like cookies)
@ Feeds targeting decisions for ad choice
Howriber 10, 08 4301

-

Choose an ad

@ Fold over in-memory data structure

e Filter out ads that don't match targeting info

@ Weight the rest

@ Choose a random number; 0 <= N < sum(Weights)

Howembes 13, 206 W15

Log impression data

e Validation
@ Stream to houtly disk log
@ Increment counters in RAM db

Hirber 13,3008 W3

Log click data

@ Validation

@ Stream to hourly disk log

@ Increment counters in RAM db

@ Redirect (HTTP 302) to destination URL

Howymbar 18 7008 48710

Cheap Tricks

@ Ad request data in URL
e Long-term state in SharedObject

| Maiesbae 1) 008 3T F1

Short-term Feedback Loop

@ Client state
@ RAM db counters from previous serves that day

o bppedits (UL s0d)

Analytics Feedback Loop

e ETL processes adjust per hour
e Campaign weights, budget adjustments, etc.

R T

Lessons Learned (part 1)

@ Network partitioning sucks
@ Network partitioning sucks
@ Network partitioning sucks

H52 gl (ELIL #2%) = Havemler i3, KO8 33

Lessons Learned (part 2)

@ pg2 is broken

@ mnesia is too slow (for us)

@ Inter-node distribution protocol can be flaky
@ Erlang open source not always robust

@ Lists are not a good data type for strings

el lpmides (LUIC 300) K- = T T Miveriths 13,2008 T3

Favorite Erlang Features

e Module reloading

e Pattern matching

@ Binaries

@ Lightweight processes
@ Concise but not cryptic

o hpmadian (LU 2000

el L HO8 7

More Erlang at Mochi Media

¢ MochiBot

@ MochiCrypt

@ MochiScore

IRC bot

SVN deployment
Monitoring system

Node discovery

Nammbir 33,0000 WL

Erlang-DTrace

Garry Bulmer

Team DTrace:Tim Becker

Copyright Garry Bulmer 2008

What I'm going to talk
about

® |ntroduction to DTrace & DTrace Architecture
® Demo of DTrace with ‘one liners’

e Erlang + Dtrace =

® Erlang VM Architecture

® Current Erlang DTrace Scope

® Erlang-DTrace Demo

® Questions

Copyright Garry Bulmer 2008

What is DTrace?

"Dlrace is a comprehensive dynamic tracing facility ...

that can be used by administrators and developers on live
production systems to examine the behavior of both user
programs and of the operating system itself.

DTrace enables you to explore your system to understand how it
works, track down performance problems across many layers
of software, or locate the cause of aberrant behavior,

DTrace lets you create your own custom programs to
dynamically instrument the system and provide immediate,
concise answers to arbitrary questions”

Source: Sun Microsystems “Solaris Dynamic Tracing Guide”
Copyright Garry Bulmer 2008 4 Y g

How does DTrace work?

¢ KEY: Dynamically enabled probes - ‘safe’ for Production
® Probes observe function entry, exit & parameters
® Probes observe events, and capture data
® Probes in OS kernel = ‘Zero cost’ when disabled *
® ‘Providers’ - subsystem managing a group of Probes
® Providers forward events and data to ‘D programs’

® ‘PID’ Provider observes User applications

* SUN say cost < 0.5%
Copyright Garry Bulmer 2008

When is DTrace Useful?

Browser Web Server Application Server Database Server

|

Copyright Garry Bulmer 2008

DTrace End-to-End

Firefox

. lavaseript

!

.
[
!
&

dtrace
DTrace

- vminfo

II i
Copyright Garry Bulmer 2008 ' '

DTrace D-Scripts

., ir ol a N el n i e A Ny
Croviager.irioguel runcioaniiNagme

probe
| optional predicates /

{

optional action statements;

FProvide)
(i = f""‘ "JC-;..'!':?
syscall:zentry Pinecion
- CLHTC LI
/ pid == 660/

{ Name
printf(%-15s\n”, probefunc);

Copyright Garry Bulmer 2008

Providers

pid - userland processes, function entry, exit or instruction
sdt - Statically Defined Tracing
- programmer defined probes

syscall - entry and return of every system call
profile - time-driven probes, nanosecs. to days, across CPU’s
fbt - entry & return of almost all kernel functions

sched - scheduling thread on/off CPU, sleep/wake, ...
io - l/O events, start/complete/wait

proc - process creation and lifecycle

vminfo - uses vm kstat updates

sysinfo - uses sys kstat

Copyright Garry Bulmer 2008

DTrace - ‘one liners’

Question: Which appl ications are making the most system caiEs?

dtrace -n 'syscall:::entry { @num[execname] = co

Question: Which system calls is the Erlang\/M ma%«ng?

dtrace -n sysca!l:::entry /execname == ;t";_
{ @num[probefunq] counta, }t O

dtrace -n ptd*' :entry /execname == béa St
{ @num[probefunc] = count(); }'

= o= PR IR e

Quesz;on How much memary is bmm smp allocating?

Copyright Garry Bulmer 2008

Erlang-DTrace End-to-
End

: Erl:mg_:_ érlang
(GG A1

libdtrace

DTrace

Pro};le;

Copyright Garry Bulmer 2008 .

Erlang VM Architecture

 module(fibn)
fib(0) ->
fib(N) ->
fib([H[T]) ->
 module(xml)
tag("<") ->

tag([H[T]) ->
body(">) -> ...

syscall

Copyright Garry Bulmer 2008

Erlang’s DTrace ‘Fit’

® DTrace ‘PID’ Provider can observe C programs

® Good: ErlangVM is C

® Bad: user needs to understand Erlang VM internals !
® Erlang VM-managed, Fine-Grain ‘Process’

® Erlang Process ~ ‘opaque data’ ... invisible to DTrace
® Erlang data is dynamically typed

® DTrace uses static ‘C-style’ data types

® Erlang scripts are ‘opaque data’ to DTrace

Copyright Garry Bulmer 2008

Erlang has Dynamic Tracing

® Aim: to complement Erlang Tracing, not replace it
® DTrace is system-wide including OS kernel

® | onger term integrate Erlang tracing and Erlang-
DTrace

® Provide Erlang-DTrace interface functions

® First cut - erlang:dtrace() ‘bif’

Copyright Garry Bulmer 2008

Erlang DTrace
Implementation

® DTrace Statically Defined Tracing (SDT) Probes
® Insert SDT probes (C) into ErlangVM C source
® Probes in key parts of ErlangVM

® Process management, GC, Messaging, Code Load ...

® Add new dtrace() functions for Erlang Developers

Copyright Garry Bulmer 2008

-

SDT - Erlang DTrace
Provider

Copyright Garry Bulmer 2008

SDT - Erlang Source
addition

Copyright Garry Bulmer 2008 * source is trimmed down from the original for readability

V002 Erlang-DTrace

Scope
@ Statically Defined Tracing Probes added to ErlangVM

® Processes (spawn), Memory (GC),

® Global State (Registry)

® New DTrace BIFs (explicitly use DTrace probes in
Erlang)

Copyright Garry Bulmer 2008

Erlang-Dtrace Demo

Adium Erlang VM Sl Okt

Jabber/XMPP

abBEEARI ER
Client S

BServer
AT)

'Proxy’

Copyright Garry Bulmer 2008

Proxy' Code (trlmmed)

proxy_connect(L!sten Server_host, Server_port) -> SR
{ok, InSocket} = gen_tcp:accept(Listen), i e
inet:setopts(InSocket, [{packet,0}, {nodelay.true}, {@ctlve true}}),d
spawn(fun() -> proxy_connect(Listen, Server_host, Server_port) end),
{ok, OutSocket} = gen_tcp:connect(Server_host, Sarver ,_port {bmary}) -
proxy_loop(InSocket, OutSocket). Gy

proxy_loop(InSocket, OutSocket) -> : L A
receive
{tcp, InSocket, Message} ->
ok = gen_tcp:send(OutSocket, erlang: dtrace(Message))
dtrace_proxy:proxy_loop(InSocket, OutSocket); HE
{tcp, OutSocket, Message} ->
ok = gen_tcp:send(InSocket, erlang: dtrace(Message))
dtrace_proxy:proxy_loop(InSocket, OutSocket);
{tcp_closed, InSocket} -> gen_tcp:close(OutSocket);
{tcp_closed, OutSocket} -> gen_tcp:close(inSocket)
end. 1
Copyright Garry Bulmer 2008

Future Directions

® Better use of existing Erlang Trace facilities
® Dynamic DTrace Probes

® Correlate Messages across Erlang Processes

® Extend to Erlang Data Types (e.g. Lists) in DTrace ...
® ...and not flatten to strings in probe code
® Dynamic DTrace Type extensions

® Distributed/Clustered DTrace (one day ...)

Copyright Garry Bulmer 2008

Where we are now!?

® |t appears to work, and showing some promise
® | ots more to do, and looking for help

® Google Group: Erlang-DTrace

® Source will be at opensolaris.org

® Tim Becker & Garry Bulmer can be reached at that
group

® Thanks to Bryan Cantrill, Sun Microsystems for
encouragement and support

Copyright Garry Bulmer 2008

DTrace

® Mac OS X 10.5

® Solari/OpenSolaris
® FreeBSD

® QNX

® Maybe Vtrace

Copyright Garry Bulmer 2008

Questions or
Feedback?

Gradual Typing of Erlang Programs

Kostis Sagonas

Main message

This talk aims to document and promote a different
mode of Erlang program development:

* one where most typos, interface abuses, type errors,
etc. are identified automatically using static analyzers

* one where type information becomes part of the code
and checked for definite violations after program
modifications

* one where all the above are optional, can take place
gradually, and can be refined at any point to the extent
desired by the programmer

Kostis Sagonas Gradual Typing of Erlang Programs

Practice and experience

* We have been practicing this development mode
In large Erlang code bases:

- dialyzer

- typer

- hipe (a very large part)

- stdlib & kernel (many key modules)

* Also tried it in code with which we were not
familiar — see the paper @ Erlang’08

Kostis Sagonas Gradual Typing of Erlang Programs

Step #1

Use Dialyzer

Kostis Sagonas Gradual Typing of Erlang Programs

Wrangler 0.1

* Released January 2007
e 25 modules
e 35,000 lines of code

« Many modules are slight modifications or clones
of Erlang/OTP ones — mainly of syntax tools

Kostis Sagonas Gradual Typing of Erlang Programs

Dialyzer on Wrangler 0.1

* Run as simply as

> cd distel-wrangler-0.1l/wrangler
> dialyzer --src -c *.erl

* 67 warnings in less than 2 minutes
* about 50 of them due to abuse of £ile:open/2

file:open (Name, read) VS. file:open(Name, [read])

* After fixing this and one similar interface abuse,
15 warnings remain

- all genuine bugs

Kostis Sagonas Gradual Typing of Erlang Programs

Can you spot the bug?

handle call(Call, DefinedVars, State) ->

case is _c_atom(Mod) andalso is c_atom(Fun) of
true ->
M = atom val (Mod) ,

case {M Loc, Call Loc} of
{{Lll Cl}l {LZI CZ}} ->
if (L1 < L2) or
((L1==L2) and ((C2-Cl) > length(M)))

refac_atom_info.erl:715:
Guard test length (M::atom()) can never succeed

Kostis Sagonas Gradual Typing of Erlang Programs

Can you spot the bug?

get new name (Sub, NewRegExp) ->
Index = string:str (NewRegExp, "*"),
case Index of
0 -> NewRegExp;
N ->
Prefix = string:sub string(NewRegExp, 1, N-1),
case Sub of
[] -> exit(error, "Cannot infer ...");
_ —> Subl = hd(Sub),
get new name (tl (Sub), Prefix++Subl++..
end
end.

refac_batch rename mod.erl:161:
The call erlang exlt(error’ ,string()) will fail
since it differs in argument 1 from the success
typing arguments (pid() | port(),string())

Kostis Sagonas Gradual Typing of Erlang Programs

-)

Can you spot the bug?

expand files([File|Left], Ext, Acc) ->
case filelib:is dir(File) of

true ->
false ->
case filelib:is regular(File) and
filename:extension(File) == Ext of

true -> expand files(Left, Ext, [File|Acc]):
false -> expand files(Left, Ext, [File])

end
end;

refac util.erl:1322:
The call erlang:and(bool (), [integer()]) will fail

since it differs in argument position 2
from the success typing arguments: (bool (), bool())

Kostis Sagonas Gradual Typing of Erlang Programs

Wrangler 0.3

* Released January 2008 — one year after 0.1

* 25 modules
e 27,000 lines of code

Kostis Sagonas Gradual Typing of Erlang Programs

Dialyzer on Wrangler 0.3

* Run as simply as
> cd distel-wrangler-0.3/wrangler/erl
> dialyzer --src -I ../hrl -c *.erl
* Analysis takes 50 secs — produces many warnings

* Many due to £file:open/2 and due to confusing
lists:concat/1 With 1ists:append/1

* After fixing these, 10 warnings remain

- all genuine bugs
- two of them are remains from Wrangler 0.1
- not very surprising: they are in uncommon code paths

Kostis Sagonas Gradual Typing of Erlang Programs

Step #2

Expose type information:
make it part of the code

Kostis Sagonas Gradual Typing of Erlang Programs

Exposing type information

Can happen in either of the following ways:
* Add explicit type guards in key places in the code

- Ensures the validity of the information
- Has a runtime cost — typically small
- Programs may not be prepared to handle failures

* Add type declarations and contracts

- Documents functions and module interfaces
- Incurs no runtime overhead
- Can be used by dialyzer to detect contract violations

Kostis Sagonas Gradual Typing of Erlang Programs

Turning @specs into -specs

Often Edoc @spec annotations

%% @spec batch rename mod(OldNamePattern::string(),

%% NewNamePattern: :string(),
5% SearchPaths:: [string()]) ->
%% ok | {error, string()}

Can easily be turned into -spec declarations

-spec batch rename mod(OldNamePattern: :string(),
NewNamePattern: :string(),
SearchPaths:: [string()]) ->
'ok' | {'error', string()}.

Kostis Sagonas Gradual Typing of Erlang Programs

Turning @specs into -specs

In some other cases

%% @spec duplicated code(FileName ::filename (),
%% MinLines ::integer(),
%% MinClones: :integer()) -> term()

Type declarations are also required

~type filename() :: string().
-spec duplicated code (FileName ::filename(),
MinLines ::integer(),
MinClones: :integer()) -> term().

Kostis Sagonas Gradual Typing of Erlang Programs

Turning @specs into -specs

A problem with Edoc annotations is that often they
are not in accordance with the code

- Not surprising — they are comments after all!

For example, to be correct, let alone precise, the
previous case should read:

-type filename() :: string().
—-spec duplicated code(FileNames::[filename ()],
MinLines ::[integer ()],

MinClones:: [integer()]) -> term().

Kostis Sagonas Gradual Typing of Erlang Programs

How to turn @specs into -specs

Option 1: Convert @specs into -specs in one go
- Brave and quick

- Typically not a good idea: results in many Dialyzer
warnings which may be hard to debug

Experiment: 162 warnings on the code of Wrangler 0.3

Option 2: Convert @specs gradually and fix the
erroneous ones using Dialyzer

~ First locally (on a module-by-module basis)
- Then globally

— We strongly recommend Option 2

Kostis Sagonas Gradual Typing of Erlang Programs

Wrong @specs in Wrangler 0.3

wrong @specs
moedule @specs | local | global
refac_batch_rename_mod]
refac_duplicated_code l 1
refac_expr_search]
refac_fold_expression 2
refac_gen 7 i
refac_move fun 2
refac_new_fun 1 |
refac_rename_fun i
refac_rename_nod 2
refac_rename_var A 2
refac_util 21 H 5
wrangler 11 2

Table 2. Wrong @specs in Wrangler 0.3; blank entries denote O

Kostis Sagonas Gradual Typing of Erlang Programs

Step #3

Fix bugs exposed by
-spec declarations

Kostis Sagonas Gradual Typing of Erlang Programs

Step #4

Strengthen and factor
-type declarations

Kostis Sagonas Gradual Typing of Erlang Programs

Strengthening -type declarations

* Type declarations can be refined to the extent
desired by the programmer

-type pos() :: any().

-type pos() :: tuple().
-type pos() :: {any(), any()}.
-type pos() :: {number(), number()}.
-type pos() :: {integer (), integer()}.
-type pos() :: {0..1000000, 0..200}.
Kostis Sagonas Gradual Typing of Erlang Programs
Step #5

Strengthen underspecified
-spec declarations

Kostis Sagonas Gradual Typing of Erlang Programs

Strengthening underspecified -specs

Can take place semi-automatically using Dialyzer

> dialyzer -Wunderspecs --src -I ../hrl -c *.erl

refac duplicated code.erl:53:
Type specification for duplicated code/3 ::
([filename ()], [integer ()], [integer()]) -> term()
is a supertype of the success typing:
([string ()], [integer ()], [integer()]) -> {'ok', string()}

Kostis Sagonas Gradual Typing of Erlang Programs

Step #6

Add -spec declarations
for all exported functions

Kostis Sagonas Gradual Typing of Erlang Programs

Adding missing -specs

Can take place semi-automatically using Typer

> erlc +warn missing spec -I../hrl refac rename var.erl
./refac_rename var.erl:166: Warning:
missing specification for function pre cond check/4

> typer --show-exported -I../hrl refac rename var.erl

%% File: "refac rename var.erl"
$F ———m e e
-spec pre_cond check (tuple() ,integer() ,integer() ,atom()) -> bool () .
-spec rename (syntaxTree () ,pos() ,atom()) -> {syntaxTree() bool()}.
-spec rename var (filename(),...,[string()]) ->

{'ok',string()} | {'error', string()}.

Kostis Sagonas Gradual Typing of Erlang Programs

Missing @specs in Wrangler 0.3

@specs
rmodule present | missing

refac_batch rename_mod
refac_duplicated_code
refac_expr_search
refac_fold_expression
refac_gen 4
refac_module_graph 1
refac_move_fun
refac_new_fun
refac_rename_fun
refac_renane_mod
refac_rename_wayr
refac_ntil
wrangler
wrangler_distel i3
wrangler_options I

I
2

Bud Bod et ki

[I i ¥
et

i o
e, sl
3

Table 3. Number of existing and missing specs for all exported
functions of Wrangler 0.3 modules; blank entries denote O

Kostis Sagonas Gradual Typing of Erlang Programs

Step #7

Test the validity of contracts
using runtime monitoring

Kostis Sagonas Gradual Typing of Erlang Programs

Testing for contract violations

debug-compiled

-beamfiles .beamfiles

test suite test suite results
» Contract Checker >

contract violations
(recorded in the error_logger)

Out of the 106 -spec declarations of Wrangler

- 55 were exercised by the test suite
- 4 of them were detected as erroneous

Kostis Sagonas Gradual Typing of Erlang Programs

Concluding remarks

* Described a methodology for how to:

- use static analysis for detecting definite type errors
- add type information to existing Erlang applications
- become confident about the validity of that information

* Showed both the benefits and common pitfalls of
the approach on a non-trivial case study

* Type information is not a panacea but makes code
more robust, easier to understand and maintain

Kostis Sagonas Gradual Typing of Erlang Programs

Testing a SIP decoder with QuickCheck
- extended abstract

Hans Nilsson, Ericsson

Hans.R.Nilsson@ericsson.com

October 30, 2008

1 Introduction

SIP[4] is a protocol that recent years has gained high attention in the telecoms
industry for services in connection with telephony over IP.

The messages in the protocol are text based and the syntax is defined by
Augmented BNF[2] in RFCs. Unfortunately, the SIP grammar is not suitable
as input to a traditional parser generator without radical re-writing. Left for
the decoder/encoder implementor is a monotone programming session lasting
for weeks.

The result is like all such code usually full of errors which makes systematic
testing necessary. This paper describes a successful automatic test of a SIP
decoder/encoder using QuickCheck[1]. The test code was generated from the
BNF grammar and was therefore free from the test case implementators miss-
understandings and errors.

In traditional testing, a number of test cases are programmed where the test
object is given known input and the result is compared to the known output
in the test case. This has some disadvantages. Only the cases that the tester
can imagine and write as a program are tested. Usually only a few parameters
in the test cases are varied in such code and only within the limits the tester
believes are relevant.

There are alternatives gaining a growing interest. One is property based
testing where the tester specifies the properties the test object shall have. The
test system genecrates test cases to show that the properties are fulfilled. In
the case of QuickCheck, the test input is randomly generated according to the
specification. When an error is found, so called shrinking is applied and the
tester is presented a minimal example that triggers that error.

Property based testing therefore generates a large number of test cases, often
with value combinations that are a surprise for a human reviewing the generated
test data. In that way a very good coverage is obtained.

2 The test

With QuickCheck the tester has to supply two things:

1. a generator that specifies the type of test input data that QuickCheck
shall randomly generate

2. a property that decides if a result is valid or not with the actual input

In a simple example - a square function - the generator could be the QuickCheck
built-in function generating integers. Those integers are given as arguments to
the square function to be tested. The property could be very simple, for example
Jjust testing that the function return value is a positive integer or be more exact
and really checking that the value is the square of the input.

For the SIP decoder/encoder there were two alternatives: either generate
the internal Erlang form or the external text form. The text form was selected
because that generator could be automatically obtained from the BNF in the
SIP specifications.

The property shall test, that for all SIP messages M:

1. the semantics of M in text format is the same as the semantics of M
decoded into the internal representation

2. the semantics of M in the internal representation is the same as M encoded
into the text format

Why not just compare the syntax? Obviously the internal form differs from the
text form. Two different messages in text form could however be semantically
equal due to differences in case, number of blanks, line breaks and even line
ordering. By some kind of normalization it could be possible to compare the
syntax. Such a normalization is not trivial, and is probably error prone.

To avoid trying to extract the semantics out of both text form and internal
form or to write a normalizer, a simpler but anyway useful middle way was
chosen:

decode(M) == decode(encode(decode(M)))
where M is a message generated in text format by QuickCheck.

This is actually a syntactical normalization of the messages, since the decoder
is such that differences in case etc are lost. Surely some test cases are missed
but the testing is hopefully “good enough” - more about this later.

2.1 [Example of generators and properties

The BNF is large - about 1000 lines in 20 RFCs. As an example of the direct

generation! of code from BNF we could look at a sligthly edited example from
[4]):

SIP-message = Request / Response
Request = Request-Line
*(message-header)
CRLF
[message-body]
Request-Line = Method SP Request-URI SP SIP-Version CRLF
Method = REGISTERm / INVITEm / ACKm / OPTIONSm

/ BYEm / CANCELm / REGISTERm / extension-method
INVITEm = %x49.4E.56.49.54.45 ; INVITE in caps

IThanks to Joe Armstrong who gave me a BNF parser

extension—-method = token

token 1xtok-char

tok_char (alphanum / n_n / L1 . L] / L1} | " / II%" / Il*ll / I|_II
/ Il+ll / uin / fnoyn / n~iun)

Naively converted to generators this will be :

eSIP message() -> oneof ([eRequest(), eResponse()]).
eRequest() -> [eRequest_Line(),
list_of (emessage_header()),
eCRLFQ),
oneof ([[1, [emessage_body()]1)
1.
eRequest_Line() -> [eMethod(), eSP(), eRequest URIQ),
eSP(), eSIP_Version(), eCRLF()].
eMethod() -> oneof ([eREGISTERm() ,eINVITEm() ,eACKm(),eOPTIONS(),
eBYE() ,eCANCEL() ,eREGISTER() ,eextension_method()]).
eINVITEm() -> "INVITE".
etoken() —> [etok_char() | list_of(etok_char())].
etok_char() -> oneof ([ealphanum(),45,46,33,37,42,95,43,96,39,126]).
eextension_method() -> etoken().

where oneof /1 is a QuickCheck function that selects on of the elements in the
list in the argument and list_of/1 generates a list (maybe empty) where the
elements is generated by the generator in the argument of list_of/1.

The property to test is basically:

prop-sip_decode_encode() ->
?FORALL(M, eSIP message(),
decode(M) == decode(encode(decode(M)))).

The ?FORALL(Var, Generator, Property) macro is a QuickCheck provided
macro that generates a value by calling Generator, assigns it to Var and finally
calls Property which returns true if the property is fulfilled.

3 Problems

There are of course some problems with the naive generation:

1. The BNF is not always correct. "1:FF" is for example a correct IPv6
address according to both the SIP grammar[4] and the IPv6 grammar[3]!

2. Some constructs results in infinite loops

3. Different branches in the BNF tree have different sizes of the sets of pos-
sible values, but the branches have same probability to be chosen when a
value is to be generated. This gives the unwanted situation that some test
cases will have higher probability than others. In the worst case, some
constructs could be left untested while others are tested more than once.

4. When calling eSIP_message/0, all generator functions will be called. The
resulting data structure and fun’s will have the possibility to generate any
SIP construct. Out from this, QuickCheck will only use one path and the
rest will be thrown away.

The obvious solution for the BNF problems (1-2) is to re-write the BNF. For the
unbalanced probability problem 3), the solution? is to add weights depending on
the sub tree sizes. The size was simply calculated as 1 for a leaf and as the sum of
all sub trees for an internal node. The QuickCheck function frequency/1 takes
as argument a list of {Probability, Generator} as argument, and selects one
Generator depending on the Probability.

Problem 4) was solved with inserting the LAZY macro around all generator
bodies. The result is that for a generator g() as argument, a fun() -> g() end
will be returned instead. QuickCheck will then only eval g() if needed.

The resulting generator code for the example is:

eSIP.message() -> 7LAZY(frequency([{463,eRequest()},
{377, eResponse() }1)) .
eRequest() ~> ?7LAZY([eRequest_Line(),
list_of_smaller(emessage_header()),
eCRLF(),
oneof ([[1, [emessage body()]1]1)
.
eRequest_Line() -> ?LAZY([eMethod(), eSP(), eRequest_URI(),
eSP(), eSIP_Version(), eCRLF()]).
eMethod() -> ?LAZY(oneof ([eREGISTERm() ,eINVITEm() ,eACKm(),eOPTIONS(),
eBYE() ,eCANCEL() ,eREGISTER() ,eextensionmethod()])).
eINVITEm() -> ?LAZY("INVITE").
etoken() -> ?LAZY([etok_char()|list_of_smaller(etok_char())]).
etok_char() -> ?LAZY(frequency([{5,ealphanum()},{1,45},{1,46},
{1,33},{1,37},{1,42},{1,95},
{1,43},{1,96},{1,39},{1,126}1)).
eextension method() -> ?7LAZY(etoken()).

4 Results and discussion

Most important: a lot of errors was found. Many of them was in legal messages
of strange sorts that normally would not have been tested. Even if such messages
do not occur in practice, some components are sometime present. If such an
error would have been left in the decoder, there would have been some sporadic
and hard-to-catch errors left.

It is interesting that no errors was found in the encoder/decoder neither when
it was tested conventionally nor during heavy usage in labs and at customer
premises. Another part of the SIP stack was not tested by QuickCheck and was
written by the same author. Conventional testing found some errors, but when
tested by QuickCheck later, additional errors was found

The QuickCheck testing was extremely valuable and saved time and therefore
money also for other parts of the system, since the decoder/encoder is very

2Thanks to John Hughes who actually pointed out this problem and the one in 4) for me
and also solved them

central in the whole system. An error here will definitely stop most other test
cases.

The approach of generating the generators from the “formal” BNF speci-
fication gave test code that is as correct as possible. The limited test in the
property seem to have had no impact of the final test quality.

References

[1] Thomas Arts, John Hughes, Joakim Johansson, and Ulf Wiger. Testing
telecoms software with quviq quickcheck. In ERLANG ’06: Proceedings of
the 2006 ACM SIGPLAN workshop on Erlang, pages 2-10, New York, NY,
USA, 2006. ACM.

[2] D. Crocker and P. Overell. Augmented BNF for syntax specifications:
ABNF, 1997.

[3] R. Hinden and S. Deering. IP version 6 addressing architecture (RFC2373),
1998.

[4] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session initiation protocol
(RFC3261), 2002.

31/10/2008

An Augmented Backus-Naur Format, (ABNF),
Parser Generator for Erlang

Anders Nygren
anygren@txm.com.mx’

m‘__é-‘

—_——— WWW.IXm.com.mx

xm

Contents

o ABNF

« Using abnfc

« Implementation
. Todo

>xm

Why abnfc?

« ABNF used for specifying many important
protocols, e.g. HTTP, SIP, SDP

- Handwritten parsers are

~ Alot of work
- Error prone

« Not practical, (impossible?), to use yecc

Txm

What is ABNF?

Augmented Backus-Naur Form
Used by IETF for specifying protocols

Initially informally defined in the RFCs where it
was used

[]

later defined in a series of RFCs, currently in
RFC 5234

31/10/2008

31/10/2008

xm

Rule

Name = elements CRLF

Ex,
Request-Line = Method SP Request-URI SP
SIP-Version CRLF

>xXm

Terminal Values

Binary, Decimal, Hex
CR = %d13

CR = %x0D

Sequence

CRLF = %d13.10

String, (case insensitive)

rule = “abc”

xm
Concatenation
Rule = Rule1 Rule2 ... RuleN
foo = %x61 :a
bar = %x62 b
mumble= foo bar foo
Accepts “aba”
xm

Alternation

Rule = Rule1/Rule2/ ... / RuleN
foo = %x61 ;a

bar = %x62 ;b

A-or-b = foo / bar

Accepts “a” and “b”

31/10/200¢

T>xXm
Value Range
DIGIT = %x30-39
Is equivalent to
DIGIT="0"/"1" /2" [*3" | “4” | “5” [“6” | “T”
/ “8” / “9”
>Xm

Sequence Group

Rule = (Rule1 Rule2 ... RuleN)

31/10/2008

31/10/200¢&

Repetition
*rule ; 0 or many occurrences
<n>*rule ; N Or more occurrences
*<m>rule ; 0 to m occurrences

<n>*<m>rule ; n to m occurrences

<n>rule ; exactly n occurrences, equivalent
to <n>*<n>rule

Optional

[foo bar]
Equivalent to
0*1(foo bar)

“Imported” Rules

Rules defined in other RFCs are frequently
reused.

But there is no formal way of specifying the
imports. Normally it is done with

. A comment in the ABNF specification
. A note in the RFC text

fxm

Using abnfc

Grammar definition file: my_mod.abnf
Name = elements : Erlang_Code.

Ex.
callid = word ["@" word] : lists:flatten(_YY).

31/10/2008

31/10/200:

Variable Bindings

In the Erlang code the following variables are
available

» _YY : Bound to the complete match for the rule

« _YY1to _YYn : Bound to each part of the
match

ex.
opt-name = “(* name “)” : {opt_name, _YY2}.

Variable Bindings

Allow = "Allow" HCOLON [Method *(COMMA
Method)] :

Allowed = case YY3 of
[->1I;
[[M1,Ms]] -> [M1|[M||[COMMA',M]<-Ms]]
end,
{'Allow', Allowed}.

31/10/2008

>xm
Implementation
Three main parts
« Syntax specification parser
 Transformations/optimizations
« Code generation
T>xXm

Syntax Spec. Parser

» Originally hand written using parser
combinators

« Later generated by abnfc, (ABNF is specified in
ABNF)

« Generates a simple AST

>xm
Transformations

« Convert AST to an internal representation

« A number of passes that performs
transformations on the internal format

- Remove {repeat, 1, 1}

- Remove alternation with only one element

- Remove concatenation with only one element
- Merge num_val elements, (pending)

- Inline imported rules when possible to improve
optimizations, (pending)

txm
Code generation

« The generated code currently uses parser
combinators

- Simple
- Not very efficient
« Parser functions for all rules are exported

« A my_mod.hrl is always included, this makes it
possible to import rules from other modules

31/10/2008

10

txm
Request = Request-Line *(message-header)
CRLF [message-body] :
{Request’, YY1, YY2, _YY4}.
T>xXm

'Request'() ->
fun (T) ->
__P=abnf_rt:seq(['Request-Line’(),

abnf_rt:repeat(0, infinity, 'message-header'()),
'CRLF'(),

abnf_rt:repeat(0, 1, 'message-body'())]),
case _ P(T)of

{ok, YY1, _YY2, YY3, YY4]=_YY, Rest}->

__Ret = begin
{'Request', YY1, _YY2, YY4}
end,
{ok, _Ret, Rest};
fail ->
fail
end

end.

31/10/2008

11

xm
Limitations

« Limited backtracking

- Some workarounds

. Reorder alternatives
. Handwritten parsers for difficult cases
« Modify rules and do validation in Erlang

« No error messages

xm

Todo

More transformations/optimizations
Better code generation
Support older ABNF syntax

Generate encoding functions (?)

31/10/2008

12

31/10/2008

Expertise Makes it simple

Anders Nygren

SL, product development and solutions
Telexpertise de México S.A. de C.V.
Phone: +52 (844)438-4800

anygren@txm.com.mx
www.txm.com.mx

txm

WWW. XML Com.Imx

13

EUC 2008

Autocoding State Machine in Erlang: A Case
Study of Model-Driven Software Development

Yu Guo

Mads Clausen Institute
University of Southern Denmark
Soenderborg, Denmark

Torben Hoffmann Nicholas Gunder

Motorola A/S
Glostrup, Denmark

Abstract

This paper presents an autocoding tool suit, which supports development of state machine in a model-driven
fashion, where models are central to all phases of the development process. The tool suit, which is built
on the Eclipse platform, provides facilities for the graphical specification of a state machine model. Once
the state machine is specified, it is used as input to a code generation engine that generates source code in
Erlang.

Keywords: model-driven development, state machine, autocoding, Eclipse, tools

1 Introduction

In Motorola’s TWSD organisation, we have been working with Erlang/OTP for a
while now and the need for a higher level of abstraction than code has surfaced a
couple of times.

The Erlang/OTP code is very clean, but sometimes it is a lot easier to com-
municate using pictures and models. It is always a practical problem to keep the
pictures and models in sync with the code, so any tool support which can help out
with that would be appreciated. Even though writing Erlang/OTP code is a lot
faster than doing the same code in other languages, you still have to write some
boilerplate code to implement a component using Erlang/OTP. As a first step, a
state machine model is typically conceptualized in some form before this is done.
So a method that could auto-generate code from a state machine model offers some
benefits to an Erlang developer.

The semantic gap between Erlang/OTP state machines and formal models of
state machines is quite small, and this poses a tough requirement on any modeling
tool: To make the tool more useful than writing the code by hand.

GUuo, HOFFMANN AND GUNDER

The scientific work of Mads Clausen Institute for Product Innovation, University
of Southern Denmark was brought to the attention of Motorola, and the potential
for solving the problems outlined above seemed so promising that a case study was
initiated. [11]

Traditional methods used to develop software are plagued by the problem that
the implementation is not always consistent with the specification. Model-driven
software development [1][3] seems promising to give the solution, since the imple-
mentation can be derived from, or generated directly from the specification. The
method requires a modeling language for specifying the application and a code
generation engine that translates application models into code. However, it needs
adequate tools that automate the steps between specification and implementation.

This paper is intended to give a solution of above problem. When thinking of
model-driven software development, the immediate understanding is that models
drive the development of the state machine, in the sense that the state machine is
constructed by transforming models from higher levels of abstraction to the point
where we reach a piece of executable code.

The autocoding tool suit is built on the Eclipse platform. Thanks to the wealth
of modeling approaches the platform supports, most of which are based on well-
established and popular projects. We use the Eclipse Modeling Framework (EMF)
project as the modeling facility and the Eclipse Graphical Modeling Framework
(GMF) project to provide a graphical modeling environment. The tool supports
both a textual notation as well as a visual one. The Acceleo can be fruitfully ex-
ploited for a transformation engine to develop the tool for the code generation.
It has built-in facilities to read models that support the smooth integration with
modeling tools in the Eclipse. Developed in such way, the state machine autocod-
ing tool suit contains a set of Eclipse plug-ins, therefore, a uniform development
environment can be obtained.

The rest of the paper is structured as follows: Section 2 presents state machine
used in Erlang. Section 3 deals with the metamodel and constraints of the state
machine. Section 4 describes the generation template. The implementation in
Eclipse is presented in Section 5. Section 6 discusses the development process using
the tool. A future work is discussed in Section 7, and a summary is given in the
concluding section of the paper.

2 Finite state machine in Erlang

The finite state machine used in Erlang is described as a set of relations of the form:
State(S) x Event (E) -> Actions(A), State(s’)

The relations are interpreted as meaning: If we are in state S and the event E
occurs, we should perform the actions A and make a transition to the state S’ .[4]

The finite state machine can be further considered as a mealy state machine
[14], where an output (or action) is generated based on its current state, and an
input (or event). A transition is marked with a trigging event, a guard expression
and an action. The guard is a boolean expression. A developer should think in the
following manner: if an event associated to a transition occurs, and the guard on

2

Guo, HOFFMANN AND GUNDER

the transition is satisfied, the transition is fired. Consequently, the state machine
reacts to the event by performing the action on the transition; state maybe changed,
too.

TEvent Guard 1)/Action?

."‘A

PEverd2{Guard 2
Action2

FEventdfGuard4}f
Actiond

PEvent3[Guard3)
Action3

Fig. 1. The mealy state machine model

According this state machine model, for each transition of a state, a transition
clause should conform to the following convention, when using the Erlang gen_fsm
behaviour to implement the state machine:

StateName (Event, StateData) when Guard ->
code for actions here
{next _state, NextStateName, NextStateData}

3 Metamodeling the state machine

Metamodeling plays a fundamental role when using the model-driven software devel-
opment approach. A metamodel describes possible structure of models, by defining
the constructs and their relationship of the modeling language, as well as constraints.
Tt is also the basis for building tools, concerning construction of the state machine
model, validation of models against constraints, as well as generation of code. A
constraint specifies a restriction of the metamodel element it is applied to. It can
be written in natural language or in the Object Constraint Language (OCL) [5].

To define a metamodel, a metamodeling language is required. The Eclipse Mod-
eling Framework Project provides facilities to create a metamodel, with the support
of a meta-meatmodeling language — the Ecore metamodel. The language is consid-
ered to be at the M3 layer of the Meta-Object Facility (MOF) Four Layer Metadata
Architectures [2]. In EMF, a metamodel described by the Ecore metamodel, known
as Ecore model, contains structural requirements and constraints for the model,
which are information contents that the model editor will manipulate. It extends
the Ecore metamodel by instantiating classes, in the sense that a new class with new
attributes in the Ecore model is created as an instance of an existing one defined
in the Ecore metamodel. A metamodel is at the M2 layer of the MOF Four Layer
Metadata Architectures. (see Fig. 2)

The Fig. 3 presents the metamodel of the mealy state machine. The metamodel
is fairly intuitive and easy to understand. The state machine container is the root

3

Guo, HOFFMANN AND GUNDER

M3 1
ECORE s
Metamodat e
R metamodel
describes
StateMachine M2 Jayer
Metamuodet Metamnded
deseribes
" M1 fayer
Vending Model
Machine
Model
describes
MO layer
Instance,

Real World

A Vending
ftachine

Fig. 2. MOF Four Layer Metadata Architectures

element of all instances. Il must contain one state machine instance, and an arbi-
trary number of action as well as event’s instances. The instances of the action and
the event are referenced by transitions of the state machine model.

Event
SateMachineConlainer inauts name : String
N = = 0.* type . EventType
declaraiiong : Strng definition ; String
Action
1.1 ac;ﬁ(ins name : String .
stateMachine o code : String acons
o
StateMachine __transitions
.
name : Sirdng |
[TranstionSource
1.1 | 1.0 0..* outgoingTransitions
initisiState states
sourceState [
1.1
Transition
InitialState State ,
inftiai fargetState 1.1 name ; String
~ .
initialData : String T name * String order; Imeger
1.* incomingTransitions guard : String event
stateData : String i

nextData : String

Fig. 3. The state machine metamodel

4

Guo, HOFFMANN AND GUNDER

Typically, a transition has state instance as “sourceState” or “targetState”.
But, the state machine in Erlang has the feature that an event can arrive at
any state. The event is sent with the gen fsm:send.all_state_event/2 in-
stead of sending the event with gen_fsm:send_event/2, so that only one clause
Module:handle_event/3 is needed to handle the event [4]. In order to model this
feature, an event-triggered transition can have the state machine as source, mean-
while, the type of the event on this kind of transitions must be “all_state_event”.
That is why both the “StateMachine” and the “State” class implement the interface
“ITransitionSource”.

The state machine in Erlang is deterministic, as the sequence of the clause for
each transition matters while executing the program. The clauses are to be matched
according to the order of precedence in the source file. If the first match failed, this
second one will be picked. This is why an “order” attribute is used on the transition
of the state machine model. It is an integer value. All outgoing transitions of a state
must have different order. It determines the appearance sequence of the transition
clauses in the source file at the generation stage.

To obtain a complete domain model, the metamodel needs to be accompanied
with constraints. It will not allow you to perform a code generation without doing
the series of static checks. The constraints in a model-driven fashion are categorized
into two levels: the platform independent level and the platform specific level. The
platform independent constraints have not concerns with which target code is going
to be generated, whereas the platform specific ones are bound to the target language,
in this case study — the Erlang language. But in case of creating an Erlang state
machine specific model, constraints from two levels can be combined.

For instance: according to the metamodel, both “State” and “StateMachine”
are subclass of the “ITransitionSource” so that they can have outgoing transitions.
However, the state machine turns into dead end if there were not any outgoing
transition from a state. Thus a constraint like “each state has at least one outgoing
transition” is a platform independent one. On the other hand, “the names of the
states and the events must start with lowercase letter” is an Erlang platform specific
constraint, since this rule has to be satisfied to make the generated code compliable.
In case of C code generation from the state machine model, the constraint is not
necessary.

4 (Generation Template

After the metamodel has been built, a model, which is instance of the metamodel,
can be used together with the templates for generation. Having models as central
to all phases of the development, the generation process is independent from the
concrete syntax of the model. No matter which format a model is stored as, the
metamodel is always of special significance in the context of model-driven develop-
ment. Generation templates should not be written based on some specific format
that the model stored as, but on the metamodel.

To make the autocoding feasible, the way of programming a finite state machine
needs to be normalized. The result of the normalization plays the role as the
generation template. This step requires the answer of the question: where the

5

GUuo, HOFFMANN AND GUNDER

static code, dynamic code and manual code are located in the template. The static
code is always the same for all different models, whereas the dynamic code is the
one transformed from the model.

STATE NAME {E?ENTWNAMEE,$T£TEWDRTAE} when GUARDLD ->
CENERETED AZTIONI,
Y%Smanual code for action
Next ate = TRRGET%TATE_NAMEl,
SvatevValue = DATAL %%or manual code
inext_state, Nextitate, VexthitateValuej;

Haxt
Hext e =
inext state, Nextltate, Nexts

STATE MAMEZ,

ETEE H%or manusl code
teValue) .

Fig. 4. The generation template

The piece of pseudo code (Fig. 4) reveals the structure for one state with two out-
going transitions in the generated code. Words all in uppercase are dynamic code,
which will be generated from the model. As mentioned in the previous section, the
sequence of the two clauses depends on the value of the order attribute of outgoing
transitions. The value of the variable NextStateValue could be generated from
the “nextData” attribute of the transition if specified, or be written manually if it
is empty, which is dependent of whether or not this value should be calculated by
manual code. The STATE_NAME for two transition sections must be identical be-
cause they represent the same state. The rest dynamic code such as EVENT_NAME,
STATE_DATA or GUARD could be either the same or different for each outgoing
transitions. No manual code is allowed between the assignment of NextStateValue
and the statement next_state, NextState, NextStateValue. Itis only al-
lowed to add manual code to the specified place. Otherwise, it will be lost in case
of regeneration.

5 Implementation

The model-driven software development approach has been adopted to develop the
autocoding tool suit in the Eclipse platform (www.eclipse.org), so as to reduce the
amount of manual work needed to develop tools in a conventional manner. The
Eclipse Graphical Modeling Framework project provides means to ease and speed
up the development of graphical editors for modeling, which can be used for the
rapid development of standardized Eclipse graphical modeling editors, by providing
a generative component and runtime infrastructure for developing graphical editors
[10].

The majority of the state machine model can be created graphically, but there is
something that a graphical editor does not necessarily be applied. The Eclipse pro-
vides property sheet as complementary to editors, with basically two functionalities:
set or display property of a model; create model instances that cannot (necessarily)

6

Guo, HOFFMANN AND (GUNDER

be created using the graphical editors. Therefore models like actions and events can
be instantiated within property sheets, otherwise the diagram that is supposed to
emphasize the relation between states and transitions will be polluted with those
less important ones to the visualization.

The Acceleo (www.acceleo.org) is an Eclipse based code generator transforming
models into code. It works with any metamodel, implementing MOF as specified
by the OMG (The Object Management Group). It needs templates that describe
the information required to generate source code from a metamodel. Acceleo deals
with incremental generation, by defining specific protected area. Code, which is
modified by developers, is surrounded by special tags in the protected area. These
tags do not pollute target code because they are implemented as explicit comments.
On the next generation, the whole text in the protected area is kept.

A nice feature that the Acceleo offers is that Java functions can be invoked as
services within the generation template. Acceleo is a hybrid with respect to the
generation template. The advantages of an expressive template language and the
power of the Java language are well combined, in such a way that parts of the
template is written in the template language, while the complicated algorithm are
implemented in Java.

Fig. 5 shows the graphical development environment in the Eclipse. A vending
machine model is built with the editor. In order for a correct code generation
process, the model has to be validated. The Fig. 6 presents the case when two states
are identically named, thus, with the support of the GMF runtime, the models that
violate the constraint are highlighted.

B s - Stror e R omne._ g + (e 0L —— e — R
B it Uerws Uewer Seerth ok [l Wreoy Seld
= R Sty S R TR = R - = [
T O = - - L A L
Toe otk T =
e |
Db 1141 | See
T
= bt
Ry
L o TrétEste
L] & Do
e B AT Rarepitrazins
i | |
15 praiilel I f |
i Eraerend=y |
' Fraai=h ,]
rnnat e wud !
atecnibideprarer-at 0 1
| -
| N i AL U ek wiat
| Pual-) easalical i
| - Hewmatll it
|
i = |
g Lo~ |
2 btk et Cedem| T et Iy =en
o Wl STato Mathing we
|| s BT Ay R — P eietal
jiim "..'.,‘T “ih%.—;n-.uld ke averbl e AL E abant) :‘
N s | 709) - o P A PRCULLE, i
aa® fat e Lricase) o

Fig. 5. The graphical development environment

Once the state machine model has been built, the tool can deserialize it into XML
format, which gives the ability to maintain interoperability among tools based on
the metamodel, as well as the 3rd party tools.

i

GUO, HOFFMANN AND GUNDER

L L TP e T TS i = u = 5)
B N (g G Jemnh Dt G mrees D
e NS AR B F sl ST
s - d . EN = e =l
LT ¥ B =5
- g J - ml
" & Y s =1 T
o1 Aitedir M 4 | ooy
I,; g .) e
oo - Fu
0 idia & e
Lras e » s | | & s
' s B Pl i PR VY Petrs shesicnd
1
] » § <
_ o i ..s,.m 1 | |
| | g A \
A =g £ Aratal=) i
| :
BT E—— ! o -
sfi S enralMal o frrasit-a sl
| o
 — s |
|
fan fudl rad e Gl l
Qrpaed el Yecosntrnl remsifed |
treaislirast
=
Lef
U2 motews =™ % drt L Bovieate frartas : DT -
R anirn emminongs O s '
Ensapien | Bvvsana i Losser 1
T dnofia
T T shreohexedfng burer | seem IR xRN e s Rihes
B TN QBTN R BV TGRSO fapas LN T e o) LS T D)

Fig. 6. Violation of a constraint

State machine code will be generated then from the model. The vending machine
code and model, as a reference, used for code generation in this case study is not
something that Motorola markets, but the vending machine problem and original
code is quite similar to most of the state machine code Motorola has written so the
results from the case study applies to the real world code as well.

6 Development Process

It is well known that, even when using the model-driven development approach,
some code still has to be handwritten. The handwritten code could come from
any legacy code that has not been integrated into the model. While the state
machine model can express when the actions are invoked, the implementations and
algorithms of those actions are not represented. So, after generating the skeletons of
the state machine, developer still needs to fill those actions skeletons with business
logic.

Usually a balanced approach is considered to be the best, in the sense that
generating the initial code base from the model and then just start from there. Tt
can save some of the initial tediousness of translating the model to code. Users
should not modify the generated code unless the changes are in the protected area.
Otherwise, these changes will be lost in the next generation iteration.

The obvious way to lower the burden of the developer is to generate 100%
code from the model. To achieve this goal, an iterative development process can be
considered when using the tools. At the beginning, the developer should concentrate
on the application logic to design the model. He needs to specify states, transitions,
events as well as the names of the action, and put some dummy code (like comments)
inside the action method. Once the state machine skeleton has been generated, he
needs to fill out the actions method with the business logic code in the protected

8

GuoO, HOFFMANN AND GUNDER

area.

When the state machine code passed tests, the handwritten code can be further
integrated back into the model by replacing the dummy action code. (This has to
be done manually, at the moment.) Consequently these code will be generated in
the next generation. Finally, the developer will end up with a state machine model
integrated with all action code. In this manner, it is possible to generate complete
code if all actions are just predefined function calls from some library.

However, bear in mind that the complete model is not a platform independent
model anymore. It becomes a platform independent model mixed with the platform
specific code. In case of generation of another target code from this model, for
example C code, the platform specific part in the model has to be changed.

It is possible to make improvement by introducing some kind of textual language
that specifies the action. In this case the language has to be defined or even be
invented. Meanwhile all the tooling needs to be created, too. It is not a trivial task
since the semantics of the language has to be correct. As a result, the flexibility is
obtained at the cost of the increased complexity.[3]

7 Future Work

The work that has been described in this paper is an initial step towards devel-
opment tools for application in Erlang/OTP, in a model-driven fashion. It can be
continued in several possible directions to further improve developer productivity
by introducing more features as described in following sections.

7.1 Configuration Management

One of the biggest practical problems Motorola has experienced with various model
driven approaches has been the management of different versions of a model com-
ponent.

Being large organization with many development centers in the world, Motorola
is challenged to share common tools and code with other teams who are not neces-
sarily located in the same region. Typically, these teams have their own additions
and changes, sharing a common code base. One problem deals with the task of
being able to integrate individually created functionality, as well as that created by
separate development centers, into a common code base. The fundamental problem
resulting in this becomes an issue of potential rework and many headaches when
the same code is changed by different people. Working at the source code level, this
is a merging problem which requires a significant about of labor to do consistently.
When moving to model-driven approaches, the problem does not go away - it is
merely lifted to a higher level of abstraction, where models and changes to models
need to be merged. This is a problem that so far has not been solved well enough to
be of practical use. The practical problems in this has so far resulted in a situation
where models are used to generate the first version of a component, and then all
additions and changes are done at the source code level.

Clearly, there are two basic problems that need to be solved in order to make a
model-driven approach a good fit for Motorola:

9

GUo, HOFFMANN AND GUNDER

* Integration of manual changes back into the model. (Fig. 7)

* Merging of a new version of a model with the source code based on a previous
model plus some manual changes. (Fig. 8)

1 vers. ‘@ ST SRR JP2°
manual A
2 vers,
<F— 1 tfed

Fig. 7. Integration of manual changes

¥ vers.
—_—i ler

manual 5= A PR

2% vers. ten
merging
2.e8 Doy 4 1 ilo 2.et!
2 ten

Fig. 8. Merging of a new version of a model with the source code

When these two problems are solved, it becomes possible to solve the general
problem of merging two changes to the same model. (Fig. 9)

10

Guo, HOFFMANN AND GUNDER

1% vers. N@ —ts
2" vers. :
- ?

Fig. 9. Merging two changes to the same model

7.2 Refactoring

Sometimes you have an existing code base and would like to introduce a model-
driven approach — more often than not, this is a major practical issue since most
freely written code does not easily fit with a model framework.

In order to overcome this obstacle it would be interesting to investigate the use
of refactoring tools that assist the programmer in transforming a legacy code base
to a format that allows easy reverse engineering of the code into a model.

In this case, a given state machine code needs to be transformed back into the
model that is at a higher level of abstraction. Adding reverse engineering for the
current tool suit makes it possible to offer a visual content of the state machine from
legacy code as higher-level document. Applying model based analysis technique i.e.,
model checking [7] to the model is also feasible, once the model has been built from
the legacy code.

Wrangler [8] is a refactoring tool providing a collection of basic refactorings to
the program. With the help of the tool, the legacy code can be refactored as close
as possible to the generation template. Subsequently, A text-to-model transform
engine can be applied to take the refactored program as input and produce the
model correspondingly.

7.8 Artifact generation

Besides the state machine source code, more artifacts can be generated from the
model such as supervisor, application, makefile, etc., as they require certain informa-
tion contained in the state machine model, too. This information can be exploited
as much as possible in order to minimize the amount of manual work. However,
the current state machine model does not necessarily contain all information for
these artifacts. Depending on what to generate, proper metamodels, editors and
generators could be added to the current development environment. Following the
introduced approach, it is not hard to extend the current tool suit with the new
components.

If & complete metamodel that covers all the concepts of the domain was devel-
oped, equipped with right tools, a component framework and a set of predefined

11

e

GUO, HOFFMANN AND GUNDER

components, the developer is able to model the whole telecommunication application
and generate 100% code from it. The ErlCOM [12], as a domain specific language
for robust reconfigurable components, tries to introduce a component layer on the
top of Erlang environment, so that the developer concentrate on the system design
at a higher level. It provides a useful packaging framework that enables program-
mers to organize their applications written in Erlang in such a way that they could
be easily reconfigured either so that they could adapt in a rapidly changing run-
time environment or they could be reused. [13] Modeling and code generation tools
have been developed based on the Generic Modeling Environment. However, its
modeling concept mainly focuses on one of the static aspects of an application —
component configuration management. The dynamic aspect of the application, that
could be modeled using state machine, is not yet covered.

7.4 Model debugging

The current tool suit enables the developer to visualize the state machine as a
diagram. The diagram and model could be further exploited within a debugging
session by providing animation functionality. An executing state machine could
send certain information, which is embedded into the generated code, back to the
diagram. This information is used to synchronize the graphical notation to trigger
the animation. States and transitions with the synchronous data should be high-
lighted. If the developer recognizes a mistake in the diagram while debugging, he
can instantly change the model, and generate the code once again. However, the
current stage of the development of the Eclipse modeling projects does not yet pro-
vide such a framework for the graphical debugging according to a given metamodel.
More research needs to be done in this area.

8 Conclusion

The paper has presented an autocoding tool suit specifically designed to support
finite state machine development. It facilitates the development by providing the
developer with a specialized graphical editing environment to specify the state ma-
chine model, and a code generator to produce Erlang code. An initial prototype
of the tools has been developed on the Eclipse platform following the model-driven
software development philosophy. The model-driven approach for tool development
has been experimented, in which models are central to all phases of the development
process.

References

[1] The Object Management Group, MDA Guide Version 1.0.1, 12th June 2003
[2] The Object Management Group, Meta Object Facility(M OF) Specification, Version 1.4, April 2002

[3] Stahl,T., M. Vélter, J. Bettin, A. Haase, S. Helsen, K. Czarnecki (Foreword by), B. von Stockfleth

(Translated by), “Model-Driven Software Development: Technology, Engineering, Management”, ISBN:
978-0-470-02570-3, Wiley, 2006

[4] Ericsson AB, OTP Design Principles Version 5.6.4

12

Guo, HOFFMANN AND GUNDER

[5] Warmer, J, A. Kleppe, “Object Constraint Language, Getting Your Models Ready for MDA”, Second
Edition, Publisher : Addison Wesley, Pub Date : August 29, 2003, ISBN : 0-321-17936-6

[6] Chikofsky, E.J.; J.H. Cross II, Reverse Engineering and Design Recovery: A Tazonomy in IEEE
Software, IEEE Computer Society: 13C17. January 1990

[7] Gerd Behrmann, Alexandre David, and Kim G. Larsen, A Tutorial on Uppaal, Updated 17th November
2004. Department of Computer Science, Aalborg University

[8] Huiqing Li, Simon Thompson, George Orosz, and Melinda Toth, Refactoring with Wrangler, updated:
Data and process vefactorings, and integration with Eclipse, Proceedings of the Seventh ACM SIGPLAN
Erlang Workshop, page 12pp. ACM Press, September 2008.

[9] Frank Budinsky, Dave Steinberg, Ed Merks, Ray Ellersick, Timothy J. Grose, “Eclipse Modeling
Framework”, Published Aug 11, 2003 by Addison-Wesley Professional

[10] Frederic Plante, Introducing the GMF Runtime, Eclipse Corner Article, January 16th, 2006

[11] C. Angelov, Xu Ke, Yu Guo and K. Sierszecki, Reconfiqurable State Machine Components for Embedded
Applications, Proc. of the 34th EUROMICRO Conlerence on Software Engineering and Advanced
Applications SEAA 2008, Parma, Italy, Sept 2008

[12] Gabor Batori, Zoltan Theisz and Domonkos Asztalos, Robust Reconfigurable Erlang Component System,
In The Proceedings of 11th International Erlang/OTP User Conference, Stockholm, Sweden, November
2005.

[13] Gabor Batori, Zoltan Theisz, and Domonkos Asztalos, Configuration Aware Distributed System Design
in Erlang, In The Proceedings of 12th International Erlang/OTP User Conference, Stockholm, Sweden,
November 2006.

[14] Mealy, GH, A Method to Synthesizing Sequential Circuits. Bell System Technical J, 1045-1079. 1955

13

ErlIDE

A modern GUI for erlang development

Eclipse

* An extensible platform for developing
applications

* 100% Open Source
* 100% java
* created by IBM

* Many platforms
(Windows, Mac, Linux, Solaris)

Why Eclipse?

* Mature framework
* Large ecosystem of useful tools

* A picture is worth a thousand words

* Somewhat bloated and memory hungry.
Better with Java 6.

¢ Impedance mismatch with Erlang

ErlIDE

* A set of plugins for Eclipse

* Project started in 2000, restarted in 2002 and
getting "real” from 2005.

* Mainly 2 developers, we’d like to see more!

ErlIDE

* Originally 100% Java
* Code: 80% Java, 20% Erlang

* Functionality: 50% java, 50% Erlang

Architecture

* Eclipse workspace uses an Erlang backend
to do the work

* Each project may be compiled by a separate
backend

* Another backend is used to run the projects

Architecture

=

Progels

conmpie
’—l WScuoibug

Etlick tonis

Etlide core

IDE functionality ’ compile ’ execute’debug

Ertang node Erlang noge Erlang nods

Architecture

* Erlang side provides services to Java side

* RPC
* event based

* Infrastructure to make communication as
seamless as possible

* implement Java interfaces in Erlang

ErlIDE and OTP

* Requires R11B-5 or later

* Special versions of jinterface, scanner,
parser, syntax_tools, edoc, debugger

Features

e Editor

*Indentation of Erlang code

*Syntactic highlighting

*Bracket matching

sAutomatic completion of erlang functions and records

*Selective display of functions and declarations (folding)
* Indentation and code formatting

*Automatic indentation

*Formatting and pretty-printing

Features

* Hover
* OTP documentation shown for external calls
* Show declaration of macros and records

* Outline

* Code outline of the structure of an Erlang
module

* Filtering of Erlang functions and declarations

* Quick outline for selecting Erlang function or
declaration

Features

* Navigation

* Go to declaration of function, macro or record
* Project Import

* Erlang-aware import of projects
* Creation wizards

* Create Erlang projects

* Create Erlang modules with code skeletons

Features

* Debugger

* Erlang debugger within eclipse debugger
framework

* Breakpoints, single-stepping

* Inspection and modification of local
variables

* Distributed debugger, debug on multiple
nodes

Features

* Erlang runtime handling

* Provision for different runtimes, local or remote

* Develop on one runtime, test and debug on another
* Warnings, errors, TO-DO-markers

* Show errors and warnings in code and in problems
view

* Automatically mark and list comments with TODO and
FIXME

* Erlang log printouts with link to code line

=l

1w frteeg Navigater 33

o u Drha Yend
“ Leebn
o ke

s g -

B |
WiRar_servergri 1
xen

i zipxed

mocute: zime
exaon

inciuze. ke het”
macro_definzor: WL
ugzo_demmibion. CATG:
Herd Jy B i,
tecord detmion re re
ecar s defeston: b gu
PLLHT_ RO St
teter) defntos ecers
macro_uaf EAD
mzcra_detngon: STORET

macro_daintien: BELRIC
macro_defint: RETRR
: mano_definven. BLINE

X tien: IAPLOL
#dtnn, defnmoe TOKIR

Demonstration

frass
. . 95 Debug « ivleng & e
= wr prpran |2ty _cazch ed < ECIR INRGLA | = ad <Mkt | "= 3 et outline x¢ =
1t ARG A .\
pel Last_diroptLonag?, o | - & L
s{iepul = % ! kel e T
m_rleantor « include “2ip hei”
= module: Zipk |

N fram

() shaur vu_ree

T pElY - TN

451, onenzip} - wwenzio_t(13,

LD o 0, i spe_stiomt_gint.infuctess)

oY
: 4013 of

ch oz ok:

b whi

Poes s feevun, Tevec)

BECHD ohen vondlF) o 2 M)
on 35 3

..

PEE S AP O ET A

sS4 x 0 G

Fs. O

Qma)y §
exaaid i 01

[T |
Ist_diti2 . Ootians)
openzy_chasess |
openzip gL (Cpendta ||
apanaip_ganrE (FeName, O

openaip_ogensi IF)
openzp_azens \F Opuens)
oFenzi L1 19RRt IR he g
OpenZp /L iFegensrie v
[93

G}

(F) whan _gid)

[T N T

= A ke 137 ad B
D t t.
! o Lrlang - debuy est) we featp sarves ! - Cepan SDH i T
. bl | S - 1 Dby | wE
< 4 try_tatchiedd g macrn itnguen i x.ent Zox.erl =55 Outlice
= -, vocilsd =~
1 [~ = tem
I« moat
L {3
o expo
e a0
I . N - W ihop
" nandie, c‘(:il_([rev:r‘se, 0 | & coom
If‘l‘t‘ib: i & coum
hondie_cali{counter | @ Facg
ity is. aRtutn || # & hend
Eevty o {8k, Ceter] | X
{reply, Mes ! & hang
handie_call({mm, ¥, | & hanc
- erse ordee W gl
= e Aok L34 3 & rever
| S 117)
Kopuy = {ok, test}, & sumj
{repiy, fir® o termi
landie_ceiid{fuctoric & tesk.
yus = {0k, Fu
repiy, Koriy
caii({chop_binary, 3
fo » = {ok, do_chep_binary
II {reply, fopty, Duete};
handic. colt(henuest, &
| ¥ w {error, {srkrosn_s
{reply, epty, dratol,
L4 wewa reen e srlresiiasdbnanannn -
R dypesjams Husdt e

1= Erang console T 1 Process Hstwiew 1 Probiems (% Lrve EXprnviant

Demonstration

B Brluses,

cote_change:

fact(ay -

i
Fack(dy when 15_integen(d) =»
. srfactC-3,

P
Eislsireversa{dcc);

lists.
and. ilacenf2
flae_lengthy1
Natlzngth; 2
—— flannap /2
ii= £riang consoie & foies3
Refresh Calored sende flatnap/3
folgl{4
- foldrj4
| fiters
foreach/3
flattentl

Laliell V55,5
Leriidt debugdgna-oat:

code_changes3
wouner f¢
factorialil INY
handle_call/3
handfe_casz2 (b
handle_inies2 (_n
itel (1)
% reversefl (L) wke
@ S0

swnjl N
2 teminatej2 (Rez
& esy3 B O

v
R

T %

foldriFun, AccD, Lis) ~» Accl

Types.

Fun = fun(Elem, Accin) ~> AccQut
tElem = lerm()

(Acel = Accl = Accln = AccQut » term()
| JList = ltermQ]

Like Tokdis 3, but the st s traversed from right fo lefy
Eor enample
= P funih, Acclod =» fodformat™-p ™, [A]. Accin end.
“loFun vl vval L2 2225172
* wfotdiP, void, [1.2,3D

L

Ao

i Writable

Smart Insert 154:20

Demonstration

Lilang

ceDUD test s

1pa sl

o 34 tester_server.erl | ity caicherd | i macro things.eid = x.ert
< £
e v zRp_th{i); |—
| , openzip) =v openzis_tt(i};
| tLCEY % k(r, Fun rae_long_prink_tnfo_elo « inciud
@ mods
o expor
[. ! o expor
| S 6 expor
[_opLi[verbose { & ES RN |« expor
| gotuwnrtipLoptfocl, ot opts {feadbatk = Fun verbose_unz et
get_uncip_opt([cook A i v L
oL une sy, eptd UNZIR - it S €reate
| 5“'":&":’“"—-:““(5;";: & record_definition: unzip_opts B0 & eXaC
SRR R L w i eI
| grbonripopt({{od © unzig?l 1P “ e 0 <
ol unzio ept(d @ unzpie §F, Cphonsi & hst_di
I getunzpopt{LIRE 5 o unrie/2 i, Optane w fistdi
H = furi_an N 2 @ openz
l Jeb_unzip_opt(R Ll L N 4 vpen;
| peb_unziy_opt([{iit ilcaoked | Resy, $unzig_optslopen_opts = Opl] = Gt & ppens
B Pty w fii a verbase_unzipii (FN) | & Open
\ ciiee e fUnGBR g gor unzip optioas/2 (F, Gpliohs) & openz
pet_amrip.ept (1 . _lMesss 1 v ® openz
get_unzip_opti[heep .
%oop - fun Keeg o ilfzip_tleteffset = Offsety = 2ipFile § Reat, Z, Ik, Sur o % open:
f “w | & opem
= _mﬂ (e I & openz
oot g _opb{ Gk TS T R . s rd T i 5 openz
throag (bud_pstion, Dnkrsan}) | N~
17 o» ui
get_tisb_dir_ept{[3. & | % table/
& @ table/
| -get_tust_dir_opi{[ren #list_uir_oprs{sken_opts = Op Ly . & an

aet_tis\ dir, el

¥
F gir ontidopen opls = 0 - [rawiidi

i) Erlang console &

1% Process list view| (= Prabikems | i Live Expressions 3 Console] 14l Edoc| & History

Demonstration

Croug dipg
. ST TADeng il & e
T s Breaunouisy w W " |

5 e 361
reak] leriann.aneiv.2} ferlioe_dbgdebugged. msg ot 3}
Variatde | s
& iy
~ Rawilecae
& g
vk *Bn<156000,0,22,0,22,9,255.7,>
PR Wide_ descrpeos pirie Tl Wtort <tealidgmg- thay

Some future features
* Semantic highlighting in editor (function calls,
variable usage, etc)

* Show documentation of user functions
* Erlang-aware search
* Refactoring

* xref-based indexing and searching
* Tracing viewer
* Syntax error correction

* What tools do you need?

10

Resources

* http://erlide.sourceforge.net

* http://erlide.sourceforge.net/update

* http://eclipse.org

* http://erlang.org

11

.
I
\
.
ol

o [

Lisp Flavoured Erlang
LFE

Adding a new flavour to Erlang

Robert Virding

o WhatlFEisnt [wd

RLANG

f

* |t isn’t an implementation of Scheme
* [t isn’'t an implementation of Common Lisp

In fact neither are possible on the Erlang VM

(Global data, destructive operations, ...)

2008-10-27 2

6 WhatlFEis [wd

* LFE is a (proper) Lisp based on the
features and limitations of the Erlang VM

» LFE is attuned to vanilla Erlang and OTP

* LFE coexists seemlessly with vanilla
Erlang and OTP

2008-10-27 3

el LFE Features H

ERLANG

-

* The usual good lisp stuff — macros,
sexprs, code < data, -

Extensive use of pattern matching

Uses Erlang data types

Uses Erlang BIFs

Functions of same name but different arity
Built on small core extended with macros
« Compiler, interpreter, (simple) shell

2008-10-27 4

el Syntax

* Pure lisp sepxrs
e [...]alternative to (...) (Scheme)

« Symbol is any atom which isn’t a number
— |quoted symbol|

* O)[1{}. , . @ #(#b(separators

« #(...)tuple constant

* #b(...) binary constant

» "abc” & (97 98 99), needs quoting @
» #\a or #\xab; characters

2008-10-27

el Core forms

» (case expr clause ...) ;An erlang case
+ (if test true false) A lisp if

* (receive clause ... (after timeout body))

* (catch body)

* (try expr (case ...) (catch ...) (after ...))
(lambda (arg ...) body)

(match-lambda clause ...)

(let ...), (let-function ...), (letrec-function ...)
(cons ...), (list ...), (tuple ...), (binary ...)

(func arg ...), (funcall var arg ...)

(call mod func arg ...) ;Eval all args
(define-function name ...)

2008-10-27

eded Core macros e

ERL
* (: mod name arg ...) ;Literal mod name
> (flet...), (fletrec ...)
o (let* ...), (flet* ...)
* (cond ... ;(?= pat expr)
* (andalso ...), (orelse ...)
* (do..) ;Scheme
* (lc (qualifier ...) expr ...) ;[expr || qualifier ...]
* (bc (qualifier ...) expr ...) ;<< expr || qualifier ... >>
* (fun name arity), (fun mod name arity)
o (++..)

* Bunch of CL inspired macros - defun, defmacro, ...

2008-10-27

LAN

G

Gl Lisp-1 vs. Lisp-2 &

ER

~

* Tried Lisp-1 in LFE 0.1 but it didn’t really
work, resulted in funny behaviour

Core Erlang tries to help but still see
difference

Lisp-2 "fits” Erlang VM better
So Lisp-2 from LFE 0.2 onwards
Result more consistent and better (I think)

2008-10-27

AN

G

ede Lisp-1 vs. Lisp-2 E[o

* In Lisp-1:
(define (foo x y) ...)
(define (bar x y)
(let ((foo (lambda (a) ...)))
(foo x y)
"))
* Which foo should be used?
— Local foo variable and bad_arity error
— Global foo/2 and succeed

2008-10-27 9

&% Function definition E[o

(defun member (x es)
(cond ((=:= es ()) 'false)
((=:= x (car es)) 'true)
(else (member x (cdr es)))))

(defun member
((x (e . es)) (when (=:= x e)) ’true)
((x (e . es)) (member x es))

((x () Talse))

2008-10-27 10

el Function scoping E[3

» Within a module
— Default predefined Erlang BIFs
— Explicit imports
— Top functions in module
— Local functions defined by flet and fletrec
* So no problem redefining Erlang BIFs or
imports. Macros!

* Core forms can never be shadowed!

2008-10-27 11

\ b

Gl Macros

 Macros are UNHYGIENIC!

— Does hygiene really work when distributing
compiled code?

* No (gensym)
— Unsafe in long-lived systems
— But probably must have

* Really only compile time at the moment
— Except in shell

m
=
e
>
=

2008-10-27 12

@

ey Macros | o

ERLANG

» CL based macros, with pattern matching
(defmacro foo (a b) ...)
(defmacro foo
(pat [guard] ...)
(pat ...))
» Pattern matches whole argument list

» Scheme based syntax-rule macros with
R5RS ellipsis

2008-10-27 13

&l Binaries

* (binary bitseg ...)
* bitseg = integer | (value bitspec ...)
— (1.5 float big-endian (size 32))
— (bin binary)
— (bits bitstring)
— ((foo a 35) integer little-endian (size 36))
— But must do ((foo a 35)) ®

o
=
>
z
@

{1

2008-10-27 14

\ b

el Patterns E[

* Like in vanilla Erlang patterns look like
constructors

— (binary (f float (size 32)) (rest binary))
* Use quote ’ to match literals

— (tuple ’ok val)
 But not for lists ®

—(abc)

—(h.t)

R

—

ANG

2008-10-27 15

el Patterns

* Have aliases
— (= (tuple "ok a b) tup)
— Checked in lint
» Can be used in
— let, case, receive, match-lambda, macros
—cond, Ic, bc
* Anonymous variable _

~
g
>
z
@

{1

2008-10-27 16

eded and Guards ! o

RLANG

P

(when (and (> x 5) (< x 10)))

» Guards are a (when <test>) expression
directly after the pattern in clauses

» LFE guards are Erlang guards

» No implicit equality tests for patterns
{X,X} = (tuple x x1) (when (=:= x x1))

« Can be used after any pattern

2008-10-27 17

ede Records [

ERLANG

(defrecord name field-def-1 field-def-2 ...)
field-def = field-name | (field-name default-value)
- (make-name field-name val field-name val ...)
(is-name rec)
(match-name field-name pat field-name pat ...)
(name-field-1 rec)
(set-name-field-1 rec val)

2008-10-27 18

oy LFE module [wd

* A module consists of
— Macro definitions
— Macro calls
— Function definitions
— Compile time function definitions

* Macros can be defined anywhere but must
be defined before being used

* Macros can define functions and other
macros

2008-10-27 19

el LFE module g o

(defmodule foo
(export (a 2) (b 1) (c 0))
(export all)
(import (from bar (x 2) (y 3))
(rename baz ((m 4) bm)))
(other-attribute (value)))

* Module definition must be the first non-
macro form

2008-10-27 20

10

el LFE compiler L &

» 3 passes
— Macro expansion
— Linting
— Code generation
 Lint and codegen only see LFE core forms
* Generates Core erlang
* LFE core forms < Core erlang
— So compiler relatively simple

2008-10-27 21

el LFE compiler [w

ERLANG

» Uses back-end of Erlang compiler

 Qutput should be closer to Erlang compiler
core output - better optimisation

2008-10-27 22

11

ooy LFE shell [w

» Simple REPL

Can evaluate all LFE expressions
Builtin variables + ++ +++ - * ** ***
Some builtin commands

(slurp file) to load file and interpret all
functions and macros

« Cannot define functions and macros yet
* No (spit file) yet either

°

2008-10-27 23

682 The BIG question | wd

ERLANG

Apart from the Answer to Life, the Universe, and Everything

Will LFE end the complaints
and moaning about Erlang
syntax?

2008-10-27 24

&by The answer "]

42

NO!

2008-10-27 25

o [

Implementing languages on
the Erlang VM

A brief description of the Erlang
compiler

Robert Virding

13

&% Implement a language L"]

RLANG

Implement language by:
* Writing an interpreter

— Easier but slower, more versatile
» Compiling to erlang

— Code format complex, to file?

« Compile to "internal” language
— Core erlang, kernel erlang

2008-10-27 27

682 Compiler overview | wA

ERLANG
Core Kernel Beam
Erlang Erlang Erlang ssembleri

LFE compiler lﬂ

sysupr&_expand @ @
]_ Core J
{ optimisation)

“.._passes _.

2008-10-27 28

14

ey Erlang compiler

» Core Erlang
— simple functional language
— lexically scoped
— local recursive functions
— pattern matching
— basic Erlang constructions (case, try etc.)
— but misses some useful constructions ®
— Erlang features make it slightly strange

2008-10-27

& Core Erlang forms

» (case expr clause ...) ;An erlang case
- (itesttrue-false)—————Alisp-if-
» (receive clause ... (after timeout body))
» (catch body)

» (try expr (case ...) (catch ...) (after ...))
» (lambda (arg ...) body)

» ~(Mmatch=anbdacause)

(let ...),(ret=furnction), (letrec-function ...)
(cons ...), (list ...), (tuple ...), (binary ...)

(func arg ...), (funcall var arg ...)
(call mod func arg ...) ;Eval all args
 (define-function name ...)

2008-10-27

30

15

el Erlang compi

» Kernel Erlang
— flat code
— lambda lifted
— pattern matching compiled ©
— no nested code
— receive expanded

2008-10-27 31

e Erlang compiler g o

* Sys_pre_expand
— Expand records, packages, annotate funs
* v3_core

— List comprehensions, add lexical scoping,
return exported variables, sequentialise code,
expand =, add explicit fail clauses

* v3_kernel

— Compile pattern matching, lambda lift local
functions and funs, flatten nested calls

2008-10-27 32

16

Rev A

Inside the Erlang VM

with focus on SMP

Prepared by Kenneth Lundin, Ericsson AB
Presentation held at
Erlang User Conference,
Stockholm, November 13, 2008

1 Introduction

The history of support for SMP (Symmetrical Multi Processor) in Erlang started
around 1997-1998 as a master thesis work by Pekka Hedqvist with Tony Rogvall
(Ericsson Computer Science Lab) as supervisor.

The implementation was run on a Compagq with 4 Pentium Pro 200 Mhz CPU'’s
(an impressive machine in those days) and showed a great potential for scalability
with additional processors but suffered from bad 10 performance.
The work with SMP did not continue at that time since it was so easy to increase
performance by just upgrading the HW to the newest processor. There simply
was no business case for it at the time.
The SMP work was restarted at 2005 and now as part of the ordinary
development. The work was driven by the Erlang development team at Ericsson
with participation and contributions from Tony Rogvall (then at Synapse) and the
HIiPE group at Uppsala University.
The strategy was (and still is):

o First, "make it work”

e Second, "measure” and find bottlenecks

e Third, "optimize” by removing bottlenecks

The first release of a stable runtime system with support for SMP came in OTP
R11B in May 2006.

This ended the first cycle of the strategy and a new iteration with “measure”,
“optimize” and “make it work” started. Read more about it in the next pages.

ERICSSON 2

Inside the Erlang VM

ERICSSON Z

2 How it works

2.1 Erlang VM with no SMP support

The Erlang VM without SMP support has 1 scheduler which runs in the main process
thread. The scheduler picks run able Erlang processes and 10-jobs from the run-
queue and there is no need to lock data structures since there is only one thread
accessing them.

. § . " v o=t e % hA S b
Erlang (won SMP) VM today

i —

mw#éucuc ?

|

2.2 Erlang VM with SMP support (in R11B and R12B)

The Erlang VM with SMP support can have 1 to 1024 schedulers which are run in 1
thread each.

Rev A 2008-11-06 © Ericsson AB 2008 2 (10)

Inside the Erlang VM

ERICSSON Z

The schedulers pick run able Erlang processes and 10-jobs from one common run-
queue. In the SMP VM all shared data structures are protected with locks, the run-
queue is one example of a shared data structure protected with locks.

- a7 o RATY NINA ol :
Erlang SMP VM COG AU
I <

feﬂawg VM

f Scheduler #1
!

| J

|
ﬁ{! Scheduler #2]!] |
[l —_—] j |
, ' /

221 First release for use in Products, March 2007

Measurements from a real telecom product showed a 1.7 speed improvement
between a single and a dual core system.

It should be noted that it took only about a week to port the telecom system to a new
OTP release with SMP support, to a new Linux distribution and to a new
incompatible CPU architecture, the Erlang code was not even recompiled.

It took a little longer to get the telecom system in product status, a few minor
changes was needed in the Erlang code because Erlang processes now can run
truly parallel which changes the timing and ordering of events which the old
application code did not count for.

The performance improvements achieved on a dual core processor for a real
telecom system where encouraging and after that several other telecom systems
have also taken benefit from the SMP support in Erlang.

Rev A 2008-11-06 © Ericsson AB 2008 3(10)

ERICSSON Z

2.2.2

Rev A 2008-11-06

Inside the Erlang VM

SMP in R12B

From OTP R12B the SMP version of the VM is automatically started as default if the
OS reports more than 1 CPU (or Core) and with the same number of schedulers as
CPU's or Cores.

You can see what was chosen at the first line of printout from the er1 command.
E.g.

Erlang (BEAM) emulator version 5.6.4 [source] [smp:4]
The [smp: 4] above tells that the SMP VM is run and with 4 schedulers.

The default behaviour can be overridden with the

"~smp [enable|disable|auto]" auto is default and to set the number of
schedulers, if smp is set to enable or auto use "+S Number" where Number is the
number of schedulers (1..1024)

Note ! It is normally nothing to gain from running with more schedulers than the
number of CPU's or Cores.

Note2 ! On some operating systems the number of CPU's or Cores to be used by a
process can be restricted with commands. For example on Linux the command
"taskset" can be used for this. The Erlang VM will currently only detect number of
available CPU's or Cores and will not take the mask set by "taskset" into account.
Because of this it can happen and has happened that e.g. only 2 Cores are used
even if the Erlang VM runs with 4 schedulers. It is the OS that limits this because it
take the mask from "taskset" into account.

The schedulers in the Erlang VM are run on one OS-thread each and it is the OS that
decides if the threads are executed on different Cores. Normally the OS will do this
just fine and will also keep the thread on the same Core throughout the execution.

The Erlang processes will be run by different schedulers over time because they are
picked from a common run-queue by the first scheduler that becomes available.

Performance and scalability

The SMP VM with only one scheduler is slightly slower (10%) than the non SMP VM,
This is because the SMP VM need to use locks for all shared datastructures. But as

long as there are no lock-conflicts the overhead caused by locking is not that high (it
is the lock conflicts that takes time).

© Ericsson AB 2008 4 (10)

ERICSSON Z

Rev A 2008-11-06

Inside the Erlang VM

This explains why it in some cases can be more efficient to run several SMP VM's
with one scheduler each instead on one SMP VM with several schedulers. Of course
the running of several VM's require that the application can run in many parallel tasks
which has no or very little communication with each other.

If a program scale well with the SMP VM over many cores depends very much on the
characteristics of the program, some programs scale linearly up to 8 and even 16
cores while other programs barely scale at all even on 2 cores.

This might sound bad, but in practice many real programs scale well on the number
of cores that are common on the market today, see below.

Real telecom products supporting a massive number if simultaneously ongoing
"calls" represented as one or several Erlang processes per core have shown very
good scalability on dual and quad core processors.

Note, that these products was written in the normal Erlang style long before the SMP
VM and multi core processors where available and they could benefit from the Erlang
SMP VM without changes and even without need to recompile the code.

Our strategy with SMP

Already from the beginning when we started implementation of the SMP VM we
decided on the strategy:

"First make it work, then measure, then optimize".

We are still following this strategy consistently since the first stable working SMP VM
that we released in May 2006 (R11B).

Another important part of the strategy is to hide the problems and awareness of SMP
execution for the Erlang programmer. Erlang programs should be written as usual
using processes for parallel tasks, the utilization of CPUs and cores should be
handled by the Erlang VM. It must be easy and cost effective to utilize multicore and
SMP HW with Erlang this is one of our absolute strengths compared to other
programming languages.

There will be new BIF’s for SMP related stuff but we try to avoid that as much as
possible. We think it is preferable to configure SMP related things such as number of
cores to use, which cores to use on the OS level and as parameters to the Erlang
VM at startup.

The principle is that an Erlang program should run perfectly well on any system no
matter what number of cores or processors there are.

© Ericsson AB 2008 5(10)

ERICSSON Z

3)

5.1

5.1.1

5.1.2

Rev A 2008-11-06

Inside the Erlang VM

Next steps with SMP and Erlang

There are more known things to improve and we address them one by one taking the
one we think gives most performance per implementation effort first and so on.

We are now putting most focus on getting consistent better scaling on many cores
(more than 4).

The SMP implementation is continually improved in order to get better performance
and scalability. In each service release R12B-1, 2, 3,4, 5, ..., R13B-0, 1, ..., R14B
etc. you will find new optimizations.

Some known bottlenecks

Below some of the most significant bottlenecks that we know of are described, there
are for sure more bottlenecks than this and we intend to address them one after one.
It is worth noting that after removal of one bottleneck there might be new ones
coming up and the already known ones may have got changed importance.

The common run-queue

The single common run-queue will become a dominant bottleneck when the number
of CPU's or Cores increase.

This will be visible from 4 cores and upwards, but 4 cores will probably still give ok
performance for many applications.

We are working on a solution with one run-queue per scheduler as the most
important improvement right now. Read more about this later in the document.

Ets tables

Ets tables involves locking. Before R12B-4 there was 2 locks involved in every
access to an ets-table, but in R12B-4 the locking of the meta-table is optimized to
reduce the conflicts significantly (as mentioned earlier it is the conflicts that are
expensive).

If many Erlang processes access the same table there will be a lot of lock conflicts
causing bad performance especially if these processes spend a majority of their work
accessing ets-tables.

The locking is on table-level not on record level. An obvious solution is to introduce
more fine granular locking.

© Ericsson AB 2008 6 (10)

ERICSSON 2

5.1.3

51.4

Rev A 2008-11-06

Inside the Erlang VM

Note! that this will have impact on Mnesia as well since Mnesia is a heavy user of
ets-tables.

Message passing

When many processes are sending messages to the same receiving process there
will be a lot of lock conflicts. There are ways to optimize this by reducing the amount
of work being done while having the lock.

A process can block the scheduler

If a process is blocked waiting to get a lock for example to access an ets-table the
whole scheduler is blocked doing nothing until the lock is accuired and the process
can continue it's execution. This can be improved by introducing what we call
“process level locking” which means that if a process is blocked waiting to get a lock
it will be scheduled out and the scheduler will schedule in the next process from the
run-queue instead. We have already implemented and measured on this solution and
concluded that it probably can be introduced when the separate run-queues are in
place. We still need to verify that it does not degrade performance for certain special
cases.

© Ericsson AB 2008 7(10)

ERICSSON

5.2

5.21

Rev A 2008-11-06

Inside the Erlang VM

Separate run-queues per scheduler

The next big performance improvement regarding SMP support in the Erlang runtime
system is the change from having one common run-queue to having a separate run-
queue per scheduler. This change will decrease the number of lock conflicts
dramatically for systems with many cores or processors. The improvement in
performance will in many applications be significant already from 4 cores and will of
course be even more noticeable in systems with 8, 16 or even more cores.

—tii A e MNAT \V/MA L- s,
Eriang SMP VM nEXT g’%l’

/ff rlang VM T \

2, Sc',hedul,er#i {/ un quene

7

fScthuLCY#:Z {I n queus i
(=5

IIIE'

|

/ [Scheduler #N {7 run ﬂueu)

L.

e - i

i ——

Migration logic

When there are separate run-queues per scheduler the problem is moved from the
locking conflicts when accessing the run-queue to the migration logic which must be
both efficient and reasonably fair.

The implementation we have so far will need a lot more benchmarking and fine
tuning before it works optimally. It works roughly like this:

The maximum number of run able processes over all schedulers is measured
approximately 4 times per second. This value divided by number of schedulers is
then used to trigger migration of processes from one scheduler to another scheduler.

When a scheduler is about to schedule in a new process it will first check if its

number of run able processes is above the max value described above and if it is it
will migrate the process to another scheduler according to the migration path set up.

© Ericsson AB 2008 8 (10)

ERICSSON Z

Rev A 2008-11-06

Inside the Erlang VM

There are also 2 other occasions in addition to the “schedule in” of a new process
when a process migration can occur:

1. If a scheduler gets out of jobs it will steal jobs from other schedulers.

2. Underloaded schedulers will also steal jobs from heavily overloaded
schedulers in their migration paths.

Below follows some measurements that show early indications of the improvements
the system with separate run-queues per scheduler and the migration logic described
above will give.

The graph below shows the results from running the benchmark “big bang” with 1, 2,
4, 8 schedulers on both the current system with one single run-queue and on the
next to come system with multiple run-queues one per scheduler.

The benchmark spawns 1000 processes which all sends a ‘ping’ message to all
other processes and answer with a ‘pong’ message for all ‘ping’ it receives.

The “fat” lines in the graph shows the multiple run-queue case and as can be seen
the improvement is significant.

big:bang(1000)
45
40
= 35] ———-Intel Core2 Quad Q9300
% @ 2.50GHz plain
8 30 1— = =|ntel Core2 Quad Q9300
2 25 4 @ 2.50GHz mrq
q;’ 20 2 x Quad Intel Xeon
S 15 E5310 @ 1.60GHz plain
qg’ 10 2 x Quad Intel Xeon
i- E5310 @ 1.60GHz mrq
5
0 L} 1 L
1 2 4 8
Number of schedulers

© Ericsson AB 2008 9 (10)

-

e

ERICSSON 2

6

6.1

6.2

6.3

Rev A 2008-11-06

Inside the Erlang VM

Frequently Asked Questions

Is there any difference in the .beam file depending on if it
should run in a SMP or non SMP system?

As long as the module is not compiled with “native” option with a HiPE enabled
system the .beam files are the same and can be run in both SMP and non SMP
systems.

Can an Erlang process be locked to a specific processor
core?

An Erlang process can not be locked to a specific processor by the programmer and
this is intentional. In a future release it might be possible to lock a scheduler to a
specific core.

What is the relation between asynch threads and SMP?

The asynch thread pool has nothing with SMP todo. The asynch threads are only

used by the file driver and by user written drivers that specifically uses the thread

pool. The file driver uses this to avoid locking of the whole Erlang VM for a longer
time period in case of a lengthy file operation. The asynch threads was introduced
long before the SMP support in the VM and works for the non SMP VM as well. In
fact the asynch threads are even more important for a non SMP system because

without it a lengthy file operation will block the whole VM.

© Ericsson AB 2008 10 (10)

Erlang/OTP News, EUC,Stockholm Nov 13,

2008

ERLANG

"Erlang/OTP News”

Erlang User Conference,
November 13, 2008, Stockholm

Kenneth Lundin
Manager, Erlang/OTP team at Ericsson

ERICSSON Z

TAKING YOU FORWARD

{;,] R12B-5 released last week

ERLANG

= R12B-5 released November 5
« Highlights
— Eunit, a tool for unit test of modules now included in the
distribution
— Experimental features for loading from archive files added
to code server
— Escript enhancements, Options to emulator startup can be
given, ...
— foo/1 allowed in user defined attributes
— new SSL much improved , can soon replace old SSL

— Improved locking in 10-handling for better smp
performance.
- And much more .

© Ericsson AB 2008 2 Erlang/OTP News, EUC,Stockholm Nov 13, 2008 2008-11-06 ERICSSON f

Ericsson AB 2008

2008-11-06

Erlang/OTP News, EUC,Stockholm Nov 13,

2008

se R13B

(A3

[@] Next majorrele

ERLANG

= The next major release R13B is planned for April 2009
= A beta called R13A planned for March
* Service releases approximately every second month

© Ericsson AB 2008 3 Erlang/OTP News, EUC,Slockholm Nov 13, 2008 2008-11-06 Ericsson 5

™y

Cad

[o3 Tentative new functions in R1

ERLANG

= SMP with multiple run-queues and other optimizations
= re, new regular expression implementation officially supported
= More features in the "standalone” Erlang direction

= Completed the distribution of doc source with built support to
produce html and pdf.

WxWidgets based GU! library included in the distribution, plan to
remove GS from R14

= Major XML improvements, both speed and functions
= Unicode support as described in EEP-10

= Fast search in binaries

« FFI, Foreign Function Interface or loadable BIF's

= Scanner which can preserve complete source (withespace,
comments)

= Megaco improved SMP performance

© Ericsson AB 2008 4

e

Erlang/OTP News, EUC,S1ockholm Nov 13, 2008 2008-11-06 ERICSSON s

Ericsson AB 2008

2008-11-06

Erlang/OTP User Conference 2008

Speakers
Thomas Arts Quviq Goéteborg Sweden thomas.arts@gquvig.com
Garry Bulmer Coventry England gbulmer@gmail.com
Jakob Cederlund Ericsson AB OTP Stockholm Sweden
Francesco Cesarini Erlang Training & Consulting London England francesco@erlang-consuiting.com
Vlad Dumitrescu HIiQ Goéteborg Sweden vladdu55@gmail.com
Zoltan Horvath Ed&tvés Lorand University Budapest Hungary hz@inf.elte.hu
John Hughes Quvig Goteborg Sweden john.hughes@quvig.com
Robert Ippolito Mochi Media San Francisco USA bob@mochimedia.com
Kenneth Lundin Ericsson AB OTP Stockholm Sweden kenneth.lundin@ericsson.com
Hans Nilsson Ericsson AB Stockholm Sweden Hans.R.Nilsson@ericsson.com
Anders Nygren Telexpertise de Mexico Mexico anders.nygren@gmail.com
Kostis Sagonas University of Uppsala Uppsala Sweden kostis@it.uu.se
Michal Slaski Erlang Training & Consulting London England michal@erlang-consulting.com
Simon Thompson University of Kent Canterbury England S.J.Thompson@kent.ac.uk
Robert Virding Stockholm Sweden rvirding@gmail.com
Participants
Tomas Abrahamsson Ericsson AB Linkdping Sweden tomas.abrahamsson@ericsson.com
Roberto Aloi Erlang Training & Consulting London England roberto@erlang-consulting.com
Kristoffer Andersson Synapse Mobile Networks Stockholm Sweden kristoffer.andersson@synap.se
Peter Andersson Ericsson AB OTP Stockholm Sweden
Robert Andersson University of Uppsala Uppsala Sweden robert.andersson.4801@student.uu.se
Ingela Anderton-Andin Ericsson AB OTP Stockholm Sweden ingela@theheartofgold.org
Anesiadou-
Anna Hansen Euskirchen Germany anna.a-hansen@web.de
Marcus Arendt Synapse Mobile Networks Stockholm Sweden marcus@arendt.se
Joe Armstrong Ericsson AB Stockholm Sweden joearms@gmail.com
Tuncer Ayaz Aachen Germany tuncer.ayaz@gmail.com
Henrik Back Mobile Arts AB Uppsala Sweden Henrik.back@mobilearts.se
John-Olof Bauner Ericsson AB Stockholm Sweden john-olof.bauner@ericsson.com
Per Bergqvist Synapse Mobile Networks Stockholm Sweden per@synap.se
Xingdong Bian Erlang Training & Consulting London England bian@erlang-consulting.com
Martin Bjorklund Tail-f Systems AB Stockholm Sweden mbj@tail-f.com
Benjamin Black Joyent Seattle USA bb@joyent.com
Ivan Bodunov Nokia Siemens Networks Espoo Finland ivan.bodunov@gmail.com
Mikael Bohlin ltancan Consulting mikael.bohlin@itancan.com
Hans Bolinder Ericsson AB OTP Stockholm Sweden hans.bolinder@ericsson.com
Franc Bozic eXcenter d.o.o. Radovljica Slovenia Franc@akcija.net
Mikael Bylund TeliaSonera Sverige AB Uppsala Sweden mikael.bylund@teliasonera.com
Goran Bage Mobile Arts AB Stockholm Sweden goran.bage@mobilearts.com
Larry Canady University of Uppsala Uppsala Sweden laca1583@student.uu.se
Geoff Cant Process-One Paris France nem@erlang.geek.nz
Richard Carlsson Kreditor Stockholm Sweden Richard.Carlsson@Kreditor.se
Mats Crongqvist Kreditor Stockholm Sweden Mats.Cronqvist@Kreditor.se
Graham Crowe Ericsson AB Stockholm Sweden graham.crowe@ericsson.com
Bjérn-Egil Dahlberg Ericsson AB OTP Stockholm Sweden
Anders Dahlin Dahlin Energy AB Stockholm Sweden anders@dabhlinenergy.se
Matthew Dempsky Mochi Media San Francisco USA matthew@mochimedia.com
Bjarne Dacker CSLab Stockholm Sweden bjarne@cs-lab.org
Niclas Eklund Ericsson AB OTP Stockholm Sweden nick@erix.ericsson.se
Emad El-Haraty Mochi Media San Francisco USA emad@mochimedia.com
Martin Engstréom Kreditor Stockholm Sweden Martin.Engstrom@Kreditor.se
Sverker Eriksson Ericsson AB OTP Stockholm Sweden
Maxim Escurel Kreditor Stockholm Sweden Maxim.Escurel@Kreditor.se
Gerd Flaig Google Ziirich Switzerland gefla@google.com
Magnus Froberg Kreditor Stockholm Sweden Magnus.Froberg@Kreditor.se
Dan Gudmundsson Ericsson AB OTP Stockholm Sweden dgud@erix.ericsson.se
Bjorn Gustavsson Ericsson AB OTP Stockholm Sweden bjorn@erix.ericsson.se
Rainer Hansen Ericsson AB Bonn Germany rainer.hansen@ericsson.com

Dale Harvey Hypernumbers London England dale@hypernumbers.com

Andreas
Dragan
Per
Pekka
Anders
Andreas
Magnus
Sgren
Sean
Anders
Henrik
Klas
Mikael
Micke
Mikael
Roland
Bengt
Mikael
Huiging
Tobias
Adam
Christopher
Mikael
Mattias
Peter
Peter Henry
Tomas
Hakan
Sean
Peter
Hunter
Chandru
Peter
Daniel
Raimo
Linus
Patrik
Jan-Henry
Kim
Nicolae
Anders
Mickaél
Tony
Christophe
Mikael
Dan
Jan-Erik
Andreas
Rahui
Hakan
Erik

Ben
Sebastian
Goran
Hans
Gunnar
Marcus
Fredrik
Robin
Melinda
Zoltan Peter
Michael

Hasselberg
Havelka
Hedeland
Hedqvist
Heimer
Hellstrém
Henoch
Hilmer
Hinde
Hjelm
Hoffstrom
Johansson
Kardell
Karlsson
Karlsson
Karlsson
Kleberg
Laaksonen
Li

Lindahl
Lindberg
Lindbergh
Lindmark
Ljunggren
Lund
Mander
Mannerstedt
Mattsson
McEvoy
Mechienborg
Morris
Mullaparthi
Nagy
Nibon
Niskanen
Nordberg
Nyblom
Nystrém
Olsson
Paladi
Ramsell
Rémond
Rogvall
Romain
Roseen
Sahlin
Sankala
Schumacher
Singh
Stenholm
Stenman
Stovold
Strolio
Stupalo
Svensson
Sverredal
Taylor
Thulin
Thunell
Toth

Téth
Truog

Kreditor

Mobile Arts AB

Tail-f Systems AB
Optimobile

TietoEnator

TeliaSonera Sverige AB
Erlang Training & Consulting
wideTrail

Synapse Mobile Networks
Consoden AB

Ericsson AB

Ericsson AB

Kreditor

Mikadako AB

Creado Systems

Erlang Training & Consulting
Ericsson AB

Mobile Arts AB

University of Kent

Kreditor

Erlang Training & Consuilting
Streamnow AB

Kreditor

Synapse Mobile Networks
Synapse Mobile Networks
T-Mobile

Combitech AB

Ericsson AB OTP

Erlang Training & Consulting
Mu

Smarkets Ltd.

T-Mobile

Ericsson AB

Mobile Arts AB

Ericsson AB OTP

Net Insight

Ericsson AB OTP

Erlang Training & Consulting
Ericsson AB

IT University of Géteborg
TeliaSonera Sverige AB
Process-One

Rogvall Invest AB
Process-One

Kreditor

Erlang Training & Consulting
Streamnow AB

Ericsson AB

Ericsson AB

Kreditor

Kreditor

Blue Tomato Ltd.

Tail-f Systems AB

Ericsson AB OTP

IT University of Géteborg
TeliaSonera Sverige AB
Erlang Training & Consulting
University of Stockholm
Ericsson AB

Eoétvos Lorand University
Ericsson AB

Nokia Siemens Networks

Stockholm
Stockholm
Stockholm
Stockholm
Karlstad
Uppsala
Goéteborg
Allingabro
Christchurch
Uppsala

Linképing
Stockholm
Uto
Stockholm
Stockholm
Stockholm
Stockholm
Canterbury
Stockholm
London
Lulea
Stockholm
Stockholm
Stockholm
Hatfield
Stockholm
Stockholm
Stockholm
Aarhus
London
Hatfield
Budapest
Stockholm
Stockholm
Stockholm
Stockholm
Uppsala
Stockholm
Goteborg
Uppsala
Paris
Gustavsberg
Paris
Stockholm
Stockholm
Lulea
Stockholm
Stockholm
Stockholm
Stockholm
London
Stockholm
Stockholm
Goteborg
Uppsala
London
Stockholm
Stockholm
Budapest
Budapest
San Francisco

Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Denmark
England
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
England
Sweden
England
Sweden
Sweden
Sweden
Sweden
England
Sweden
Sweden
Sweden
Denmark
England
England
Hungary
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
France
Sweden
France
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
England
Sweden
Sweden
Sweden
Sweden
England
Sweden
Sweden
Hungary
Hungary
USA

Andreas.Hasselberg@Kreditor.se
dragan.havelka@mobilearts.com
per@tail-f.com
Pekka.Hedqvist@OptiMobile.SE
Anders.Heimer@tietoenator.com
andreas.hellstrom@teliasonera.com
magnus@erlang-consulting.com
sh@uwidetrail.dk

sean@synap.se
Anders.HjelIm@consoden.se
henrik.hoffstrom@ericsson.com
klas.johansson@ericsson.com
Mikael.Kardell@Kreditor.se
micke@mikadako.com
mikael.karisson@creado.com
roland@erlang-consulting.com
bengt.kleberg@ericsson.com
mikael.laaksonen@mobilearts.com
H.Li@kent.ac.uk
Tobias.Lindahi@Kreditor.se
adam@erlang-consulting.com
christopher@scg.nu
Mikael.Lindmark@Kreditor.se
mattias@synap.se
peter.lund@synap.se
Peter.Mander@t-mobile.co.uk
mannerstedt@gmail.com
hakan@erix.ericsson.se
sean@erlang-consulting.com
peter@mu.dk
hunter.morris@smarkets.com

chandrashekhar.mullaparthi@gmail.com

peter.nagy@ericsson.com
daniel.nibon@mobilearts.com
raimo@erix.ericsson.se
linus@nordberg.se
pan@erix.ericsson.se
jan@erlang-consulting.com
kim.xx.olsson@ericsson.com
n.paladi@gmail.com
anders.ramsell@teliasonera.com
mickael.remond@process-one.net
tony@rogvall.se
christophe.romain@process-one.net
Mikael.Roseen@Kreditor.se
dan@erlang-consulting.com
js@scg.nu
andreas.schumacher@ericsson.com
rahul.singh@ericsson.com
hokan@kreditor.se
Erik.Stenman@Kreditor.se
bstovold@gmail.com
seb@tail-f.com

hanssv@gmail.com
gunnar.sverredal@teliasonera.com
marcus@eriang-consulting.com
ft@it.su.se
robin.xx.thunell@ericsson.com
toth_m@inf.elte.hu
zoltan.peter.toth@ericsson.com
michael.truog@nokia.com

Torbjérn
Marc
Hasan
Mats

Ulf
Claes
Stefan
Chris
Dominic
Patrik
Hao
Jimmy
Jonas
Lennart
Lennart
2008-11-04

Tornkvist
van Woerkom
Veldstra
Westin
Wiger
Wikstrém
Willehadson
Williams
Williams
Winroth
Zhang

Zhao

Aman
Ohman
Ostman

Kreditor

Mayflower GmbH
Hypernumbers

Teligent

Ericsson AB

Tail-f Systems AB
Synapse Mobile Networks
Ericsson AB

Esmertec

Synapse Mobile Networks
Mobile Arts AB

Ericsson AB

Ericsson AB

Sj6land & Thyselius Telecom

Synapse Mobile Networks

Stockholm
Minchen
Edinburgh
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Paris
Stockholm
Stockholm
Uppsala
Linkdping
Stockholm
Stockholm

Sweden
Germany
Scotland
Sweden
Sweden
Sweden
Sweden
Sweden
France
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden

Torbjorn.Tornkvist@Kreditor.se

mvanwoerkom@acm.org
hasan@hypernumbers.com
mats.westin@gmail.com
ulf@wiger.net
klacke@hyber.org
stefanw@synap.se
sailingareus@gmail.com
dwilliams@esmertec.com
patrik.winroth@synap.se
hao.zhang@mobilearts.com
Ming@zhao.nu
jonas.aman@ericsson.com
Lennart. Ohman@st.se
lennart.ostman@synap.se

Requests per month to www.erlang.org

2 000 000

1 800 000

1 600 000

-

1 200 000

W
V

1 000 000 N
800 000

o J

400 000 A M
200 000 AM-_A!“\/.'J V v
w

0

dec- jun. dec- jun- dec- jun- dec- jun- dec- jun- dec- jun- dec- jun- dec- jun- dec- jun- dec- jun-
98 99 93 00 OO0 ©O1 ©O1 02 02 03 03 D4 04 ©O5 O5 06 06 O7 07 08

T

* -
.
i
.
|
.

w e

o~

