Erlang User Conference 2006 Sidalav1

13th International Erlang/OTP
User Conference

Stockholm, November 8, 2007

Proceedings

http://www.erlang.se/euc/07/

w Training and Consulting
KREDITOR

48T
L tail-f |

0 .
2 QuviQ synapse
[) mobile networks s.a.
E 316Iand&Thyselius
[H ° - | 5 |
ERLANG ERICSSON = Mobile g%

Marcus Arendt Aktiebolag

file://C:\Documents and Settings\Bjarne\Mina dokument\EUC 2007\FrontPage. html 2007-10-27

.
3
-
"
.

EUC'07 Programme Sidalavl

Erlang/OTP User Conference 2007

Programme

—

08.30 Registration

Session I Chairman Ulf Wiger

09.00 Transport for London Journey Angel
Marcus Taylor and Vincenzo Nicosia

0930 YXA Developments

Fredrik Thulin

10.00 Erlang Developments in LambdaStream
Samuel Rivas

10.30 Coffee

Session II Chairman Francesco Cesarini

11.00 Erlware for Managing Distribution and Build
Eric Merritt and Martin Logan

11.30 Quality Cruising -- Making Java Work for Erlang
Erik Stenman

12.00 Generic Syntactic Analyser: ParsErl
Aniké Nagyné Vig and Tamds Nagy

12.30 Lunch

Session IIT Chairman Mickagl Rémond

14.00 Developing RESTful Platforms With Erlang And Adobe Flex
Gordon Guthrie

1430 Integrating OTP with Enterprise Service Bus
Leslaw Lopacki

15.00 Towards Hard Real-Time Erlang
Vincenzo Nicosia

15.30 Coffee

Session IV Chairman Claes Wikstrom

16.00 ProTest - An EU STREP project
John Hughes

16.15 Information about current Erlang/OTP Releases
Kenneth Lundin

1645 Non-Destructive Arrays
Richard Carlsson and Dan Gudmundsson

17.00 How to program efficiently with Binaries and Bit Strings
Per Gustafsson

17.30 Bus transport to the ErLounge

file://C:\Documents and Settings\Bjarne\Mina dokument\EUC 2007\Program.htm 2007-10-27

1(9

TfL Journey Angel

Context Aware Decision Support

Erlang Training and Consulting Ltd
www.erlang-consulting.com

Marcus Taylor
marcus@erlang-consulting.com

The Transport for London Brief

Demonstrator Name Mobile avatar solution — ‘Journey Angel’

Description

This demonstrator will deliver a mobile avatar system prototype that will
assist the passenger throughout his time in London: pre-journey, in-
journey and post-journey.

The software uses a smart mobile client to produce a mobile avatar with
speech capability.

The Avatar will support advisory/decision support actions including:

L I R

Installation, configuration and personalisation of Avatar
Incident alerting

Delay alerting

Planning support

The client software will communicate to the server system for updated
content.

The Avatar will do pseudo realistic lip synching.
Loquendo will be used for real time text to speech

w Training and Consulting Confidential -27 Sep 2007 Page 2

26 Sep 20(

Technology

» Client
- N73
- Symbian
- Flash
- Loquendo
- MRIX

e Server

- EjabberD (XMPP compliant jabber IM server)
- Erlang/OTP

w Training and Consulting Confidentiat -27 Sep 2007 Page 3

Mhat be_hi”q;q_ iéy_rfey Angel ? ” - j

» TheJourney Angel is a powerful platform for distributed
context-aware information spreading, using
- Standard technologies (Erlang, Jabber, Flash)
- Decentralized management
- Intrinsically robust architecture
- Scalability

« Those characteristics are critical for TFL: they need a
solution to manage customized messaging to millions of
travellers everyday....

» ...and Journey Angel gives such a solution

WJ Training and Consulting Confidential -27 Sep 2007 Page 4

26 Sep 20

E

h‘he “tar_get” (from TFL perspectlve) “ _I

« The system allows users to:
- Get travel information
- Plan trips according to their future activities

- Get context-aware information about delays, diversions, alerts
and similar

- Get additional (mostly unspecified) customised information, e.g.
advertisement, weather, commercial....

o Itis likely that TFL would like to develop the system
into to a real product...

» ...and there are many other use-cases that can be
addressed by context aware system....

w Training and Consulting Confidential -27 Sep 2007 Page 5

ﬁ'heﬁnalsy_slem what we havg now

Interface
(manag.)

System Configuration

Interface
(Sim.)

w Training and Consulting Confidential -27 Sep 2007 Page 6

26 Sep 20(

L

Journey Angel: Device.

« Journey Angel on the device uses the
following:

- MRIX to provide integration between the Ul,
TTS, server-side and native device applications
(calendar and contacts)

- XMPP to communicate with the server
- Flash for the User Interface
- Loquendo for Text To Speech

W Training and Consulting Confldential -27 Sep 2007 Page 7

@evice side architect_u[?

Native
Contacts
Location

Tacker

XMPP communication with server

w Training and Consulting Confidential -27 Sep 2007 Page 8

26 Sep 20

5 26 Sep 20(

TAL Start Menu (TVF) |
©TH ,, GaD)

!f" N, Menu

R » Take me Home
+ Take me to...

+ Meet with...

+ Where am I?

« What next?

e Settings

- Exit

Text/Volce/Face Menu
a2
~
Traversing Horizontally

apSihnarnry sod Pols - -
w Mrm -3-29. Eﬂsulting Confidential -27 Sep Z@g Page 9

WRIX: Integrating server and Flash Ul

o An MRIX script provides communication between the
server and Flash Ul

« The script runs in the background communicating with
the server

« Messages received can be personalised and then
converted to speech

» Once in audio form the Flash Ul can be told to 'speak
the message’

w Training and Consulting Confidential -27 Sep 2007 Page 10

MRIX: Integrating Flash Ul and native apps

» MRIX enables the built in Contacts and Agenda to be
used

« Routes can be automatically retrieved based on an
appointment in the agenda

» Contacts can be 'tagged’ with network information,
such as Cell ID and Bluetooth Access Point to help
locate a person

w Training and Consulting Confidential -27 Sep 2007 Page 11

L_Jc;ﬂrney Angel: Backend

« Journey Angel relies on a backend infrastructure based
on
- XMPP (Jabber) communication protocol (Ejabberd)
- Erlang server applications
- Interfaces to information feeds

w Training and Consulting Confidential -27 Sep 2007 Page 12

26 Sep 20

.

lBehind the scer]_és_.-.-. ﬁ_’

Journey
Planner

(@) (@]

w Training and Consulting Confidential -27 Sep 2007 Page 13

Backend Applications: proxies ‘

Server-side
Representation

s \ Real World
© O k96
@) @)

Real Entitie:
w Training and Consulting Confidential -27 Sep 2007 Page 14

Virtual Images

26 Sep 20(

g 26 Sep 2

Backend Applications: interfaces

BBC news Weather
forecast

Traffic

Journey Information

planner

BBC news Weather
interface interface

Traffic
JP interface

interface

W/ Training and Consulting Confidential -27 Sep 2007 Page 15

‘Internal communication

Weather
interface

BBC news
interface

Traffic
interface

JP
interface

BBC news Weather
chatroom chatroom

Traffic

JP
chatroom

chatroom

Avatar
proxy Avatar BUS proxy

proxy

w Training and Consulting Confidential -27 Sep 2007 Page 16

TheSystem |

BBC %
User
o Routes

Web
Interface
(manag.)

System Configuration

Web
Interface
(Sim.)

w Training and Consulting Confidential -27 Sep 2007 Page 17

konclusions

« The system demonstrates how it is possible to deliver
real time decision support systems to mobile users by
combining Jabber, XMPP, 3G and Smart Phones using
Symbian

« The use of Erlang/OTP has enabled us to deliver a
feature rich, robust and functioning system in short
timescales

« The system has the potential to provide personal angels
for horizontal and vertical applications such as finance,
health, logistics where the context and timeliness of
information constitute value.

w Training and Consulting Confidential -27 Sep 2007 Page 18

26 Sep 20(

1(5)

Y XA PROJECT

Fredrik Thulin <sip:ft@it.su.se>
Sektionen for IT och media
Stockholms universitet

EUC 2007

(draft version)

YXA AT EUC 2004
e SU telephony systems ® Plans :
e SIP background - Distributed services
e Me and Erlang - Policy control

) - E 1
e YXA at the time vent logging

- RFC compliance

— Perimeter defense

YXA 1.0

should be released by EUC'07

PROJECT GOALS

* Robust SIP server for 10,000's of users
*Scalable by distributing servers
* Short time-to-market

* Interoperability

3

YXA CHARACTERISTICS

* Specific version requires specific Erlang/OTP
version

* Adopts new stuff

~ try/catch

- orelse in guards
- EDoc

* Easy to extend/modify

FRAMEWORKS

* | Like frameworks :
- Configuration subsystem
- User database backends
~ Transports

- Events

— local.erl with 87 hooks

- SIP Event server (RFC3265) framework for packages

L

ROBUSTNESS

° 2867 test cases

* Test integrated in release process

* Snapshots and release candidates

* Dialyzer

* Pay close attention to compiler warnings
 SIPit's

SPEED

* Who needs speed?

— Presence
- Four servers better than 16

— Fast initial parsing

* Profiling
* Logging
e 70 CPS on old laptop (70 * (INVITE + BYE))

0

VALUE FOR OTHERS?

e].ots of documented code

— OTP supervisors, gen_event and gen_servers

- Binary and string parsing
- Network code (TCP, UDP, TLS, IPvé6 (!))

- SSL stuff

— Mnesia

e Well written code I hope
* ./configure & & make & & make install

PROJECT INFO

http://www.stacken.kth.se/project/yxa/

svn://anonsvn.it.su.se/yxa/trunk/

BSD license

1(1)

Erlang Developments in LambdaStream

Samuel Rivas samuel.rivas@lambdastream.com

1 - LambdaStream History

LambdaStream is a technology-based startup company that develops software pro-
ducts for streaming and on-demand media delivery. It was born as a spin-off from the
MADS research group from the University of a Corufia.

Its main product, VoDKA, is a distributed video-on-demand (VoD) server developed
with Erlang/OTP technology. Through its four years of existence, LambdaStream has
developed a set of products around VoDKA to cover markets such as mobile TV,
Internet TV, broadcast TV, IPTV, and billboard TV.

2 - Overview of Relevant Erlang-based Projects

Many of the LambdaStream's products are based on Erlang/OTP technology. This
section will show a short overview of those projects.

3 - More Detailed Review of Antares

Apart from VoDKA, Antares is one of the relevant LambdaStream products. Antares
is an Electronic Service Guide for DVB-H Mobile TV systems. It can integrate infor-
mation coming from heterogeneous sources, store it in a DB with a unified represen-
tation of those data, and broadcast it according to different standards.

4 - Conclusion

A review of some successful commercial deployments and conclusions about
Erlang/OTP.

1(2%)

erlware. = .

Erlware For Managing
Distribution and Build

Erlang User Conference 2007

Erlware Goals

* Allow the Erlang Community to drive itself

» Allow the community to evolve the
language/platform

* Make the language/platform accessible to
reasonably competent programmers

Steps to Reach Erlware's Goals

» Define a Common Repository for OTP
Artifacts

» Make it easy for anyone to host their own
version of the Repository

 Build tools that leverage the features of
the Repository

Repository Design Goals

* Be Lazy
* Don't add more meta data then you need

* Where ever possible leverage existing
OTP metadata

Repository and OTP

OTP already provides most of the
metadata that we need.

OTP Applications make good artifacts.
OTP *.app files make for good metadata.

OTP *.boot, *.script, *.rel files make really
good release packages.

Anatomy of a package

Application

» Contains a src
directory

* Contains an ebin
directory

» Contains a *.app
file

* Contains source
code

Release

* Contains an *.rel
file

* Contains a
sys.config file

« Contains command
templates

Repository Implementation

 Dirt Simple
» Http Server with WEBDAV Enabled

» Specific, well documented directory
structure

Repository Layout

The structure of the repo is

<erts-vsn>/<arch>/<side>/<packagename>/
<vsn>/<package>

and
<erts-vsn>/Meta/<appname>/<vsn>/<.app file>
Example: The Sinan-1.0.1 release package for mac sits in:

http://repo.eriware.org/pub/5.5.5/
i386-apple-darwin8.9/releases/sinan/

Leveraging the Repository

Faxien is a distribution system

Sinan is a build system that

‘understands' erlang and OTP. It built on the same backend as
makes it very easy to handle Sinan. It provides functionality
complex OTP build logic similar to rubygems or CPAN for

Erlang.

» OTP Centric Build System

* Expects OTP Applications, Understands
OTP Applications

» Written and extensible in Erlang

Getting Started

Generate an OTP Project
sinan gen

After asking a few questions generates a
useful, sinan compliant, compilable OTP
application with a complete skeleton

Dependency Detection

Just run
sinan depends

Evaluates the OTP application dependencies and
restrictions in the project. Hits the repository to
gather information. Comes back with a list of
hard dependencies (app, version) for each of the
dependencies and transitive dependencies in
the ﬁroject. Many other tasks in Sinan depend
on this one.

Building
Just run
sinan
or
sinan build

Builds all of your artifacts into the _build directory. Will only
rebuild when a file needs to be rebuilt. Understands
includes, parse transforms etc.

Testing

We decided to leverage eunit in Sinan. Want
to run all of the eunit tests in your project.

sinan test

Sinan prints successes and failures to the
shell. It also generates html code
coverage reports to _build/reports.

The Good Stuff - Releases

Want to generate *.rel, *.boot, *.script files for your project?
How about taring it up and getting it ready for a push to
an Erlang node?

Just do
sinan release
or
sinan tar

Best of all, Faxien knows how to push these releases out to
a repository. That makes distribution a no brainer.

: v
Extra's
How about running dialyzer on your project?
sinan analyze

The first time its run it generates a plt file for dependencies
so you only get the output relevant for your project.

Want an erlang shell with all of your paths set so you can
noodle with your project?

sinan shell

The Future

Anything you want. Sinan is an extensible
system so anything useful can be quickly
incorporated. Of course, there is still a lot
of functionality we want to expose in
Sinan. No doubt the community will come
up with a bunch of things that we have
never thought of.

 Easy to find and install otp packages
— list out packages available in remote repositories

— simply type faxien install <package name> to install
anyone of them

— Install applications and releases
 Easy to publish OTP packages so that
community can access them
— faxien publish <package directory>
— auto discovers package type, app, release, or erts

10

How does installation work?

Configured to know about a list of repositories

Pulls down packages both releases and applications
then installs the now local tars creating scripts and boot
files the fit the local environment among other things.

Pulls down erts (you need not install Erlang from source
anymore)

If a package is not found for the erts vsn you specify
F?tmen automatically selects the next lowest compatible
erts vsn.

By default all packages are installed in /usr/local/eriware
or on windows c:\erlware though this is fully
configl;rable. (windows code not complete as of this
writing

How does publishing work?

Publishes into a repo location specific to the
local architecture, if project is pure erlang then
publishes to a platform neutral location

Auto discovers the package type by looking for
things like a .app file or a .rel file, or the fact the
the directory looks something like "erts-<vsn>".
— faxien publish sasl-1.3.2.1 works
— faxien publish my_release-2.3.2 works
— faxien publish erts-5.5.5 works
if a package does not have the appropriate OTP
structure it will not be published.

11

Install the tools

* http://code.google.com/p/faxien (links also
found at www.erlware.org)

» Execute faxien_launcher -b to install
faxien

* now install Sinan with faxien install sinan

Installation

The past -

= Google for an application that fits your needs
Find lots of stuff written in perl but no erlang

» Some obscure website listed on the 13th page has a half
baked erlang app

« Hack around with it for a bit
* Give up and write your own

With Faxien -

¢ faxien list

« pick an app

« faxien install_app <appname | app.tar.gz> [vsn]
« faxien install <release | release.tar.gz> [vsn)

11

Publishing

The past -

build it
write some convoluted make file that would break for the next guy,
put it up on your website and hope people find it

Be disappointed when no one does and watch the community grow
slowly without your code i

L L] L] .

With faxien

» "faxien publish my_app"
» "faxien publish my_rel"

Now everyone can get at it

Extra Commands

Faxien allows you to do quite a bit more than this short
presentation has time to address. Two commands |
want to note are:

faxien list - list all available apps that match the supplied
pattern across many repos

faxien upgrade - upgrade one or all apps on the local file
system to their latest vsn

And of course lets not forget...
faxien help — to print out a list of what faxien can do

13

Summing it up. (Erlware cycle)

ot »
ey .

Install Faxien (Erlang Package Management)
Install Sinan (Erlang Build System)

Use Sinan projgen to create a project

Build, document, and test with Sinan

Publish an app or release with Faxien

Other folks download and use your package

2B

Erlware Goals Revisited

* Allow the Erlang Community to drive itself
— Create otp packages with sinan publish and install them with
faxien. Now we can easily leverage eachothers work.
* Allow the community to evolve the language/platform
— No need to install erlang from source, you can create your own
release and people can simply install that — if you want to bundle
your alternative to stdlib instead of the original go ahead
+ Make the language/platform accessible to reasonably
competent programmers

— OTP apps and releases are easy to install and build install with
Faxien and Sinan.

14

Steps to Reach Erlware's Goals

» Define a Common Repository for OTP Artifacts
— The repo = done

» Make it easy for anyone to host their own
version of the Repository
— Just a webserver = done

» Build tools that leverage the features of the
Repository and help build our community
— Faxien & Sinan = done

Quality Cruising
Making Java Work for Erlang

R T S R R W
d vt A1 K ll.g.' &

This is a preliminary version for the EUC proceedings the final
version with more detailed examples will be made available on the
EUC web-page.

| will talk about automated testing, and how to
make Java do that work for you.

But first a short recap for those of you who
weren't here last year or don't remember my
talk about Kredit

KREDITO

2 e

Founded in December 2004

Bring trust to Internet shopping, by providing
old style billing through hi-tech solutions.

More than 1600 Internet shops connected.

The company vision:
— “Be the coolest company in Sweden.”

KREDITOR

. The system is bmlt from scratch using LYME
(Linux, Yaws, Mnesia, and Erlang).

* We have a distributed system with multiple
servers to provide a fault tolerant, high
availability solution.

* We aim for 5 nines availability, in a setting
where we introduce new features in the system
every week (often every day).

* The problem fits Erlang really well.

KREDITOR

We have have an informal agile process.
* We have very short time to market, for simple

changes the time from idea to use in’
production can often be less than one hour.

It is crucial for us to have an automated
comprehensive test suite.

— With a framework that works.
— Which is used. Always.
* Enters Yatsy and Cruise Control.

KREDITOR

* Yet Another Test Server —Yaws compatible
(Yatsy is Swedish for Yatzee — testing is a bit like a dice game.)

* Why (yet) another test server?
— The “released” OTP-test server is from 2004.
— It isn't really open source.
~ We just couldn't get it to work.

* First version hacked together over a weekend
by Tobbe.

— Released as open source:
http://code.google.com/p/yatsy/

KREDITOR

-module(example_SUITE).

~export([all/1, init_per_suite/1, fin_per_suite/l, init_per_testcase/2,
fin_per_testcase/2, simple/1]).

-include("yatsy.hri™).

all(doc) -> ["Test cases for example."];
all(suite) -> [simple].

init_per_suite(Config) when list({onfig) -> Config.

fin_per_suite(_Con¥ig) -> ok.

init_per_testcase(_TestCase, Config) when atom(_ Test(ase),list(Contig) -> Config.
fin_per_testcase(_TestCase, _Config) -> ok.

simple(doc) ->

["Check that we can get an new example."];
simple(Cont) when is_list(Conf) ->

[1 = example:new(),

ok.

KREDITOR

se Control (CC)]

e Cruise Control is a framework for continuous
integration.

* It is open source.
It is written in Java.

* It automatically checks out the latest version
from a repository, does a build, and runs all
tests — as soon as anyone checks anything in.

KREDITOR

* A set of plugins
— Version control pollers (eg. wrapped svn st -u)

— Compile and test systems (eg. ant)
— Publishers

* web site, email, rss, irc, etc...

* A build queue
* And some other things (admin gui, etc ...)

KREDITOR

Poll for event
— usually version control update or time based

Compile and run tests

Gather results
— return value from script and xml report files

Publish results

KREDITOR

10

10

* A set of projects

— commit-[branch], nightly-[branch], etc ...
* One config file

— Which plugin to use

— Parameters for each plugin

KREDITOR

11

1

— svn update
— make

— run yatsy
* Reporting
— Yatsy reports test results trough an xml file
* Reverse engineered from JUnit

KREDITOR |

12

12

CC gives you immediate feedback on the test
status of all your branches all the time.

Our contribution:

* Open sourced test suite — Yatsy.

Nice simple integration between CC and Erlang —
we let Java do some work for the Erlang developer.

CC is just as valuable as a VS,

If you are not using CC for your projects, start
using it NOW.,

13

KREDITOR

13

-

1

Generic syntactic analyser: ParsErl *

Rébert Kitlei, Laszlé Lovei, Taméas Nagy, Aniké Nagyné Vig,
Zoltan Horvath, Zoltan Csdrnyei
Department of Programming Languages and Compilers,
E6tvos Lorand University, Budapest, Hungary
{kitlei,lovei,n _tamas,viganiko,hz,csz}@inf.elte.hu

Abstract

The increasing demand in automatic code transformation tools — which
can preserve the layout, and can handle the whole macro syntax — led us
to develop our scanner and parser tool. ParsErl is a generic syntactic
analyser for Erlang. The scanner and the parser are generated from an
XML definition of the grammar. The result of the scanning process is
a graph, which can be optimised or balanced for applications. The tool
can preserve the original layout of the source code, including the origi-
nal macro definitions. Our preprocessor creates connection between the
original source code’s tokens and syntax tree’s nodes. We can provide the
substituted and parsed code for the applications and we can generate the
original source code back, when it is needed.

1 Introduction

The increasing amount of codebase which has to be maintained resulted in
an increasing demand in automatic code transformation tools. For example,
refactoring tools which can change (usually applied in order to improve) the
structure of the code without changing its behaviour {2, 3, 4, 6, 5].

These tools work on a higher abstraction layer than textual format. The
usual approach is to apply syntax analysis that produces an abstract syntax tree
(AST) of the source code. The standard Erlang parser with the syntax_tools
application provides an interface to produce and work with such an AST [1, 7, §|.

The problem with this approach is that this parser was designed for code
generation. It provides an interface which can generate text from the AST,
but this result will be pretty printed, because the parser discards the layout,
whitespace, and punctuation while building the syntax tree. These information
are irrelevant for code generation but highly valuable for the code transformation

*Supported by GVOP-3.2.2-2004-07-0005/3.0 ELTE IKKK and Ericsson Hungary.
A full technical paper about the design of the internal structure was submitted to CC2008.

tools. Preserving this information we can preserve the original layout in contrast
to pretty printing.

The other problem with the standard tools arise when the language supports
macros. Macros are usually substituted with their definition by a preprocessor
before parsing. The Erlang tools can support macros without substituting them
if they “behave” well. If a macro cuts syntactic entities in half, the tools cannot
parse it. This means that some code can be compiled, but cannot be parsed by
the standard tools before prépocessing,.

In this paper we will show that these problems can be solved with a new
parser, if the design aim is the layout preserving, and the support of the full
macro syntax. Furthermore we will give an API which makes it possible to
apply the framework in different projects.

2 Motivation

The prototype version of our refactoring tool, RefactorErl, suffered from the
above problems. Because in refactoring tools it is a crucial point to be able to
support the whole syntax and to keep the layout as it was as much as possible.
This is very important, because the pretty printing makes it hard to follow the
changes made in the code, let alone carry out further changes even with the
refactoring tool not to mention by hand.

3 Structure of the tool

In Figure 1 we show the layers and parts of the tool. We generate the scanner
and the parser based on an extensible XML description of the Erlang grammar.
After the scanning and parsing process is done, an application can work on
the graph representation. Our layout preserving printer can restore the original
source code in textual format from the graph representation.

3.1 XML

Both the lexical elements and the syntactic rules, and the resulting structure
reside in the same XML file. This makes the definition easily adoptable, cus-
tomisable to language changes, and to different application needs. Obviously
the former happens really rare, because that would need changes in a lot of
applications, and could cause issues with backward compatibility.

3.1.1 Lexical elements

Lexical elements are described by the element lezical. Patterns (elements pat-
tern) are quite similar, only they don't constitute an element themselves. Im-
portant patterns are the whitespace-and-comments before and after the tokens
(named PRE and POST), which are included in the token text themselves. Pat-
terns can be incorporated using a match element. Elements may further consist

refactoring tool or

other application
(:j’j:2t-_-_-_”(:::EE§§i:::}_____—__‘_~_‘
—
Y
(:}——————t LELT A N—
yece
parsar preprocessad tokens
generator layout
(xmerl) Yy preserving
::
prepocessor
scanner tokens
ganoratar
Y

wmerl)

: leex

source code

#F

Figure 1: The structure of ParsErl

of plain text, branches, optional and repeated parts, tagged by tezt, branches,
opt and rep Tespectively. There are some additional facilities for easier character
inclusion: chars-of and chars-but, which permit all characters included in (or
excluded of) a given set.

The following example shows the description of integers.

<lexical name="integer">
<match name="PRE"/>
<opt>
<branches>

<text>1</text>
<chars-of><range><from>0</from><to>6</to></range>
</chars-of>
</bxr>
<bxr>
<chars-of><range><from>2</from><to>9</to></range>
</chars-of>
</br>
</branches>
<text>#</text>
</opt>
<match name="Digit"/>
<rep>
<match name="Digit"/>
</rep>
<match name="POST"/>
</lexical>

The following regular expression is generated from this description:

w

{PRE}(1[0-61([2-9]1#) 7{Digit}{Digit}+{POST}|

3.1.2 Syntax elements

The syntax elements describe the context free grammar rules. All rules with
the same head symbol are organised under a ruleset element. They may contain
rules that are not represented in the graph themselves: these are called copy-
rule. All other rules have to specify in which class do they belong. This way we
can simplify the syntax graph by storing only so much information as necessary.
For example, all different kinds of expressions are in class expr, and are not
distinguished from each other further on.

Rule elements (the right hand sides of rules) consist of tokens and symbols.
For the sake of brevity, elements optional and repeat are also available.

With the symbols we have to define how we want it to be connected to the
head symbol. For example the function clause’s pattern elements are conunected
to it with a link tagged with pattern, the guards with guard and the body’s
elements with body. These tags will be used for information retrieval.

Rules may also contain attributes that are stored as additional informa-
tion in the graph during parsing. For example, guard sequences mey- contain
conjunctions and disjunctions; both are represented as an erpr node with the
appropriate kind as attribute.

The following example and Figure 2 show the rules for function clauses.

<ruleset head="FunClause">
<rule class="clause">
<attrib name="type">funcl</attrib>
<symbol name="Atom" link="name"/>
<token type="op_paren"/>
<optional>
<symbol name="Expr" link="pattern"/>
<repeat>
<token type="comma"/>
<symbol name="Expr" link="pattern"/>
</repeat>
</optional>
<token type="cl_paren"/>
<optional>
<token type="when"/>
<symbol name="Guard_seq" link="guard"/>
</optional>
<token type="arrow"/>
<symbol name="Expr" link="body"/>
<repeat>
<token type="comma"/>
<symbol name="Expr" link="body"/>
</rapeat>
</rule>
</ruleset>

FunClause
type=funcl
name patmnf Xjuarﬂ
[Atom Expr | IGuard seq Expr J

Figure 2: The function clause rule without the tokens

3.2 Scanner

The scanner is automatically generated from the XML definition with an XSLT.
The XSLT is written with the Erlang’s xmerl application [13, 14, 15]. The XSLT
transformation’s result is the input of the leex application [12].

The definition can be easily adjusted to keep the comments and the whites-
pace information or discard them. In our case we chose to attach the whitespace
information and comments to the lexical categories of the language, therefore
there is no whitespace token. The interface of this module is the standard
interface provided by the leex application.

3.3 Preprocessor

A middle layer has been introduced between the scanner and parser to be able to
support any kind of macros which are allowed in the languages definition. This
layer defines connection between the original source code’s tokens and syntax
tree’s nodes. This relation is not trivial because the syntax tree can only be
built when the macros had been substituted. Therefore our preprocessor has
to be aware of the structure being built by the parser. As a result of this
the preprocessor does not provide a standard interface for invocations. It is
embedded into the parser.

3.4 Parser

The parser is also generated from the XML definition. The XSLT transformation’s
result is the input of the yecc application [9, 10, 11]. The built structure can
be adjusted just by adjusting the definition in the XML. The API is extended
compared to the yecc’s default interface in order to get the correct result struc-
ture. Parsing one form at a time is supported, and additionally the extended
API provides means to parse a whole file as well.

3.5 Graph

A graph is the result structure of the parsing. The shape of the graph only
depends on the definition of the syntax in the XML file. Therefore based on our

preferences/needs the shape can be adjusted to a certain extent. Because the
yecc uses LALR-1 analysation method the structure has to be resemble a tree.

For example in our refactor tool we decided not distingnish between the
different expressions. The expressions’ type is always expression. The standard
parser’s expression types are just attributes.

4 Information retrieval

High level information retrieval is supported by a query language that makes
it easier to traverse graph structures with fixed depth. This query language
consists of path ezpressions. To evaluate it a start node and the list of links we
want to follow from the start node is required. The direction and filters of the
links can be given. Direction can be forward or backward. The possible filters
are:

Filter = {Filter, ’and’, Filter} | {Filter, ’or’, Filter} |
{’not’, Filter} | {Attrib, Op, term()}

Attrib = atom()

Qp-_— I==d | Y =2 | =g | I>=3 | 32 | 1>

The links also have indices which start at 1. Therefore it is possible to choose
one link or an interval of links.

Index = integer() | {integer(), integer()} | {integer(), last}

Start, End means the indices larger or equal than Start and smaller than End.

For example (using our structure) if we want to retrieve the module name
of the source file we can write a path expression like this. Suppose we have the
root of the file in the Root variable:

path(Root, [{form, {kind, ’==°, module}}, {attr}])

The result would be a list containing one element. The module name is the
result node’s attribute which can be obtained by another function call.

5 Linking with other applications

The API demonstrated in Section 4 provides an interface to other applications
which can be easily used. The built graph structure can be fine tuned to specific
applications. The information retrieval mechanism - the functions, parameters
- do not change when the defined structure changes. These altogether yield a
highly adoptable/optimisable structure.

6 Conclusion and Future work

In this paper we have shown that it is possible to support the whole syntax
of the Frlang language with a parser which can retain the original layout of
the code. Furthermore, having the definition of the whole language and the
result structure defined in one XML file makes the language definition easily
adjustable to changes in the language. The resulting structure can be easily
adapted to any specific problem. For example balancing the resulting graph’s
height and width for optimising to the application’s algorithm. The framework
even makes it possible to add extra information to the graph which cannot be
derived directly from the syntactic rules.

The ifdef, ifndef macros introduce further difficulty. For example con-
sider the following code:

-ifdef (debug) .

-define(LOG(X), io:format("{"p,”p}: “pTn",
[?MODULE, ?LINE,X]1)) .

-else.

-define(LOG(X), true).

-endif.

The macro’s body is different depending on the value of the condition. Even if
we work on the unsubstitued version of the source, we have to consider what
the substituted code would be.

A further development would be to develop the printing mechanism to be
able to parameterise it with design rules to enforce the same layout of different
developers.

References

[1] J. Barklund and R. Virding.
Erlang Reference Manual, 1999.
Available from http://www.erlang.org/download/erl _specd7.ps.gz.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[3] H. Li, C. Reinke, and S. Thompson.
Tool support for refactoring functional programs.
Haskell Workshop: Proceedings of the ACM SIGPLAN workshop on
Haskell, Uppsala, Sweden, p. 27-38, 2003.

[4] H. Li, S. Thompson, L. Lovei, Z. Horvath, T. Kozsik, A. Vig, and T. Nagy.
Refactoring Erlang Programs.

In Proceedings of the 12th International Erlang/OTP User Conference,
November 2006.

[6] R. Szab6-Nacsa, P. Divianszky, and Z. Horvath.
Prototype environment for refactoring Clean programs.
In The Fourth Conference of PhD Students in Computer Science (CSCS
2004), Szeged, Hungary, July 14, 2004.

[6] Lovei, L., Horvath, Z., Kozsik, T., Kiraly, R., Vig, A., and Nagy T..
Refactoring in Erlang, o Dynamic Functional Language.
In Proceedings of the 1st Workshop on Refactoring Tools, pages 45-46,
Berlin, Germany, July 2007.

{7] Erlang 4.7.3 reference manual.
http://www.erlang.org/download/erl_specd7.ps.gz

{8] Erlang 5.5.5 reference manual.
http://www.erlang.org/doc/reference__manual/part_frame htiml

[9] Torbjorn Toérnkvist
How to improve the performance of YECC-generated Erlang (JAM)
parsers
Published in the Software Engineering Research Center of the RMIT
University(SERC), Melbourne, Australia. December 12, 1997.
http://www.erlang-projects.org/Mewmbers/mremond /serc/
how to_improve the p/block 10914819836344/file

{10] Magnus Fréberg
Automatic Code Generation from SDL to a Declarative Programming Lan-
guage
In Proceedings of the Sixth SDL Forum, Darmstadt, Germany, October
1993.
www.erlang.se/publications/sd12erlang.ps

[11] yecc documentation.
www.erlang.org/doc/man/yecc.html

[12] Leex beta version download page
http://tinyurl.com/yvl6tp

[13] UIf Wiger
XMErl - Interfacing XML and Erlang.
In the Sixth International Erlang/OTP User Conference (EUC 2000),
Stockholm, Sweden, October 3, 2000.
http://www.erlang.se/euc/00/xmerl.ppt

[14] Mickael Rémond
XML and Erlang: Building a Powerful Data Management Tool.
In the Sixth International Erlang/OTP User Conference (EUC 2000),

Stockholmn, Sweden, October 3, 2000.
http://www.erlang.se/euc/00/remond/mgp00001.html

[15] xmerl documentation.
http://www.erlang.org/doc/apps/xmerl/

1(16)

Building A REST-based

Platform With Erlang And

Adobe Flex
hypernumbers

Gordon Guthrie
Dale Harvey
Hasan Veldstra

This presentation the details of the
platform, in particular how Erlang
and Flex are a match made in
heaven

* The Product
-~ the hypernumbers Matrix Server

* API Design
* Adobe Flex
* Next Steps

what we have been working on

THE PRODUCT

The product is a server codenamed ‘William
Playfair’ that serves hypernumbers - named
after the Scotsman who invented the graph in
1759

Exports and hnpores to and fron DENMARK S NORWAY [tan yoo fo170a

— [Bisell i e el R (W 25
T I =] == r /.—
m o _ L _ P L
———" | : gl
S| I S | (I BALANCE x|,
. ._.__-..,..__,yr.-lﬁﬁ.." R i ,._,A_._._i...__‘.._-m
m:'”_"“"‘/:"] e |
N4 s o i & |
S b
- - -
. — Aa
L = —a—l — ts0
- R et S— ——
= Te J"~= a Do -n':!i-_- e Ty O

- "M‘_Jz'l m Lo ix diviled into Years, the Right kered Kue dnes LE}OOO 2‘:-6-;'”)

At first glance our product looks like ‘a
spreadsheet on the web’ but our goal is
actually to make ‘a spreadsheet of the
web’

new page just type in a new path and
populate a cell

@ Gelling Started El1Latest BEC He

hypernumbers

L) L twites | v [rdete =] tekuteen [uf

| Each cell has a URL |

.......

ey e This means that all cells exist in a single

namespace - there is therefore only ‘1 spreadsheet’

So the cells on my websheet can

update the cells on yours directly (or

your graphs or other applications
and components)

J

The critical thing is that it is a
platform for the delivery of
hypernumbers and products/GUI’s
that use them...

Browser On The Desktop

Other Services

http://acme.corp/pagel

- | A T B
| | _Sales

P Web Server

U G N

Other GUI's

D

The critical decision is to treat
‘Pages’ and ‘cells’ (or parts of
pages) separately, and only use
Flash for single pages...

» a page is terminated by a slash:
proto://subbies.domain. t1d[:port] /page/path/

* acellis not:
proto://subbies.domain. t1d[:port] /page/path/ab23

* and we use query’s to build the API:
proto://subbies.domain. tld[:port]/page/path/ab23?toolbar

This gives us a simple loading cycle - the
page URL loads the GUI as a single
object and the Flash init () event builds

the GUI

et
- & D @ [ripdmmaeyomsoon =) @0 []
@ Gatting Started [Lliates IDC Husiflews

TIPSy —

tiat
. e e TRy T e
4

, L Ba
GUl files are associated with nodes in the path tree
via the management console ~ drop your own in for
the whole of the part of the information Architecture

| e bhant e s

I
'? [T I - Beiliid

1 s Wbh e Bnakn

[T T - Tree

o T ia ey s]|

utata alaited |

So how do we actually use a
hypernumber - what do the building
blocks of this platform actually
consist of?

You set the value of a hypernumber with an http(s)
POST:

protocol://subbies.domain. t1ld[:port] /page/path/ab23
with action=create

value=12345

e 1N be:

aformula =1+2

=ai+h2 cells on the same page

=/some/otheripagefal absolute page
addressing

=/alpage/name(*'sub-total”) by cell name

=.J.Jrelatlve/page/b1 relative page
addressing

=hypernumber("proto:llsub.dom.tld:portlmypagelaS")
and you get the value using an http(s) GET:

1. 41 L, ol Al 3L P ¥

dalet ale

You can use a whole range of
formulas (also available in Microsoft
Excell!) or write your own server-side

one

absi1, confidencal3, fdist/3, maxi, right/1, value/1,
aces, comel2, find/2, Intercopt2, maxaf1, right/2, var'1,
acosh/1, cos/, fir/3, P, mdeterm/1, rghttert, vamp/,
add, cosh/1, findbv2, pmiis, medianf, rightlr2, yoail1,
andf/1, count/t, findv3, ipmve, mid/3, round/2, cumidate/1
ik Countpankit fover oy g i
areag/t, coul il shel 2, 1, rounduy ropar’
asinfi, /2, fisherin isomi, mina/1, snutngz qunrﬂh!i.
asinh/1, covar2, isemoe1, Inute/1 searchid, rank/2,
atan/1 critbinomy3, Is_jist_numbedi, minve searchivz rank/3,
alan22, datal3, isfogicalit, 4, searchbi3, rows/2,
atanh/, datevaluo/t, floori2 s, 2 second/{ poarsoniz,
avedowl, diy/1, fore Isnomaxt!, 1 sl o
mmuetl,l “!mﬁ L uency2, g;nmn 1, mnmn 5:r|al'h1’1 skew/1,
IWH'G?W. davorngold, : N) sinl G
beladisys, b4, /3, Istet) nafo, seyd?,
betnins, 5, vi4, Eﬁ.} notf/1, st 1,
binomdist/4, deount/4 /S, 1, 3 sublolal/z,

i muz. normsdisiit <ldavi1 sumit/2,
celing/2, ddbid, ammaliwis, 1, nawio, A, sumiffa,

A ddbs, gammaln leflz, odd/
char/1, di 1, goomnaanl fofi'1, orf/1, A, {t
chidist/2, s gasto|, lofib2, PRI, sumv' STy 22,
chlinv/2, uydwf2, [RI{Z fenft, U, ucti2, trend/3,
chitesy2, diys rowtif4 lantv1, pounid/1, sumsq/t, frend/4,
chooser, emor_lyper! \Eu'rn linestr2, pound/2, tan/1 Iranspase/2,
cleant, even/l, hour/1 linest3, poworfa, tanhA Irimmonan/2,
cods/1, oxacli2, hypgeomdistid, 1, product/1 loday/ lrunc/,
column/1 e, logh, radiansi, trimii, truncs2,
calumns/1, oxpand Index/4, logiz, rand/0, truelD, vara/{,
combin2, fact/1, indirectil, logidrt, replaciss, lypel1 vmguén
concalonite{, faisall, inv1, lowarh, opliz, upparf1, wieibulls

You can address mulitiple cells in a variety of
different ways using URL’s as well and these
URL’s will return lists that can be directly

used in formulae

proto
proto
proto
proto
proto

://sub.don
://sub.dom
://sub.dom
://sub.dom
;//sub.don

.tld/page/path/abl2:cd34
.tld/page/path/ab
.tld/page/path/12
.tld/page/path/ab23:cd34,x1:y3
.tld/page/path/ab23:cd34,x1:y3

arange

a whole column
a whole row

a union

an intersection

There are three substantial API’s in the
product — all with different
characteristics - which are required for
different purposes

Web Browser Web Browser Web Browser
|f AIA AlAlA
' R Key
1 — =P Vertical API V1.0
| 1 I A T . NN T P> Vertical API V2.0
11 —p Vertical AP| V3.0
1 <—P> Horizontal AP
11 WebShest Server — Remoting AP
Vi Version 2 v * \ 4
WebSheet Server WehSheet Server
Version 1 Version 3

The horizontal APl is how one cell
establishes a relationship with
another cell on a different server

Request to set up a hypernumber link:

protocol://subbies.domain.tld/path/to/a/page/ab23

with action=register
registered URL=the URL of the cell to be updated
proxy URL=the URL that the notification is posted to
biccie=a ‘biccie’

Notify a registered cell that the value has changed:
protocol://proxy.domain.tld/path/to/a/page/ab23
with action=notify
type=change
notifying URL=the URL of the cell(s) that are notifying
registered URL=the URL of the cell to be updated
value=fully qualified hypernumber
biccie=a ‘biccie’
version=page version

...and the horizontal APl also
includes a small number of
structural elements that are required
to make the system work...

* Notification of structural changes
‘I have deleted this column on this page”
“| have inserted a 3x5 block at this cell”
‘l have deleted the name ‘sales’™

* These require remote sites to rewrite their
formulae or mark their values as
#undefined

...the horizontal API is entirely POST

based and has three core ‘verbs’
that provide it with structure...

register set up hypernumber links
unregister tear down hypernumber links
notify notify remote sites of value/structural changes

The vertical API delivers

functionality to a particular user or
set of users and is a mixture of PosT
and GET based

Read

* Returns something

* GET

Create/Update
Creates or updates a value in a cell or cells or a named range
POST action=create

Clear

 Clears the values in a cell or cells, a named set of cells or a page
POST action=clear

Insert
Inserts new cells causing reorganisation of the grid
POST action=insert

Delete

Deletes cells causing reorganisation of the grid — or deletes a named set of
cells (leaving the cells themselves unchanged)
¢ POST action=delete

The meat of the read component is
provided by decorating the URL’s
with appropriate queries

* Get a cell formatted as a hypernumber

protocol://subbies.domain. t1d[:port] /path/to/a/page/a?hypernumber

* Get the information required to populate the toolbar for a cell
with focus:

protocol://subbies.domain. tld[:port] /path/to/a/page/ab23?toolbar

* Get details of the cells a patrticular cell is link_to or
linked_from returning the result in a particular format:

protocol://sub.domain. tld/page/path/sb23? [link_to| link from], format={[sxml|json]

10

...the hypernumber format is simply a list

showing the current value of the cell, the

reference tree (used to check for circular
references) and any errors that have bubbled

up
Mot m s berto o N T o by P) AN W e s e S Ll e e el e dei e e
v Edt wlew Go Geokmades Jools el Y
G- - @7 [et fiatansy 2 ami00aRemsa inpparier o — T P |
@ Getting Starte BBC Headlinea
Thin ML H16 dpos NOE ADDRAT I have any, alps info o woriAtad with 1L The do e I NN Delow

—=cell>
<valuex>444<fvatues

or fod 1 2 <frofor
=roftroo=hitpdsinasy.com:DHK Hood | T <freftree>
<erTors/>

</cell>

...the toolbar wants to know where the
current cell takes values from and where
its value is used, so that you can browse

from one page to another — as well as

11

...the remoting APl is socket based — a
GUI (or a chart) registers that it is looking
at a section of the matrix and it can then
be notified in real-time of changes to the

underlying data
The client uses three verbs:
authenticate cookie uses the http cookie

register proto://sub.dom.tld/some/page/al:j9
unregister proto://sub.dom.tld/some/page/al:j9

The server responds with one verb:
change proto://sub.dom.tld/some/page/al 99

...and there are a number of possible
extensions — we welcome your
views and ideas on these — they
include:

Summary/query URLSs:
* proto://sub.dom.tld/expenses/gordon/2007/Aug
* proto://sub.dom.tld/expenses/*/2007/*/sum(name (total))

Negative, complex and floating cell
addresses:

* proto://sub.dom.tld/page/path/aa.bc+ix~-33.3+i5

19,

...and there are a number of different
components of the product that are of
interest — in particular the Mnesia

management panel...

R38O WL B LR 0 D RN D e A R

...but also the delivery platform
which is a customised version of
Ubuntu with a single-click installer...

* based on Dapper Drake 6.06 (LTS)

* customised with the Ubuntu Customisation
Kit (uck)

* basic platform will include an Erlang

distribution system (eg CEAN)

— Ideally with split repositories so that our
application can be updated from within the
general Erlang distribution

» to be open-sourced

what we have been working on

ADOBE FLEX

Flex is a mark-up language that compiles

to Action Script 3.0 — which is an ECMA-

262 compliant scripting language - it is a
close cousin of Javascript and quite

recognisable

Styles:

DataGrid {
backgroundColor: WEFEEEE;
horizontalGridLines: true;
laetterSpacing: 0;
horizontalGridLineColor: #666666;
useRollOver: false;
rollOverColor: #666666;
fontFamily: Tahoma;
fontSize: 11; }

Functions:
private function loadLinksFrom(event:ResultEvent) :void
{
link to.dataProvider = new Array();
for each (var linksto:XML in event.result.link)

link_to.dataProvider.additem({label:linksto.site.toString()+
linksto.path. toString()});

s

...but it is the collections of prebuiit
components that can be configured
through a mark up language that make it
so powerful

<menuitem label="Formulas">
<menuitem label="Maths" data="Maths">
<menuitem label="Arithmetic">
<menuitem label="sum" data="sum{)"/>
<menuitem label="product" data="product{)"/>
<menuitem label="abs" data="abs()"/>
<menuitem label="gqrt" data="sqrt()"/>
<menuitem label="power" data="power(,)"/>
<menuitem label="sign" data="sign()"/>
<menuitem label="exp" data="exp()"/>
<menuitem label="fact" data="fact()"/>
<menuitem label="mod" data="mod({,)"/>
</menui tem>
</menui tem>
</menuitem>

...just drop binary files onto the
server docroot and configure the
matrix server through a GUI and you
are ‘good to go’

loose binary integration
— very clean
— allows a secondary market to develop

powerful platform that is available on
around 90% of desktops

genuinely cross-platform

socket and http-based connectivity

well suited to a ‘naive’ coding style (eg
loads of concurrent connections to yaws)

1%

What happens now

NEXT STEPS

-..we are currently seedfunded through a
pan-European VC-backed funding
contest called Seedcamp but need to
step up a notch...

Backers include: Backers include

*Eden *Highland Capital
Amadeus Partners

*\VVenrex *Index

*Atomico *DJFEsprit
*Northzone *Atlas Venture

*Benchmark Capital

16

...looking to raise Series ‘A’ and
make some significant technical and
non-technical hires in the near
future...

¢ launch before Xmas
* go into Series ‘A’ funding
* make significant hires
* including senior Erlang positions

1(¢)

_l'_l_“_[[Enterprise Service Bus

Integrating OTP with

OAS (OTP Application Server)
Leslaw Lopacki
Telenor 1S Nordic, Norway
leslaw.lopacki@telenor.com
25.10.2007 1

=9
2

What is Service Oriented Architecture?:

Is a collection of services which communicate
with each other

Uses loosely-coupled relationships between
producer and consumer

Has no direct relationship with software,
programming, or technology

Services can be accessed without knowledge
of their underlying platform implementation
ORB/CORBA is probably a first SOA
implementation

Services are “usually” defined using
WSDL/XSD

Messages are "usually” SOAP/XML based but
not only

25.10.2007 leslaw. lopacki@telenor.com

_ Background — what is SOA?

o What is OAS and OESB?

= OAS - OTP based Application Server:

= Provides a simple framework for building Erlang based
"Beans” — deployed as Erlang processes — 2 types
supported:

= Dynamic workers — started dynamically on demand
= Static Workers - registered processes (Singletons)

. TechnicaIIY it isn't a JEE App Server - it simply does not
support all JEE specs - but that's not an issue here

» OESB -~ Connects ESB and OAS:
= uses SOAP 1.1 — ErlSoap 0.4.3

25.10.2007 leslaw.lopacki@telanor.com

= CoMet/Metro/COS at Telenor

How this idea was born?;

= Metro and COS are integration platforms with ca 50 systems
(running at Telenor):

= 2 different Application Servers: IBM WebSphere and BEA WebLogic
= Close integration of JEE and .NET applications

o (C:oohget is a new integration platform which integrates Metro,
" ljses SOA Enterprise Service Bus from BEA

u Very limited/no use of Erlang:
= Only isolated systems - e.g. Jabber server

= We could consider using OTP/Erlang in some installations if it
was easier to integrate:

a e.g. using SOAP/XSD/WSDL

25,10.2007 lestaw.lopacki@telenor.com 4

.. Motivation for OESB

|'€’?;I—: <
= Erlang integrates poorly with large enterprise architectures
= But thanks to SOA the systems can be more heterogeneous:
» i.e. appearance of SOA makes it easier to integrate “small languages”
(Erlang ...) with the "big ones” (JEE, .NET, ...)
u OTP is far more cost-efficient than any existing JEE Application
Server, e.g.:
= Built in efficient look up of resources — reduces "“glue code”
= Built in database: mnesia
= Offensive ag:proach: simpler “exception handling”, less code needed to
get things done
= SOA and:
= 00 does not integrate so well
» FP seams to be a perfect match
Conclusion:
= SOA brings an opportunity to introduce OTP in existing installations
25.10.2007 leslaw.lopacki@telenor.com 5

e
) (7

«|. OTP’s weaknesses from SOA point of view

= Good built in SOAP libraries are essential:
= ErlSoap is rather limited — i.e. it does not support WSDL
= Yaws contains some WSDL support (not evaluated here)
= Lack of infrastructure to quickly deploy
applications — application servers
= Not optimal for “frontend” systems:
= GUI design support is poor ! ®
= Poor support for Web Services and Web technologies

25.10.2007 leslaw.lopacki@telenor.com 6

Web Logic oTP
Application Server Application Server
(WLS) (OAS)

@ SOAP II SOAP

ESB - Aqua Logic Service Bus
(ALSB)

25.10.2007 leslaw.lopacki@tefenor.com

- Demo system

= Demo of cinema booking system

= Exemplifies strong sides:
= of an App Server:
like Web GUI and integration with legacy JEE systems
« of OTP/Erlang:

like high transactional throughput, low latency reliable data
storage, FSM support, reliability and scalability

25.10.2007 leslaw.lopacki@telenor.com

._ _4% Web Logic App. Server: Demo Design

WLS

BookingApplication
(JSP)

BookingBean
(JEE — State-Less Session Bean)

ALSB

%kTOTP Application Server: Demo Design

)
\
Y

—_—

booking_dwk
booking_dwk booking_dwk

booking dwk) «—— (oas_engine

OAS oesb (erlsoap)

booking_dwk

ALSB

.| FSM for booking_agent

select_seal_nokfanswer_nok

Wi s solect seatiseloct _/” /D
N

seled_soql_okfanswer_ok

cancel_seal/releasa

rebook_seat_nok/answer_nok

\ pay_seat_ok/book
@)MM(- electnd
rabatk_ssatirobook J

25.10.2007 leslaw.lopacki@telenor.com 1

Ql% OESB Enhancements (Future)

= Take full advantage of OTP
= Make it scalable:
« Load balancing support
u Make it more reliable
« Better redundancy/replication support

25.10.2007 lestaw.lopacki @tefenor.com 13

Motivalipns ; Scheduling inErlang 3 HARTE: A proposal for RT Erlang Tests Open lssues

4

- Towards Hard Real-~Time Erlang

xx S Lt - T : - ey ~

Vincenzo Nicosia !

' Dipartimento di Ingegneria Informatica e delle Telecomunicazioni
Universita di Catania — ltaly

Sixth ACM SIGPLAN Erlang Workshop ICFP 2007
5 Oct. 2007 — Frieburg

< Motivations: : Sohedifing in'Erdang © HARTESA:proposal.for RT Erang Testgior | Open issues

Outline

() Motivations

() Scheduling in Erlang
() HARTE: A proposal for RT Erlang

@ Tests

(J Open Issues

Motivations Scheduling in'E_riang hide i) 2R .-HAF{TE:AproposaI for BT, Erlang '_ X ok | Tests - .Open issues |

HRT systems: what since now ?

o Hard Real-Time (HRT) constraints are common in many
application fields, such as:

» Control systems (locomotion, security....)
» Manifacturing
» Signal processing
» Telecom
o HRT application are often been developed using C, C++, Ada on
top of RT operating systems

o Other “main—stream” languages, such as Java, approached the
problem of RT only recently

o Nowadays, RT systems are quickly moving towards embedded
architectures and solutions

Functional programming for HRT: Erlang ?

o Functional programming paradigm can help a lot in modeling,
defining, developing, testing and maintaining RT systems

o In particular, Erlang/OTP has been successfully used for
massively concurrent soft real-time systems

Erlang/OTP gives some basic functionalities that are really useful
in developing RT systems: W

» A huge and complete standard library

» OTP, which gives a lot of power and flexibility to manage large
systems with a lot of cooperating processes even in distributed
environments

» The possibility of building and deploy embedded Erlang
applications in an easy and reliable way

o We think that Erlang has much to say even in the field of HRT
systems, but it lacks native HRT support!

Motivatiors i '_Sbh'eduli'rjg in_'fErléng- ; HARTE: A proposalfer BT Erlang 3 o Tests | Opeh Issues

The Actual Emulator Scheduler.....

o The Erlang scheduler does not have support for HRT tasks.
o It is a Multi-Queue Round—Robin scheduler

o There are basically three documented levels of priority for
processes: low, normal and high. A fourth priority level (max) is
undocumented and reserved for a couple of system processes. ;

o All user Erlang processes usually run with normal priority, and
usage of different priority levels (expecially of high) is highly
discouraged

o So the Erlang native scheduler cannot guarantee HRT:

» No deadline specification for processes

» No guarantees that a process would finally be scheduled
(starvation problems arise using high and normal prio with strange
spawning patterns.....)

Scheduler Queues

Motivations. @ .+ Scheduling in Erlang * ./ HARTE:"A proposalfor RT Erlang : Tests ~ Openissues

Towards RT Erlang processes

In order to have HRT capabilities in Erlang, three different
approaches are possible:

o Writing from scraich a new scheduler for the emulator
Unfeasible: the scheduler is really entangled with much of the
system Existing Erlang code should continue to work anyway

o Modifying the existing MQRR scheduler to support realtime
Hard: a lot of C code to guarantee HRT

o Adding HRT as a service, which is an erlang application which
provides HRT capabilities. This is what this paper is all about :-)

PROC_2 PROC_3 PROC_n

Metivations _ Scheduling-in _E_r}a'hg' S 5 e : -H-AR'—FEi-A'br‘qﬁosa] for RT Erlang __-' _ o Tesis v o 'Ope'h_ Issues:

HARTE: an overview

o HARTE is basically an application (a peculiar one), which is in
charge of scheduling RT task

o In order to guarantee RT scheduling of task, HARTE itself runs

with MAX priority (*) OO

o All HARTE tasks (i.e. HRT tasks the user would run), are created
as low priority tasks and put in a scheduling queue using a
Deadline Monotonic (DM) scheduling algorithm

o Then the scheduler is started and it schedules tasks one by one,
modifying the priority of the task to be run to HIGH (%)

Details: init
/_\

START_LINK

/’M

add task ’

stop

run

schedule

Mativations~ . SofieduliiginErlang -~ - ' HARTE:A proposal for RT Erlang o fests - 57 bpenissues

Initialisation

o A new behaviour called rt_fsm has been defined. It is basically a
gen_fsm with some additional code for RT management

o Each HRT task is represented by an rt_fsm P
o In the initialisation phase, all RT tasks are defined and added to =
the scheduler

@ To add a task to the scheduler, the init function of rt_fsm calls
rt_scheduler:add_task(),

Details: Mission

2]

Motivaions -~~~ -~ . SehedulinginErlang = . = ¢ HAhZTEEA.p?ophﬁsal'féréh"i‘ Erlang _ Tesis ~ . Openlsstes

Mission

o HARTE scheduler is started by calling rt_scheduler:run()

o From there on task to be run are picked up from the queue and
scheduled.

@ To schedule a task, we modify its priority from low to high ;

o In order to do that, the BIF process_flag/3, in order to let a
process change the priority of another process to a level not
higher than his own priority level

o Note: This trick is really dangerous, and can lead to weird
situations, if misused......or even if used... :-)

Tests

o HARTE is still a proof—of—concept but it seems to work!

o We tested it with a couple of heavy CPU—-bound benchmark,
running both HARTE tasks and normal erlang processes at the

same time
o The scheduler overhead, in different configurations, is reported in
table:
Test Average Overhead (1:s) | Std. dev.
RT tasks only 13.1 245.78
RT and Non—RT tasks 11.7 52.5
RT tasks many periods 17.9 132.05

Figure: Average and standard deviation of scheduler overheads

4 iotivations Sehieduling in Erlang : HARTELA pzpnsai tor BT Edang Tests Open lssues

Test 1: four HRT tasks

t & L L
N . m |m _ m
e . . .

= = |m [

o Relivaons! i L Beheduling in'Eriar}g’:- sl HARTE: Aproposal for AT Erlabg. = & Tests: v o Gpien'issues.

Test 2: RT tasks and 50 normal erlang processes

| I |
. == .
I E—

i Jommm)

T

Test 3: HRT tasks with different periods

o] i M
m I | =
| | . . u L
= —u —u —n -
T ®m ™ 3 2 m @™ @ 1
5| | | [| 1 N]] 1

4] 50 100 150 200 250 300 350 400

S)

Motivations

Open

Q

Schedulingin Brlang ~ ~ - - HARTE: A proposal for BT Erlang : Tests Open Issues

Issues

Erlang Garbage Collector is still a problem. Even if this approach
seems to work, the actual GC used by the emulator is not
predictable

Support for real-time message passing has to be introduced (a
preliminary solution exists!)

o An EDF scheduling policy should be adopted and becomes

cumpolsory when you have RT message passing

HARTE code needs a bit of refactoring: it was written in the time
of two nights.....(those bloody two nights when the flame about
priorities exploded on erlang-questions ML) and you can imagine
how much it can be improved

)

Property-based Testing
A STREP proposal for FP7 ICT Call 1

Prepared by the Universities of Sheffield, Kent, Politécnica de

Madrid, IT University of Goteborg and Chalmers together with

Ericsson, Erlang Training and Consulting Ltd, Quviq AB and
Lambda-stream

Concept and objectives

Communication networks, based on telephony, wireless and Internet, have over the
last few years been converging. At the present time and for the foreseeable future,
more and more services will be added to these merging networks. What is more, these
services are becoming more complex, both in themselves and in their interactions
with each other and their end users. The telecoms industry has an admirable record in
providing reliability and robust services to its clients, and indeed it is the telecoms
industry that can point to 5-nines reliability: that is 99.999% reliability, of their core
systems.

The problem addressed in this proposal is that of maintaining 5-nines reliability
in future service-oriented networks and systems.

The software for new services and network devices is rapidly growing in complexity,
among other things because of the variety of formats and multiplicity of delivery
modes evident in modern communication protocols (with thousands of optional fields,
for instance). In addition, such software needs to be context-aware, since the
requirements vary when the same software is used in different ways. There are several
ingredients for ensuring that such complex systems provide the expected reliability,
among them choosing a good architecture, using the right technologies, improving the
software process, and also being extremely thorough and efficient in testing.

This proposal aims to support the European software industry in its testing
methodology for software in network and service infrastructures.

Testing of complex systems is difficult and time-consuming in the extreme, a fact
which companies such as Ericsson are well aware of. This indicates that radical
approaches are both needed, and will be welcomed by industry—if they work! In this
proposal we build upon the innovative idea of using properties as objects for testing
software. In order to deliver dynamic services and interoperable network applications
with guaranteed properties, we focus testing around these properties.

We have shown in previous work that we can describe these properties in a concise
way, and that we can automatically generate test cases from them. We have carried
out industrial case studies of network applications, and shown that random sequences
of API calls generated from our properties can test much more, much more quickly,
than can traditional, manually constructed test cases. The vast number of formats and
options that these modern service-oriented applications support cannot efficiently be
dealt with through a manual approach.

-

Property-based testing will deliver more effective tests, more efficiently, and thus
deliver economic benefits to the European software industry.

Properties as objects for testing have only recently been introduced in an industrial
setting. From this introduction we learned that this technology is an enabler for other
tools and methods to test better and faster. There are many techniques that can be
used to create and maintain properties, which were not in reach before.

Testing with properties as objects instead improves the competitiveness of software
developers, since they can deliver higher quality software for a lower price. It also
allows collaborating companies to improve the definition of their software interfaces
and therewith improve the compatibility between their services.

The project will deliver methods and tools to support property-based
development of systems.

Property-driven development is a powerful new mechanism for gaining assurance of
system reliability and functionality. However, in order to deliver its full benefits we
need tools to integrate property-based testing into the development life cycle.

Property discovery. Current testing is based on sets of test cases embedded in test
suites; we will provide tools to aid the software developers to extract properties from
this test data. Current specifications and models are often informal: we will develop
specialised property languages to ease the formalisation of existing specifications.

Test and property evolution. All software systems are subject to change and
evolution; we will provide tools to support the evolution of tests and properties in line
with the evolution of the system itself.

Property monitoring. Not all properties can be tested in advance of systems being
executed; not all faults will be found during testing, be it ever so thorough. We will
also provide tools to support the post hoc examination of trace details for
conformance to (or indeed violation of) particular constraints.

Analysing concurrent systems. At the heart of service oriented systems is
concurrency: servers will provide services to multiple clients in a seamlessly
concurrent way; services will federate to provide complex functionality through
concurrently performing parts of a task. We will provide tools by which such
concurrent systems can be analysed for fundamental properties.

The project will put its deliverables to the test by putting them into practice.
The property-driven development methodology will be tested in practice in an
industrial/ academic partnership to build a substantial case study in an industrial
context, reflecting on the tools and method developed, and feeding back into the

project itself.

The consortium will build on a strong software development platform.

The aim of the project is to introduce property-driven development into the software
engineering process. Property-driven development can be used in a variety of
programming languages and systems. The particular platform chosen for initial
implementation of the project is Erlang/OTP (Open Telecom Platform), but a crucial
aspect of our proposal is the dissemination and adoption of the approach much more
widely, particularly into the model-driven development arena (UML) and other
implementation languages (C/C++, Java, etc).

Erlang/OTP has been chosen as the implementation vehicle because of its robustness
and reliability within the telecoms sector; witness, for example, its success in the
implementation of the AXD301 ATM telecoms switch by Ericsson, one of the project
partners. Erlang is a practical language, designed from the start with practical
application in mind. It also benefits from simplicity, and from being a functional
language, which eases the application of theoretical results from the academic
programming language community. We see Erlang as a natural common ground
between researchers and the telecoms industry, providing a conduit through which
research results can be quickly transferred to industrial applications, and thence into a
wider industrial context. We see precisely this happening in this project.

The consortium has the right combination of skills to deliver results.

The consortium is a balance of academics, SMEs, and a key larger industrial
enterprise. The academics bring experience of testing, formal verification, language
development, and refactoring support, delivered in a number of successtul national
research projects. Quviq are a spin-off from academia, founded to commercialise an
innovative property-based testing tool. The remaining industrial partners are system
builders (Ericsson, LambdaStream), consultants, and trainers (ETC), who will provide
invaluable insights into what is required of practical tools, what properties will need
to be checked, and ways of fitting the results from the project into practical software
development methods.

The project addresses Objective ICT-2007.1.2: Service and Software
Architectures, Infrastructures and Engineering, (b) Service/software engineering
approaches.

The project provides a development process and tools that ensure dependable quality
of service through directly verifying properties of the systems. In the context of
Erlang/OTP, and Open Source systems, this process and the tools will integrate with
open development paradigms, and the Erlang/OTP develop community will be
addressed directly through the project partners and indirectly through training and
open source take-up.

The principal impact of the project will be to allow software developers to bring to
market more reliable products on a shorter timescale. Thus, their profitability will be
improved, and with that comes an increased ability to compete effectively in a global
industry. Also, increased reliability offers the opportunity of building more complex
assemblies of systems from assured components.

These innovations will help to nurture the European software service-provider sector,
and help it to compete effectively on the global stage. Initial developments will be in

the Erlang/OTP sector, since Erlang provides the platform for the project, but
property-based testing in UML and other implementation languages will follow by
means of dissemination through Ericsson and its partners.

In summary, the proposal offers a focussed programme of research, based on a
novel testing methodology, delivering tools and techniques to the European
software sector, large and small, to enable the more efficient development of
reliable software services.

For further information contact:

John Derrick (J.Derrick@dcs.shef.ac.uk),

Simon Thompson (S.J. Thompson@kent.ac.uk), or
Thomas Arts (thomas.arts@ituniv.se).

EUC 07 presentation

News from the

Erlang/OTP Development team

at Ericsson

ERICSSON 2

TAKING YOU FORWARD

Kennslh Lundin Erang/OTP Developmenl leam 2 EUC 07 presentation 2007-11-01 ERICSSON 2

What's new in R12B

ERLANG

Runtime system and compiler

New BIF's tuple_size/1, byte_size/1, bit_size/1
Binary Comprehensions

Bitstring + performance improvements for both construction an matching
of binaries and bitstrings

Constant Pool (the compiler now builds constants and put them in a
constant pool shared by all processes)

Percept — a new application for profiling of parallelism on application level.
Support for SMP (Symmetrical Multiprocessor) on Windows.

‘g’efcc — produces more compact code which also execute faster than
efore.

process_info(
Enhanced error messages in the Shell
New module array with support for non destructive arrays.

Several new features in Dialyzer (support for contracts, easier to built
PLT's etc)

Driver_interface with support for creation of threads.

Kenneth Lundin Erlang/OTP

Development team

2007-11-01

EUC 07 presentation

[.'4 What's new in R12B continued

ERLANG

Applications

* New SSL implementation written in “pure” Erlang (alfa
status) (Old SSL is also delivered)

= Full support for version 3 of H.248 (Megaco)

» Faster ASN.1 (PER) decode thanks to the new bitstring
support.

= Hooks for load regulation in SNMP agent
= Inets (HTTP server) more flexible start and config
= CommonTest and TestServer part of the delivery

enneth Lundin Erlang/OTP Developmeni team 3 EUC 07 prosahlatin

2007-11-01 ERICSSON Z

[@d A preview of Percept

ERLANG

= Percept is an application level profiler with focus on
parallelism.

= Makes use of new trace points in the virtual machine.

= Collects data about when processes are runnable and
waiting.

* Graphical interactive presentation of collected data.

enneth Lundin Edang/OTP Developmant team 4 EUC 07 piwssnlatan 2007-11-01 ERICSSON £

Kenneth Lundin Erlang/OTP
Development team

2007-11-01

EUC 07 presentation

: . A oy g o
[or A preview of Percept
ERLANG
L e i
i et
Kenna; Lundin Ertang/OTP Development (sam 5 EUC 07 presantstan 2007-141-04 ERICSSON Z

A preview of Percept

Elle Eot Miew Tominal o Help

ok

bash-2 038 Jelearcase/otpferta/bin/earl
Lrlang (BEAM) emulator version 5.6 [aource] [async-threads:0] [kernel-poll:falss)

£shell V5.6 (aborc with ~G)
1» poroept:profile(“test dat", (ipc_tree, go. (5]}, [procs])
‘s.hur:ing profiling.

2> percept:snalyze (“test. dak")

Paraing: *test dot®

chetk_activity consistenty, invalid start state: inactive
insnck_trace, bad_stato: (peofile, <0 30 05, inactive,

(code_server, call, 2)

(1193847435, 696396))

Parsed 231 entries in 2 66650e-2 s,
64 processes was created.
0 ports was opened.

3> percept:start_webssrver ().
{ok,<0.102.0>})
a8

Kenneth Lundin Edang/OTP Developmenl iaam L]

EUC 07 presentation

2007-11-01

ERICSSON Z

Kenneth Lundin Erlang/OTP
Development team

2007-11-01

EUC 07 presentation

(@4 A preview of Percept
ERLANG
SRR T
- A PRERTEE E: T Sethed ._.L:-._.__"f_.‘.:.'.')_ PO L e L s F
Ml :Ew .:E:E..m-_um |
3 [3 s
i i
KepERIE R G R iR
HREARARNGR E_ Hﬁ
R AR
- o
B i
e figad
WS i ———
B G
=3 i
Kenneth Lundin Erlang/OTP Davelopmani t laam 7 EUC 07 prassatatan 2007-11-01 ERICSSON 2
oy What will happen 2008
ERLANG
= To be completed at EUC , November 8
L}
Kenneth Lundin Edang/OTP Development team 8 EUC 07 prasantalios 2007-11-01 ERICSSON 2

Kenneth Lundin Erlang/OTP
Development team

2007-11-01

Non-Destructive Arrays

Richard Carlsson
and
Dan Gudmundsson

array

STDLIB Reference Manual

56

array

Erlang Module

Functional, extendible arrays. Arrays can have fixed size, or can grow automatically as
needed. A default value is used for entries that have not been explicitly set,

Unless specified by the user when the array is created, the default value is the atom
undefined. There is no difference between an unset entry and an entry which has been
explicitly set to the same value as the default one (cf. reset/2 [page 59}). If you need to
differentiate between unset and set entries, you must make sure that the default value
cannot be confused with the values of set entries.

The array never shrinks automatically; if an index I has been used successfully to set an
entry, all indices in the range [0,I] will stay accessible unless the array size is explicitly
changed by calling resize/2 [page 60].

Examples:

%% Create a fixed-size array with entries 0-9 set to ’undefined’
A0 = array:new(10).
10 = array:size(A0Q).

%% Create an extendible array and set entry 17 to ’true’,
%% causing the array to grow automatically

Al = array:set(17, true, array:new()).

18 = array:size(Al).

%% Read back a stored value
true = array:get(17, Al).

%% Accessing an unset entry returns the default value
undefined = array:get(3, Al).

%% Accessing an entry beyond the last set entry also returns the
%% default value, if the array does not have fixed size
undefined = array:get(18, Al).

%% "sparse" functions ignore default-valued entries
A2 = array:set(4, false, Al).
[{4, false}, {17, true}] = array:sparse_to_orddict(A2).

%% An extendible array can be made fixed-size later
A3 = array:fix(A2).

%% A fixed-size array does not grow automatically and does not
%% allow accesses beyond the last set entry
{’EXIT’,{badarg,.}} = (catch array:set(18, true, A3)).
{’EXIT’, {badarg,_ }} = (catch array:get(18, A3)).

STDLIB

STDLIB Reference Manual array

DATA TYPES

array() A functional, extendible array. The representation is not documented and is

subject to change without notice. Note that arrays cannot be directly compared for
equality.

Exports

default (Array::array()) -> term()

Returns the value used for uninitialized entries.

See also: new/2 [page 59].

fix(Array::array()) -> array()

Fixes the size of the array. This prevents it from growing automatically upon insertion;
see also set/3 [page 60].

See also: relax/1 [page 59].

foldl(Function, InitialAcc::term(), Array::array()) -> term()
Types:
¢ Function = (Index:integer(), Value:iterm(}, Acc::term()) -> term()

Folds the elements of the array using the given function and initial accumulator value.
The elements are visited in order from the lowest index to the highest. If Function is
not a function, the call fails with reason badarg,.

See also: foldr/3 [page 57], map/2 [page 58], sparse_foldl/3 [page 60].

foldr(Function, InitialAcc::term(), Array::array()) -> term()
Types:
e Function = (Index::integer(), Value::term(), Acc::term()) -> term()

Folds the elements of the array right-to-left using the given function and initial
accumulator value. The elements are visited in order from the highest index to the
lowest. If Function is not a function, the call fails with reason badarg.

See also: foldl/3 [page 57], map/2 [page 58].

fromlist(List::1list()) -> array()

Equivalent to fromist([], undefined) [page 57].

from_list(List::1ist(), Default::term()) -> array()

Converts a list to an extendible array. Default is used as the value for uninitialized
entries of the array. If List is not a proper list, the call fails with reason badarg.
See also: new/2 [page 59], to list/1 [page 61].

from orddict (Orddict::list()) -> array()

STDLIB 57

array

STDLIB Reference Manual

Equivalent to from_orddict([], undefined) [page 58].

from orddict(List::list(), Default::term()) -> array()

Converts an ordered list of pairs {Index, Value} to a corresponding extendible array.
Default is used as the value for uninitialized entries of the array. If List is not a proper,
ordered list of pairs whose first elements are nonnegative integers, the call fails with
reason badarg.

See also: new/2 [page 59], to_orddict/1 [page 61].

get(I::integer(), Array::array()) ~> term()

Returns the value of entry I. If T is not a nonnegative integer, or if the array has fixed
size and I is larger than the maximum index, the call fails with reason badarg.

If the array does not have fixed size, this function will return the default value for any
index I greater than size(Array)-1.

See also: set/3 [page 60].

is_array(X::term()) -> bool()

is_fix(Array:

map (Function,

Returns true if X appears to be an array, otherwise false. Note that the check is only
shallow; there is no guarantee that X is a well-formed array representation even if this
function returns true.

rarray()) -> bool()

Returns true if the array has fixed size, otherwise false.
See also: fix/1 [page 57].

Array::array()) -> array()
Types:
e Function = (Index::integer(), Value::term()) -> term()

Maps the given function onto each element of the array. The elements are visited in
order from the lowest index to the highest. If Function is not a function, the call fails
with reason badarg.

See also. foldl/3 {page 57], foldr/3 [page 57], sparse_map/2 [page 61].

new() -> array()

new(Options::

58

Creates a new, extendible array with initial size zero.

See also: new/1 [page 58], new/2 [page 59].

term()) -> array()

Creates a new array according to the given options. By default, the array is extendible
and has initial size zero. Array indices start at 0.

Options is a single term or a list of terms, selected from the following:
N::integer () or {size, N::integer ()} Specifies the initial size of the array; this also

implies {fixed, true}. If N is not a nonnegative integer, the call fails with reason
badarg.

STDLIB

STDLIB Reference Manual array

fixed or {fixed, true} Creates a fixed-size array; see also fix/1 [page 57].

{fixed, false} Creates an extendible (non fixed-size) array.

{default, Value} Sets the default value for the array to Value.

Options are processed in the order they occur in the list, i.e., later options have higher
precedence.

The default value is used as the value of uninitialized entries, and cannot be changed
once the array has been created.

Examples:
array:new(100)
creates a fixed-size array of size 100.
array:new({default,0})
creates an empty, extendible array whose default value is O.
array:new([{size, 10}, {fixed,false},{default,-1}])
creates an extendible array with initial size 10 whose default value is -1.

See also: fix/1 [page 57}, from_list/2 [page 57], get/2 [page 58], new/0 [page 58],
new/2 [page 59], set/3 [page 60].

new(Size::integer(), Options::term(}) -> array()

relax(Array::

Creates a new array according to the given size and options. If Size is not a nonnegative
integer, the call fails with reason badarg. By default, the array has fixed size. Note that
any size specifications in Options will override the Size parameter.

If Options is a list, this is simply equivalent to new([{size, Size} | Options],
otherwise it is equivalent to new([{size, Size} | [Options]]. However, using this
function directly is more efficient.

Example:
array:new(100, {default,0})

creates a fixed-size array of size 100, whose default value is 0.

See also: new/1 [page 58].

array()) -> array()

Makes the array resizable. (Reverses the effects of fix/1 [page 57].)
See also: fix/1 [page 57].

reset(I::integer(), Array::array()) -> array()

resize(Array:

Sets entry I to the default value for the array. This is equivalent to set (I,
default(Array), Array), and hence may cause the array to grow in size, but will not
shrink it. Shrinking can be done explicitly by calling resize/2 [page 60].

If T is not a nonnegative integer, or if the array has fixed size and I is larger than the
maximum index, the call fails with reason badarg; cf. set/3 [page 60]
See also: new/2 [page 59], set/3 [page 60).

;array()) -> array()

STDLIB 99

array STDLIB Reference Manual

Changes the size of the array to that reported by sparse_size/1 [page 61]. If the given
array has fixed size, the resulting array will also have fixed size.

See also: resize/2 [page 60], sparse_size/1 [page 61].

resize(Size::integer(), Array::array()) -> array()

Changes the size of the array. If Size is not a nonnegative integer, the call fails with
reason badarg. If the given array has fixed size, the resulting array will also have fixed
size.

set(I::integer(), Value::term(), Array::array()) -> array()

Sets entry I of the array to Value. If I is not a nonnegative integer, or if the array has
fixed size and T is larger than the maximum index, the call fails with reason badarg.

If the array does not have fixed size, and I is greater than size (Array)-1, the array will
grow to size I+1.

See also: get/2 [page 58], reset/2 [page 59].

size(Array::array()) -> integer()

Returns the number of entries in the array. Entries are numbered from 0 to
size(Array)-1; hence, this is also the index of the first entry that is guaranteed to not
have been previously set.

See also: set/3 [page 60], sparsesize/l [page 61].

sparse_foldl (Function, InitialAcc::term(), Array::array()) -> term()
Types:
e Function = (Index::integer(), Value::term(), Acc::term()) -> term()

Folds the elements of the array using the given function and initial accumulator value,
skipping default-valued entries. The elements are visited in order from the lowest index
to the highest. If Function is not a function, the call fails with reason badarg.

See also: foldl/3 [page 57], sparse_foldr/3 [page 60].

sparse foldr (Function, InitialAcc::term(), Array::array()) -> term()
Types:
e Function = (Index::integer(), Value::term(), Acc::term()) -> term()

Folds the elements of the array right-to-left using the given function and initial
accumulator value, skipping default-valued entries. The elements are visited in order
from the highest index to the lowest. If Function is not a function, the call fails with
reason badarg.

See also: foldr/3 [page 57], sparse_foldl/3 [page 60].

sparse map (Function, Array::array()) -> array()
Types:

o Function = (Index::integer(}, Value::term()) -> term()

60 STDLIB

STDLIB Reference Manual array

Maps the given function onto each element of the array, skipping default-valued entries.
The elements are visited in order from the lowest index to the highest. If Function is
not a function, the call fails with reason badarg.

See also: map/2 [page 58].

sparse_size(A::array()) -> integer()

Returns the number of entries in the array up until the last non-default valued entry. In
other words, returns I+1 if T is the last non-default valued entry in the array, or zero if
no such entry exists.

See also: resize/1 [page 60], size/1 [page 60].

sparse_to_list(Array::array()) -> list()

Converts the array to a list, skipping default-valued entries.

See also: to_list/1 [page 61].

sparse_to_orddict (Array::array()) -> [{Index::integer(), Value::term()}]

Converts the array to an ordered list of pairs {Index, Value}, skipping default-valued
entries.

See also: to_orddict/1 [page 61].

to_list(Array::array()) -> list()
Converts the array to a list.

See also: from list/2 {page 57], sparse_to_list/1 [page 61].

to.orddict(Array::array()) -> [{Index::integer(), Value::term()}]

Converts the array to an ordered list of pairs {Index, Value}.

See also: from_orddict/2 [page 58], sparse_to_orddict/1 [page 61].

STDLIB 61

()

Programming Efficiently with Binaries and Bit Strings

Per Gustafsson
Department of Information Technology

Uppsala University, Sweden

Ericsson AB, Sweden

pergu@it.uu.se

Abstract

A new datatype, the bit string, and a new construct for manipulating
binaries, binary comprehensions, are included in the R12B release
of Erlang/OTP. In addition to this the implementation of binary con-
struction and matching have been altered to make straightforward
programs that operates on binaries or bit strings more efficient.

This paper will describe the new additions to the language and
show how they can be used efficiently given the new optimizations
of binary pattern matching and binary construction. It also includes
some performance numbers to give an idea of the gains that can be
made with the new optimizations.

1. Introduction

Binaries have received a makeover in the R12B release of Erlang
with the introduction of bit sirings and extended comprehensions
as well as optimization of both binary construction and pattern
matching.

Binaries have been a part of Erlang for a long time, and there has
been a nice syntax for manipulating binaries since the R7B release
of Erlang/OTP [3]. There has been some complaints about the using
binaries for formats that are bit-oriented rather than byte-oriented
since this tends to lead to complicated and error-prone code [2]. Bit
strings are introduced to solve exactly this problem.

List comprehensions are used a lot in Erlang. They tend to make
programs more compact and readable avoiding boilerplate code. In
2004 Jay Nelson suggested that there could also be binary com-
prehensions, a compact syntax for operating on binaries. The sug-
gestion was formalized at the 2005 Erlang Workshop [1] and with
some syntax changes this proposal was added as an optional feature
in Erlang R11B. It will finally be a supported feature in R12B. The
feature not only allows binary comprehension but also the use of bi-
nary generators in list comprehensions as well as list generators in
binary comprehensions. Togeteher we call these features extended
comprehensions which give users versatile abstractions for convert-
ing data between structured term formats and binary formats.

In addition to this binary comprehensions give the users a sure-
fire way to use the new optimizations of binary construction and
pattern matching. The optimization of construction of binaries
might be the most important of the two as it makes it possible to
build binaries in a piece-wise manner in linear time. This has been
a problem in previous versions of Erlang forcing programmers to
create lists of binarics which are then concatenated at the end to get
efficient algorithms. This pattern tends to make algorithms more
complicated than necessary.

The optimization of binary pattern matching is also important as
it decreases the need to do unrolling of code that iterates over binary
or keeping a counter to iterate over a binary. This optimization
tends to make short natural implementations of functions which
iterates over a binary efficient. Which is good as the hand-written
optimizations above can introduce subtle bugs.

In this paper we will describe the new additions to the language
in Section 2 and 3. Then we will give a short introduction to
the implementation of operations on bit strings and binaries in
Section 4 in order to be able to cxplain the new optimizations
in Scction 5 and give the reader some idea of how he should
program to make use of them. Finally we have some performance
measurements in Section 6 and conlusions in Section 7.

2. Bitstrings and binaries

A new datatype the bit string is introduced into Erlang, A bit string
is a sequence of bits of any length this separates it from a binary
which is a sequence of bits where the number of bits is evenly
divisible by cight. These definitions implies that any binary is also
a bit string.

2.1 Manipulating bit strings using the bit syntax
A bit syntax expression:

<<8egl, ...,Segh>>

Evaluates to a bit string. If the sum of the sizes of all segments
in the expression is divisible by eight the result is also a binary,
Previously such expression could only evaluate to binaries and a
runtime error was raised if this was not the case.

With this extension the expression Bin = <<1:9>> which pre-
viously caused a runtime error now creates a 9-bit binary. To be
able to use this bit string to build a new bigger bit string we can
write:

<<Bin/bitstring, 0:1>>

Note the use of bitstring as the type, This expands to binary-
unit:1 where as the binary type would have expanded to binary-
unit:8. Since bitstring is a long word to write in a binary pattern
there is an alias bits which is used in the rest of this paper, similarily
for binary there is a new shorthand hytes.

To match out a bit-level binary we also use the bit string type as
in:

case Bin of
<<1:1,Rest/bits>> -> Rest;
<<0:1,_/bits>> -> 0

end

This allows us to avoid situations were we previously had to
caleulate padding.

Example 2.1 A format from the IS 683-PRL protocol which con-
sists of a 5-bit field describing how many 11-bjt fields it was fol-
lowed by. Decoding this format required a complicated calculation
of padding to implement in a straightforward manner. The result is
shown in Program 1.

Program 1 Decoding a format in the IS 683-PRL protocol

decade(<<NumChans:5, _Pad:3, _Rest/binary>> = Bin) ->
decode(Bin, NumChans, NumChans, []).

decode(_, _, 0, Acc) ->
Acc;
decode(Bin, NumChans, N, Acc) —->
SkipBef = (N ~ 1) * 11,
SkipAfter = (NumChans - N) * 11,
Pad = (8 ~ ((NumChans * 11 + 5) xem 8)) rem 8,
<<_:5, _:SkipBef, Chan:11, _:SkipAfter, _:Pad>> = Bim,
decode(Bin, NumChans, N -~ 1, [Chan | Acc]).

With the introduction of bit strings it can be implemented with-
out any padding calculations at all as:

decode (<<NumChans:5, Rest/bits>>) ->
decode (NumChans, Rest, []).

decode(0, _, Acc) ->
lists:reverse(Acc);

decode(N, <<Chan:11,Rest/bits>>, Acc) —->
decode(N-1, Rest, [Chanl|Accl).

2.2 BIFs for manipulating bit strings

The current builtin functions for manipulating binaries will still
only be defined for binaries. We will instead introduce four new
BIFs which operate on bit strings .hey are described in Table 1.

3. Bit String Comprehensions

Bit string comprehensions are analogous to List Comprehensions.
They are used to generate bit strings efficiently and succintly. Bit
string comprehensions are written with the following syntax:

<< BitString || fualifieri,...,QualifierN >>

BitString is a bit string expression, and each Qualifier is
either a generator, a bit string generator or a filter.

generator: Pattern <- ListExpr
Where ListEzpr must be an expression which evaluates to a
list of terms.

bit string generator: BitstringPattern <= BitStringExpr
Where BitStringExpr must be an expression which evaluates
to a bitstring.

filter : Expr
Where Expr must be an expression which evaluates to true or
false

The variables in the generator patterns shadow variables in the
function clause surrounding the bit string comprehensions. A bit
string comprehension returns a bit string, which is created by con-
catenating the results of evaluating BitString for each combina-
tion of bit string generator or ordinary generator elements for which
all filters are true.

Example 3.1 A simple comprehension which changes all lower
case ascii characters in the bit string Bits into upper case char-
acters,

<< <<(to_upper(X))>> || <<X>» <= Bits >>

This has the same semantics as the following expression:

bits_to_upper (Bits)

bits_to_upper(<<X,Rest/bits>>) ->
<<(to_upper (X)), (bits_to_upper(Rest))/bits>>;
bits_to_upper(_) -> <<>>.

The translation to Erlang code is pretty straightforward, but the
runtime for the Erlang program above is quadratic in the size of
Bits, whereas the comprehension will be evaluated in linear time.

Since both ordinary list generators and bit string generators are
allowed in bit string comprehensions they can be used to convert a
list of data structures to a bit string representation.

Example 3.2 Consider the case where you have a list of three
tuples where the first value in the tuple is one of 6 different atoms,
the second value is a 16-bit integer and the third value is a float.
Than you can turn that into a compact format using the following
code:

<< <<(atom_to_int(Atom)):3,Int:16,Float/float>> ||
{Atom,Int,Float} <- List >>.

Where atom_to_int maps the six different atoms to integers
between 0 and 5.

3.1 Bit String Generators in List Comprehensions

In addition to introducing bit string comprehensions we also allow
bit string generators in list comprehensions. This is useful for
tumning bit strings into structured data. One example when it is
useful is for the problem described in Example 2.1. Using a bit
string generator in a list comprehension this can be written as:

decode (<<N:5,Chans:N/bits~unit:11,_/bits>>) ->
[Chan || <<Chan:11>> <- Chans].

4. TImplementation

In order to describe the new optimizations of binary pattern match-
ing and construction I must first describe how bit strings are repre-
sented and bit string operations are implemented.

4.1 The bit string datatype

The layout of bitstrings is a little bit complicated. The actual data
in a bit string resides off heap. There is a data structure on the
heap that is called a REFC binary that points to the off heap data.
Bitstrings are so called sub-binaries which also reside on the heap.
They point to REFC binary and they also contain offset and size
fields. They never point directly to the off-heap data. The situation
is described in Figure 4.1.

4.2 Bit String Construction

A bit string construction expression that has the form:
<<vei:ser/ti,...,ven:8en/ta>> is translated as follows. We
start by evaluating all the value and size expressions so that we end
up with an expression of the form <<vi:s1/t1,...,Vn 18n/tn>>
where all the v;:s are values and all the s;:s are non-negative
integers. If any s; is a negative value, a run-time exception is raised.

Then the the resulting size of the binary we are building is
calculated as Z:;l si. An appropriate amount of off beap space
is allocated for the data and the REFC binary is created on the
heap. Then each segment is written into the data part. When this
is done the sub binary which becomes the result of the expression
is created.

Signature

Definition

bit_size/1::bitstring() -> integer()

list_to_bitstring/1::bitstring_list() -> bitstring()

is_bitstring/1::any() -> bool()

bitstring to list/1::bitstring() -> [char() |bitstring()]

Returns the size of a bt string in bits.

This BIF is allowed in guards.

Concatenates the bit strings and chars in the bitstring list to

create a bit string. A bitstring list is an io list which can contain

bit strings as well as binaries the chars in the bitstring list are treated
as if they were bit strings consisting of 8 bits.

Turns a bit string into a list of characters and if the number of bits
in the bit string is not evenly divisible by eight the last element

in the list is a bit string consisting of the last [-7 bits of the original
bit string.

Returns true if the argument is a bit string, otherwise it returns false.
This BIF is allowed in guards.

Table 1. New Builtin Functions for manipulating bit strings

Slack
A
B

Heap
REFC Header

Size =31

Meta Off Heap

SubBin Header

§=35

elojolo
-
olo|e
o
-
-
-

0=15

SubBin Header
S=16

0=8

4.3 Binary Pattern Matching
Consider the following expression:

<<8:16, X:32, Bin/bits>> = Bits

This gets compiled into the sequence shown in Figure 1. The
instruction create matchstate takes a bit string and creates a
matchstate to be used during the matching. The matchstate contains
the size of the bitstring we are matching against, the offset we
are at and a pointer to the data. The get_integer instruction
takes a matchstate and a size and reads that number of bits, turns
it into an integer and updates the offset in the matchstate. The
get_bitstring function creates a sub-binary from the matchstate.

A more complicated matching with several patterns is compiled
into a tree of instuctions for exampleif we have:

case Bits of
<<A:8, 1:8, X:8, Bin/bits>> -> conti;
<<A:8, 2:8, X:16, Bin/bits>> -> cont2;
<L<>> -> cont3
end

We end up with the tree of instructions shown in Figure 2.
We have some new instructions:

save_matchstate(N,MS) This instruction saves the present off-
set in the matchstate in save slot N,

M85 = create_matchstate(Bits)

Temp = get_integer(16,MS)

X = get_integer(32,MS)

Bin = get_bitstring(all,MS)

Figure 1. Matching graph for <<8:16, X:32, Bin/bits>> =
Bits

A = get_inseger(8,MS)

Temp = gri_inieger{8MS)

) @
Thin -+ gos_bitsirinig{allMS) X=pat_tareger(16M5)
b
Bin = pet_bitairing(sl MS)

Figure 2. Matching graph for case statement

restore matchstate(N,MS) This instruction loads the offset
value from slot N and makes it the present offset value.

end_of_bitstring This instruction checks that the offset in the
matchstate is equal to the size. That is that we have reached the
end of the bit string

5. Optimizations

In R12B both binary construction and binary pattern matching has
been optimized. In this section we will describe these optimizations
and discuss how to write code that best utilizes trhe optimizations.

5.1 Binary Construction Optimization

The basis of this optimization is that it the emulator can create bit
strings with extra uninitialized space, so if a bit string is built by
continously appending to a binary the data does not need to be
copied if there is enough uninitialized data at the end of the bit
string.

Bits contains a bit string of 1000 bits followed by 600 bits of
uninitialized data.

In the expression

NewBits = <<Bits/bits, 12:32>>

NewBits gets bound to a bit string of 1032 bits followed by 568
bits of uninitialized data, Bits on the other hand can no longer be
appended to.

On the other hand if we have this expression:

NewBits = <<Bits/bits, 12:640>>

Since there is not enough uninitalized data NewBits becomes
a new bit string consisting of 1640 bits followed by 1640 bits of
uninpitialized data. Bits remains the same a bit string of 1000 bits
with 600 bits uninitialized data.

What does this mean in practice when your programming?

» It means you can build bit strings piecewise in linear time

¢ It means that when your building a bit string from a list or from
an other bit string and you want to have the same order of your
pieces you should use tail calls and an acumulator

e It means that you can reverse a bit string efficiently without
turning it into a list

Let us see some examples of efficient programs for building bit
strings:

Example 5.1 This function reverses a bit string consisting of 32 bit
integers:

reverse_32bit (<<X:32,Rest/bits>>) ->
<<(reverse_32bit (Rest)) /bits,X:32>>;
reverse_32bit(<<>>) ->
<>,

Not that when we are constructing the answer the first element
of the new bit string is the growing bit string.

Note that we use direct recursion in order to get the reverse order
in the result in the following example we want to perserve the order
of the input.

Example 5.2 This simple function stores a double in 32-bits if it is
prefaced by a zéro if it is prefaced by a one it uses 64-bits.

save_floats(Bits) ->
save_floats(Bits, <<O>).

M3 = create_matchstate(Bits)
save_matchstate(1,MS)
X = get_integer(8,MS)

restore_imaichstate(1,MS)
end_of bilstring(MS)

Figure 4. Optimized code for sum1/2

save_floats(<<0:1,F:64/float ,Rest/bits>>, Acc) —>
save_floats(Rest, <<Acc/bits,0:1,F:32/float>>);
save_floats(<<1:1,F:64/float,Rest/bits>>, Acc) >
save_floats(Rest, <<Acc/bits,1:1,F:64/float>>);
save_floats(<<>>,Acc) —>
Acc.

5.2 Binary Pattern Matching Optimization

To describe the new optimization of binary pattern matching con-
sider these two functions which calculates the sum of the bytes in a
bit string;

suml(Bits) ->
suml (Bits, 0).

sumi (<<X,Rest/bits>>, Acc) >
suml (Rest, Acc+X);
suml (<<>>, Acc) -> Acc.

sum2(Bits) ->
sum2(Bits,0,0).

sum2(Bits,N,Acc) ->
case Bits of
<<_:N,X,Rest/bits>> ->

sum2 (Bits ,N+8,Acc+X);
<<_/bits>> ->
Acc

end.

The generated code for sum1/2 is shown in Figure 3(a). In each
iteration of the loop a sub-binary is created from the match sate only
to promptly be turned in to a new match state in the next iteration.

For sum2/3 we avoid creating this sub-binary, but we still have
to create the match state in each iteration.

The new optimization of binary pattern matching follows from
the observation that it is unnecessary to convert a match state
into sub-binary only to immediatly convert it back to a match
state. Instead we can keep the match state in the loop. Using this
optimization the code for sum1/2 is shown in Figure 4.

How should we write code to make it possible to apply this
optimization? The most important thing is to make sure that the
binary we are matching against is not used for anything else in the
function. In addition to this we need to make sure that the sub-
binary we are creating is only used in a self recursive call.

ME = create_matchstate(Hits)

save_mutchstate(1, MS)

X = get_integer(8,MS)
Reat = get_bitstring(all,MS)

end_of_bitstring(MS)

(a) Generated code for sum1/2

restore_matchatate(| MS)

MS = create_matchstate(Bits)

(b) Generated code for sum2/3

Figure 3. Code generated for two different functions calculating the byte sum of a bit string

f (<<Patternl,...,Rest/bits>>,...) ->
... % Rest is not used here
f(Rest,...);

f(<<Pattern2,...,Rest/bits>>,...) ->
... % Rest is not used here

f(Rest,...);
£f(<>>, ...) >
ReturnValue

Figure 5. Function skeleton that will be optimized

A good model for functions that want to make sure they use this
optimization is shown in figure 5.

6. Performance

In this section we will give some performance figures and com-
pare some different approaches to write programs operating on bit
strings as well as comparing handling of bit strings in R11B-5 and
R12B. All of the benchmarks in this section have been run on a
unicore 2.4 GHz Pentium 4 with 1 GB of memory, running Ubuntu
7.10.

6.1 IP-packet checksum

This program exists in four different flavors. Two which creates
sub-binaries like the program in Figure 3(a) the difference be-
tween these programs is that one of them unrolls the loop eight
times whereas the other program does no unrolling. The programs
are called Sub and SubUnrolled. The other two programs use the
same type of iteration as the program in Figure 3(b), one of these
progams is also unrolled. They are called Iter and IterUnrolled.
They each calculate the checksum for a 658 kB file one hundred
times. The runtimes can be found in Table 2. The four different
functions can be found in Program [?] in the appendix.

Program BEAM R12B-0 | HiPE R12B-0
Bit String Comprehension 10.43 2.69
Bit String Recursion 14.49 341
List Comprehension 10.22 6.21

Table 3. Runtimes in seconds for making 65.8 MB of data all
upper case

The results suggest that performance of binary pattern matching
in general is better in R12B, but paritcularily when using sub-
binaries. The effect of doing unrolling decrease from a factor four
in R11B to less than approximatly a factor 1.5, which suggests that
good performance can be had without adding ugly unrolling.

6.2 Upper Case

In the second experiment binaries are both constructed and pattern
matched on, but it is a pretty simple program. It simply turns
a binary string into an all upper case binary string. There are
three different versions of the function all of them are shown in
Program 2 in the appendix.

It was not really relevant to run this benchmark on R11B-5 since
the bit string recursion function had a quadratic cost and bit string
comprehensions were very inefficient. They were thus only run on
R12B. The input was the same as in the [P-checksum case, a 658
kB file that was turned into an all upper case file one hundred times.
The results are shown in Table 3.

The results seem to suggest that with BEAM bit string compre-
hensions are competitive with operating on a list while it becomes
superior when native compilation is used. It is also superior to ex-
plicit recursion. This is the case since it is easier to analyze a bit
string comprehension and thus construction and matching of bit
strings can be optimized further.

The implementation of bit string comprehensions can be im-
proved further. In many cases the size of the resulting bit string can
be computed beforehand. This is not done yet, but we expect to
implement this in future releses of Erlang/OTP.

Program BEAM R11B-5 | HIPE R1IB-5 | BEAM R12B-0 | HiPE R12B-0
Sub 10.18 3.69 2.66 0.62
SubUnrolled 217 0.90 1.13 0.38
Iter 8.31 2.90 5.09 2.15
TterUnrolled 2.16 0.78 1.54 0.58

Table 2. Runtimes in seconds for calculating checksums of 65.8 MB of data

7. Conclusions

This is not a comprehensive description of how to use binaries
and bit strings efficiently in your programs. It is simply a short
description of how binaries have been extended into bit strings and
how various operations on bit strings are implemented. We also
try to describe how we optimize these operations. Hopefully this
description will help you write shorter and easier and more efficient
programs in the future. What we want you to take away from this
paper is summarized in the following bullet points.

e Bit strings makes it much easier to deal with bit-oriented data
in Erlang

e When you are building new bit strings make sure you append
new data to the end of an old bit string

* When you iterate over a bit string use a direct style matching
similar to what you would do for lists

e If you are doing a map operation over bit strings use bit string
comprehensions to get efficient and concise code

@ Write simple straight-forward code first to see if the optimiza-
tions makes it fast enough. Then you can try various approaches
to make it faster.

References

[1] P. Gustafsson and K. Sagonas. Bit-level binaries and generalized
comprehensions in Erlang. In Proceedings of the Fourth ACM
SIGPLAN Erlang Workshop, pages 1-8. ACM Press, Sept. 2005.

[2] M. Léng. Erlang in the corelatus mtp2 signalling gateway, Oct. 2001.
Available at http://www.erlang.se/euc/01/.

[3] P. Nyblom. The bit syntax - the released version. In Proceedings of the
Sixth International Erlang/OTP User Conference, Oct. 2000. Available
at http:/ /www.erlang.se/euc/00/.

8. Appendix

Program 2 Three ways to make a binary all upper case

bit_string_comp(Bin) ->
<< <<(to_upper(X))>> || <<X>> <= Bin >>.

bit_string_recursion(Bin) ->
bit_string_recursion(Bin, <<>>).

bit_string _rec(<<X,Rest/binary>>, Acc) ->
bit_string_rec(Rest,<<Acc/binary, (to_upper(X))>>);
bit_string_rac(<<>>, Acc) -> Acc.

list_comprehension(Bin) ->
list_to_binary([to_upper(X) 1|
X <- binary_to_list(Bin)]).

to_upper(X) when X >= $a, X =< $z ->
X + (3A-$a);

to_upper(X) ->
X.

Program 3 Four ways to calculate an IP checksum

—-define (INT16MAX, 65535).

sub(<<N1:16, Rem/binary>>,Csum) ->
sub(Rem, do_trunc(Csum+N1));
sub(<<N1:8>>,Csum) ->
sub(<<>>,do_trunc(Csum+(N1 bsl 8)));
gub(<<>>,Csum) when Csum > ?INT16MAX ->
Val=(Csum band 7INT16MAX) + (Csum bsr 16),
sub(<<>>,Val);
sub(<<>>,Csum) -> (bnot Csum) band 7INT16MAX.

sub_unrolled(<<N1:16,N2:16,N3:16,N4:16,N5:16,N6:16,
N7:16,NB:16,Rem/binary>>, Csum) ->

sub_unrolled(Rem,do_trunc(Csum+N1+N2+N3+N4+NS+N6+N7+N8)) ;

sub_unrolled(<<N1:16, Rem/binary>>,Csum) ->
sub_unrolled(Rem, do_trunc(Csum+N1));
sub_unrolled (<<N1:8>>,Csum) ->
sub_unrolled(<<>>,Csum+ (N1 bsl 8));
sub_unrolled(<<>>,Csum) when Csum > 7INT16MAX ->
Val=(Csum band 7INT16MAX) + (Csum bsr 16),
sub_unrolled(<<>>,Val);
sub_upnrolled (<<>>,Csum) ->
(bnot Csum) band 7INT16MAX.

iter(N,Bin,Csum) ->
case Bin of
<<_:N/bipary, N1:16,_/binary>> ->
iter (N+2,Bin,do_trunc(Csum+N1));
<<_:N/binary, Num:8>> ->
iter (N+1,Bin,do_trunc (Csum+(Num bsl 8)));
_. when Csum > 7INT16MAX ->
Val = (Csum band ?INT16MAX + (Csum bsr 16)),
iter (N,Bin,Val);
->
(bnot Csum) band 7INT16MAX
end.

iter unrolled(N,Bin,Csum) ->
case Bin of
<<_:N/binary, N1:16,N2:16,N3:16,
N4:16 ,N5:16,N6:16,N7:16,N8:16,
_/binary>> >
iter_unrolled(N+16,Bin,
do_trunc (Csum+N1+N2+N3+N4+NE+N6+N7+N8)) ;
<<_:N/binary, N1:16,_/binary>> ->
iter_unrolled(N+2,Bin,do_trunc(Csum+N1));
<<_:N/binary, Num:8>> ->
iter _unrolled(N+1,Bin,Csum+(Num bsl 8));
when Csum > ?PINTi6MAX ->
Val = (Csum band ?INT16MAX + (Csum bsr 18)),
iter_unrolled(N,Bin,Val);
->
(bnot Csum) band ?INT16MAX
end.

do_trunc(Caum) when Csum > 16#6ffffff, Csum < 16#7ffffff
Csum band ?INT16MAX + (Ceum bsr 16);
do_trunc(Csum) -> Csum.

->

ErlangIOTP User Conference 2007

Speakers

Richard Carlsson AR Systemns AB Uppsala Sweden richardc@it.uu.se

Dan Gudmundsson Ericsson AB Stockholm Sweden

Per Gustafsson Uppsala University Uppsala Sweden per.gustafsson@it.uu.se

Gordon Guthrie Hypernumbers.com Edinburgh Scotland gordonguthrie@backawinner.gg
John Hughes Quvig AB Goteborg Sweden john.hughes@quviq.com

Martin Logan Orbitz Chicago USA martinjlogan@gmail.com

Leslaw Lopacki Telenor Nordic 1S Sandvika Norway leslaw.lopacki@telenor.com
Kenneth Lundin Ericsson AB Stockholm Sweden kenneth.lundin@ericsson.com
Eric Merritt Seattle USA cyberiync@gmail.com

Tamas Nagy Eétvds Lorand University Budapest Hungary lestat@elte.hu

Aniko Nagyné Vig E6tvds Lorand University Budapest Hungary viganiko@inf.elte.hu

Vincenzo Nicosia Erlang Training & Consuiting London England vnicosia@diit.unict.it

Samuel Rivas LambdaStream A Corufia Spain samuel.rivas@lambdastream.com
Erik Stenman Kreditor Europe AB Stockholm Sweden Erik. Stenman@kreditor.se 1. :
Marcus Taylor Erlang Training & Consulting London England marcus@erlang-consuiting.com
Fredrik Thulin Stockholm University Stockholm Sweden ﬁ@it.su.se o~

Chairmen @

Francesco Cesarini Erlang Training & Consulting London _England francesco@erlang-consulting.com
Bjarne Dacker cs-lab.org Segeltorp Sweden bjarne@cs-lab.org

Mickaél Rémond Process One Paris France mickael.remond@process-one.net
UIf Wiger Ericsson AB Stockhoim Sweden ulf.wiger@ericsson.com

Claes Wikstrém Tail-f AB Stockholm Sweden klacke@tail-f.com
| Participants

Nikias Adalberth Kreditor Europe AB Stockholm Sweden Niklas.Adalberth@kreditor.se
Akos Akos ROC Development Kft Debrecen Hungary

Kristoffer Andersson Synapse Mobile Networks Stockholm Sweden

Peter Andersson Ericsson AB Stockholm Sweden

ingela Anderton-Andin Ericsson AB Stockholm Sweden ingela@theheartofgold.org

Adam Aquilon Ericsson AB Stockholm Sweden adam.aquilon@ericsson.com
Marcus Arendt Marcus Arendt AB Stockholm Sweden marcus@arendt.se

Joe Armstrong Ericsson AB Stockholm Sweden erlang@gmail.com

Gosta Ask SalveLinus Stockholm Sweden g.ask@telia.com

Henrik Back Mobile Arts AB Uppsala Sweden Henrik.back@mobilearts.se

Participants

Tim Becker Syngenio AG Cologne égrmany tim.becker@g mx.net

Per Bergqyvist Synapse Mobile Networks Stockholm Sweden per.bergqvist@synap.se

Per Bergstrém Ericsson AB Stockholm Sweden per.bergstrom@ericsson.com
Johan Bevemyr Tail-f AB Stockholm Sweden jb@tail-f.com

Xingdong Bian Erlang Training & Consulting London England

Martin Bj6rklund Tail-f AB Stockholm Sweden mbj@tail-f.com

Johan Blom Mobile Arts AB Stockholm Sweden Johan.Blom@mobilearts.com
Jonas Boberg Erlang Training & Consulting London England jonas@erlang-consuiting.com
Hans Bokvist Ericsson AB V&steras Sweden hans.bokvist@ericsson.com
Hans Bolinder Ericsson AB Stockholm Sweden

Garry Bulmer Coventry Engiand gbulmer@gmail.com

Goran Bage Mobile Arts AB Stockholm Sweden goran.bage@mobilearts.com
Mats Crongvist Ericsson AB Stackholm Sweden mats.crongvist@ericsson.com
Graham Crowe Ericsson AB Stockholm Sweden graham.crowe@ericsson.com
Bjorn-Egil Dahlberg Ericsson AB Stockholm Sweden

Anders Danne Ericsson AB Stockholm Sweden anders.danne@ericsson.com
Wendy Devolder Skills Matter London England wendy.devolder@skillsmatter.com
Viad Dumitrescu HiQ Goéteborg AB Goteborg Sweden viaddu55@gmail.com

Marcus Dibois Stockholm University Stockholm Sweden

Niclas Eklund Ericsson AB Stockholm Sweden nick@erix.ericsson.se

Ulf Eliasson Erlang Training & Consulting London England ulf@erlang-consulitng.com
Nabiel Elshiewy Vinnova Stockholm Sweden Nabiel.Elshiewy@VINNOVA se
Lars Géran Ericson Synapse Mobile Networks Stockholm Sweden

Morgan Eriksson Ericsson AB Stockholm Sweden morgan.xe.eriksson@ericsson.com
Jonas Falkevik Mobile Arts AB Stockholm Sweden jonas.falkevik@mobilearts.com
Paul Fleischer University of Aarhus Aarhus Denmark pf@daimi.au.dk

Rabbe Fogetholm Ericsson AB Stockholm Sweden rabbe.fogelholm@ericsson.com
Scott Lystig Fritchie Gemini Mobile Technologies USA fritchie@snookles.com

Magnus Fréberg Kreditor Europe AB Stockholm Sweden Magnus.Froberg@kreditor.se
Francesca Gangemi Erlang Training & Consulting London England francesca@erlang-consulting.com
Dmitri Girenko Akumiitti Oy Helsinki Finland Dmitri.Girenko@akumiiitti.com
Joakim Grebend Tail-f AB Stockholm Sweden jocke@tail-f.com

Rickard Green Ericsson AB Stockholm Sweden

Dag Gruneau Tail-f AB Stockholm Sweden dag@tail-f.com

Nicholas Gunder Motorola A/S Copenhagen Denmark ngunder@motorola.com

Participants

Bjorn Gustavsson Ericsson AB Stockholm Sweden bjorn@erix.ericsson.se

Per Haltin Synapse Mobile Networks Stockholm Sweden per.hallin@synap.se

Mazen Harake Erlang Training & Consulting London England mazen@erlang-consulting.com
Dale Harvey Hypernumbers.com Edinburgh Scotland

Andreas Hasselberg Kreditor Europe AB Stockholm Sweden Andreas.Hasselberg@kreditor.se
Dragan Havelka Mobile Arts AB Stockholm Sweden dragan.haveika@mobilearts.com
Per Hedeland Tait-f AB Stockholm Sweden per@tail-f.com

Pekka Hedqvist Optimobile AB Stockholm Sweden Pekka.Hedqvist@OptiMobile.SE
Oscar Helstrém Erlang Training & Consulting London England oscar@erlang-consulting.com
Johan Herdegard Mobile Arts AB Stockholm Sweden johan.herdegard@mobilearts.com
Sean Hinde Synapse Mobile Networks Stockholm Sweden

Torben Hoffmann Motorola A/S Copenhagen Denmark Torben.Hoffmann@motorola.com
Fredrik Holmén Upsala Systemkonsult AB Uppsala Sweden fredrik@upsys.se

Zoltan Horvath Eodtvds Lorand University Budapest Hungary hz@inf.elte.hu

Victor Jacobsson Kreditor Europe AB Stockholm Sweden Victor.Jacobsson@kreditor.se
Karl Johansson Erlang Training & Consulting London England karl@erlang-consluting.com

Klas Johansson Ericsson AB Linkdping Sweden klas.johansson@ericsson.com
Torbjérn Johnson Firma Torbjérn Johnson Stockholm Sweden torbjorn.k.johnson@swipnet.se
Fredrik Jones Ericsson AB Goteborg Sweden fredrik.xx.jones@ericsson.com
Ruan Jonker Mira Networks Johannesburg South Africa ruanj@miranetworks.net
Andreas Karlsson Erlang Training & Consulting Stockholm Sweden andreas@erlang-consulting.com
Bertil Karlsson Ericsson AB Stockholm Sweden bertil. karlsson@ericsson.com
Martin Karlsson Erlang Training & Consulting London England martin@erlang-consuiting.com
Mikael Karlsson Creado Systems Stockholm Sweden mikael.karlsson@creado.com
Mikael Karlsson Mikadako AB Utd Sweden micke@mikadako.com

Roland Karlsson Erlang Training & Consulting Stockholm Sweden roland.karlsson@bonetmail.com
Martin Kjellin Mobile Arts AB Stockholm Sweden martin.kjellin@mobilearts.com
Bengt Kleberg Ericsson AB Stockhoim Sweden bengt kleberg@ericsson.com
Mikael Laaksonen Mobile Arts AB Stockholm Sweden micke.laaksonen@gmail.com
Tomas Langer Ericsson AB Stockholm Sweden tomas.langer@ericsson.com
Lukas Larsson Erlang Training & Consulting London England lukas@erlang-consulting.com
Petter Larsson Cybercom Group Stockholm Sweden petter.xa.larsson@ericsson.com
Tobias Lindahl Uppsala University Uppsala Sweden tobias.lindahl@it.uu.se

Adam Lindberg Erlang Training & Consulting London England adam@erlang-consulting.com
Erik Lindblom Synapse Mobile Networks Stockholm Sweden

r

Participants

Thomas Lindgren Millpond Services Lid London England thomasl_erlang@yahoo.com
Mikael Lindmark Kreditor Europe AB Stockholm Sweden Mikael.Lindmark@kreditor.se
Daniel Luna Kreditor Europe AB Stockholm Sweden Daniel.Luna@kreditor.se

Peter Lund Synapse Mobile Networks Stockholm Sweden peter.lund@synap.se

Matthias Lang Corelatus AB Stockholm Sweden matthias@corelatus.se

Doug Mansell Number Play Geneva Switzerland doug.mansell@numberplay.com
Thomas Mattisson Mobile Arts AB Stockholm Sweden thomas.mattisson@mobilearts.com
Hékan Mattsson Ericsson AB Stockholm Sweden hakan@erix.ericsson.se

Sean McEvoy Erlang Training & Consulting London England sean@erlang-consulting.com
Hunter Morris Trost & Morris London England hunter@binaryclub.com

Chandru Mullaparthi T-Moble Hatfield England chandrashekhar.mullaparthi@gmail.com
Derek Nangle Seattle USA dnangle@gmail.com

Christer Nilsson Ericsson AB Goteborg Sweden christer.n.nilsson@ericsson.com
Hans Nilsson Ericsson AB Stockholm Sweden hans.r.nilsson@ericsson.com
Raimo Niskanen Ericsson AB Stockholm Sweden raimo@erix.ericsson.se

Linus Nordberg Net Insight AB Stockholm Sweden linus.nordberg@netinsight.net
Magnus Nordén Stockholm University Stockholm Sweden

Jérgen Norén Kreditor Europe AB Stockholm Sweden Jorgen.Noren@kreditor.se

Patrik Nyblom Ericsson AB Stockholm Sweden pan@erix.ericsson.se

Jan Henry Nystréom Erlang Training & Consulting Uppsala Sweden jan@erlang-consulting.com

Filippo Pacini S.G. Consulting Siena ltaly pacini@sgconsulting.it

Arpad Pandy ROC Development Kft Debrecen Hungary

Johan Petersson Ericsson AB Stockholm Sweden johan.petersson@ericsson.com
Laurent Picouleau Erlang Training & Consulting London England

Dan Sahlin Raycore AB Stockholm Sweden dan.sahlin@raycore-fos.com
Sebastian Siemiatkowski Kreditor Europe AB Stockholm Sweden Sebastian.Siemiatkowski@kreditor.se
Massimo Signore Vicenza Italy massimo.signore@esercito.difesa.it
Peter Sjbgren Mobile Arts AB Stockholm Sweden peter.sjogren@mobilearts.com
Kristtoffer Skagerberg Synapse Mobile Networks Stockholm Sweden

Michal Slaski Erlang Training & Consuiting London England michal@erlang-consulting.com
Hakan Stenholm Kreditor Europe AB Stockholm Sweden Hakan.Stenholm@kreditor.se
Sebastian Strollo Tail-f AB Stockholm Sweden seb@tail-f.com

Anton Strydom Synapse Mobite Networks Stockholm Sweden

Per Einar Strdbmme Stockholm Sweden stromme@telia.com

Goran Stupalo Ericsson AB Stockholm Sweden

Participants

Ulf Svarte éagge Corelatus AB Stockholm Sweden uif@corelatus.se

Alfred M Szmidt Kreditor Europe AB Stocknolm Sweden Alfred.Szmidt@kreditor.se

Lars Serensen Motorola A/S Copenhagen Denmark |.sorensen@motorola.com
Zoltan Peter Toth Ericsson AB Budapest Hungary zoltan.peter.toth@ericsson.com
Torbjérn Tornkvist Kreditor Europe AB Stockholm Sweden Torbjorn. Tornkvist@kreditor.se
Jane Walerud WAPA Stockholm Sweden jane@walerud.com

Marc van Woerkom GMX GmbH Munich Germany mvanwoerkom@gmx-gmbh.de
Hasan Veldstra Hypernumbers.com Edinburgh Scotland

Mats Westin International Data Group Stockholm Sweden mats.westin@gmail.com

Chris Williams Ericsson AB Stockholm Sweden sailingareus@gmail.com

Patrik Winroth Synapse Mobile Networks Stockholm Sweden patrik.winroth@synap.se
Raobert Virding Swedish Defense Materiel Administration Stockholm Sweden rvirding@gmail.com

Hao Zhang Mobile Arts AB Stockholm Sweden hao@zhang.nu

Ming Zhao Mobile Arts AB Stockholm Sweden Ming@zhao.nu

Jonas Aman Ericsson AB Linkdping Sweden

Lennart Ohman Sjdland & Thyselius Telecom AB Stockholm Sweden Lennart. Ohman@st.se

Bjdom Oqvist Kreditor Europe AB Stockholm Sweden biorn.oqvist@kreditor.se
Lennart Ostman Synapse Mobile Networks Stockholm Sweden

Updated October 28 2007 |

180
160
140
120
100
80
60
40
20

EUC participation

—— Univ/Inst

—e— Others

—o— Ericsson

/N

—&- Total /

/._.,_-/

S~ /

LN

"\\.,/’

AN

/,-/\Q%?_é.‘ —

/\

/

*\A—\/\A\‘

1999 2000 2001

I I I I I 1

2002 2003 2004 2005 2006 2007

