T FAUMUCLICUVG LVUVY oiug 1 4dv Z

11th International Erlang/OTP
User Conference

Stockholm, November 10, 2005

Proceedings

http://www.erlang.se/euc/05/

ERICSSON 2

w'ﬂ’éﬁiﬁ%ﬁg and Consulting [o I

ERLANG

Mobiis A Arts Sjiilahd&Thyselius

corelatus

file://C:\Mina%20dokument\EUIC'2005\Prac. html 2005-10-29

LUV 4VUVY = C1UEBLAUUIGC Diga Lav l

Erlang/OTP User Conference 2005

|| Conference Programme
08.30 Registration.

" Session 1

09.00 Robust Reconfigurable Erlang Component System.
Gabor Batori, Zoltan Theisz and Domonkos Asztalos, Ericsson, Hungary.

09.30 Performance Measurement and Applications Benchmarking with Erlang.
Mickaél Rémond, Process-one, France.

10.00 A Virtual World Distributed Server developed in Erlang as a Tool for analysing Needs
of Massively Multiplayer Online Game Servers.
Michal Slaski, Erlang Training and Consulting, UK.

10.30 Coffee.

Session IT

11.00 Third Party Gateway.
Chandrashekhar Mullaparthi, T-Mobile, UK.

11.30 eXAT: Software Agents in Erlang.

Corrado Santoro, University of Catania, Italy.
12.00 e-TopUp.

Eduardo Figoli, Bemardo Paroli and Carlos E. Silva, IN Switch Solutions Inc, USA.
12.30 Lunch.

Session I
14.00 Teaching Functional Programming and Erlang.
Victor M. Gulias, University of A Corufia, Spain.

14.30 Concurrent Erlang Flow Graphs.
Manfred Widera, FemUniversitiit Hagen, Germany.

15.00 Structured Network Programming.
Ulf Wiger, Ericsson, Sweden.

15.30 Coffee.

L Session IV
16.00 wxErlang.
Mats-Ola Persson, Chalmers, Sweden.

16.20 gtkNode - Yet Another GUI Framework for Erlang.
Mats Crongvist, Ericsson, Sweden.
16.40 Bit-level Binaries and Generalized Comprehensions in Erlang.
Per Gustafsson and Kostis Sagonas, University of Uppsala, Sweden.
17.10 OTP Development Update.
Kenneth Lundin, OTP team, Ericsson, Sweden.

17.30 Close followed by bus transport to an ErLounge.

|| L Demonstrations (during intermissions)

Vlad Dumitrescu demonstrates Erlide, Eclipse IDE for Erlang,
Simon Aurell demonstrates controlling remote appliances using instant messaging.

file://C:\Mina%20dokument\EUIC'2005\Programme.html 2005-10-30

Robust Reconfigurable Erlang Component System

Gabor Batori, Zoltan Theisz, Domonkos Asztalos
Software Engineering Group, Ericsson Hungary Ltd.
H1037 Laborc u. 1. Budapest, Hungary
{Gabor.Batori, Zoltan.Theisz, Domonkos.Asztalos}@ericsson.com

Abstract

In this paper a new robust reconfigurable component system is described which is based on the innovative combination
of Erlang/OTP and the concepts of reflective interacting concurrent components.

1. Introduction

Wireless Sensor Networks (WSN) [1] are an intensely researched topic nowadays, however, there is no widely
accepted middleware implementation available for application development. The aim of the ongoing RUNES IST [2]
project is to create a middleware architecture that can be successfully deployed in heterogenous WSNs. The basis of the
middleware architecture consists of a reconfigurable component system and a cormesponding Component Run-Time
Kernel (CRTK). The concepts of the component system rely on well-known component-based software engineering
principles described in [3]. The novelty of our robust reconfigurable component system, ErflCOM, originates from the
innovative combination of the beneficial aspects of component-based programming and the merits of the message
passing concurrent functional programming paradigm. Moreover, EfXICOM is supported by its concept aware IDE that
automatically generates the component architecture in Erlang (4] letting the programmer think more about
communicating components and less worry about editing files.

In the remainder of the paper, Section 2 overviews the concept of Concurrency Oriented Programming (COP). In
Section 3, we introduce the principles of EICOM, then in Section 4 the implementation details are explained. Section 5
describes the ideas behind EflCOM IDE and finally Section 6 concludes with future work.

2. Concurrency Oriented Programming

COP plays a central role in creating fault tolerant reconfigurable systems by partitioning the complexity of the problem
into a number of concurrent processes that interact via message passing. The message passing interfaces between the
communicating components are specified by protocols and the messages of the protocols are forwarded via
communication channels between the concurrent activities. In accordance with [5], Concurrency Oriented
Programming Languages (COPL) support at least the following three-step analysis process:

1. Al the truly concurrent activities in our real world should be identified and they should be represented as
concurrent compaonents.

2. Communication channels between the concurrent components should be identified and the message passing
interfaces should be set accordingly.

3. The flows of messages via the comrmunication channels should be investigated and their behavior should be
formalized into protocols.

If the component representation is isomorphic to the problem the conceptual gap between the ideal solution of the
problem and the implementation of the solution in a particular COPL is minimal, therefore, the reasoning about the
implementation details is rooted into the original real world concepts.

Erang is a COPL developed inside Ericsson and it is widely used in the development of different telecommunications
products. As the complexity of real world problems increases above a particular level like in AXD it seems that the
isomorphic mapping between the Erlang processes and the real world concurrent activities cannot be sustained if the
modularity of the produced code is to be kept intact. ErlCOM tries to maintain that modularity by introducing a
component layer on top of Erlang/OTP that satisfies to be regarded as a COPL with some additional abstractions and
supporting mechanisms. In other words, it is positioned as a Domain Specific Language (DSL) for robust
reconfigurable components written in Erlang.

3. Introduction into EriICOM

EdCOM intends to provide a super-structure on top of the well-established Erlang/OTP environment. Since the basic
concepts are similar to the ones of Erlang, it seems obvious to explain the EICOM component system via analogy.

ErlCOM’s components comespond to the simple Erlang processes since they obey to “information sharing via message
passing” semantics, however, they are implemented as gen_servers to be able to fully utilize the advanced features of
OTP. Similarly to the Erlang process Ids each component has a unique name that is registered in the global registry.
The components are spread around in caplet hierarchies located inside the Erlang nodes and the caplets provide Erlang-
like supervisor facilities to maintain the robustness of the component system. The supervisory decisions are taken
according to a set of defined constraints of the particular component framework. Examples of robust auto-configuration
are the recreation of crashed components or the migration of a couple of running components due to e.g. load
balancing. The interaction between the components is carried out in the form of message passing through bindings
representing the behavior of the communication channels. Message passing is synchronous; messages can be
intercepted before entering the interfaces of the recipients and after the replies have been exited the same interfaces.
The pre- and post-actions of the bindings constitute a list of additional processing on the individual messages. It is
important to emphasize that by the introduction of bindings both the concurrent activities represented by the
components and the individual message passings represented by the bindings will be reified and be able to be reasoned
on. It is in contrast with plain Erlang where processes are first class citizens, but individual messages are not. Bindings
are regarded as components and implemented as gen_servers, however, pre- and post-actions do not contain state
information, so their implementation relies on Erlang processes. Bindings are created when a receptacle of a particular
component is to be bound to an interface of another component and they have been found to be compatible. Both the
components and the bindings can contain explicit state information and can be associated with metadata stored in a
global repository that is implemented by Mnesia.

Before going into the details of EHCOM a short summary of its characteristics is worth of being enumerated.

e EfdCOM supports concurrently executing components that can be dynamically created, loaded, updated,
unloaded and destroyed.

¢ Components are managed by caplets that can be thought of as self-contained virtual machines. The root
caplet is called capsule.

e The components are strongly isolated, that is, they are allowed to interact only by messages.

* The message ingresses are called interfuces and the message egresses are referred to as receptacles,
respectively.

¢ Each component is identified by a unique identifier.

e Message passing is assumed to be synchronous, interceptable and dynamically modifiable.

e Message passing is realized via updateable binding components that connect compatible receptacles and
interfaces.

e The components can migrate from caplet to caplet to reconfigure themselves in response to real world events.

e The components build up distributed components frameworks that impose constraints on the participating

components and in case of faults the component framework reconfigures itself to maintain the constraints
satisfied.

e The components contain mefaduta that enable attribute based component look-up.

4. Detailed description of ErICOM

4.1. Component

The principal element of EflCOM is the component that possesses some receptacles and interfaces. All the three
ingredients of the component are implemented in the form of gen_server structures. Figure 1 shows the Entity
Relationship Diagram (ERD) of the component and the related concepts.

Component
<<Model>>
[
Q.7
EriCOMinteractionPolnt Operalion
<<Model>> R <<Model>>
4 3
0.-* 0.1
Interface Receptacle Parameter RetumValue
<<Modal>> <<Model>> <<Model>> <<Model>>

Figure 1. ERD of component and related concepts

Both the interfaces and the receptacles contain a list of operations specified by their signatures and the implementation
of the operations is given by ordinary Erlang code. When called the operations automatically get the input parameters
bound and they may provide a return parameter in response. What happens in the body of the operations is totally up to
the programmers; any kind of Erlang code can be put there. Analogously, the component may contain ordinary Erlang
code, too. The Edang code excerpts implementing a sample component, an interface and a receptacle are shown in
Section 4.1.1, Section 4.1.2 and Section 4.1.3 respectively. The code is slightly modified due to better legibility.

4.1.1. Sample Component code
-module (e_Component}) .
-behaviour (gen_server).

-export ([init/1, handle_call/3,terminate/2, handle_cast/2, code_change/3,handle_info/2]) .

—export ([load/1l,unload/1]).

-record (stateData, {instanceName, capletName}) .

init (Arg) ->
process_flag(trap_exit, true),
[InstanceName]=Arg,
put (instanceName, InstanceName),

State=#stateData{instanceName=InstanceName},

{ok,State}.

handle_call (getInterfaces, _Client,State)

InstanceName=State#stateData.instanceName,

-

Interfaces=[list_to_atom(atom_to_list (InstanceName) ++InterfaceName++"Interface") ||

InterfaceName<—{"Interface"|[]]],

{reply, {result, Interfaces},State};

handle_call (getReceptacles, _Client,State) ->

Receptacles=[e_ComponentReceptacle],
{reply, {result,Receptacles}, State};

handle_call (AnyMessage,_Client, State)->{reply,ok,State}.

handle_cast (stop, State) —>{stop, normal,

Statel;

3

handle_cast (AnyMessage,Req)-> {noreply, Req}.
handle_info (AnyMessage, State)-> {noreply, State}.

code_change (_Vsn, Chs, _Extra) ->
load_interface (e_ComponentInterface),
{ok, {Chs, 0}}.

terminate (Reason,_State) -»>
io:format ("Component was terminated by the reason: ~w~n", [Reasonl]).

load (InstanceName)->

V_type={type, text, [typel},

MetaDataList=[V_typel,

meta:deleteallprop(InstanceName),

[meta:putprop(InstanceName,MetaDataType,MetaDataName,MetaDataValue)||
{MetaDataType,MetaDataName,MetaDataValue}<—MetaDataList],

%initialize the interfaces and load the meta data of the interfaces

CapletName = meta:getCaplet (InstanceName),

I_Interface = list_to_atom(atom_to_list(InstanceName)++" Interface"),

gen_server:start_link({global,I_Interface),e_ComponentInterface,
[InstanceName, I_Interfacel, (]),

insert_component(I_Interface,interface,InstanceName,CapletName),

e_Component Interface:load (I_Interface),

%initialize the receptacles and load the meta data of the receptacles

CapletName = meta:getCaplet (InstanceName),

R_Receptacle = list_to_atom(atom_to_list (InstanceName) ++" Receptacle"),

gen_server:start_link({global,R_Receptacle},e_ComponentReceptacle,
[InstanceName,R_Receptacle], []),

insert_component(R_Receptacle,receptacle,InstanceName,CapletName),

e_ComponentReceptacle:load(R_Receptacle).

unload (InstanceName)—>
meta:deleteallprop (InstanceName),
%destruct the interfaces and delete the meta data of the interfaces
I_Interface = list_to_atom(atom_to_list(InstanceName)++“Interface“),
e_ComponentInterface:unload(I_Interface),
delete_component (I_Interface),
gen_server:cast ({global, I_Interface}, stop),
global :unregister_name(I_Interface),
R_Receptacle = list_to_atom(atom_to_list(InstanceName)++"Receptacle"),
e_ComponentReceptacle:unload(R_Receptacle),
delete_component (R_Receptacle),
gen_server:cast ({global,R_Receptacle},stop),
global:unregister_name (R_Receptacle).

load_interface (InterfaceName)->
compile:file (InterfaceName),
sys:suspend({global, InterfaceName}),
code:purge(InterfaceName),
code:load_file (InterfaceName),
sys:change_code({global,InterfaceName},l,InterfaceName,Z),
sys:resume({global, InterfaceName}) .

4.1.2. Sample Interface Code

—-module (e_ComponentInterface).

~behaviour (gen_server) .

—-export ([init/1, handle_call/3,terminate/2, handle_cast/2,code_change/3,handle_info/2]).
—export ([load/1l,unload/1]).
—record(stateData,{componentName,instanceName,bindingName=undefined}).

init (Arg) ->
process_flag(trap_exit, true),
[ComponentName, InstanceName] = Arg,
put (instanceName, InstanceName),

State=#stateData(componentName=ComponentName,instanceName=InstanceName},
{ok,State}.

handle_call ({o_operation, [X,Y]},_Client, State)->
ReturnValue=NEEDED IMPLEMENTATION IN ERLANG

{reply, {result,ReturnValue}, State};
handle_call (getComponent,_Client, State)->
Component = State#stateData.componentName,
{reply, {result, Component}, State};
handle_call ({refreshBinding,BindingName},_Client,State}->
OldBindingName=State#stateData.bindingName,
if
BindingName /= undefined->link(global:whereis_name(BindingName));
true—>unlink (global:whereis_name (0ldBindingName))
end,
NewState=State#stateData{bindingName=BindingName},
{reply, ok,NewState};

handle_call (AnyMessage,_Client, State)->{reply,ok,State}.
handle_cast (stop, State) —->{stop, normal, State};
handle_cast (AnyMessage,Req)-> {noreply, Reql.

handle_info ({'EXIT',Pid,noconnection}, State)->
NewState=State#stateData{bindingName=undefined},
{noreply, NewState};

handle_info (AnyMessage, State)->{noreply, State}.
code_change (_Vsn, Chs, _Extra) ->{ok, {Chs, 0}}.

terminate (Reason,_State) ->
io:format ("ComponentInterface was terminated by the reason: ~w~n", [Reason]).

load (InstanceName)->
V_key={key, int, 1024},
MetaDataList=(V_key],
meta:deleteallprop (InstanceName),
[meta:putprop(InstanceName,MetaDataType,MetaDataName,MetaDataValue)||
{MetaDataType,MetaDataName,MetaDataValue}<-MetaDatalist].

unload (InstanceName)—>
meta:deleteallprop (InstanceName} .

4.1.3. Sample Receptacle Code

-module (e_ComponentReceptacle) .

-behaviour (gen_server).

—export ([init/1, handle_call/3,terminate/2, handle_cast/2, code_change/3,handle_info/2]).
—export ([load/1l,unload/1]).

—record (stateData, {componentName, instanceName, bindingName=undefined}) .

init (Arg) ->
process_flag (trap_exit, true),
[ComponentName, InstanceName] = Arg,
put (instanceName, InstanceName) ,
State=#stateData{componentName=ComponentName, instanceName=InstanceName},
{ok,State}.

handle_call ({operation,Operation,3rg},_Client, State)->
BindingName = State#stateData.bindingName,
if
BindingName /= undefined->
case gen_server:call ({global,BindingName}, {Operation,Arg}) of
{result,Result}—>
ReturnValue={result,Result};
AnyMsg->
ReturnvValue={result,AnyMsg}
end;
true->
ReturnValue={result, notconnectad}
end,
{reply,ReturnValue, State};
handle_call (getComponent,_Client, State)~>
Component = State#stateData.componentName,
{reply, {result, Component}, State};

S

handle_call ({refreshBinding,BindingName},_Client, State)->
OldBindingName=State#stateData.bindingName,
if
BindingName /= undefined->link(global:whereis_name(BindingName));

true->unlink (global :whereis_name (0ldBindingName))
end,

NewState=State#stateData{bindingName=BindingName},
{reply, ok,NewState};

handle_call{AnyMessage,_Client, State)->{reply, ok,State}.
handle_cast (stop, State) ->{stop, normal, State};
handle_cast (AnyMessage, Req)->{noreply, Req}.

handle_info({'EXIT',Pid,noconnection}, State)->

NewState=State#stateData{bindingName=undefined},
{noreply, NewState};

handle_info(AnyMessage, State)->{noreply, State}.
code_change (_Vsn, Chs, _Extra) -> {ok, {Chs, 0}}.

terminate (Reason,_State) ->
io:format ("ComponentReceptacle was terminated by the reason: ~w~n", [Reason]).

load (InstanceName) ~>
V_type={type, text, [typel},
MetaDataList=[V_type],
meta:deleteallprop (InstanceName),
[meta:putprop (InstanceName,MetaDataType,MetaDataName,MetaDataValue) | |
{MetaDataType,MetaDataName, MetaDataValue}<~MetaDataList] .

unload (InstanceName)~>
meta:deleteallprop(InstanceName).

4.2. Component Communication

Components communicate via message passing, that is, messages are sent from the receptacle of a component to the
interface of the other component through the binding. The binding contains a list of pre- and post-actions that are
activated every time a message has reached the binding. Both the pre- and post-actions are implemented as processes
and they are activated one by one as the message passes through the binding. The behavior of the binding is shown in
Figure 2 and the implementation is given in Section 4.2.1. The code is slightly modified due to better legibility.

E
E
E
|
E
E

1 Interception()

—

-—

L
"l
- -

]

(]

|

1

2 :

1 resultd) 1 I

g | |

< .

i Intercep_tlon() I

— + ;

: result) :

ﬁ""""ﬂ""""'!

1 1 operation_call{} 1

©h ;

1 operation_result()

L i A L L L
K- interceptl
1 i ption()
(4) L] L) +
: resultQ :
e e e

SN e o e, v e 1 m a
W e oo o o e -

resultQ

-L.-,r._

R

Figure 2. Component Communication

4.2.1. Component Communication Code
%Recaptacle code:
(1) handle_call({operation,Operation,Arg},_Client, State)->
BindingName = State#stateData.bindingName,
if
BindingName /= undefined->
case qen_server:call({qlobal,BindingName},{Operation,Arg}) of
{result,Result}->
ReturnValue={result,Result};
AnyMsg—>
ReturnValue={result, AnyMsqg}
end;
true->
ReturnValue={result,notconnected}
end,
{reply,ReturnValue, State};

$Binding behavior:

handle_call({Operation,Arg},_Client, State)->
InterfaceName=State#stateData.interfaceName,
PreActionlList=State#stateData.preActionList,
PostActionList=State#stateData.postActionList,

(2) case interception(PreActionList, {Operation,Arg}) of
{NewOperation, NewArg}->
(3) case gen_server:call{{global,InterfaceName}, {NewOperation,NewArg}) of
{result,Result}->
(4) {PostActionResult}=interception(PostActionList, {Result}),

ReturnValue={result,PostActionResult};

AnyMsg->ReturnValue={error, AnyMsqg},
end;
AnyMsg—>
ReturnValue={error, AnyMsg},
end,
{reply,Returnvalue, State};

$Interception:
(2) interception({{_,Pid}|T],Msg)-—>
pid!{self (),Msg},
receive
NewMsg->
case NewMsg of
{result,ReturnValuel}->interception(T,Returnvalue);
AnyMsg->{error,AnyMsg}

end
end;
interception([],Msqg)->
Msg.

4.3. Component Run-Time Kernel

The CRTK provides the API that specifies and implements the operations according to the principles described in
Section 3. It is very important from the point of view of the components that the CRTK is available ubiquitously, in
other words, it is floating above the available resources. Erlang/OTP offers an elegant solution by combining a
particular module (crzk in our case) with Mnesia so that the global repository is accessible from anywhere. Taking into
consideration the performance aspects some maintenance data related to the caplet provided robustess of the
components are stored in ETS tables. Each caplet maintains its local ETS database where data about its currently
contained components are stored. Those data enable the caplet to provide supervisory activities on the components. In
addition, Mnesia tables empower ErlCOM to feature distributed behavior and the storage of component metadata
facilitates reflective operations. Reflectivity is the key concept of the adaptive behavior of the components as the

components can consult the global repository to fetch information on any other components and their metadata and to
interact with them properly.

In the following the CRTK API will be explained. The behaviors will be given in the form of Entity Relationship
Diagrams (ERD) and the behaviors are presented in the form of Sequence Diagrams (SD). The code excerpts represent
slightly modified code due to better legibility.

4.3.1. Component Operations
The CRTK API provides five operations regarding the life-cycle components. They are the following:

create: create a new component in a caplet (Section 4.3.1.1)
load: load the code of the component (Section 4.3.1.2)
update: update the code of the component (Section 4.3.1.5)
unload: unload the code of the component (Section 4.3.1.3)
destroy: destroy the component in the caplet (Section 4.3.1.4)

In the following sections the details of the above mentioned operations will be shown.

LRIK MNESIA caplet, E1s
create() : :
M : > :
] create()
@ L
: ok()
Q%.

insert_componant()

(4)
oK)

1 insert_component() |
(5) | 2
¢
1

-
- -

Figure 3. Create Component
4.3.1.1. Create Component Code

%create in CRTK
(1) create (CapletName, InstanceName)->

gen_server:call({global, CapletName }, {create, InstanceName 1),
(5) insert_component (InstanceName, component, CapletName, CapletName) .

%create in Caplet
(2) craate (InstanceName, Type)-~>
CapsuleName = crtk:getOwner (crtk:getSelfName(}),
gen_server:call({global,CapsuleName}, {create,InstanceName}),
(4) insert_component (InstanceName, Type) -

$create in Capsule
(3) create (InstanceName)-~->
gen_server:start_link({global,ComponentName},e_EmptyComp, [InstanceName],
[1.

$insert_component in Caplet
(4) insert_component (InstanceName, Type)->
ets:insert (get (componentTable), #component { componentName=InstanceName,
componentData=#componentData{componentType=Type,state=created}}).

$insart_component in CRTK

(5) insaert_component (ComponentName, Component Type, Owner, RegistryOwner) —>
NodeName=node ()},
Fun = fun() ->

(3)

mnesia:write (#component { componentName=ComponentName, componentType=ComponentType,

owner=0Owner, registryOwner=RegistryOwner, nodeName=NodeName})
end,
mnesia:transaction (Fun).

:
:
E
.
f
:
[

ekl g : : { i i
(1) p——————x Il B 1 1 1
i]] load() i 1 | :
t @ | ¢ 3 t " i
1 1 1 1 load() 1 1 1
i i : R e i i
' 1 ' 1 o) 1(4) ' 1
] 1] = mmmm = [R—— 1 1
: ' %0] : : :
)
1 [et LT Jemsmseemrea s ——— | i 1 1
]] 1 1 1 1 1
1 1 i] | 1 \
1 [] 1 interface] 1 1]
' 1 1] i | |
1 I 1 1] 1 [
: L : : : : :
1) —o—o—n I 1 1 1 1
: : ®) '| e BI. i " i i
: : i i insert_component() : i :
1 [] [I i I i '\’g 1
1] i 1 1 Inad_mela_data() ! '
: : : 1 1 v 1 J
] (]] i load_meta_data(} i ; ‘i
i i ™} t i i i A
] v getinterfaces() | | l 1 1
i (B) sy} , | i t i
' p, metamf), ' ' [1 1
: s : : : : :
I g o) | : I 1 I |
i 1 1 1 1 1
1 1 Receptacies{) 1 1 ' 1 I]
! | ! ' ' ' !
; s i P ! J }
b + + =] !
o] : : : : : ‘
EELE LY LT I | 1 | |]
1 i I | | 1 | 1
1 []))]] [} L]
1 1 | I ' I 1 1
Figure 4. Load Component

4.3.1.2. Load Component Code

%$load in CRTK

(1) load({LoaderName, ComponentType, InstanceName) —>
CapletName = getRegistryOwner (InstanceName),
State=getState (InstanceName),

if
State == created->
gen_server:call({global,CapletName},
{load, LoaderName, ComponentType, InstanceName}) ;
true->
io:format ("~w was loaded previously.!!!~n", [InstanceName]);
end.

%load in Caplet
(2) load(LoaderName, ComponentType, InstanceName) ->
State=getState (InstanceName),
gen_server:call({global,LoaderName}, {load,ComponentType, InstanceName,State}),
{result,Interfaces}=gen_server:call({global,InstanceName},getInterfaces),
{result,Receptacles}=gen_server:call({global, InstanceNane}, getReceptacles),
(5) ComponentType:load (InstanceName) .
(8) %get the interfaces and receptacles of the component and register the componenent
%in the ETS
ProvidedInterfacesList:[#interface{interfaceName=InterfaceName}||
InterfaceName<-ProvidedInterfaces],
RequestedInterfacesList=[#interface{interfaceName=InterfaceName}| |
InterfaceName<-RequestedInterfaces],
load(ComponentType,InstanceName,component,LoaderName,ProvidedlnterfacesList,
RequestedInterfaceslList),

%load in Loadar
(3) load(ComponentType, InstanceName, ComponentState)->

gen_server:call({global, capsule}, {1load,ComponentType, InstanceName}) .

%load in Capsule
(4) load(ComponentType, InstanceName)—>

ComponentPid = global:whereis_name (InstanceName),

if
ComponentPid /= undefined ->
gen_server:cast ({global, InstanceName}, stop),
global:unregister_name (InstanceName),
gen_server:start_link ({global, InstanceName}, ComponentType,
[InstanceName], []1);
true->io:format ("~w should be created before loading!!!~n", [InstanceName])
end.

$load the Interfaces and the meta data of a component
load (InstanceName)->

(6)

(7N

$initialize the interfaces and load the meta data of the interfaces
CapletName = crtk:getCaplet (InstanceName),
Interface = list_to_atom({atom_to_list (InstanceName)++"Interface"}),
gen_server:start_link({global, Interface},
interfaceModule, [InstanceName, Interfacel, []),
interfaceModule:load(Interface),
insert_component (Interface,interface, InstanceName, CapletName},
%load the meta data of the component
V_type={type, text, [adder,mult]},
MetaDataList=[V_typel,
crtk:deleteallprop (InstanceName),
[ertk:putprop (InstanceName,MetaDataType, MetaDataName,MetaDatavalue) | | {MetaDataType
,MetaDataName, MetaDataValue}<-MetaDatalList].

CRIK caplot, loader, capsule componont, infedace ETS MNESIA
I | ! : : ! :
(1) ——— I 1 I I i I
: " : : 1 : |
t i | unload) | i i i I
l i & : I : :
stopQ)

| i : oY ' | i l
I 1 I 1 L} stop()] 1]
i : - ! {6) f—o—— $ H
| 1 1 1 \ I delefeallprop() 1
] | i I] L 1 N
: : : : : delet_cormpaneni{) : 1
| 1 1 1 ¥ + > 1
]] 1] 1 Ideletealiprop() 1 I
i i i | i ‘ l 3
1 1 1 ok() 1 1 i 1
: ! frssmemonat : : :
| i ok i] i 1]
- - -]

I ﬁ- : hm;mmﬂ : : i
1 1 | 1 Wl I
I T T)]
| | | | |
= i i i i
1 1] i]
1]]] I
1 1 1 1 I
| 1 I 1 1

oay O i

- o o]

-]

Figure 5. Unload Component

1

4.3.1.3. Unload Component Code

%unload component in CRTK
(1) unload(InstanceName)->
CapletName = getRegistryOwner (InstanceName),

if
CapletName /= undefined->
gen_server:call({global, CapletName}, {unload, InstanceName});
true->badarg
end.

funload component in Caplet:

unload_component (InstanceName) ->

(2) LoaderName=getLoader (InstanceName) ,
ModuleName = getModuleName (InstanceName),
gen_server:call({global,LoaderName}, {unload, InstanceName }),
ModuleName:unload (ComponentName) .

(6) %insert the empty component data to the ETS table
insert_component (InstanceName, component) .

funload in Loadar
(3) unload(InstanceName)->
gen_server:call({global, capsule}, {unload, InstanceName}) .

%unload in capsulae:

unload(InstanceName)->

(4) gen_server:cast ({global, InstanceName}, stop),
global:unregister_name (InstanceName),
¥start the empty component
gen_server:start_link ({global, InstanceName},e_EmptyComp, [], (1),

$atop interfaces and delete meta data in component:

unload (InstanceName) —>

(5) %destruct the interfaces and delete the meta data of the interfaces
Interface = list_to_atom(atom_to_list (InstanceName)++"Interface"),
interfaceModule:unload (Interface),
delete_component (Interface),
gen_server:cast ({global, Interface },stop),
global:unregister_name (Interface).
crtk:deleteallprop (InstanceName).

CRTK SIA caplet EIS capsule
1 destroy() 1 1 1
1 ' i 1 1
1 r) y
() I I)I. destroy() :
: ! @ ! ! e
1 i 1 ak() '
1 1 P U |
: : :Fdelate_campnnent() : :
I ' 4 > 1
| ok() I 1 1
[} 1] I 1
| delete_component() 1 1] |
©)] g | : :
1 1 1 1 1
i 1] | [

Figure 6. Destroy Component

12

4.3.1.4. Destroy Component Code

%destroy component in CRTK
(1) destroy(InstanceName)->
CapletName = getRegistryOwner (InstanceName),
if
CapletName /= undefined->
gen_server:call ({global,CapletName}, {destroy, InstanceName}},
(5) delete_component (InstanceName) ;
true->badarg
end.

$destroy component in caplet:

destroy (InstanceName) —>

(2) CapsuleName = crtk:getOwner (crtk:getSelifName(}},
gen_server:call({global,CapsuleName}, {destroy,InstanceName}),
State=getState (InstanceName},

if
State==loaded->unload_component (InstanceName) ;
true->ok
end,
(4) delete_component (InstanceName) .

%destroy component in capsule:
(3) destroy(InstanceName)->
gen_server:cast({global, InstanceName}, stop).

%delete a component from the ETS
(4) delete_componant (InstanceName)=>
ets:delete(get (componentTable), ComponentName),

$delete component from MNESIA:
(5) delete_component (InstanceName) ->
Fun = fun() —->
mnesia:delete ({ component, ComponentName})
end,
mnesia:transaction (Fun}.

CRTK o nen binding caplet capsule

T T T T T
t suspendConnectedBindings() | 1 1 1

O 3 i | "
I | suspend() I 1 1
1 I__ﬂ]]
| I 1 I 1

Y update() ! ' |

]

(2) : : :)l unload() :
I I I 3
| 1 1 1 load() i
| 1 i

1

: ok() : 1 1
%-......----.-—.- ______ P [P i SR [Py s | 1
: resumeConnectedBindings() : : : :

D+ 4t 1 1 '
! ! resume() I | 1
1 1 1 1 1
! 3 ! 1
] 1 1 1 [}
| |]
1 1 !

Figure 7. Update Component

13

4.3.1.5. Update Component Code

%update component in CRTK
update (Component Type, InstanceName) —>
State=getState(InstanceName),
if
State == loaded->
suspendConnectedBindings (InstanceName),
gen_server:call({global,CapletName},

(1)
(2)

{update, ComponentType, InstanceName}),
(4) resumeConnectedBindings {InstanceName);
State == true->
io:format ("~w should be loaded before updating.!!!~n", [InstanceName])
end.

$update component in caplet:

(3) update(ComponentType, InstanceName)->
LoaderName = getLoader (InstanceName),
unload_component (InstanceName),
load_component (LoaderName, Component Type, InstanceName) .

$suspend the bindings connected to the component:
(1) suspendConnectedBindings (InstanceName)->
F=fun (X)->
BindingName=getBinding(X),
sys:suspend({global,BindingName})
end,
ConnectedInterfaces=getConnectedInterfaces (InstanceName),
[F(Interface)||Interface<—ConnectedInterfaces],
ConnectedReceptacles=getConnectedReceptacles (InstanceName),
[F(Receptacle)l|Receptacle<—connectedReceptacles].

%resume the bindings connected to the component:
(4) resumaConnectedBindings (InstanceName)->
F=fun (X)->
BindingName=getBinding(X),

sys:resume ({global,BindingName})
end,

ConnectedInterfaces=getconnectedInterfaces(InstanceName),
[F(Interface)l|Interface<—ConnectadInterfaces],

ConnectedReceptacles=qetConnectedReceptacles(InstanceName),
[F (Receptacle) | |Receptacle<-ConnectedReceptacles],

4.3.2. Binding Operations

The CRTK API requires that before two components are able to communicate to each other a communication channel

should be established between the two parties. Two operations are provided to manage the binding between the
receptacle and the interface of the communicating parties. They are the following:

° bind: create a binding between the receptacle and the interface (Section 4.3.2.1)

° unbind: destroy the binding between the receptacle and the interface (Section 4.3.2.2)

In the following sections the details of the above mentioned operations can be seen.

14

. insen_binding()

inserl_cemponent(}
[

CRIK caplet, binder gepsule peface || fecentacle EIS MNESIA
I b 1 I 1 1] 1]
i P g i i 1 i i I

() —a i 1 i i 1 1
1 2}: bind{) 1 : : : : 1
1 (2) 1
1 r-——-—‘ﬂ 1 1] 1
| 1 | create() : ! | [|
1 1 Ly 1 1 1 i
1 i i (] i 1 ' 1 1
| H y load() i Lindng_ M h " i
1 1 [o v | 1] [
! 1 [retreshBindingl) ! ! ! -
1 1 I . H | 1 1 1
1 1 r —3 (4) 1] 1
1] [} 1 refreshBinding() | 1 i 1
: : |] — : |
1 1 1 updatelnteraceData()] 1 | I 1

L L A
: :] I % : : : :
1 k— oK) 1 1 1 1 1 1 1
1 Kememmmm—- 1 I i 1 1 1 1
: : : : putlnterfaceState() : : . :
= N
1 [t t t t 1
1 (5)]] 1 putReceptadeStatel)] 1 ”I 1
1 1 [| 1 | | N 1
: : : ; insert_binding() : : ". :
I (&I L [l 1 i 1 H 1
1 1 [1]] [1
R U ! ' 1 ! ' ' !
Se e 1 i
F- I 1 1 1 i 1 1
1 1 | 1 1 1
1 1 ' a
' : : N
I | 1 1
1 1 1 1
| 1 ' 1

e L

Figure 8. Bind

4.3.2.1. Bind Code

%Bind an interface to a receptacle in CRTK
bind (BinderName, InterfaceName, ReceptacleName, BindingName, CapletName)}—>

(1)
7

gen_server:call ({global,CapletName},

{bind, BinderName, InterfaceName, ReceptacleName, BindingName,BindingName}),

insert_binding (BindingName, InterfaceName,ReceptacleName),
insert_component (BindingName, binding, CapletName, CapletName),
BindingName:load (BindingName) .

%Bind an interface to a raeceptacle in caplet:
bind (BinderName, InterfaceName, ReceptacleName, BindingName, ModuleName)—>

(2)

()
(6)

gen_server:call ({global, BinderName}, {bind, InterfaceName, ReceptacleName,
BindingNamel}),

CapletName = crtk:getSelfName(),

meta_private:insert_component (BindingName, binding,CapletName, CapletName),

crtk:putInterfaceState(InterfaceName,connected,BindingName,provided),

crtk:putInterfaceState (ReceptacleName, connected,BindingName, requested),

insert_binding (BindingName, BinderName, InterfaceName, ReceptacleName) .

$Bind an interface to a receptacle in Binder:
bind (InterfaceName, ReceptacleName, BindingName)—>

(3)

gen_server:call({global,e_nodelCapsule},{create,BindingName}),

gen_server:call({qlobal,e_nodelCapsule},{load,defaultBinderBehavior,
BindingName, created}),

gen_server:call ({global, InterfaceName}, {refreshBinding, BindingName}),

gen_server:call({global, ReceptacleName}, {refreshBinding, BindingName}),

gen_server:call({global,BindingName},{updateInterfaceData,InterfaceName}),

%insert_binding in Caplet
(6) insert_binding(BindingName, BinderName, InterfaceName, ReceptacleName)->

ets:insert (get (componentTable) , #component { componentName=BindingName,
componentData=#componentData{component Type=binding, binderName=BinderName,
state=loaded, bindingData=#bindingData{source=ReceptacleName,
target=InterfaceName}, interceptionList=#interceptionList {preAction=[],
postAction=[] },moduleName=ModuleName}}) .

15

%insert_binding in CRTK
(7) insert_binding(BindingName, InterfaceName, ReceptacleName, IsOnDemand) ->
Fun = fun() ->
mnesia:write {(#binding{bindingName=BindingName, interfaceName=InterfaceName,

receptacleName=ReceptacleName})
end,

mnesia:transaction (Fun).

$refreshBinding in an Interface/Receptaclae
(4) handle_call ({refreshBinding, BindingName},_Client,State)->
OldBindingName=State#stateData.bindingName,
if
BindingName /= undefined->link (global:whereis_name (BindingName));
true—>unlink (global:whereis_name (0ldBindingName))
end,
NewState=State#stateData{bindingName=BindingName},
{reply, ok,NewState};

:
f
F
|
E
s
-
;

! unbindg | i j : : : :
(1) H 1 1]]]
: : unbine() : : : : : :
i (@)] ' : : i
: . (@ —— ' : ' '
' ! . i i i i]
' ' : H H i 1 1
' : - refreshBinding() : i i |
' i [. - H i f
: : ' {refreshBinding() : : i
]] r ¥ & > i I
i bk ' : i : i
: 'k— ------- } pulinterfaceState() : : :
! (4) 8 N 1 L L b |]
' h 1 putReceptacieStated i i i
1 1 ! H i : i |
. P , ; - ; 3 '
: : : d:ale(e_componento : : :
L] b

P ok ' i ' : ! ! :
k o -’ H 1 1 1 1]
s H : delefe_componen() : : :
[i L 1 L L >.

: : : oo bt | : : X
Gﬂi ¢ i H H i H “1
; : ' . ! 1 ' 1
v 3 H 4 1 1] [}
' ! H H N 1 1]
' : . H 1 1 1]
' i 1 J ! : . l

Figure 9. Unbind

4.3.2.2. Unbind Code

¥Unbind an interface from a raeceptacle in CRTK
(1) unbind(InterfaceName,ReceptacleName)->
BindingName = getBinding(InterfaceName,ReceptacleName),
gen_server:call ({global,CapletName},
{unbind, InterfaceName, ReceptacleName,BindingName}),
BindingName:unload (BindingName) ;
delete_component (BindingName),
(5) delete_binding (BindingName) .

%Unbind an interface from a receptacle in caplet:
unbind (InterfaceName, ReceptacleName, BindingName) ->
BinderName = getBinder (BindingName),
if
BinderName /= undefined->
(2) gen_server:call({global,BinderName},

{unbind, InterfaceName, ReceptacleName, BindingName}),

(4) crtk:put InterfaceState (InterfaceName,unconnected, nil, provided),
crtk:putInterfaceState (ReceptacleName,unconnected,nil, requested),
delete_component (BindingName);

true->io:format ("BinderName is undefined for ~w~n", [BindingName])
end.

$Unbind an interface to a racaeptacle in Binder:

(3) unbind(InterfaceName, ReceptacleName,BindingName)}—>
gen_server:call({global,CapsuleName}, {destroy, BindingName }),
gen_server:call({global, InterfaceName}, {rafrashBinding, undefined}),
gen_server:call({global, ReceptacleName}, {refreshBinding, undefined}) .

$delete_binding in CRTK
(5) delete_binding(BindingName) ->
Fun = fun() ->
mnesia:delete ({binding,BindingName})
end,
mnesia:transaction (Fun) .

4.3.3. Reflective Operations
The CRTK API provides reflective operations for the components to be able to look up run-time and meta information

to adapt their behavior to the changing environment. The following operations are supported in the current version of
EfdCOM:

« gatallprop/1: Get all metadat of an Entity. An Entity could be a Capsule, Caplet, Loader, Binder,
Component, Interface, Receptacle or Binding Component .

* deletaeallprop/1: Delete all meta data of an Entity.

= getAllComponaents/0: Get all the Components of the system.

« getAllBindings/0: Get all Binding Components of the system.

= getAlliInterfaces/l: Get all interfaces of a Component.

* getAllReceptacles/1: Get all receptacles of a Component.

= getAllInterfaces/0: Get all interfaces of the system.

= getAllReceptacles/0: Get all receptacles of the system.

= getAllCaplets/1: Get all caplets of the system.

s getBinders/1: Get all Binders of a Capsule.

= getloaders/l: Get all Loaders of a Capsule.

= addPreAction/5: Add a pre-action to a Binding Component.

= addPostAction/5: Add a post-action to a Binding Component.

» daletePreAction/2: Delete a pre-action from a Binding Component.

s deletePosthAction/2: Delete a post-action from a Binding Component.

s getSelfName/0: Get the global registered name of an Entity.

= getCaplet/l: Get the globally registered name of a Component, Binding Component, Interface or
Receptacle.

= getBinding/2: Get the Binding Component connected to the given Interface and Receptacle.

= getOwner/1: Getthe owner of the given Entity.

s putInterfaceState/4: Setthe connectivity state (connected, unconnected) and the Binding component
of the given Interface or Receptacle.

= isConnectad/1: Get the connectivity status of the given Interface or Receptacle.

* getBinding/1: Get the Binding Component that is connected to the given Receptacle or Interface.

17

5. ErlICOMIDE

In Section 3 and Section 4 we described the principles and the implementation details of the EffCOM. As it has been
demonstrated EflCOM needs a relatively complex architectural implementation in Erlang so that flexible component
deployment and interaction could be achieved. In order to alleviate the programmer’s task to worry about editing files
we created an IDE that looks like a Service Creation Environment. The principles of the IDE derive from our
methodology [6] that relies on the fact that every Domain Specific Language (DSL) can be regarded as a tuple of
concrete syntax, abstract syntax and semantics. The concrete syntax specifies the textal andfor graphical
representation of the language elements, the abstract syntax describes the relationships among the concepts of the
language elements and the semantics enfleshes the abstract concepts with meaning. Our methodology encourages the
programmer Lo create a series of DSLs to attack the problem; each language should be created in such a manner that it
is isomorphic to the problem solution on that particular level. The refinement of the solutions is realized by a
translation process between the languages. In the case of EHCOM we have two domain specific languages in action:
ErlCOM and Erlang/OTP. The language aspects of Erlang/OTP are well known, so the language definition of ErlCOM
can be based on them. Our methodology utilizes Generic Modeling Environment (GME) [7] w provide precise
language definition, therefore, ErlCOM is described in GME. The abstract syntax is specified by Entity Relationship
Diagrams (ERD) and related constraints formulated in OCL. The ERD describing the core of ECOM is shown in
Figure 10

.
o
o
? v
A -3 Binding
£ | # i Copmbsrnion
= = 3 O wteord Operation o =A KI f T
T = Slcdeles T — “‘ :g Piataren
5 o i ca
= 1 -l Reffactin
. et ey g it I#aface piromnd
ultdoh> QLT | prevrmrrey | S :
= I Posiion ; pesa | [1nd:_%eld
Cardguraon £ %
~xllgdgies i
OO o# slralnd CompanenFiamesnk il
g b
g |
Binding 3
¥ T

Figure 10. Abstract Syntax of ErlCOM

The concrete syntax provided by the IDE is the graphical representation of the ElCOM concepts. Obviously, it
concerns only the concepts of ErlCOM, that is, the Erlang code residing inside the components and the interaction
points is not touched in any ways and can be produced arbitrarily. A sample application using ExlCOM's concrete
syntax is shown in Figure 11.

713

; e e
et T
| ColcdaloCon
N

2 2
ComponentFramework CompasitaCorr|

Figure 11. Concrete Syntax of ErICOM

The semantics of EACOM is defined relative to Erlang, that is, EJCOM'’s concepts are translated into Erlang. The
implementation of EHCOM, explained in Section 4, is automatically produced by a translator that understands the
abstract syntax and generates Erlang code accordingly. The translator only deals with the architecture code; the Erlang
code in the body of the components and the interaction points is treated transparentty. It means that if the model graph
of the component framework has been modified and the translation has been carried out the corresponding gen_servers
get updated and redeployed on the fly.

To summarize our approach, the ERDs provide the abstract syntax; the concrete syntax is designed to facilitate the
programmer’s task by assigning textual and/or graphical mnemonics and syntactical sugar to the elements of the
abstract syntax and the semantics utilizes the SDs and the corresponding Erlang code snippets to assign meaning to the
elements of the abstract syntax.

6. Future Work

The robust reconfigurability of ErlCOM promotes it as a possible candidate to be profitably applied in constantly
changing environments where applications should be able to frequently adapt to new circumstances. Moreover, our
methadology enables the programmer to concentrate on the application logic and the generated component architecture
automatically provides access to the distributed reflective CRTK. In the framework of the ongoing RUNES IST project
we propose to use EflCOM in the gateway nodes of the sensor network since it seems that the gateways own enough
resources to be able to run Erlang virtual machines and sensor network reflectivity might be sufficiently represented in
the gateways. We hope that our efforts help us discover new terrains where Erlang can be successfully deployed in the
future.

19

7. References

(11 H. Karl, A. Willig: Protocols and Architectures for Wireless Sensor Networks, John Wiley & Sons, 2005.

[2] RUNES IST Project, hitp://www.ist-runes.org/

[31 G. Coulson, G. Blair, P. Grace, A. Joolia, K. Lee, and J. Ueyama: OpenCOM v2: A component model for

building systems software, Proceedings of IASTED Software Engineering and Applications (SEA'04),

[41 Open Source Erlang, htip:/fwww.crlang org/

[5] Joe Armstrong: Making reliable distributed systems in the presence of software errors, Doctoral Thesis, Stockholm,
Sweden, 2003

[6] Z. Theisz, G. Batori, D. Asztalos: On a model based methodology, ACM Symposium on Applied Computing
Special Track on Model Transformation (MT’06), Dijon, France (subrmitted).

[71 GME Documentation, hitp:/www.isis. vanderbiltedu/Projects/eme/

Performance Measurement and
Applications Benchmarking
with Erlang

11" Erlang User Conference
November 10, 2005

Mickaél Rémond

© 2005 Process Ona Page1

The benchmarking challenge

B Applications benchmarking and performance mesurement requires:
m To be able to simulate an important number of users playing real-life scenarii.

® To be able to do near real-time and high throughput mesurements to provide reliable figures.

® Tsunami is a distributed load testing tool that has been designed as a heavy duty
benchmarking tool and framework

B The software is protocol-independent. It currantly can be used to stress HTTP,
SOAP and Jabber/XMPP servers, but other protocols can be added.

® This talk presents Tsunami main achievements, along with real life use cases,
and explore possible framework extensions and improvements.

© 2005 Procens-One Paga2

Summary — What is Tsunami ?

& Tsunami main strength rely in its ability to simulate:

E a huge number of simultaneous users from a single CPU,

® an heavier load in cluster mode.

i When used on cluster you can generate a really Impressive load on a server with

a modest cluster, easy to set-up and maintain.

B Tsunami is developed in Erlang and this is where the power of Tsunami relies.

Tsunami is based on the Erlang OTP (Open Transaction Platform) and inherits
several characteristics from Eriang:

B Performance: Erlang has been made to support hundred thousands of lightweight processus
in a single virtual machine.

% Scalability: Edang development environnement is naturally distributed, promoting the idea of
processus location transparence.

B Fault-tolerance: Edang has been buiit to develop robust, fault-tolerant systems. As such,

wrong answer sent from the server to Tsunami does not make the whole running benchmark
crash.

© 2005 Procesa-One Paged

Tsunami background: A strong simulation madel

Tsunami has been developed by Nicolas Niclausse

Itis an industrial implementation of a stochastic model for real users simulation.
User events distribution is based on a Poisson Law. This model is used to
closely simulate real-world user hehaviaur.

Tsunami is being developed since 2004, first by IDEALX and now by Process-one.

This madel has already been tested in the INRIA Wagon project (Wab trAffic
GeneratOr and beNchmark).

The Wagon project has been developed in the context of MISTRAL. Its main objectif was to
simufate various types of Internet trafic to study server behaviours. WAGON has been used in
the context to the French national VHTD (Vraiment Trés Haut Débit) project.

Tsunami is based on the result of Nicolas Niclausse PHD Thesis:

Modeling, performance analysis and dimensioning of the WWW

© 2005 Procass-One Pagad

Tsunami main features (1/2)

High Performance:
® Tsunami can simulate a huge number of simultaneous users per physical computer. It can
simulates up to 10000 users on a single CPU. Traditionnal injection tools can hardly go further
than 200 users.
% Distributed:
® The load can be distributed on a cluster of client machines

Multi-Protocols using a plugin system:

B HTTP (both standard web traffic and SOAP) and Jabber are currently supported. LDAP and
SMTP are on the TODO list.

2 SSL support

Several IP addresses can be used on a single machine using the underlying OS
IP Aliasing

E OS monitoring:

® CPU, memory and network trafic can be monitored using Erlang agents on remote servers or
SNMP

© 2005 Process-One Paga 8

Tsunami main features (2/2)

& XML configuration system
B Mixed behaviours:

® Several sessions can be used to simulate differents type of users during the same benchmark.
You can define the proportion of the various behaviours in the benchmark scenario.

B Stochastic processes:

® In order to generate a realistic trafic, user thinktimes and the arrival rate can be randomize
using a probability distribution (exponential currently)

® Adaptative scenarii:

® Scenarii can have dynamic part, that depends on the result of the current scenario request or
can be generated by Erlang code.

E Complete statistic set

© 2005 Procms One Page &

HTTP related features

® HTTPM.0 and HTTP/1.1 support

B GET and POST requests

® Cookies: Automatic cookies management
& 'GET lf-modified since" type of request

B WWW.authentication Basic
% Proxy made to record sessions using a Web browser

% SOAP support using the HTTP mode (the SOAPAction HTTP header is handled).

© 2005 Process-One Page?

Jabbar related features

& Authentication, presence and register messages
® Chat messages to online oroffline users
W Roster set and get requests

® Global users’ synchronisation can be set on specific actions

© 2005 Process One Page 8

Complete reports set

-_—_—

® Mesures and statistics produced by Tsunami are extensiva. They are all
represented as a graphe. Tsumami produces statistics regarding:

® Performance: response time, connexion time, decomposition of the user scenario based on
request grouping instruction, requests per second

B Errors: Statistics on page return code to trace errors
B Target cluster behaviour: An Erlang agent can gather information from the target cluster.

Tsunami produce graphes for CPU and memory consumption and network traffic. SNMP is
also supported.

® Note that Tsunami take care of the synchronisation process by itself. Gathered
statistics are «synchronizeds.

® Itis possible to generate graphes during the benchmark as statistics are
gathered in real-time. This makae it possible to see if the benchmark has to be
stopped before the end of the benchmark.

© 2005 Frocess-One Pagas

HTTP benchmark approach

B Record scenario: tsunami start_recorder
& Edit/ organise scenario

® Write small code for dynamic parts if needed and place dynamic mark-up in the
scenario

¥ Test and adjust scenario to have a nice progressian of the load, This is highly
dependent of the application and of the size of the target cluster. Calculate the
normal duration of the scenario and use the interarrival time between users and
the duration of the phase to estimate the number of simultaneous users for each
given phase.

% Launch benchmark with your first application parameters set-up: tsunami start

® Analyse results, change parameters and launch anather henchmark

© 2005 Process-Ona Paga 10

Understanding tsunami. . xm1 file: File structure

® Scenarii are enclosed into tsunami tags:

<?xml version="1.0%?s
<tsunami loglevel="info" dumptraffic="falge"s

</tsunami>

© 2005 Process-Ono Paga11

Understanding tsunami .3m] file: Clients and server

® Scenarli start with a clients (Tsunami cluster) and server definition:

<clients>
<client host="louxor" weight="1" maxusers="500">
<ip value="10.9.195. 12"></ip>
<ip value=“10.9.195.13“></ip>
</clients
<client host="memphis" weight="3" maxusera="250" cpu="2">
<ip value="10.9.195.14"></ip>
</client>
</clientss

<server host="10.9.195.1" port="gogo" type="tep"s</servers

® Several virtual IP can be used to simulate more machines. This is very useful
when a load-balancer use the client's IP to distribute the traffic amoung a cluster
of servers. In this example, a second machine is used in the Tsunami cluster,
with a higher welght, and 2 cpus. Two Erlang virtual machines will be used to
take advantage of the number of CPU.

% The server is the entry point into the cluster (Only one server should be defined).

©2005 Process Ona Pagn 12

Understanding tsunami .xmn] file: Monitoring

B Scenarii can contain optional monitoring informations. For example, here is a
cluster monitaring definition based on Eriang agents, for a cluster of 6
computers:

<monitorings>
<monitor host="geronimo" type="erlang"s></monitors>
<monitor host="bigfoot-1" type="erlang"></monitors>
<monitor host="bigfoot-2" type="erlang"></monitors>
<monitor host="f14-1" type="erlang"></monitor>
<monitor host="f14-2" type=“"erlang"></monitor>
<monitor host="db" type="erlang"></monitor>

</monitoring>

® The type keyward snmp can replace the erlang keyword, if SNMP monitoring is
prefered. They can be mixed. erlang is the default value for manitaring.

® Note: For Erlang monltoring, monitored computers need to be accessible through
the netwark. SSH needs to be configured to allow connection without password
on
m (See: Tutorial: Erlang - Starting a set of cluster nodes on Erlang-projects.org for details)

© 2005 Process-Ons Page13

Understanding tsunami .xml file: Defining the load progression

¥ The load progression is set-up by defining several arrival phases:

<arrivalphase phase="1" duration="10" unit="minute">
<users interarrival="2" unit="second"> </users>
</arrivalphase>

<arrivalphase phase="2" duration="10" unit="minute">
<users interarrival="1" unit=“"second"> </users>
</arrivalphase>

<arrivalphase phase="3" duration="10" unit="minute">

<users interarrival="0.1" unit="second"> </users>
</arrivalphase>

© 2005 Process-One Paga 14

Understanding tsunami .xml file: Default vaiues

& Default values can be set-up globally: thinktime between requests in the scenario
and ssl cipher algorithms. These values overrides those set in session
configuration tags.

<default name="thinktime" value="3" random="false"/>
<default name="ssl_ciphers"
value="EXP1024-RC4-SHA,EDH-RSA-DES-CBC3-SHA" />

® Default values for specific protocols can be defined. Here is an example of
default valuas for Jabber:

<default type="ts_jabber" name="global_number" value="5" />
<default type="ts_jabber" name="userid_max" value="100" />
<default type="ts_jabber" name="domain" value="jabber.org" />
<default type="ts_jabber" name="username" value="glop" />
<default type="ts_jabber" name="passwd" value="glop" />

© 2005 Process-One Paga 18

Understanding taunami .xm1 file: Sessions (1/2)

® Sessions define the content of the scenario itself. They describe the requests to
exacute,

<session name="http-example" popularity="70"
persistent="true" messages_ack="parse" type="ta_http">

<request> <http url="/" method="GET" version="1.1"»>
</http> </request>
<request> <http url="/images/logo.gif"
method="GET" version="1.1"
if modified since=*“Fri, 14 Nov 2003 02:43:31 GMT">
</https></requests>

<thinktime value="20" random="true"></thinktimes

<transaction name="index_request">
<request><http url="/index.en.html®
method="GET" version="1.1" >
</http> </requests
<request><http url="/images/header.gif"
method="GET" version="1.1">
</http> </requests>
</transaction>
© 2005 Prosess-Ona Page 18

Understanding tsunami .xm1 file: Sessions (2/2)

<thinktime value="6Q" random="true"s</thinktimes
<request>
<http url="/" method="pPOST" version="1.1"
contents="bla=blu">
</http> </requests
<request>
<http url="/bla" method="GET" version="1.1"
contents="bla=blu&name=glop">
<www_authenticate userid="Aladdin"
passwd="open sesame"/></http>
</requests>
</session>

<session name="backoffice" popularity="30%" ...s
... </session>
® The popularity is the frequency of this type of session. This is used to decided
which session a new user will execute. The sum of all sesslon's popularity must
be 100,

® This example show several features of the HTTP protocol support in Tsunami:
GET and POST request, basic authentication, transaction for statistics
definition, ... The same approach can be used for defining Jabber/XMPP session.

© 2005 Process-One Page 17

Understanding tsunani .xm1 file: Dynamic substitutions (1/2)

® Dynamic substitution are mark-up placed in element of the scenario. For HTTP,
this mark-up can be placed in basic authentication (www_authenticate tag:
userid and passwd attributes), URL (to change GET parameter) and POST
content.

® Those mark-up are of the form %%Module:Function%%. Substitutions are
executed on a request-hy-request basis, only if the request tag has the attribute
subst="true".

® When a substitution is asked, the substitution mark-up Is replaced by the result
of the call to the Erlang function: Module:Function(Pid).

® Here is an example of use of substitution in a Tsunami scenario:

<session name="rec20040316-08:47" popularity=*100"
persistent="true" messages_ack="parse" type="ts_http">
<request subst="true">
<http url=“/echo?symbol=%%symbol:new%%“ method="GET">
</http></request>
</sessions>

© 2005 Process-One Paga1s

0}

Understanding tsunami .xnl file: Dynamic substitutions (2/2)

® Here is the Erlang code of the module used for dynamic substitution:

-module (symbol) .

-export ([new/1]) .

new(Pid) -»>
case random:uniform(3) of
1l -> "IBM";
2 -> "MSFT";
3 -> "RHAT"
end.

E As you can this, writing scenario with dynamic substitution is trivial.

© 2005 Procaess-One

Page 19

'// /home/ aniclan sse/ cvs/ mm-fin/Pl 15 6/tests;(3anﬂer/resnnontee_3 Os/repc ¥

AbEaLs

IDX-Tsunami

version 1.0 . beta3

®© 2005 Process-One Page 20

IDX-Tsunami

wersion 1.0.beta3

4800

3006

e

2008

1ee@

T LAY YTy TS S
1 j page. tat —+—
1tr logdn. tut —+—
| I T
wil bt
i !
L 4 ¢
H
) Ui 1 0 208 26 W
- S | | 1
=l - A
2 1080 220 380 400 528 662 700 SBE J0B180D
unit = ses

2508
2esa
1580
1@ee

see

1] Ul T ¥ T L3
1]I“'}l‘.‘u"".tkt_'_
t 1 |
| ; { i |
e & (| e k] 1 E -
1,
| |
'SEEEERER

@ 1080 200 3P0 420 500 620 700 BEE FRRIRED
it = sec

rate/sec

ratessec

rate

Tt . 1T
i rpqu?t!.}xt e

R P F

(HREE N A

i i -

100 282 280 400 SAO 6A3 732 620 300 1208

[|
3000 Al ;
g by | | H
N B Iael ! S I T g]
Copyright © IDEALX 5.A.S 2004 - http-/tsunami (dealx. org/ Contact: ai

© 2005 Process-One

Page 21

Example graphes: Response time

msec

el

zoae

1268

1600

1408

lzo8

1g66e

588

488

288

response time

T T
Home page —+—
Page —+—

i

al

T Jl + 1

1' T +T “i 1
e
T i e i' ié'lii}iir!

-

= =

]
1668 2688 23866 40086 58648 &B6a
seconds
© 2005 Process-One

Page 22

47

ratessec

Example graphes: Hit rate

24008

2200

(=115 1)

18068

1680

1488

1266

looa

g8e

rate

T
hitrate ——

R

+ 1

=

2880 38008

468088
unit = sec

© 2005 Process-One

5089

=]]z

/a8

2888

Page 23

Gl

ratessec

Example graphes: Network traffic

2480

2280

2oo00

1568

1580

1488

1288

18689

gam

rate

hitr;te —_—

' IR W R R (R

1608 2008 3686 46068 5888 6080
unit = sec

® 2005 Procaess-One

7888

=daia]

b

Page 24

Figures and organisations using Tsunami

® Tsunami has bean successfully used for huge benchmark:

® Jabber protocol: 10 000 simultaneous users. Tsunami were running on a 3-computers cluster
(CPU 800Mhz)

® HTTP and HTTPS protocol: 25 000 simultaneous users. Tsunami were running on a 4-
computers cluster. The tested platform reached 3 000 request per second.

#® Tsunami has been used for benchmark at:
® DGI (Direction Générale des impbts): French finance ministry

® Cap Gemini Emst & Young

& IFP (Institut Frangais du Pétrole): French Research Organisation for Petroleum
® LibertySurf
© 2005 Process-One Page2s
Conclusion

® Tsunami has several advantages aver other injection tools:
& Outstanding performance and distributed benchmark

® Ease of use: The hard work is already done for all supported protocole No need to write
complex scripts. Dynamic scenarii only require small trivial piece of code. Tsunami scenarii
realisation is mostly based on

B Multi-protocol support: Tsunami is for example one of the only tool to benchmark SOAP
applications

= Monitoring of the target cluster to analyse the behaviour and find bottlenecks. For exemple, |
did use it to analyse cluster symmetry (is the load properly balanced ?) and to determine the
best combination of machines on the three cluster tiers (Web engine, EJB engine and
database)

© 2005 Process-One Page 26

16

A Virtual World Distributed Server developed in Erlang
as a Tool for analysing Needs
of Massively Multiplayer Online Game Servers

Michat Slaski
Erlang Training and Consulting Ltd.

London, United Kingdom
michal@erlang-consulting.com

ABSTRACT

At present massively multiplayer online games allow several
thousands of players to stay in a single, persistent virtual world.
Because of the fast growing interest in this type of servers, we
started researching their efficiency and scalability. Our target was
an analysis of the MMOG server, which could service up to 1000
players in a single virtual world. We made an assumption that the
server will be distributed and running on a dedicated cluster. As
the implementation platform we chose Erlang/OTP its main
advantages being integration with a distributed database, soft real-
time and supporting distributed applications. In this paper we
discuss the realisation of the project, and practical aspects of the
measurement of server parameters.

Keywords
Massively Multiplayer Online Game, Erlang, Load Testing,
Distributed Server.

1. INTRODUCTION

Massively multiplayer online games (MMOG) are a dynamically
developing segment of the computer games industry. Even though
there are many difficulties that you need to overcome while
building this type of systems, there has been a significant increase
in the interest in MMOG throughout the last couple of years. In
the year 2004 the total income from selling online games was
over 1.5 billion US dollars. In the year 2006 the total income is
predicted to be twice as big.

In classic multiplayer games, like Quake, the number of
players usually is under 20. At present one of the most popular
MMOG in Europe and USA is World of Warcraft released by
Blizzard Entertainment, in which several thousands users play on
each server. MMOGs are characterised by big demands for the the
system and for the network infrastructure. Thousands of players
staying concurrently in the same virtual world, interacting with
each other and changing the state of the game environment,
generate heavy network traffic and a heavy server load.

Not many titles were as successful as the World of Warcraft.
Most of them had technical faults and lacked in attractive
gameplay. To provide a good level of gameplay, every user needs
to have an up-to-date information about the state of the virtual
world. This state changes every time when the user takes an

Marcin Gazda
AGH University of Science and Technology

Al. Mickiewicza 30
30-059 Krakow, Poland

action (like moving his character or collecting an object) leading
to the conflict between capacity and coherence. It is impossible to
guarantee that a dynamically shared game state will change
frequently and that every user will have a permanent access to the
same and most current state.

2. PROTOTYPING

The main reason of failures in creating MMO games is the
fact that you can only fully test it at the end of the developing
process. All of the leaks and mistakes in the design can be noticed
during beta tests when thousands of users start playing it. It is
important to prototype every solution in order to simulate players
and check if the solution is appropriate. During the phase of
prototyping you can experiment with the functional and technical
aspects of the system and you should determine the architecture
of the system.

2.1 Using Erlang/OTP for the prototype

Usually prototypes are developed on hardware not as strong
as the target one, so it is important that the platform used for
prototyping is compatible with different operation systems and it
is not dedicated to a specific one. Another requirement for the
platform is the possibility of a quick and easy development
process. There is a need for mechanisms that can support
distributed architectures, because these are the most promising
directions of research. Supporting high availability and efficient
internal communication are also significant. This is why Erlang
Open Telecom Platform was chosen. Important features from our
point of view are: open source, its own virtual machine, light
processes and the distributed database Mnesia.

Handling a big amount of users requires concurrent oriented
programming. This can be accomplished with Erlang processes —
one process for each user. There is a need of scalability of the
system, what can be realised by distributing the server on a cluster
of machines. Erlang allows processes to communicate with each
other by knowing only their PID and without knowing if they are
run on the same node, so you can treat the cluster as one coherent
system. Such persistence allows you to build prototypes
effectively.

3. IMPLEMENTATION

For the sake of research a game client in Java and with Java3D
library was developed. The application provides functionality
similar to role playing games. Users can move their characters,
collect objects, chat with each other and do some magic.
Messages with the information about user actions are sent to the
server and then dispatched to other connected users.

The server was implemented in Erlang. All of the game data is
stored in Mnesia tables. The Mnesia’s scheme was configured to
keep the replicas of all tables on all nodes. Most frequently used
data like socket binding or player’s position are stored in ETS
hash tables.

Erlang processes are organised in a supervision tree. The root
process on every node is responsible for starting services assigned
to this node. Services were implemented with the gen_server
behaviour. There are two kinds of services: processing network
traffic and processing user’s actions. When ‘network processing’
service is run, the node becomes an access point and it starts to
listen on a TCP port for new connections. When ‘action
processing’ service is run, then the node takes part in distributing
the computatians.

3 4%
8 b

Figure 1. System’s architecture

The game terrain is divided into geographic zones assigned to the
nodes processing the player’s actions. Every player is assigned to
the zone in which he is standing. Processes controlling the players
placed within the same zone are run on the same node. When the
player moves to another zone, its controlling process is moved to
the appropriate node. This operation needs a lot of ealoulations, so
the algorithm was implemented to prevent often zone switches.
The player is switched into another zone not when he crosses a
zone border, but when he gets out of the zone range.

4. SYSTEM PERFORMANCE ANALYSIS
When the implementation of the system was finished, a game
session with real players was organised. Seven people were
playing for several hours so we could log all of their actions and
carry out analysis on how often statistically a user takes an action.
Then we generated scenarios for IDX-Tsunami which is a
distributed load testing tool that can simulate TCP clients. A plug-
in for IDX-Tsunami was developed to support our protocol and to
log the server performance.

The research was done in two phases. During the first one two
types of architectures were tested. The architecture of the first
type is built by single-function nodes, which means that every
node is processing either network traffic or player’s actions. The
architecture of the second type is built by double-function nodes,
which means that every node provides both services.

For every architecture the maximum number of players that it can
handle was determined. We determined the number by analysing
several different indicators, such as the time in which the server
replies for messages, outgoing network traffic, number of
outgoing packets and the utilisation of the CPU on the server side.

T00

number of players
1
J
il

L] L 3 L) 5 L3 7] 1’ 10

a
bar of nodes i

Figure 2. Architectares with double-function nodes

According to research, zone based selutions are highly dependant
on the distribution of players in the world. We made an
assumption that players are spread around the world equally and
this kind of sitnation could be possible if the game world is big
enough. But the fact is that when many players are standing in the
same region, like during battles, the server can be overloaded.

During the second phase we worked on synchronizing issues. Let
imagine that two players are looking at the same mushroom lying
on the ground. One of them moves near the mushroom and picks
it up. Then the message is sent to the server. Before the server
passes this message to the second player, he can still see the
mushroom, so he can try to pick it up. If he dose so, obviously he
will fail, because the mushroom is already collected. We
measured the probability that a player would or would not fail in
two kinds of situations: when the server is not overloaded and
when it is overloaded. In the second case players more often
cannot take successful actions, because the state of the world
which they can observe is desynchronized from the state on the
server.

of players

L I T T I
0.09 H * = succesdud
* * not sucoeselul
= y=0.04053 (euxoeeful)
0.08 H = y=0.0000110
N g
0.07
- -
0.08 =
- 1=
=
0.05 . " .t- .ll' E'l & - '_. - =
wley | 4= L en o] * o] s |
24 .. - - . -
0. e - = v
4 - " . =
0.03 -
0.02
.
=
8.01
o o
. L P () ._a_' s @
[100 300 100 400 500 600 700 300 %00 1,000
time of the test [#]

Figure 3. Server not overloaded, more successful actions.

0.08 L 1 L L 1 1
- Lagend
0.045 -w adians E—
o * * noteuamesdul a
—— y=0,02619- 326010 (cunosdid)
0.04 T — Ym0 01855 4.175x10% (not muccsssul) |——|
- g
0.038
.
0.03
-
u o
0.025 -
.
0.02 \._’-
Iy \\‘\
0.015 —] ~7 -
. 1. . '-\ L .
0.0L -
O PR e vl 2
- N Mk Fad o] e ot ety
9.005 | B = \:._ -
i \-‘-". |«

[100 200 300 400 %00 €00 100 800 900 1,000
time of the test [s]

Figure 4. Server overloaded, more actions fail.

5. CONCLUSION

To summarize we found the Erlang Open Telecom Platform very
appropriate for developing prototypes of the distributed MMOG
system. Because of the fact that you can quickly build a solution
and then experiment with it, you can examine different algorithms
in a relatively short period of time.

6. ACKNOWLEDGMENTS
University supervisor: Stanistaw Ciszewski, AGH University of
Science and Technology, Krakéw, Poland.

Nicolas Niclausse, author of the IDX-Tsunami tool, which was
used for the players® simulation.

7. REFERENCES
[1] J. Amstrong, R. Virding, C.Wikstrom, M. Williams,
Concurrent Programming in Erlang. Prentice-Hall, 1996.

[2] A.G. Bosser, Massively Multiplayer Online Games:
matching Game Design with Technical Design, IMAGINA,
June, 2004.

[3] 1GDA Online Games SIG, 2004 Persistent Worlds
Whitepaper, htip://www.igda.org/online/, December, 2004.

[4] B. Knutsson, H. Lu, W. Xu, B. Hopkins, Peer-to-Peer
Support for Massively Multiplayer Games, INFOCOM 2004,
March, 2004.

[5] D. Saha, S. Sahu, A. Shaikh, A Service Platform for On-Line
Game, Proceedings of NetGames 2003 Workshop, May,
2003.

[6] MMOGCHART.COM, http:/fwww.mmogchart.com

[71 K. Milligan, Massively successful - MMORPGs come of
age, http://keathmilligan.net/view.php?id=448, December,
2004.

[8] IDX-Tsunami distributed load testing tool,
http://isunami.idealx.org/

Third Party Gateway

EUC 2005 Chandrashekhar Mullaparthi
T-Mobile (UK)

TPG - What is it

TPG is a third party gateway.

e Bulk MT-SMS

e Premium MT-SMS

* Receive MO-SMS

» Location Based Services

EUC 2005 Chandrashekhar Mullaparthi
T-Mobile (UK)

Why did we do it?

» Replace a failing IT system
~ Slow response times
— Lots of unwanted features
— Missing wanted features
— Unstable
— Expensive
— Built using Weblogic, Java, DB2

EUC 2005 Chandrashekhar Mullaparthi
T-Mobile (UK)

How did we do it?

* 1st version in 2002

— Written in 3 weeks (warts and all)
* 2nd version in 2003

— Half hearted attempt to win the political battle
 3rd version in 2004

— Political battle won!

— Got rid of most of the warts (except XML)

EUC 2005 Chandrashekhar Mullaparthi
T-Mobile (UK)

Architecture

Transaction node

Reply node

EUC 2005 Chandrashekhar Mullaparthi
T-Mobile (UK)

Some Details

e yaws as the front end webserver

» XML parsing using eXpat (http://www.libexpat.org/)
 ibrowse as the HTTP client

* mnesia based message queues

e Configurable throughput for each 3rd party

« All events logged in an external 1TB Oracle DB

* Public node uses Sun Fire V120

e Trxnode uses Sun Netra T4 (dual processor)

» Business Logic: nearly 11000 lines of code
 Libraries: nearly 19000 lines of code

EUC 2005 Chandrashekhar Mull aparthi
T-Mobile (UK)

ibrowse

hitp://jungerl.sourceforge. net

¢ My first contribution to the erlang community!
* RFC2616 compliant (AFAIK)

e HTTP/0.9, HTTP/1.0, HTTP/1.1

¢ Understands chunked encoding

* Named pools of connections to each webserver
* Pipelining support

* Download to file

* Asynchronous requests. Responses are streamed to a process
* Basic authentication

e Proxy authentication

e Can talk to Secure webservers using SSL

* ToDo - Use inets driver HTTP parsing

* ToDo - Support the CONNECT method

EUC 2005 Chandrashekhar Mullaparthi
T-Mobile (UK)

Performance

PG SERNICE

Traffic Level

Availability

RTT: 120ms

EUC2005 Chandrashekhar Mullaparthi
T-Mobile (UK)

Effort

1st version developed by me in 3 weeks

o I'veforgotten what I did in the 2nd version

3rd version

Updated to meet all “known” requirements

Kept updating as new requirements were “discovered”
Performance tuned with Sean’s help

Peter Lund developed a load tool

Francesco Cesarini took over from me and did load testing, bug fixing and
training of support staff. Lots of everything!

Chris Newman helped with end to end testing and SSL troubleshooting
Peter Whitaker held endless meetings with support to get TPG accepted
Tammy Saunders helped setup a database for logs produced by TPG and
made a poster to inspire everyone!

Haider Mohammed was brave enough to take ownership of TPG!

EUC 2005 Chandrashekhar Mullaparthi

T-Mobile (UK)

Customer comments

e “You have gone from the worst performing network [out

of 40 networks] to the best” - WIN (verbal quote)

“We have achieved a 100% improvement in performance
and we have not runup as any connections as we had
before” - WIN CTO John Rands

“Requests now take between 60 and 100ms. This compares
well against ATK (very rarely see a transaction < 500ms)
and is approaching Grouse (where most transactions tend
to take 20-50ms)” - MX CTO Chris Wilson

EUC 2005 Chandrashekhar Mullaparthi

T-Mobile (UK)

eXAT: Software Agents in Erlang

Corrado Santoro
University of Catania - Engineering Faculty

Department of Computer and Telecommunication Engineering
Viale Andrea Doria, 6 - 95125 - Catania, Italy
EMail: csanto@diit.unict.it

Abstract— This paper describes eXAT, a new agent
programming platform to write and execute agents us-
ing the Erlang language. The main characteristic of
eXAT is that it provides an “all-in-one framework” for
the design, with a single tool, of agent intelligence,
agent behavior and agent communication. This is made
possible by means of a set of modules strongly tied to
one another: (i) an Erlang-based rule-processing en-
gine, (i) an execution environment for agent tasks,
based on object-oriented finite-state machines, and
(ii) a module able to handle FIPA-ACL messages.
Agent tasks are coupled with rule-processing engines
in order to support transition triggering on the basis
of agent’s mental state. Moreover, the agent commu-
nication facility provided by eXAT can not only trigger
task’s events but also influence agent’s mental state
according to FIPA-ACL semantics.

Inder Terms— Software Agents, Agent Programming
Platformns, FIPA, Inference Systermns, Ontologies.

1 Introduction

To date, agent technology [40] is becoming widely used as an
interesting approach to build autonomous software systeins.
Many agent programiing platforms and tools have been de-
veloped [4, 10, 1, 8, 38, 32, 34, 35, 7], aiming at providing an
execution environment for agent-based applications, together
with & set of libraries for agent developers.

In order to offer a standardized and cross-platform environ-
ment, the majority of such tools are developed in Java, while
few of them employ ad-hoc programming languages. However,
the use of Java is able to support only some aspects of agent-
oriented programining, while other aspects, such as the intelli-
gence, require external tools.

Let us remind that, by definition [31, 40, 41], an “agent” is
a software entity that, while situated in an environment, reacts
to environmental changes and eleborutes plans to be executed
in order to achieve a specific goal; an agent can also interact
with other agents, if such interactions provide help in achieving
the goal. From the developer poiut of view, this implies three
specific requirements that should be met by an agent prograin-
ming platform or language:

a. Ability of specifying and implementing the reactive behavior
of an agent. This is in general supported by a modeling
based on finite-state machines.

b. Ability of specifying end implementing agent reasoning,
which can be supported by artificial intelligence tools such

as expert systems, rule-processing eugines, etc.

¢. Ability of supporting interaction with other agents, by means
of suitable message exchange abstractions.

In such a scenario, imperative and object-based capabilities of
Java are suitable to support FSMs and interactions [10, 1, 8],
but fail to take into account “agent intelligence”: as we argued
many times [15, 17, 18], the Java language does not seem an ap-
propriate choice for agent system implementation since it is not
able to offer native statements to express logic construct like
predicates or production rules. In fact, each time a reasoning
process has to be included in an agent system developed with a
Java platform, additional tools are introduced [3, 2, 36], which,
however, use logic/declarative languages that differs from Java
in both syntax and semantics. The result is a mixing of pro-
gramming approaches that does not help the developed because
s/he is forced not only to deal with two completely different lan-
guages but also to handle data exchanging between the different
language domains.

Following such statements, we found that Erleng, thanks to
two main features, pattern matching in function clause dec-
laration and handling of symbols in data, is instead a good
candidate to offer a complete solution that takes care of all the
aspects of agent, programming. On this basis, we developed the
eXAT? platform [5] with the aim of providing an “all-in-one”
environment that considers together the three main aspects
of agent-oriented programming: behavior, intelligence and se-
mantic and syntactic interoperability. This paper, which is a
synthesis of our previous works [12, 14, 13, 15, 17, 18, 16, 11],
describes the eXAT platform, focusing on its internal structure
and functionalities. After a brief discussion about the motiva-
tions that led us to choose Erlang, the internals of eXAT will
be presented, together with some code samples that will show
how to use the various modules provided by eXAT to build a
complete multi-agent system.

The paper is astructured as follows. Section 2 illustrates the
reasons for choosing Erlang for agent system implementation
(and thus the reasons why we developed eXAT). Section 3 gives
a brief overview of the eXAT platform. Section 4 describes the
agent behavior model and the abstraction provided to write
agent’s tasks. Section 5 focuses on agent intelligence by pre-
senting the rule-processing engine included in eXAT. Section 6
deals with agent interaction and illustrates the tools and mod-
ules to handle message exchanging, from both the syntactic and
semantic point of view. Section 7 concludes the paper.

lerlang eXperimental Agent Tool.

© 0O ~J OO N

/

-module(reactive_agent).

agent_loop() ->
E = vait_for_next_event(),
act(E),
agent_loop ().

act ({switch, on}) -> % act when switch is turned on
act({switch, off}) =-> % act when switch is turned off
act ({temperature, X}) when X > 30 ->

% act when the temperature is greater than 30
act ({temperature, X}) when X < 20 ->

% act when the temperature is less than 20
act(_) -> 2% unknown event, no action

e

Figure 1: A simple pure-reactive agent in Erlang

2 Why Erlang?

The main reasons that led us to choose Erlang as a possible lan-
guage for the developinent of agent systems derive from the ba-
sic properties of agents listed in [40]—reactivity, pro-activeness
and social ability; each of this property is analyzed to evaluate
if—and how—it can be supported by Erlang.

2.1 Reactivity

An agent has the basic capability of reacting to incoming
events. They include e.g. a change of the state of the refer-
ence environment, the arrival of a messages from the user or
other agents, the occurrence of exceptional conditions, etc. An
event can be considered featured by a type and additional data
bound to the event itself (e.g. for an incoming inessage, the
additional data could be the payload) and, on this basis, suit-
able predicates on bound data can discriminate various reaction
cases to events of the same type.

From the programmer’s point of view, reacting to events
implies to provide (i) an abstraction for modeling events and
(i) some constructs or library calls to specify the computation
to be triggered when a particular event occurs, also given that
the bound data could be subject to certain conditions. Erlang
seems particularly suitable to face such requirements for the
following reasons:

1. Erlang is a symbolic language (like Prolog or LISP), and it
is known that the use of literal symbols (atoms) facilitates
the representation of constants in data. Structured infor-
mation can be represented as fuples and, since they are
untyped, are well-suited for heterogeneous data [39] and
thus particularly appropriate for event types that could
be very different one another. For example, the state of &
switch can be represented as {switch, on} or {switch,
off}, a sensed temperature with {temperature, 25}, an
incoming message as {message, ’QUERY-IF’, {sender,
’UserAgent’}}, etc.

2. Erlang is a functional language and functions can have
multiple clauses. Matching on function definition can be
exploited to specify the computation to execute following
an incoming event formed as desired: function clause dec-
laration will specify the matching criteria relevant to a
triggering event, while function body will implement the
associated action.

rule (Engine, {’child-of’, X, Y}, {female, Y}) ->
eresye:assert (Engine, {’mother-of’, Y, X});

rule (Engine, {’child-of’, X, Y}, {male, Y}) ->
eresye:assert (Engine, {’father-of’, Y, X}).

Figure 2: Some Erlang function clauses expressing inference
rules

The example in Figure 1 shows a practical usage of the con-
cepts indicated above. The listing in the Figure reports a possi-
ble implementation of a (very simple) pure reactive agent pro-
grammed in Erlang. Agent’s main loop (function agent_1loop,
lines 3-6) waits for an incoming event and then executes the
associated action; computations tied to events are specified by
using multiple clauses of the function act, each one matching u
different value of the parameter; when the function is invoked
using the event acquired (line 5), only the matching clause
is activated (if one exists, otherwise the default clause—line
14—is chosen). As the reader can appreciate, using symbols,
structured data and functions with several clauses improve not
only engineering and implementing reactive agents, but also
the readability of the source code.

2.2 Pro-Activeness

Pro-activeness means the capability of an agent to develop and
execute plans in order to achieve a specific goal. Unless specific
BDI? tools are employed [7, 36], such an ability is generally
supported by means of a rule production system [3, 2, 6, 11],
featuring a knowledge base and a set of inference rules. In this
context, Erlang’s features are particularly interesting for the
following reasoms:

1. Symbols and primitive types (i.e. atoms and tuples) are
well suited to represent facts of a knowledge base; more-
over the use of the same types for facts and events (i.e. tu-
ples) facilitates agent design, allowing programmers to di-
rect use event data in the knowledge base.

2. Function clauses, which indeed represent predicates on pa-
rameters that if matched activate the clause, fit well in
the representation of the precondition part of a rule; at
the same time, the function body can represent the action
part.

Note that despite Erlang’s capability to represent rules, the
language end run-time system do mot include an engine for
rule processing, which has to be provided by an external tool.
For this reason, the ERESYE system has been designed by the
authors {11] and it has been included in the eXAT platform.
ERESYE is an Erlang-based rule production system featuring
the same characteristics (from both the syntactic and seman-
tic point of view) of other well-known similar tools, such as
OPS5 [20, 21], CLIPS (3], Jess [2], etc.

The example in Figure 2 gives a sketch of Erlang function
clauses used as rules of an ERESYE inference systemn. In the
example, the rules shown permit to enrich the knowledge by
deriving the concepts of ’father-of’ and ’mother-of’, on

2BDI means “belief-desire-intention” and it is one of the most
widely accepted paradigms for rational agents.

2

the basis of the knowledge of the ’child-of’ and “gender”
concepts,

2.3 Social Ability

Agent-oriented engineering is based on subdividing a whole
application into a set of goals to be achieved by several co-
operating agents; thus the possibility of supporting interac-
tion ammong agents is a mandatory functionality of any agent
programming language or platform. As it is known, the Er-
lang language and its run-time systemn have been explicitly de-
signed to support communication; moreover, the Erlang pro-
gramming model [9, 17] is based on subdividing a problemn into
a set of tasks to be assigned to the same number of concur-
rent processes that share nothing and interact each other only
by means of message passing. The reader can appreciate the
similarity between this model and the basics of mnulti-agent
systemns [40]: Erlang concurrency model and interaction con-
structs seern thus perfect “as-is” to support interactions among
(Erlang-programmed) agents. The only concern is with the
exchanging protocol and data representation, which is Erlang-
proprietary and thus non-standard (even if it is documnented).
An sgent platformn is thus needed when standard messaging, as
in FIPA3, is required to favor the interoperability with different
platforms and agents written in other programming languages.

3 Overview of eXAT

The eXAT platform [12, 13, 14, 15, 18, 17, 11] has been designed
with the objective of providing an “all-in-one” environment to
execute agents and to program them in their behavioral (reac-
tive), intelligent (pro-active) and cooperative (social) parts, all
with the same language (Erlang).

Agent behaviors can be programmed by specifying tasks
modeled as finite-state machines (FSMs), enriched with the
possibility of using composition, i.e. serial and parallel execu-
tion of sub-FSMs, and extension, i.e. refining some parts of an
existing FSM (according to the concept of virtual inheritance
proper of the object-oriented technology) in order to support
new requirements. Task model and programming are detailed
in Section 4.

Agent intelligence is instead programmed by means of rule-
based code, supported and executed by the ERESYE tool (as
briefly illustrated in the Section 2). An ERESYE engine, to-
gether with its programmed rules, can be bound to an agent
of the platform in order to support agent’s inferemce: the
knowledge base of the engine can thus represent agent’s mental
state, while production rules support agent’s reasoning pro-
cess. ERESYE engine’s events can be bound to behaviors, thus
allowing reasoning processes to also trigger user-defined agent
actions. The details of ERESYE are reported in Section 5.

Agent interaction is performed by means of the exchange of
FIPA-ACL [24] messages®; this is supported by eXAT’s mod-
ules that include library functions to send and receive messages,
encoding them through (user-defined) ontologies. Message ex-
changing is mainly connected to behavior execution thus mak-
ing possible the occurrence of a proper event when a new mes-
sage is delivered to the agent. But message exchanging is also

3FIPA, which means “Foundation for Intelligent and Physical
Agents” is a non-profit IEEE organization for the standardization
of agent technology [30].

4FIPA-ACL (Agent Communication Language) is a standardized
interaction lenguage for agents.

able to influence agent's mental state thanks to the support
of FIPA-ACL semantics: an incoming message is processed
by the ACL semantics module and, according to the mean-
ing it carries (as defined in FIPA-ACL standard [24]), suitable
actions are performed on the knowledge base of the ERESYE
engine bound to the receiving agent. This allows for the imple-
mentation of “more rational” multi-agent systems. Details are
provided in Section 6.

4 Writing Agent Tasks
4.1 Basic Task Model

The behavioral part of an agent is programmed in eXAT by
means of one or more tasks, expressed as finite-state machines
(FSM). The FSM model used in eXAT is an extension of the
basic model that maps the occurrence of an event in a given
state to an action and a new state, i.e.:

(Event, CurrentState) — (Action, NewState)

In eXAT, as introduced in Section 2.1, an event is characterized
by a type and additional informetion (event data) bound to the
event itself. On this basis, a FSM, or agent task, is modeled
with the following elements:

e FE is the set of event types. The event types handled by
eXAT are:

acl, the reception of an ACL 1message;

timeout, the expiry of a given timeout;

eresye, the assertion of a particular fact in an
ERESYE engine;

— silent, the silent event.

o P isthe set of duta patterns to be bound to a certain event
type. A date pattern specifies a template to be matched
with event’s data, for the event to be able to trigger a
transition.

o S is the set of states of the FSM.
e A is the set of actions to be done.

e f:S5XEXP — AxS is the transition function that maps
an event occurring with a given pattern and in a certain
state to an action execution and a new state of the FSM.

An agent task is specified in a single Erlang module (the name
of the module becomes also the name of the task) that imple-
ments the following three main functions:

action(State) -> [{EventName, ActionFunc}, ...]
event(EventName) -> {EventType, PatternName}
pattern(PatternName) -> PatterSpec

Function action specifies the transitions exiting from the
state given as parameter; it returns a list of couples event name
and ection function, meaning that, at the occurrence of that
event, the associated Erlang function will be executed®. The
other two functions, event and pattern, are used to fully spec-
ify the event bound to a certain transition. An event is char-
acterized by a fype and a template (or pattern) that must be

5The state reached by the FSM after the occurrence of an event is
encoded in the ActionFunc and, for this reason, it does not explicitly
appear here.

e

-module(first).

-export ([action/2, event/2, pattern/2,
do_processing/4, finalize/4]).

~include("acl.hrl").

action(Self, start) =->
[{new_message_event, do_processing},

{timeout_event , finalize}].

event (Self, new_message_event) ->

"inform" {acl, inform_pattern};
e . event (Self, timeout_event) ->
do_processing timeout {timeout, timeout_pattern}.

f]
o start @ 5 @ pattern(Self, inform_pattern) ->

N

[#aclmessage {speechact = ?INFORM’}];
pattern(Self, timeout_pattern) -> 10000.

do_procesaing(Self, EventName, Message, ActName) ->
% Perform processing
object:do(Self, start).

finalize(Self, EventName,
% Finalize behaviour
object:do(5elf, stop).

Data, ActName) ->

(b)

Figure 3: A Simple Task in eXAT

matched by the data associated to the event in order to activate
the transition. The former function associates to each event
name its type (chosen among acl, timeout, eresye and silent
as reported above) and a pattern name. Function pattern then
maps each pattern name with the relevant matching template,
whose structure depends on the type of the event itself: for
an acl event, the template is specified by indicating matching
values in the various field of a #aclmessage record (see Sec-
tion 6); a timeout event requires a value in milliseconds; event
eresye requires the specification of the template of the fact to
be matched (see Section 5).

As a first example, the FSM depicted in Figure 3a shows
a tasks that executes action “do_processing” each time a new
“informm™ message is received, unless a timeout of ten seconds
occurs. This task can be implemented, in eXAT, by means of
the module first reported in Figure 3b. The reader can note
the use of functions action, event and pattern, and the way
in which the concrete actions can be implemented. As it can
be noted, function object:do is used to set the next state after
action execution.

4.2 Composing Tasks

Depending on the application to be realized, agent tasks could
be very complex and require FSMs composed of a large num-
ber of states and transitions; such cases could be hard to han-
dle during development stage. As it is widely known, the use
of modulerization, i.e. the possibility of decomposing a large
FSM into a set of smaller FSMs, helps the designer in tack-
ling these situations. In addition, modularization favors reuse,
as there could be cases in which parts of an overall agent task
could be reused in another different agent application®. To face
these situations, eXAT allows a designer to engineer an agent
by composing tasks in sequence—to support serial activities—
or in purallel—to support multiple concurrent activities. This

6As in using standard FIPA interaction protocols [25, 28, 27, 26].

is done by exploiting function behave (exported by the agent
module), which, when called in the body of an action imple-
mentation, causes the execution of the specified task(s). The
function takes, as parameter, either a single task name or a list
of tasks names; in the latter case, all the specified tasks are
executed in parallel”.

As an example, Figure 4a illustrate a FSM that:

o starts the “english-auction” task, if it receives an “inform”
message; or

e starts the “dutch-action” task, if a timeout occurs; and
e in any case, after executing one of the (sub-)tasks, it stops.

The implementation is reported in Figure 4b.

4.3 Specializing and Extending Tasks

Composing tasks sccording to the concepts dealt with in the
SubSection above improves agent engineering a lot. However,
in some cases reusing an existing task “as-is” is not enough,
because the implementation could be not so general to allow
its direct use in other contexts. In such a situation, an imple-
mented task should be modified in some elements or, in other
words, specialized for a new purpose. As it widely known, the
object-oriented technology makes specialization possible thanks
to wirtual inheritence; the same concept is exploited in eXAT
to support task eztension and, in particular, to permit:

a. Adding new states and transitions;
b. Removing existing states and/or transitions;
¢. Modifying existing states and/or transitions by changing

1. the state reached by a transition,

TThe function is synchronous, that is, it waits for the complete
execution of the given task(s) before returning to the caller.

dutch_auction

dutch_auction Sl 0@0 ™y
&—>(a)

H—:-.-ozg_?’

english_auction

timeout

stop —:v-z,)

"inform"”
english_auction

action (Self,
[{first_event, do_english_auction},
{second_event, do_english_auction}].

event (Self,
event (Self ,

pattern (Self,
[#aclmessage {speachact =

pattern(Self, timeout_pattern) -> 10000.
% Wait ten seconds.

do_english_auction (Self,
% behaviour ‘english_auction’ is ezecuted
agent : behave (Self,
% stops current behaviour when the ’english_auction’ is over
object :do(Self, stop).

do_dutch_auction (Self,
agent : behave (Self, dutch_auction),
object :do(Self,

-module (second).
-export ([action/2, event/2, pattern/2,

do_english_auction/4, do_dutch_auction/4]).

~include ("acl.hrl").

start) =>

first_event)
second_svent)

-> {acl, inform_pattern};
-> {timeout, timeout_patterm}.

inform_pattern) ->
»INFORM’}];

EventName, Data, ActionName) =->

english_auction),
ActionName) ->

EventName , Data,

stop).

(a)

(b)

Figure 4: Composing Tasks in eXAT

2. the action function bound to a transition,
3. the event type bound to a transition,
4. the data pattern bound to & transition,

5. one or more elements of a data pattern.

In concrete, task extension is made possible in eXAT thanks to
the provided object module, whose first aim is the introduc-
tion of object-orientation in Erlang programs; it is intended for
writing class/modules with attributes and methods, featuring
virtual inheritance as in Java or C++. The provided object
model is very close to that of Java. A class is declared and
implemented in a single Erlang module, which has to export
function extends that returns the name of the ancestor class/-
module®. Then, functions of the module can be treated as
methods by adding another parameter, called Self, in function
declaration: this parameter represents the object’s instance
within which the method is invoked and plays the same role
of keyword this in C++ and Java. According to Erlang style,
a method can have multiple clauses and guards and, uulike
other traditional object-oriented languages, methods feature a
fine grained overriding model: we can override all clauses of a
method (the whole method), a single clause of a method, or
even add another clause to a method defined in the ancestor
class. This characteristic provides a very flexible and expressive
programming environiment.

Task engineering in eXAT exploits this Erlang-based object-
oriented programming capability: each task is indeed a class,
all defined functions, i.e. action, event, pattern and the func-
tions implementing the actions, are methods”, and task exten-
sion is performed by deriving a class/module and accordingly
overriding one or more methods or method clauses. In details,

8This function may be not declared if the class/module has no
ancestors.

9This is the reason why the sample codes in Figures 3 and 4 report
function declarations with Self as the first parameter.

task specialization implies to change the return value of the
interested function or function clause, i.e. to modify

a. The couple {event, action} bound to a certain state—if the
function is action;

b. The couple {event type, pettern} defining a certain event—
when function event is considered;

c. The specification of a given pattern—through redefinition
of function pattern.

For example, if we would design a task behaving like that in
Figure 4a, but using a “confirm” message instead of a timeout
to trigger the Dutch auction (see Figure 5a), we can use the
code reported in Figure 5b.

5 Adding Intelligence to Agents

eXAT tasks are designed for the development of the reactive
part of an agent, but, as stated in Section 1, agents also fea-
ture “intelligence” that has thus to be supported by a suitable
Al tool. To this aimn, we chose to include, in eXAT, a reasoning
system, called ERESYE [11], which is able to allow the creation,
management and execution of rule-based processing engines.
Such engines can be connected with tasks in order to provide
an agent programiming and execution environment where the
behavioral part is strictly coupled with the intelligence. In the
following, an overview of ERESYE is first provided; then the
way in which ERESYE engines can be integrated with agent’s
tasks is discussed.

8.1 Overview of ERESYE

ERESYE is an Erlang tool for programming and executing rule-
processing engines. Each engine is featured by a name and a
knowledge base (KB) made of a fect base (FB), storing the set of

S

dutch_auction

timeout

dutch_auction

»I%?"‘

english_auction

inherited from "second”

event (Self , second_event) -> {ac1,

-module(third).
-export ([extends /0,
-include(“acl.hrl").

event/2, pattern/2]).

extends () -> second.

confirm_pattern}.

pattern(Self, confirm_pattern) ->

[#aclmessage {speechact = *CONFIRM’}].,

\ \-
=("confirm } o
a

(b)

Figure 5: Extending Tasks in eXAT

r:_module(buye:r:_int:elligence).
-export([out_of_balance/z, Preference_rule/3,
purchase_rule/4, start/0]).

out_of_balance(Engine.
{money, Agent, X})
when X < 100 ->
io:format(“warning! “P is out of balance’n".
[Agent]),
éreaye:assert (Engine, {out_of_balance, Agent}).

preference_rule(Engine,
{interest, Agent, Itenm, high},
{availability, Item, Avail})
when Avail > o0 -»
eresye:assert (Engine,
{interested, Agent, Item}).

purchase_rule (Engine ,
{interested. Agent, Item },
{price_of, Item, Price},
{money, Agent, M})
vhen (M - Price) > 1000 ->
eéresye:assert (Engine,
{intend, Agent, {buy, Item}}).

start () ->
eresye:atart (buyer_engine),
eresye:add_rule(buyer_engine,
{buyerhintelligence.
eresye:add_rule(buyer_engine,
{buyer_intelligence,
eresye:add_rule{buyer_engine.

out_of_balance}),

preference_rule}),

{buyer_intelligence. Purchase_rule}).
L J

Figure 6: A Simple Reasoning Process ERESYE

facts representing the current knowledge, and a rule base (RB),
storing the set of inference rules representing the reasoning ca-
pability of the engine. Each fact is written in the form of an Er-
lang tuple, e.g. {tvemperature, 50, P, {alarm,on}, {buy,
"Computer’}, {interested, ’Alice’ » 'Computer’}; records
can be used as well. In such a scenario, tuples or records
are useful to represent concepts, e.g. {interested, A, I} can
mean that agent A is interested in item I, {money, A, M} can
mean that current amount of money of agent A is M, etc.
Inference rules, which represent the actions to be executed
by the engine when one or more particular facts are asserted in
the FB, are instead written using standard Erlang functions,
An ERESYE rule is implemented with an Erlang function clause
where the first parameter represents the engine name in which

the rule is executed and the other parameters are tuples repre-
senting the templates of the facts that must be asserted in the
FB for the rule to be activated. Guards can also be specified,
thus creating additional conditions to be met in order for the
rules o be fired. The body of a rule implements the action to
be executed when the rule is fired; it can contain any Erlang
expression, as well as calls to functions for KB manipulation.
To this aim, a suitable set of functions of the ERESYE API
allows Erlang programs to interact with an ERESYE engine in
order to assert a fact, retract a fact, wait for the presence of a
fact with a given pattern, add a new rule, change rule priority,
delete a rule, ete.

Figure 6 shows a simple reasoner that uges ERESYE.
Here, functions out_of_balance, preference_rule and
purchase rule are the rules. This means that, for example,
rule out_of_balance will be fired when the fact represented by
the tuple {money, Agent, X}, with X < 100 will be asserted;
the action will consists in printing a warning message and then
asserting the fact {out.of -balance, Agent} in the engine.
The sample listing shows also the way in which an ERESYE
engine is created and activated; to this aim, function start
first performs engine instantiation and then adds to the engine
the rules defined by the functions.

5.2 Tasks and Intelligence

In order to allow the interaction between agent behavior and
agent intelligence, eXAT tasks can be connected with ERESYE
engines. This is performed by means of a twofold mechanism.

On one hand, a transition of a task can be activated following
the assertion of a fact with a given template. This is performed
by specifying, in a task, an event of the eresye type, while the
associated function pattern indicates (%) the template of the
fact to be waited for, (4#) the name of the ERESYE engine and
(i) if the fact, once the event has been triggered, must be
retracted from or left in the fact base of the engine.

On the other hand, a task can perform any operation onto
an engine by using, in the body of its action functions, the
function of the ERESYE APL

Figure 7 reports an example of an agent task that is con-
nected with the engine in Figure 6; first, the buyer_engine is
instantiated in function on-starting (which is a callback exe-
cuted automatically when the task is started); then, the task
behaves with a single state and two transitions. The first tran-
sition (inform_event) is activated when an “inform” message is
received by the agent; the action performed, in this case, is the
direct assertion of the message content in the buyer_engine.

—

-module (buyer).

-export ({action/2, event/2, pattern/2
get_inform/4, perform_purchasing/4,
on_starting/1]).

-include ("acl.hrl").

action(Self, start) ->
[{inform_event , get_inform},
{eresye_event, perform_purchasing}].

event (Self, inform_event) =->

{act, inform_pattern};
event (Self, eresye_event) ->
{eresye, intention_pattern}.

pattarn(Self,
[#aclmessage { speechact =
pattern(Self,
{buyer_engine, get,

inform_pattern) ->
*»INFORM’}];
inform_pattern) ->
{intend, ’_’, '_'}].
get_inform(Self, Event, Message, Action) ->
eresye:assert (buyer_engine,

Message#aclmessage.content),
object :do(Self, start).

perform_purchasing(Self, Event,

{intend, _, {buy, Iteml}},
Action) ->
agent : behave (fipa_request_protocol),
object :do(Self, stop).
on_starting (Self) ->
buyer_intelligence:start ().
e vy

Figure 7: An agent’s task that uses the reasoner of Figure 6

The second transition (eresye.event) is activated when a fact
with pattern {intend, _, _} is asserted in buyer_engine; the
action, in this case, is to start a sub-task implementing the
FIPA request protocol [28], and then stopping.

6 Making Agents Interacting
6.1 FIPA-ACL Background

A key aspect of software agents is their ability to comrmunicate
in order to reach their goals; such a cominunication must be
done using messages formed in such a way as to allow interact-
ing agents to understand each other. This is achieved by ineans
of three mechanisms:

1. A common way to represent data in messages (message syn-
taz).

2. A common network protocol to exchange such messages be-
tween agents (message transport).

3. Sharing the meaning of the symbols used in message con-
tent; in order word, to use a common ontology (message
semantics).

All these aspects have been standardized by FIPA {30], which
released a specification for an egent communication lenguage
(FIPA-ACL) [24], which comprises message representation [22],
transport protocol [23] and message semantics [29]. Like other
agent cominunication languages (such as KQML [19]), FIPA-
ACL is based on the speech act theory [37], a social theory that
analyzes huinan communication in order to derive the type of

action carried by a message, e.g. whether it is an assertion,
a query, a comiitment, etc. For this reason, a FIPA-ACL
message, which is called communicative act, is a structured
data whose fields comprise the following main elements:

e The communicative act type (see below).
e The identifiers of the sender and receiver agents.

e The message content, i.e. the true information (message
payload) carried by the message.

e The name of the ontology used in message content, so as
to make interacting agents understand the meaning of the
information.

As for the communicative act type, it is chosen on the basis of
the action that the sender intends to perform, e.g. an “inform”
act is used when the sender wishes to communicate the truth
of a given preposition; a “call-for-proposal” is used when the
sender desires that the receiver makes a proposal on a specified
item; a “request” specifies that the sender is asking the receiver
to do an action (see [33, 24, 19| for more details).

As it can be noted, the communicative act type used de-
pends on sender’s desires or intention, and it is thus somewhat
connected to sender agent’s state. Such a connection is made
“more rational” in FIPA-ACL by means of the introduction
of communicative ect semantics: for each communicative act
type, two modal logic predicates have been specified, called
the feasibility precondition (FP) and the rational effect (RE).
FP indicates a precondition that must be met by sender agent’s
state for the communicative act to be sent, e.g. for an “inform”
communicative act, the FP requires that the sender agent be-
lieves that the information sent is true and that receiver agent
does not have any knowledge on such an information. RE in-
stead is a condition to be met, by both sender and receiver
agent’s state, after sending and delivering the communicative
act, e.g. for an “inform” communicative act, the ItE requires
that the receiver agent believes that the information sent is
true and sender agent believes that receiver believes that the
information is true.

The introduction of ACL semantics in agents implies a strong
link between reasoning process and interaction, thus making
agents “more intelligent” and, above all, more aware of their
communicative actions.

6.2 Sending and Receiving Messages in eXAT

Message exchanging in eXAT is basically supported by the acl
module. As it has been already introduced in the examples
shown in the previous Sections, messages are handled by using
the predefined Erlang record #aclmessage, whose fields corre-
spond to the relevant fields of a FIPA-ACL message defined
in [24].

As for message reception, incoming messages are treated as
task events and thus are able to trigger agent actions. In this
case, the event type is acl and the associated pattern specifies
how the message has to be formed; such a specification uses a
#aclmessage record where each field can be either a constant,
to indicate a value to be directly matched, or a fun, for more
complex matching expressions.

Message sending is instead be performed within task ac-
tions by using appropriate functions provided by the acl mod-
ule; these functions are named using the same names of the
communicative acts of the FIPA-ACL library, e.g. inform,

i

-ontology(book).

class (book) ->

{ title = [string, mandatory, nodefault],
author = [string, mandatory, nodefault],
genere = [string, mandatory, nodefault] };
class (’adventure -book’)

is_a(book),

{ genere

->

[string, mandatory,
default (adventure)] };

class (’thriller-book’) ->
is_a(book),
{ genere = [string, mandatory,

default(thriller)] };

class (buying_action) ->

{ iten [book, mandatory, nodefault] }.
N A

A

action(Self, start)

-module(seller_task).
-export ([action/2, event/2, pattern/2,

on_starting/1, sell_item/4]).

-include("acl.hrl").

->
[{new_request_event , sell_item}].

event (Self, new_request_event) ->

{acl, request_pattern};

pattern(Self, request_pattern) =->

[#aclmessage {speechact
ontology

*REQUEST’,
"book"}].

on_starting (Self) ->

ontology_service:register_codec("book",
book_ontology_sl_codec).

sell_item(Self, EventName, Message, ActionName) ->

% Extract parsed content

[RequestDatal Message#aclmeasage.content,
process_request (RequestData),
object:do(Self, start).

process_request (Mag,

RequestData
% Process the request ...
% Prepare the reply
ReplyContent = #dome { action
% Send the reply

acl:reply(Msg,

#buying_action {}) ->

RequestData },

"INFORM’, ReplyContent);

process_request (Msg, RequestData) ->

% Reply with a 'not understood’
acl:reply(Msg, ’NOT-UNDERSTOOD’, RequestData);

(a)

(b)

Figure 8: Ontology and Communication in eXAT

call for proposal, agree, request, etc., and take, as the sole
paramneter, an #aclmessage record.

As introduced in Section 6.1, in order to favor the interac-
tion among heterogeneous agents, message exchanged must be
encoded using an appropriate syntax; to this aim, FIPA speci-
fies an ASCII representation [22]. Therefore, in order to allow
eXAT agents to handle Erlang types, while maintaining inter-
operability, the provided acl module includes the functions to
automatically perform the proper FIPA-ASCII/Erlang encod-
ing/decoding process.

6.3 Handling Ontologies

Interoperability among different agents is ensured not only by
using the same syntax for messages but also by making inter-
acting agents to share the same concepts of their “universe of
discourse”: in other words, they should share the same ontol-
ogy. For this reason, the structure of an ACL message includes
a field for the specification of the name of the ontology used in
the message content.

To this purpose, eXAT allows a programmer to write and
manipulate ontologies by using concepts organized in classes
with hierarchies. An agent programmer can write an ontology
in a suitable specification file (using an Erlang-like notation);
then an ontology compiler, provided with eXAT, is able to parse
such a specification and generate the relevant Erlang type def-
initions to be used in agent source code. For each class of the

outology an Erlang record is defined; since Erlang is not object-
oriented, Erlang records are generated by “flattening” the hi-
erarchy, i.e. by embedding ell the attributes of a class/record
into the ancestor(s) class/record; in addition, to maintain the
object structure, an Erlang source file is also generated, which
includes appropriate functions to manage the class hierarchy.

The other task of the ontology compiler is the generation
of the Codec, i.e. an Erlang code implementing the routines
for the automatic FIPA /Erlang translation. This means that,
agent programmers can use and refer Erlang records in message
content, because, according to specified ontology, the relevant
Codec is charged with the task of performing automatically
translation from/to FIPA representation, making interoperabil-
ity with other agents and platforms possible,

Figure 8 reports an example of a “book” ontology specifi-
cation (Figure 8a) and its use in a “seller” agent (Figure 8b);
as the listing shows, the first task of the seller agent (func-
tion on_starting) is the registration of the codec (generated
by the ontology compiler) for the “book” ontology; then the
agent waits for a “request” message, processing it: if the mes-
sage carries a “buying_action” request, it is processed and then
an “inform” communicative act is replied, signaling that the
action has been done; otherwise a “not-understood” commu-
nicative act is replied.

The derived Erlang records and functions can be also used in
ERESYE engines [11] in order to allow a programer to manip-
ulate the same concepts in managing both reasoning and inter-

acting aspects. This feature is exploited to support FIPA-ACL
semantics, as detailed in [16], thus realizing a direct connec-
tion between message sending/receiving and agent intelligence;
this makes the implementation of “true rational” ageuts pos-
sible. In this sense, eXAT is the first platform that concretely
supports FIPA-ACL semantics.

7 Conclusions

This paper described eXAT, a FIPA-compliant platform real-
ized by the authors for the imnplementation of software agents
in Erlang. The platform has been designed in order to exploit
Erlang native constructs for the purpose of facilitating agent
implementation, and by taking care of not only behavioral as-
pects, but also reasoning and communication capabilities. To
this aim, eXAT models agent behavior by means of finite-state
machines enriched with composition and specialization abstrac-
tions, while agent intelligence is made possible through the pro-
vided rule-based inference engine. Finally, agent interaction is
supported by suitable modules that handles ACL messages ac-
cording to the FIPA standard; to facilitate such a process, an
ontology compiler is provided, to allow a programmer to write
her/his own ontology and use it in agents. Since the same on-
tologies can be used also in inference engines, a tight connection
between behavior, interaction and reasoning is made possible;
such & characteristic, however, is not featured by other widely
known agent platform (mainly based on Java), thus making
eXAT an interesting and effective alternative for the realization
of multi-agent systems.

References

[1] http://fipa-os.sourceforge.net/. FIPA-OS Web Site.,
2003.

[2] http://herzberg.ca.sandia.gov/jess/. JESS Web Site,
2003.

[3] http://www.ghg.net/clips/CLIPS.html. CLIPS Web

Site, 2003.

[4] nttp://www.agentlink.org/resources/
agent-sof tware.php, 2004.

[5] http://www.diit .unict.it/users/csanto/exat/. eXAT
Web Site, 2004.

[6] http://www.drools.org. Drools Home Page, 2004.
[7] http://www.agent-software. com, 2004.

[8] http://sourceforge.net/projects/zeusagent/. ZEUS
Agent Toolkit Web Site., 2005.

[9] J. L. Armstrong, M. C. Williams, C. Wikstrom, and S. C.
Virding. Concurrent Programming in Erleng, 2nd Edition.
Prentice-Hall, 1995.

[10] F. Bellifernine, A. Poggi, and G. Rimassa. Developing
multi-agent systemns with a FIPA-compliant agent frame-
work. Software: Practice end Ezperience, 31(2):103-128,
2001.

[11] A. Di Stefano, F. Gangemi, and C. Santoro. ERESYE: Arti-
ficial Intelligence in Erlang Programs. In Erlang Workshop
at 2005 Intl. ACM Conference on Functional Programming
(ICFP 2005), Tallinn, Estonia, 25 Sept. 2005.

[12] A. Di Stefano and C. Santoro. eXAT: an Experimental
Tool for Programming Multi-Agent Systemns in Erlang. In
AI*IA/TABQOO Joint Workshop on Objects and Agents

(WOA 2003), Villasimius, CA, Ttaly, 10-11 Sept. 2003.

A. Di Stefano and C. Santoro. eXAT: A Platformn to De-
velop Erlang Agents. In Agent Ezhibition Workshop at
Net.ObjectDays 2004, Erfurt, Germany, 27—-30 Sept. 2004.

[13]

[14] A. Di Stefano and C. Santoro. Designing Collaborative
Agents with eXAT. In ACEC 2004 Workshop ot WETICE

2004, Modena, Italy, 14-16 June 2004.

[15] A. Di Stefano and C. Santoro. On the use of Erlang
as a Promising Language to Develop Agent Systems. In
AT*IA/TABOO Joint Workshop on Objects end Agents

(WOA 2004), Torino, Italy, 29-30 Nov. 2004.

[16] A. Di Stefano and C. Santoro. Building Semantic Agents in
eXAT. In AI*IA/TABOQ Joint Workshop on Objects and

Agents (WOA 2005), Ceanerino, Italy, 14-16 Nov. 2005.

[17] A. Di Stefano and C. Santoro. Supporting Agent Devel-
opment in Erlang through the eXAT Platform. In Soft-
ware Agent-Based Applications, Plotforms and Develop-

ment Kits. Whitestein Technologies, 2005.

(18] A. Di Stefano and C. Santoro. Using the Erlang Lan-
guage for Multi-Agent Systems Implementation. In 2005
IEEE/WIC/ACM International Conference on Intelligent
Agent Technology (IAT’05), Compiégue, France, 19-22

Sept. 2005.

[19] T. Finin and Y. Labour. A Proposal for a New KQML
Specification. Technical Report TR-CS-97-03, Computer
Science and Electrical Engineering Dept., Univ. of Mary-

land., 1997.

C. Forgy. OPS5 Users Manual. Technical Report CMU-
CS-81-135, Dept. of Computer Science, Carnegie-Mellon
Univ., 1981.

20]

C. Forgy. The OPS Languages: An Historical Overview.
PC Al Sept. 1995.

(21]

[22] Foundation for Intelligent Physical Agents. FIPA
ACL Message Representation in String Specification—No.
SC000701, 2002.

[23] Foundation for Intelligent Physical Agents. FIPA Agent
Message Transport Protocol for HT'TP Specification—No.

SC00084, 2002.

[24] Foundation for Intelligent Physical Agents. FIPA Comimnu-

nicative Act Library Specification—No. SC00037J, 2002.

[25] Foundation for Intelligent Physical Agents. FIPA Contract
Net Interaction Protocol Specification—No. SC00029H,

2002.

[26] Foundation for Intelligent Physical Agents. FIPA
Dutch Auction Interaction Protocol Specification—No.
XCO00032F, 2002.

[27]

(28]

(29)

[30]

(31

(32]

33]

(34]

(35]

(36]

137]

[38]

[39]

[40]

[41]

Foundation for Intelligent Physical Agents. FIPA En-
glish Auction Interaction Protocol Specification—No.
SCO0031F, 2002.

Foundation for Intelligent Physical Agents. FIPA Request
Interaction Protocol Specification—No. SC00026H, 2002.

Foundation for Intelligent Physical Agents. FIPA SL Con-
tent Language Specification—No. SCO0008I, 2002.

Foundation for Intelligent Physical Agents. http://wuw.
fipa.org, 2002.

S. Franklin and A. Graesser. Is it an Agent, or just a
Program?: A Taxounomy for Autonomous Agents. In Third
International Workshop on Agent Theories, Architectures,
and Languages (ATAL). Springer-Verlag, 1996.

K. Hindriks, F. de Boer, W. van der Hoek, and J.-J. Meyer.
Agent programming in 3APL. Autonomous Agents and
Multi-Agent Systems, 2(4):357-401, 1999,

Y. Labrou, T. Finin, and Y. Peng. Agent Communica-
tion Languages: the Current Landscape. IEEE Intelligent
Systems, March-April 1999.

F. McCabe and K. Clark. April: Agent Process Interac-
tion Language. In N. Jennings and M. Wooldridge, editor,
Intelligent Agents. Springer, LNCS 890, 1995.

F. McCabe and K. Clark. Go! - A Multi-Paradigm Pro-
gramming Language for Implementing Multi-Threaded
Agents. Annals of Mathematics and Artificial Intelligence,
41(2-4):171-206, August 2004.

A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex; Im-
plementing a BDI-Infrastructure for JADE Agents. Tele-
com Italia Journal: EXP - In Search of Innovation (Spe-
cial Issue on JADE), 3(3), Sept. 2003.

J. R. Searle. Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press, 1969.

K. Sycara, M. Paolucci, M. van Velsen, and J. Giampapa.
The RETSINA MAS Infrastructure. Special joint issue
of Autonomous Agents and Multi-Agent Systems Journal,
7(1 and 2), July 2003.

C. van Reeuwijk and H. J. Sips. Adding tuples to Java:
a study in lightweight data structures. Concurrency and
Computation: Practice and Ezperience, 17(5-6):423-438,
2005.

M. J. Wooldridge. Multiagent Systems. G. Weiss, editor.
The MIT Press, April 1999.

M. J. Wooldridge. Reesoning About Rational Agents. The
MIT Press, July 2000.

www.inswitch.us

Erlang UC - Stockholm, November 2005

P?rticipants

‘Eduardo Figoli — eduardo@inswitch.us
'E;Smardo Paroli — bernardo@inswitch.us

Carlos Silva — carlos@inswitch.us

’J@S\nﬁtch Solutions

Established as a corporation in the State of
;_._’:Flo‘rida, USA.

[evelopment Center is located in Montevideo,
Uruguay

ditional business and support offices in Asia
id Latin America.

Support centres at Guatemala, Paraguay and
Uruguay.

Provides turn key solutions as well as
echnology building blocks (system modules) to “,_,_..,\
_ystem integrators, fixed and mobile operators.’ 'N g

- IN Switch Solutions Erlang installations

bile eTopUp

tomers purchase prepaid air time at

bile handsets as the distribution device

5

ed or variable amounts
minate PIN hidden numbérs generation
ors and terminals costs

jarantee stock: supply in the distribution
efwork increasing availability

SSD technology offers WAP style text.

e credit is autpmaticélly loaded intd‘f'-subscriber

ince no POS are needad non trad itional retailers
take part of the system expanding the solution
rile reaching more customers.

Operator’s Signaling channels are used.

multiple voucher
ations

- Disadvantages -

v'High set up costs’

v'Transaction (phone line) costs

v'Requires training
v"Low penetration

v'Requires PIN management..-

v'Use of IVR resources

ase Study

ase Study

tegration with:
Ericsson and Motorgla‘M§Gﬂ-’ll¥Lr;

ca and Comverse SMSC

B SMS confirmation

DMenu oTopUp Platform

CDR

confirmation

a Lo
Agent Mobile
ussD Menu

e SR

SS7/CT
T AR

MSCHLR

L

UPMS UPMS client node |
{MAP gateway)

rrvouvErRES vIPI Shﬂ PP-

) smsc

Yaws eb
server node

Ef-;.-lﬁierface Hot nodes

QOperator's Prepaid e.—""

]

S
Billing System

Comverse CCWS (SOAP)
and HIA Application

L ad 2 T T TT Yy IP

:: Banking
—| Gateway

wereusceTvEY “Calb

iﬁw@‘i

B

PIN Administrator

*Applications

+ Program structure — processes behaviours
(supervision, gen_fsm, ...)

« Directory structure

e) na_sPBSenkcss-1.0
4 adb10y
/L w12
L tods24
i s= L]
&) we_mCormadar1.0
| D e cheet-1.0
i 5 ws_ew- 1.0

*Node release

Servers HP DL 360 Pentium IV 3.2 GHz with
GBRAM s

‘elesoft NS700 signaling card

Nlindows 2000°Server y
ang 5.4 (release R10B) licensed

Vhy Erlang?

ght weight processes

0S independent (\Mndows[Llnux) - portability

ult tolerancq_medi;amisms (supéll'\;-iéiqn. 99.999,...)
ét code Ioa&ingj’: 2.E

étributed environment and DB

Support from Ericsson and live Erlang community

vantages:

nesia DB stores Erlang data types

sy management of a hug_g ggmber of processes
ow cost implgme’hi;tion R

rlang OTP framework -~ -

obust and scalable distributed software

asy programfr’iing-_!gnﬁ_g_uage:an‘&fewer lines of code

Jon standard SQL interface to Mnesia
\eeds more memory_and"probéssqr__ power

rlang SSL port (ssl_ sock) wnth Yaws not working
:roperly under Windows - S

o IDE and easy graphical debugger

rﬁ_e of our products

sLand and Wireless Prepaid Platforms
Calling Cards Platforms

Prepaid Roaming

Location Based Engines -~ -

raphical Serwoe Creatlon (IVR SMS USSD)
Convergent VAS '
GPRS Charging *
Ring Back Tones
Welcome Roamers
Missed Call Alert
Virtual HLR

11

Inswitch has a team of about 10 members
. Speciallized in Er!_gng:-'éinc'é*izioaz;{--'_:__:;_:___

e are thinkiﬁg of increasing the teafh number

Teaching Functional Programming and Erlang:
The Galician Experience*

Victor M. Gulias

MADS Group, Department of Computer Science
University of A Corufia, Spain
gulias@dc.fi.udc.es

Abstract. In this paper, we present the experience of teaching func-
tional programming in the Computer Engineering programme of a Gali-
cian University, the University of A Corufia. Erlang is introduced as part
of an optional course on functional programming as an example of appli-
cation of functional paradigm to the real world and most of the students
really appreciate the beauty of the language when describing concurrent
systems. In fact, several students choose Erlang every year as develop-
ment framework for their Master's Thesis or for conducting research in
our doctorate programme.

1 Introduction

In this paper, we present our experience of teaching functional programming in
the Computer Engineering programme of a Galician University, the University
of A Corufia. The functional paradigm plays an important role in the whole
programme and Erlang [AWWV096] has become a relevant part of an optional
fourth-year course on functional programming.

Besides academic topics (such as A-ealeulus, type systems and so on) and
academic languages (OBJECTIVE CAML, HaskELL), Erlang is introduced as part
of the course as an example of application of functional programming in the real
world and most of the students really appreciate the beauty of the language when
describing concurrent systems. In fact, several students choose Erlang every year
as implementation language for their Master Thesis or for conducting research
in our doctorate programme in front of more popular languages such as JAVA or
C/CH+.

The paper is structured as follows. In the next section, we present a general
overview of the teaching environment, introducing University of A Coruiia and its
Faculty of Informatics as well as the role played by declarative programming in
the studies. Section 3 presents the general outline of the functional programming
course. Section 4 presents some remarks based on of personal experience teaching
Erlang. Finally, we conclude.

* Partially supported by ERDF and Spanish MEC TIN2005-08986.

2 The Environment

2.1 University of A Coruiia and its Faculty of Informatics

The University of A Corufia (UDC, http: //www. udc. es) was established in 1989
as scission of an older one, the University of Santiago de Compostela. UDC holds

re than 25.000 students spread over seven campuses in two different Galician
cities (A Corufia and Ferrol). Faculty of Informatics (http://ww.fic.udc.ea)
is located in A Corufia, a city just by the Atlantic coast in the north west
of Spain with about 300.000 people in the metropolitan area. It is one of the

undergraduate and graduate). Curiously, Faculty of Informatics is older than
UDC, being established in 1986 as part of University of Santiago de Compostela.
Nowadays, the Faculty of Informatics holds three different study programmes
in computer science ~Engineering (five years) and two Technical Engineerings
(three years)- as well as several doctorate programmes for graduate students.

2.2 The Role of Declarative Programming in the Studies

Declarative paradigm plays a relevant role in the study programmes offered by
Faculty of Informatics. Students of fourth (or fifth) year can choose a specifie
optional course on Funetional Programming (described in detail in section 3).
However, students get in touch with functional paradigm previously. There is a
mandatory course on declarative programming in the second year (three hours

functional (OBIJECTIVE CAML, the french dialect of ML, family).

Besides this mandatory course, students uge OBIECTIVE CAML as the imple-
mentation language for several other courses such as Programming Technology,
Automata and Formal Languages, Artificial Intelligence, Compilers, ete. In some
courses, it is a student’s choice the implementation language for practical exer-

cises and people usually agree that it is easier to use a functional language than

sometimes you have to smile when other lecturers explicitly forbid the use of
functional languages for students’ duties because “that way the proposed exer-
cises are just too easy”,

2.3 Why Objective Caml?

At the end of the eighties, a research group (LFCIA, http:// www.1lfcia.org),
with strong mathematical background and leaded by former dean Jose L. Freire,
was exploring applications of category theory. At that time, there was an imple-
mentation of an ML dialect based upon this formalism, the categorical abstract
machine [CCM85] used by the language CAMI, [Mau91]. Hence, this language
was gradually introduced in lectures replacing other options at that time such

Z

as Edinburgh’s Standard ML or Miranda. Though the language evolved (Leroy’s
CAML LIGHT and finally OBJECTIVE CaML), dropping its categorical founda-
tion, it was the language of choice for teaching functional programming.

OBJECTIVE CAML [Ler00] (O’CaMr for short) has several nice features for
teaching: it is efficient (with a native code compiler), portable (both Windows
and particularly Linux are usual target platforms), with most of the state-of-the-
art functional features (static typing, anonymous functions, parametric polymor-
phism, powerful module system, partial application, and so on), and a reasonable
set of libraries for the development of interesting applications (from the teaching
point of view).

3 The Functional Programming Course at UDC

Functional programming is an optional course that is usually taken by students
in the fourth year (fall semester). The student load is three hours in the classroom
and two in the laboratory per week during 14 weeks (equivalent to 5.0 ECTS).
It is a popular optional course, with about 40 people per year (about 25% of
fourth year students), even though it has a strange (crazy?) schedule according
to Buropean customs (for example, a laboratory session from 8pm to 10pm at
friday night). The course is divided into five different parts:

1. Quick review of functional programming concepts. Using O'CAML,
the first two weeks are used to refresh previous knowledge on functional pro-
gramming. Topics of interest: (a) Values, types and expressions; (b) Iden-
tifiers, definitions and scope; (¢) Predicates, conditional expressions and
pattern-matching; (d) Recursion; (e) Lists; (f) High-order functions, par-
tial application; (g) Polymorphism; (h) User-defined and abstract datatypes;
(i) Modules and Functors.

2. Introduction to A-Calculus. In order to better understand the funda-
mentals of functional programming, we present the A-caleulus in three-four
weeks. Using O’CAML the student implements a small interpreter. After
studying different evaluation models, a short presentation of HASKELL let
us introduce a language with lazy evaluation. Topics: (a) Pure A-calculus;
(b) Substitution and reduction rules; (c) Normalization; (d) Lazy vs. ea-
ger evaluation; (e) Fix-point combinators and recursion; (f) Extending the
A-calculus.

3. Type Systems. We extend the pure A-calculus introducing values and an
static type system which helps to understand how type inference works.
During three-four weeks, the students use O’CAML to add static typing to
their own interpreters.

4. Implementation Details of Functional Compilers. Depending on stu-
dents’ interest and available lecturers, we spend one-two weeks with (some
of) these topics:

(a) Garbage collection algorithms
(b) Internal representation and communication with low-level languages

(¢) Pattern-matching implementation

. Functional programming in the real-world. I'hat means Erlang. At

the beginning, it was a short seminar of two hours but students interest
suggested to offer a two-three weeks course on concurrent functional pro-
gramming in Erlang, This module of the course covers most of the topics
proposed by basic and continuation Erlang courses, though with a quite
different approach due to the student background.

Since 1999, Victor M. Gulias has been in charge of the course even though

right now he only conducts the coordination of the whole course and the teaching
of the Erlang part.

4

Experience Teaching Erlang

Some general impressions of the students when teaching Erlang:

After learning a modern functional languages such as O'CaML, Erlang looks
somehow primitive: no static typing, no modules, no partial application, etc.
After a first contact with the compiler in the laboratory, they experiment the
“type freedom” effect and start loving the language. Nevertheless, the use of
a typed language before seems to be present in their minds: most of them
use comments to “informally” state function signatures. In fact, as they get
into more complex problems, they miss the type facilities and point out this
as the more important problem of Erlang.

Panic! They are frighten when first hear the term “message passing”. They
have experimented, in previous courses, the development of parallel applica-
tions using infamous low-level libraries such as MPI or PvM. They are amazed
that Erlang’s runtime system gets in charge of all the marshalling of data.
World starts becoming a better place to program distributed applications.
The main goal of the functional programming course is abstraction. They
appreciate examples such as the generalization of a server, separating the
imperative part (recursion loop and communication) from the definition of
the particular services, or the definition of skeletoms such as an abstract
divide-and-conquer algorithm.

The notion of behaviour is very well accepted as they are learning (from the
same lecturer and at the same time!) classical GoF design patterns [GHIV95]
with JAVA implementation in a mandatory fourth-year System Design course.
At this moment, students ask why Erlang is not being used in the system
design course with (or instead of!) JAVA.

Though in the course we try to use familiar design artifacts (such as UML’s
state or sequence diagrams), students feel that design tools and techniques
do not have Erlang in mind.

Erlang students, when have to implement simple concurrent programs in
JAVA in the system design course, just miss the good days programming in
Erlang... but at the end they get better and cleaner solutions than regular
students. Even some of them use Erlang to quick implement a solution to
better understand the problem.

5 Conclusions

Erlang is an excellent example of a real-world success of functional paradigm
and, in the case of University of Corufia, is also a success case among students.
The Erlang part of the functional programming course is really appreciated by
students and they demand even more time dedicated to Erlang-related top-
ics. “Ericsson”, “complex real-time applications”, “distributed programming”,
in summary “Real-world stuff”, are by far the best advertisement for Erlang.
Students that really get into the language feel that they are going backwards
when returning to tradicional but more popular approaches such as JAvVA. Some
of the students continue working with Erlang by means of their Master’s Thesis,
where they can conduct a larger Erlang-based project, or joining the doctorate
programme where they can access to additional lectures involving Erlang.

In order to measure the impact of the language in the students, we should
count several Master’s Thesis in the last few years (about 2-3 per year), at
least one large research project related with Erlang (VoDKA project [GBFO05])
and several on-the-way Ph.D. Thesis. In addition, at least three SMEs has been
recently created using Erlang/OTP as platform for the development of their
products, which is a notable success indicator if we take into account the poor
industry development of Galicia region.

References

[AWWV96] J. L. Armstrong, M. C. Williams, C. Wikstrém, and S. R. Virding. Con-
current Programming in Erlang. Prentice Hall, 2nd edition edition, 1996.

[CCM85] G. Cousineau, P. Curien, and M. Mauny. The categorical abstract machine.
In J-P. Jouannaud, editor, Proceedings Functional Programming languages
and Computer Architecture, volume 201 of LNCS, pages 50-64. Springer-
Verlag, 1985.

[GBFO5] V. Gulias, M. Barreiro, and J. Freire. Vodka: Developing a video-on-
demand server using distributed functional programming. Journal of Func-
tional Programming, 15(3):403—430, may 2005.

[GHIV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Software. Addison Wesley, 1995.

[Ler00] X. Leroy. The Objective Caml system: Documentation and user's manual,
2000. With Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérome
Vouillon. Available from http://canl.inria.fr.

[Mau91] M. Mauny. Functional programming using CAML. Technical Report RT-
0129, Inria, Institut National de Recherche en Informatique et en Automa-
tique, 1991.

Concurrent Erlang Flow Graphs

Manfred Widera
Fachbereich Informatik
FernUniversitat in Hagen
58084 Hagen
Germany

manfred.widera@fernuni-hagen.de

ABSTRACT

Flow graphs are an important, and useful tool for testing
prograins or program components during software develop-
ment. For imperative languages it is state of the art to
use flow graph based coverage tools during the unit test-
ing stage. Based on flow graphs for functional programming
languages, that have to cope with higher order functions,
a flow graph concept for Erlang needs a special treatment
for the concurrent language constructs that are typical of
Erlang. This paper presents a definition of flow graphs for
Erlang programs that especially handles process generation
and message passing, and describes how these flow graphs
can be computed.

1. INTRODUCTION

Testing of software is a widely used method of detecting
errors during the software development process. Every soft-
ware is tested before being used in practice. Though testing
can just prove the presence, but not the absence of errors,
the passing of all tests given by an appropriate test set is
often understood as an evidence for reaching a certain level
of software quality. For imperative programming there are
several approaches defining the appropriateness of a test set
by coverage criteria based on the flow graph. Compared
to the test case selection based on the specification of a
program, these structure oriented criteria have the closest
correspondence to the actual implementation under testing.
Structure oriented testing is usually applied to small pro-
gram fractions like single modules, and is an important part
of the early stages of software development.

In the context of Erlang, the only available imnplementation
of source code directed testing is an ad hoc approach that
checks the individual lines of a program for coverage [6].
This tool works by an instrumentation of the the source
code of a module that is focused on the executable lines; it
is therefore not extendible to take into account relationships
between distant parts of the program, e.g. the data flow, and

especially the concurrent data flow in an Erlang program.

As systematic testing is an important task of professional
software development, it is desirable to have more advanced
source code oriented testing methods for Erlang available.
It is important to note, that systematic testing cannot be re-
placed completely by employing the suitability of functional
languages for verification. As the first main reason, verifi-
cation is a quite expensive, and time consumning task, and
cannot be applied to all the less critical components (which
should nevertheless be as correct as possible). Second, veri-
fication is always done against an already formalized speci-
fication of the intended program behavior which itself is not
guaranteed to be correct.

The aim of this paper is to give a definition of flow graphs of
Erlang programs similar to the known flow graph definition
for imperative programs, and to describe a system generat-
ing such a flow graph from a program’s source code. Based
on an preliminary approach for sequential Erlang programs
[23], the approach described here covers the whole Erlang
standard, especially handling process generation and mes-
sage passing.

The rest of the paper is organized as follows. In Sec. 2
related work is described and the current paper is classi-
fied in this context. Section 3 presents the language under
consideration which is essentially given by the full Erlang
standard without some of the syntactic sugar. A definition
of concurrent flow graphs is given in Sec. 4. Section 5 recalls
and refines some definitions of data flow analysis which are
necessary for the computation of concurrent flow graphs pre-
sented in Sec. 6. Conclusions, and possible areas of future
work are presented in Sec. 7.

2. RELATED WORK

2.1 Flow Graphs and Sequential Testing

The work presented here is related to publications from
several areas. In imperative programming languages, flow
graphs are accepted as a standard tool for checking test case
coverage during the unit testing stage [24]. In the context
of functional programming there are already approaches on
flow graphs that are, however, not focused on test case cov-
erage. Van den Berg [19] uses flow graphs, and call graphs
for software measurement on functional programs. The flow
graphs used there consider function calls as atomic oper-
ations and are generated for each function independently.

Information on calls between functions is given by a call
graph as separate structure.

A concept of generating flow graphs for higher order func-
tional progras is deseribed by Shivers [17] and further an-
alyzed by Ashley/Dybvig [1]. Especially, the level 0CFA
described there is very similar to our approach. Due to its
use of continuation passing style (CPS) and the Y combi-
nator, it is, however, not very adequate for presenting the
analysis results to humean programmers. The same holds
for works based on Shivers approach [17]. They do not fo-
cus on the presentation of the generated flow graphs to the
prograinier.

Different approaches on testing and debugging functional
programs have been proposed. QuickCheck [4] aims at au-
tomatically checking Haskell programs by generating input
data on a random basis and checking the results with con-
straints on the expected output. In the WYSIWYT frame-
work [14, 15, 16] flow graphs are used for judging the cov-
erage of a functional program by a set of test inputs. This
approach is, however, restricted to spreadsheets considered
as first order functional programs without recursion.

Several approaches on declarative debugging and tracing
functional languages (e.g. (8], [12], [3, 20]) describe how to
trace down the programming errors causing an observed mis-
behavior of a program. These approaches, however, do not
provide mechanisms for generating or judging the test sets
that are used to provoke such a misbehavior.

The module cover that comes with the tools library of Er-
lang (6] implements a coverage test for Erlang modules, that
analyzes the individual lines of the source code for coverage.
It is, however, not able to distinguish between several com-
putations coded within a single line, or to check non-local
relationships, e.g. between calls, and called functions or be-
tween throws, and corresponding catches. Since the distant
relationships between send operations, and receives in a pro-
gram are also not considered by cover, the concurrent struc-
ture of Erlang programs is not an additional challenge for
the system. In contrast, the preliminary approaches to flow
graph based testing in sequential Erlang [23] need a non-
trivial extension to handle concurrent Erlang constructs.

2.2 Testing Concurrent Programs

In testing concurrent programs, one is usually especially in-
terested in certain interactions between the different pro-
cesses or threads that lead to a number of specific errors
like deadlocks and race conditions. The approaches to en-
sure the correctness of concurrent programs are divided into
static and dynamic approaches.

Static analysis of concurrent programs is often done in the
formn of model checking. The underlying concept as well
as the VeriSoft tool for performing model checking are de-
scribed by Godefroid [9, 10).

The dynamic testing of concurrent systems is based on ex-
ecuting different schedules of synchronization events (i.e.
events that are observable from outside the triggering pro-
cess). Besides non-deterministic testing of schedules gener-
ated by chance, there are different systematic approaches

for generating schedules and for enforcing their execution.
Carver, and Tai (2] describe a deterministic testing approach
by enriching the program code with special calls to a sched-
uler that is able to generate and repeat different schedules of
interest. A similar approach of a scheduler function that is
explicitly called is followed by Stoller [18] for Java Prograins.
Factor, Farchi, and Talmor [7] also address Java programs.
Besides the schedule replay they focus on a coverage test for
schedules. A further approach on systematically generating
schedules is given by Hwang, Tai, and Huang [11]. For a
given valid schedule new prefixes of schedules are generated
by introducing minimal changes to the known schedules.

2.3 Classification of the Current Paper

The approach presented here stands in the tradition of test-
ing sequential programs [24]: a flow graph oriented testing
tool is applied to program parts that are usually too small
for detecting the special forms of errors described in Subsec.
2.2, Concurrency and message passing are, however, very
prominent parts of the Erlang design, such that a strategy
in handling the concurrent language features to some extent
by the structure oriented testing process is necessary. The
aim of this work is to take into account the effects of message
passing on the possible destinations of higher order function
calls and on data flow oriented coverage criteria.

During the software development cycle the concurrent flow
graphs described here, and the coverage criteria based on
thein can replace previously available structure oriented cov-
erage approaches. Other stages of the testing process remain
unchanged. This is especially the case for detecting synchro-
nization errors, where tools as those described in Subsec. 2.2
can be employed.

3. PRELIMINARIES

The flow graph generation is defined (and is mostly imple-
mented) for the whole Erlang standard [5]. The presentation
in this paper is, however, restricted to the subset defined in
Fig. 1 (ignoring the boxes around some expressions for the
moment). Definitions consisting of a * are not of interest
here, and are therefore omitted. Infix operators are consid-
ered as ordinary functions. Timeouts for receive expressions
are omitted for simplification reasons. The BIFs throw/1
and the binary operator !/ (which is denoted as ordinary
function send/2) need a special treatment and are therefore
considered as syntactic keywords in this wark.

In the following when speaking of a first order function call
we mean a call of the form fn(ey,eo,...,ex) with a func-
tion name fn, and a higher order function call has the form
eo(e1,e2,...,ex) with an expression eq.

In the rest of this paper programs are assumed to fulfill the
following named definition property which is easy to obtain
by a preprocessing stage.

DEFINITION 1 (NAMED DEFINITION PROPERTY). A pro-
gram P fulfills the named definition property if

o Every ezpression in P whose position is that of a bozed
ezpression in Fig. 1 consists of an instantioted vari-
able.

constants a:
variables X:
patterns p:
guards ¢:

if clauses ic:

case clauses cc:
fun clauses fe:
function name fn:

expressions e:

*

*
alX[{p1,---,pe}Hipr]pa]l{p1, - - - s Pa]
*

g—1

p [when g] —+1

(p1,...,px) [When g] — [
*

alX|[ea](er}[e2] - [ex PUn(en] [e2], .- [ex]lp = el{fen}. ... [ex I er Lea]l
- .@[begin L endl|if ic1; dco; . . . ick endease [e] of cer; cep;. . . ; cox end|
fun fey; feg: ... fe, endlcatch(e)|throw((e])|send((e], [e])[receive cei; ces; .. . ; ecr, end

expression lists I: ey,e2,...,€x
functions f: fn fei;fn fegs.. i fn fe,.
programs P: fifs... fx

Figure 1: The Erlang Subset Under Consideration

e Each function consists of a single clause with just vari-
ables as arguments.’

o The return value of the function is bound to a return
variable on each branch of the function body. The re-
turn varieble is unique for each function.

The preprocessing stage enforcing the named definition prop-
erty yields a name for each use of a value, a property that is
useful for performing data flow analysis and for presenting
the data flow results.

4. CONCURRENT FLOW GRAPHS

The definition of concurrent flow graphs is given in two
stages. Subsection 4.1 defines the basic properties of a con-
current flow graph. The correspondence between a programn
P and its flow graph Vp is defined in Subsec. 4.2.

4.1 Basic Flow Graph Definition

As ordinary flow graphs known from literature [24], con-
current. flow graphs are given by sets of nodes and edges.
These sets are partitioned into a number of subsets. Their
definition is given in the following Definitions 2 and 3.

Essentially, each expression in a prograim is represented by
an individual node.? These nodes are labeled to express ail
information given by the expression itself. In order to assign
specific labels for the different kinds of expressions, different
kinds of nodes are necessary.

ITo enforce this, the case distinction of the different func-
tion clauses, and the value decomposition by their patterns
need to be performed by a case-expression inside the single
clause. For functions with arity > 1 the arguments and the
corresponding patterns are structured into tuples of equal
element number.

2This also holds in the case of nested sub-expressions, which.
have been eliminated by the preprocessing stage enforcing
the named definition property.

DEFINITION 2 (NODES). The set V' of nodes of « con-
current flow graph is divided into the following subsets.

o Vinateh C V' denotes the set of all match nodes. A
match node is labeled by a pattern LHS and o further
node RHS € V.

o Viau C V denotes the set of all call nodes. A call
node is labeled with a function cdll ep(er,...ex) or
fn(e1,...ex). Each call node oceurs as lubel of a match
node in the flow graph.

® Vipaun C V denotes the set of oll spawn nodes. A
spawn node is lobeled with o function (given by module
name and function name) and o sequence e1,...,ex of
argument erpressions.

o Viraneh C V denotes the set of all branching nodes. A
branching node is labeled with a sequence e1,...ex of
k > 0 tests, and for each branch with o sequence of k
patterns, and a set of guards.

o Vitoer C V denotes the set of all block nodes. A block
node is labeled with a set of nodes.

o Veateh CV denotes the set of catch nodes. A catch node
is lubeled with a further concurrent flow gruph node n.

o Vinow C V denotes the set of throw nodes. A throw
node is labeled with an expression e.

® Viend C V denotes the set of send nodes. A send node
is lubeled with two ezpressions, the destination expres-
sion eq and the message expression em.

® Viewive C V denotes the set of receive nodes. A receive
node contains o set of branches, and is lobeled with o
pattern, and a sequence of guards for each branch.

® Viun C V denotes the set of fun nodes. A fun node is
labeled with o function name and an arity.”

® Vimport C V' denotes the set of import nodes. An import
node 13 labeled with o list of variables.

® Veontest C V denotes the set of contezt nodes. A context
node s labeled with o set of pairs (Var, Defs) where Var
is a variable v and Defs is a list of references to nodes
potentially assigning a value to v.

® Viewmn C V denotes the set of return nodes. A return
node is labeled with o variable.

L Vcomputc =V \ (‘/match UV U ‘/apaum U ‘/bmnch U Vitock U
Veatenh U Vingmw U ViaendU Viwevive U ‘/[un U ‘/importU Veonteat U
Vieturn) denotes the set of all computation nodes. Each
node 1 € Veompute 18 labeled with an ezpression, that is
not a match, a call, a branch (i.e. if, case), a begin, o
catch, o throw, o send, a receive, or a fun.

All described subsets of V are pairwise disjoint.

For concurrent flow graphs several different kinds of edges
are necessary. Usually an edge in a flow graph describes the
(directed) control flow, and data flow between two nodes.
In concurrent flow graphs we distinguish two kinds of edges
with this property. Neighborhood edges connect nodes whose
represented expressions are adjacent in the source code. The
non-local returns given by the catch-throw mechanism in Er-
lang are expressed by throw edges in concurrent flow graphs.

Call edges express function calls, and are special in the sense
that they are bidirectional and represent both the control
and data flow during a function call, end during the return
from the call. (For the generation, we distinguish first order
call edges and higher order call edges, depending on the call
represented by their source node.)

Two further forms of edges just represent a data flow, but
no control flow. Spawn edges essentially represent the data
flow during the process generation. They do not represent
an ordinary control flow, because the new process generated
by themn forms a new independent instance of control. Mes-
sage edges finally stand for the data flow performed by the
message passing mechanism between a send expression and
a receive expression. No control flow occurs between the
processes connected by a message edge.

The formal definitions of these kinds of edges are given by
the following Def. 3.

DEFiNITION 3 (EDGES). The set E of edges of a con-
current flow greph is divided into the following subsets.

¢ Ecau C E denotes the set of call edges. Source of
call edge is o coll node ny € Veay with call arguments
ai,...ax; destination is an import node ng € Vimport
with peremeters pi,...,pn such that k = n. A call
edge is labeled with the following information:

%Note that a fun node does not correspond to a fun ex-
pression directly: the node is labeled with a name for the
function instead of the function's clauses.

— A set of wssignments p; = a; fori € {1,...,k}
called parameter assignments.

— An assignment u = v where T is the return vari-
able of the function starting with ng, and u is the
pattern, occurring besides ns as a label of ¢ match
node. This is called the result assignment.

Call edges are divided into first order call edges and
higher order cull edges, depending on the coll repre-
sented by their source call node.

¢ Egpaun C E denotes the set of all spawn edges. Source
of e spawn edge is a spawn node ne € Vipaun labeled
with the function ezpression f and the argument ez-
pressionsei,...,ex; destination is the import node ng €
Vimport of ¢ function with parameters pa, ..., py fulfill-
ing k = n such that there is at least one ezecution of
the containing program P with f denoting the desti-
nation function. A spewn edge is labeled with a set of
parameter assignments p; = e; fori € {1,...,k}.

e Euww C E denotes the set of all throw edges. A throw
edye hus o throw node as source, and a catch node as
destination.

¢ Emcssage C E denotes the set of all message edges. A
message edge runs from a send node to a receive node.

* Enc-;ghbm‘ = E\(EcallUEspaumUEtlnmuUEma:vsagc) denotes
the set of neighborhood edges. Neighborhood edges emery-
ing from o branching node or o receive node are labeled
with ¢ clause number.

The described subsets of E are pairwise disjoint.

Combining the definitions of nodes and edges, we get the
following definition of a concurrent flow graph.

DEFINITION 4 (CONCURRENT FLOW GRAPH). A concur-
rent flow graph is a pair G = (V, E) where

o The set V is divided into subsels Vinascn, Veatts Vapaun,
‘/bmnch, Vblock; Vcateh: Vshmm; ‘/sendy ‘/mcm'mz; Vfum ‘/import,
Veontest, Vreturn, tnd Veompute according to Def. 2.

¢ The set E of edyes is divided into the subsets Eu,
Eirrow, E ge, Und Eqgignpor uccording to Def. 3.

EXAMPLE 1 (CONCURRENT FLOW GRAPH). A graphical
example of ¢ concurrent flow graph is given in Fig. 2. For
simplicity reusons, the presentation is simplified as follows.

¢ The contezt nodes are empty for all the functions end
ure omitted in the graphical representation.

o Match nodes are marked with dotted lines inside the
nodes they ere labeled with.

Call and spewn edges are marked by rounded corners. Re-
ceive nodes are morked by a triangle which is connected to o
number of rows, euch contuining the pattern and the guords

= neighborhood edge
= first order call edge
> higher order edge

Figure 2: Flow graph of example.erl

> spawn edge
= message edge

for one clause. In order to simplify the identification of func-
tions, the nodes of each function are contained in o gray boz.

The numbers marking some of the edges are not of interest
for the moment. They will be used later for describing the
iterated edge computation by our implementation.

The graphical representation of the node forms not occurring
in Ex. 1 is identical to sequential Erlang flow graphs [23].

4.2 The Concurrent Flow Graph of a Program
Given an Erlang program P fulfilling the named definition
property, the following Definitions 5, 6, and 7 describe the
concurrent flow graph Gp corresponding to P, i.e. the flow
graph that can be used to represent P.

Note that the definition of Gp given here is not intended to
provide an algorithm for computing Gp. Indeed, an algo-
rithm will just be able to compute an approximation of Gp
instead of G'p itself. The presentation of the implementation
in Sec. 6 will discuss sources of inaccuracy in the computa-
tion, and the effect of the necessary approximations on the
higher order call edges, spawn edges, throw edges, and mes-
sage edges.

We start the presentations with the correspondence between
the nodes in Gp, and the program expressions in P. Essen-
tially, for each expression in the program a node is gener-
ated. The kind of node chosen depends on the structure of
the expression. Additionally, each function definition is ex-
tended by an import node representing a local definition of
the parameters of the function, a context node representing
local definitions of the variables taken from the context of

. o sov e

e : S jemdoapplies to funs), and a return node
representing the return to the calling program part.

DEFINITION 5 (CORRESPONDING NODES). Let P be o pro-
gram fulfilling the named definition property. The set Vp

of corresponding nodes for P is generuted by the following
rules.

o For cach expression e denoting a function coll of the

form eq(ey,...e) or fn(es,...ex) Vp contains a cell
node v € Vp lubeled with e.
In the special case of a cull £n(ey,...ex) with fn de-
noting the BIF spawn/3 or spawn/4, ¢ spawn node
is generated instead, which is labeled with the func-
tion and the call arguments given by the arguments of
spaun at the corresponding positions.

o For each ezpression of the form if icy;...;icy there
erists o branching node n € Vp which is lobeled with
the guards of the individual clauses.

o For each expression of the form case e of ccy;...;ccy
there exists o branching node n € Vp which is labeled
with the test e, and with patterns, end guards of the
individual clauses.

e For expressions of the form begin 1 end ¢ block node
is introduced which is labeled with the nodes generoted
for the ezpressions in 1.

e For each ezpression of the form catch(e) a catch node
i3 generated and lebeled with the node for the subez-
pression e.

® For each expression of the form throw(e) a throw node
is generated and labeled with the subexpression e.

o For euch ezpression of the form send(es,e2) a send
node 19 generated and labeled with e1 as destination
eTpression and es as messege eTpression.

e For each expression of the form receive ccy;...;ccy
there ezists a receive node n € Vp which is lubeled with
the patterns and guards of the individual clauses.

o For every function definition in P and every ezpression
of the form fun fci;...;fcx the following nodes are in
Vp.

— An import node labeled with the formal perame-
ters of the function.

— A context node lobeled with all variables v, and
references to the defining nodes n such that v is
defined outside the function,* and the definition
of v inn reaches o use within the function.

— A bronching node labeled with the putterns and
guards of the individual function clauses.

— A return node lobeled with the return veriable of
the function.

For ezpressions of the form fun fcy;...;fcy a fun node
is generated which is labeled with a generated function
name and the function arity.

“This only applies to funs. For named functions the context
node is empty.

o For every expression e of the form p =e' there is o
maich node v € Vp labeled with the pattern p and the
node v’ generated for e'.

e For each expression e of the form a, X, {es,...,ex},
[eife2], or [e4,..., ex] & computation node is generated
and labeled with the ezpression e.

Edges represent a control or data flow between the indi-
vidual nodes. Their definition is based on the runtime be-
haviour of the program (which will be approximated for the
computation of flow graphs).

DEFINITION 6 (CORRESPONDING EDGES). Let P be a pro-

grem fulfilling the nemed definition property, and Vp the set
of corresponding nodes for P,
Now let na, n2 € Vp be nodes, end lete1 and e2 be the expres-
sions in P the nodes n1 and na correspond to, respectively.’
The set Ep of corresponding edges for P consists of all edges
generated by one of the following rules.

o There exists u neighborhood edge from n1 to n2 in Ep
if e1 and ez belong to the same function f, and one of
the following conditions holds.

— na is the import node, and na the contexzt node of
f-
— n 15 the context node, and ey the first expression

of f.

— eq is the direct successor of e1 in a sequence of
eTPTessLons.

— n1 is a branching node or a receive node, and eg is
the first expression in one of the clauses belonging
to e1. In this case the edge is labeled with the
clause, ep belongs to.

— €1 18 the last expression in a clause, and e is the
ezpression following the if, case or receive ezpres-
sion containing ey.

— e1 is the last expression of one of the clauses of f
(if the lest expression ¢’ is an if, case or receive
ezpression, ey is the last ezpression in the body
of one of the clauses of €'}, and ng is the return

node of f.

o There exists a call edge from n1 tony in Ep ifny is o
call node, no is the import node of a function f, end
there exists an ezecution of P such that e; performs o

call to f.

o There ezists a spewn edge from ny to ng in Ep if eq is
¢ spawn node, ez is the import node of a function f,
and there ezists an ezecution of P such that e1 spawns
a process starting its execution with f.

o There exists a throw edge from ny to ng in Ep if m
is a throw node, no is a catch node, and there exists
an ezecution of P such thaet e1 throws e value that is
cought by ea.

If n; is an import node, a context node, or a return node
then e; is undefined.

-module (example) .
-export ([loop/2, use/0]).

loap(Value, F) ->
receive
{PID, next} ~>
PID ! {generator, Value},
loop(F(Value), F);
stop -> ok
end.

init_gen(Start, F) —>
register(
generator,
spawn(example, locp, [Start, F1)).

stop_gen() -> generator ! stop.

getmext () ->

generator ! {self(), next},
receive
{generator, Result} -> Result
end.
use() ->

init_gen(0, fun(N) -> N + 1 end),
A = getmext(),

stop-gen(),

A.

Figure 3: Erlang source code of example module

o There ezists a messuge edge from na to n2 in Ep if na
18 a send mode, no is a receive node, and there exists
an ezecution of P such that e1 sends a message that is
received by eg.

Combining corresponding nodes and corresponding edges of
a program P, we get the concurrent flow graph Gp of P.

DEFINITION 7 (CORRESPONDING FLOW GRAPH). Let P
be a program fulfilling the named definition property. The
corresponding flow graph for P is defined by Gp = (Vp, Ep)
where Vp is the set of corresponding nodes for P and Ep is
the set of corresponding edges for P.

EXAMPLE 2 (CORRESPONDING FLOW GRAPH). Consider
the module example. erl thet is presented in Fig. 3, and thet
contains the following functions.

e loop/2 forms o sequence generctor that is meant to re-
side in an own process. It is initialized with the initial
value, and the successor function of the sequence. For
every message {PID,next} it sends the next sequence
element to the process PID.

e init_gen/2, stop_gen/0, end get_nexzt/0 ere the ac-
cessor functions for initiclizing, stopping end accessing

the generator process.

e use/0 is un example user of the sequence generator. It
indtializes the generatar with the sequence of all natu-
ral numbers starting from 0, queries the first sequence
element, stops the generator process and refurns the
element.

The eoncurrent flow graph corresponding to ezample.erl is
the one presented in Fig. 2.

5. DATA FLOW ANALYSIS

As stated by Shivers [17], the control flow given by a higher
order program can depend on the data flow of the funs from
their generation to their applicafion in the program. In this
section we therefore give a definition (adapted towards the
use for cancurrent flow graphs) of some hase notions of data
flow analysis, that are known for imperative languages [13].
For a definition of a variable v we write def(v), for a use of
v we write use(v). The precise definitions of these notions
are as follows.

DEFINITION 8 (DEFINITIONS). Let G be a concurrent flow
greph, endv a veriable. A node n in G contains o definition
of v if one of the following conditions holds.

e n is an import node, and v is one of the veriables de-
fined in n.

e 1 is ¢ contest node, and v is one of the variables de-
fined in n. This is called an f-definition (denoted by
f-def(v)).

e n is a match naode denoting a metching LHS = RHS, v
occurs in LHS, and there is at least one path w from
the beginning of the function containing n to n itself
such that v is not defined on w.

e 1. is ¢ branching node, v occurs in at least one patlern p
inn, and there is at least one path w from the beginning
of the function containing n to n itself such that v is
not defined on w.

® 7 is a Teceive node, v occurs in ot least one petlern p in
n, and there is at least one puth w from the beginning of
the function containing n to n itself such that v is not
defined on w. This is colled an m-definition (denoted

by m-def(v)).

A definition binding v to a value selected from o structure
(either by pattern matching or the corresponding selection
BIFs) is called an s-definition and denoted by s-def(v).

The opposite of the definition of a variable is given by its use.
Intuitively, a use of a variable v is given by every expression
that needs the value of v to be evaluated.

DEFINITION 9 (USES). Let G be a concurrent flow graph,
and v a variable. A node n in G conteins ¢ use of v if one
of the following conditions holds.

= 7 44 o node representing the ezpression E where
—E=v
— E={v,...,u}, E=vi|va], or E = [v1,...,v4]

with v = v; for some i. This is called an s-use and
denoted by s-use(v).

— E = wvo(v1,...,u), or E = fn(vi,...,vs) with
v =w; for somei€ {0,...,k}.

e 1 is a branching node with o test given by v.

e 7 is a fun node, and there is at least one path w from
the beginning of the function containing n to n itself
such that v is defined on w. This is called an f-use and
denoted by f-use(v).

e 1 is a match node denoting ¢ matching LHS = RHS, v
occurs in LHS, and there is at least one puth w from
the beginning of the function conteining n to n itself
such that v is defined on w.

e 1 denotes a brenching node, or a receive node, v occurs
in at least one pattern p in n, and there is ot least one
path w from the beginning of the function containing n
to n itself such that v is defined on w.

e 1 is ¢ send node and v occurs either as destination
expression or as message expression. If v is the mes-
sage ezpression, this is called an m-use and denoted by
m-use(v).

Some sgpecial information is added to the specification of
a definition or use of a variable v inside a pattern p of a
branching or receive node. Besides the branching/receive
node n the number of the clause, the pattern p belongs to
is stored. Occurrences of v in the patterns of several clauses
of n are treated independently.

For the pairs, f-definition/f-use, s-definition/s-use, and m-
definition/m-use we need to define the notion of correspond-
ing uses and definitions: each of these kinds of use can hide
a value from the data flow analysis. The corresponding def-
inition makes the value available again (possibly under a
different name).

e Corresponding f-uses and f-definitions express the sit-
uation of using a definition for a freezing it in a fun-
generation. It is defrosted by the corresponding defi-
nition in the context node of the function.

e Corresponding s-uses and s-definitions express the sit-
uation of using a value to store it in a structure, and
selecting it from there in the definition of a variable.

o Corresponding m-uses and m-definitions express the
use of a value for sending it as a message, and the
definition of a variable by receiving this message.

The precise definitions are as follows.

DEFINITION 10 (CORRESPONDING f-use, f-def). Letv be
« variable, u an f-use of v, und d an f-definition of v. u and
d correspond to euch other if the fun containing d is the one
defined in u.

DEFINITION 11 (CORRESPONDING s-use, s-def). Letv be
a varieble, end v an s-use of v, generating o structure c.
A selection d defining a variable v’ is an s-definition of v’
corresponding to u if there exists at least on run of the con-
taining program P such that the structure decomposed in d
s ¢, und the selected element position is the one contuining
the value of v.

DEFINITION 12 (CORRESPONDING m-use, m-def). Letv
be a veriable, and u an m-use of v in ¢ node ny,. An m-
definition d of some v' in ¢ node ng corresponds to u if
there is a message edge from m, to ng in the concurrent
flow graph.

Note that for an s-use, and the correspounding s-definition or
for an m-use, and the corresponding m-definition the vari-
able names usually differ.

The following main definition of this section states the situ-
ations under which a definition d reaches a use u.

DEFINITION 13. Let d be o definition of a variable v, and
u a use of a variable v'. Then d reaches u if one of the
following properties holds.

e v =v' and there is a path in the flow graph from d to
u that does not contain a definition of v different from
d. In this case d reaches u directly.

o There is a copy expression e of the form ¥ = ¢ such
that d reaches the use of ¥’ in e and the definition of
¥ in e reaches u.

o d reaches en f-use of some ¥ and there is a correspond-
ing f-definition of ¥ that reaches u.

o d reaches an s-use of v and there is a corresponding
s-definition of some ¥ that reaches u.

o d reaches an m-use of v and there is a corresponding
m-definition of some ¥ that reaches u.

Besides the data flow coded in some of the nodes, the lu-
bels of edges can coutain data flow information. This is the
case for the parameter assignments given by call edges and
spawn edges, and the result assignments of the call edges.
These labels have to be taken into account for the data flow
analysis. They are processed analogously to a sequence of
nodes containing copy expressions when the edge is followed
in the corresponding direction.

6. COMPUTATION OF CONCURRENTFLOW

GRAPHS

For a program P fulfilling the named definition property the
generation of the concurrent flow graph G'p consists of the
following stages.

1. Generation of the set Vp of nodes according to Def. 5.

2. Computation of the set Eqgighbor Of neighborhood edges.

3. Computation of the call edges for first order function
calls.

4. Computation of the call edges for higher order calls,
the throw edges, and the message edges by an iterated
proc%s.6

Step (4) contains the computation of all edges that depend
on the data flow in the program. It is necessary to iter-
ate over all these edges because each new edge adds new
opportunities for data flow in the graph.

The steps (1), (2), and (3) consist of a direct transfer of the
corresponding definitions. They can be implemented in a
straightforward manner. A detailed description of Step (4)
is given in the following Subsec. 6.1.

6.1 Iterated Edge Computation

The generation of edges is implemented in form of three
functions.

1. The computation of higher order call edges is done by
a function

ho_call_edges(Graphi) — {Graph2, Bool}

2. For computing the throw edges in the concurrent flow
graph, we use a function

throw_edges(Graphi) — {Graph2, Bool}

3. The computation of the message edges is done by a
function

message_edges(Graphi, Process) — {Graph2, Bool}

Each function expects a flow graph as input and returns a tu-
ple containing a new flow graph and a boolean flag whether
any new edges have been introduces. For the computation
of the message edges in message_edges/2 a description of
the initial process, essentially given by its initial call (or a
list of potential initial calls), must be provided as additional
argument.

The main loop introduce_edges/2, which is presented in
Fig. 4, loops over the three functions until no change was
made by any of them in one step.

In the remaining presentation of ho_call_edges/1, throw_
edges/1, and message_edges/2 we omit the boolean flag for
changes in the return value in order to simplify the pre-
sentation. In the following, the high level structure of the
functions is presented, but we omit several of the called func-
tions. The names of the omitted functions are chosen to
represent their general semantics.

6Spawn edges behave very similar to higher order call edges
during the computation. To simplify the following presen-
tation, spawn edges are not discussed explicitely. Their cre-
ation is done together with the higher order call edges in an
analogous mamnner.

introduce_edges(Graph, InitProcess) ->
% generate new edges
{GraphWithCall, CallChangeFlag} =
ho_call_edges(Graph),
{GraphWithThrow, ThrouChangeFlag} =
throw_edges (GraphWithCall),
{GrapbWithMessage, MessageChangeFlag} =
message_edges(GraphWithThrow, InitProcess),
% check whether a further step is necessary
if
CallChangeFlag;
ThrowChangeFlag;
MessageChangeFlag ->
% next iteration with new graph
introduce_edges(
GraphWithMessage, InitProcess);
true ->
% return graph with computed edges
GraphWithMessage
end. % if

Figure 4: computation of data flow dependent
edges

s ho_call_edges/1 is presented in Fig. 5. For each higher
order function call it analyzes the variable in the func-
tion position. For each reaching definition which de-
notes a function within the graph,” a call edge is in-
troduced.

e throw-edges/1 is presented in Fig., 6. For each catch
node ¢, it determines the set of throw nodes ¢ such that
there exists a path from ¢ to ¢ without another catch
node in-between. For each such ¢ a throw edge from ¢
to ¢ is introduced.

e message_edges/1 is presented in Fig. 7. First, it calcu-
lates the set of processes from the initial process. This
is done by an iterated analysis of the spawn nodes
reachable from the already known processes. For each
send node s in the graph, the following steps are per-
formed afterwards.

1. The first argument of the send node is analyzed
to determine the potential destination processes
from the set of all processes. This is done by
data flow analysis and partial evaluation on the
reaching definitions.

2. The variable v in the second argument of the send
node is tested against the receive statements of
the destination processes: if one of the definitions
reaching the use of v in the send node matches
one of the patterns of the receive r then a message
edge from s to r is inserted into the graph.

ExAMPLE 3. We reconsider the module example. erl pre-
sented in Fig. 3, and its corresponding concurrent flow graph

"This property is checked using partial evaluation.

-

ho_call_edges(Graph) ->
% extract higher order calls
Sources = ho_calls(Graph),
% compute and insert edges for each call independently
foldl(fun(Call, GraphAcc) -> edges._from_call(Call, GraphAcc) end, Graph, Sources).

edges_from.call(Call, Graph) ->
% compute all reaching definitions of function position in call that denote a function
Dest = filter(fun is_function/1, reaching definitions (extract_callad_fu.uction(Call))))
% insert edges from Call to each element of Dest into Graph
foldl (fun(SingleDest, GraphAcc) -> inaert:..call_edge (Call, SingleDest, GraphAcc) end, Graph, Dest),

Figure 5: Computation of higher order call edges

throw_edges(Graph) ->
% extract catch nodes from graph
Dest = catch.nodes(Graph),
% compute and insert the throw edges for each catch node independently
foldl(fun(Catch, GraphAcc) -> edges_to_catch(Catch, GraphAcc) end, Graph, Dest).

edges.to.catch(Catch, Graph) ->% compute all throw nodes that are reachable from the current
% catch without a further catch on the path
Source = filter(fun(PossibleSource) ->
% source is throw node, no other catch between Catch and trow node
is_throw node (PossibleSource)
and not (catch.on_each.path (Catch, PossibleSource))
end, nodes_reached_from (Catch)),
% insert an edge from each element of Source to Catch into Graph
foldl(fun(SingleSrc, GraphAcc) -> insert_throw_edge (SingleSrc, Catch, GraphAcc) end, Graph, Source).

Figure 6: Computation of throw edges

message.edges(Graph, InitProcess) ->
% compute processes starting from InitProcess
Processes = computeﬂl.processaa((}raph. InitProcess),
% extract send nodes from graph
Source = send nodes(Graph) ,
% compute and insert the throw edges for each send node independently
foldl(fun(Send, GraphAcc) -> edges_from_send(Send, GraphAcc, Processges) end, Graph, Source).

edges_from_send(Snd, Graph, Processes) —->
% compute all brocesses that can be the destination of the current send
DeatProc = ﬁltar(fun(l‘-’ossiblebaat) -> mﬂmber(PossibleDast, Processes) end,
reaching definitions(extract_send.de stination(Snd))),
% compute set of sent messages
Messages = reaching definit ions(extract -send.message (Snd)),
o compute all receives in all destination processes that match an element of Messages
Dest = filter(fun(Receive) -> receive matches_value (Receive, Messages) end,
% test all receives of all destination processes
append (map (fun get.process_receive.nodes/1, DestProc)))),
% insert edges from Snd to each element of Dest into Graph
foldl(fun(SingleDest, GraphAcc) -> insert_message _edge (Snd, SingleDest, GraphAcc) end, Graph, Dest).

Figure 7: Computation of message edges J

10

oE L il i a ML

{im s 2 The gvanh pemeration in this euse con-
sists of the following steps.

1. The nodes, the neighborhood edges, and the first order
call edges (including the spaun edge) are generated.

During the first iteration of edge generation the follow-
ing edges are introduced.

e The higher order coll edge marked with 4.
o The message edges marked with 1 end 2.

. During the second iteration the message edge marked
with 3 is introduced. It i3 delayed to this step, because
it makes use of the data flow of variable ~2~ to PID on
the message edge marked with 2.

4. The third iteration does not introduce any further edges.
Therefore the iteration process terminates.

6.2 Sources of Inaccuracy

The algorithmn presented previously in this section cannot
compute the concurrent flow graph according to Def. 7 ex-
actly because of a number of sources of inaccuracy during
the computation, All these inaccuracies just affect the sets
of higher order call edges, throw edges, and message edges.
The computation of the nodes, the neighborhood edges, and
the first order call edges does not depend on the data flow
analysis, and can be done in a precise manner.

In detail the data flow analysis is affected by the following
effects.

e Distant conditionals in a prograin can correspond in
a way, that only certain combinations of subpaths can
occur in a path. For instance, consider two functions
f,y that are called with the same argument n, and
both contain different branches for even and for odd
values of n. A path through the prograin that takes the
even branch in f but the odd branch in g for the same
7 is not possible. Such situations are not recognized
by the system.

e The control flow is based on OCFA [17], i.e. differ-
ent function closures sharing the same source code are
identified. When distinguishing these functions, sev-~
eral nodes are necessary for what is represented by
one node in our approach. Especially, for higher or-
der function calls, each of these nodes could be more
specific in the sense of having less outgoing call edges
than the one node being the source for the union of all
these call edges in our concurrent flow graphs.

e In Erlang the function position of a higher order func-
tion call can be given by a fun, or a representation
of the name of the called function. The second case
is problematic because partial evaluation is necessary
to identify the called functions. This partial evalua-
tion must, however, be approximate, especially if the
needed information is not completely available before
runtime. (Example: the name of a called function is
read from the keyboard at runtime.)

1

& Parts of the data flow can escape the scope of the flow
graph. In that case appraximating assumptions must
be used. For example this is the case when a function
f is passed to a function g as argument, but g is not
part of the code under testing. In this case we cannot
be sure whether f is called from g, or not.

® The test whether a definition matches e pattern of a
receive statement must approximate the value of the
definition. Therefore the computation of the message
edge destinations i approximate.

Approximation is done according to the following policy.
Whenever there is any doubt whether an edge is necessary,
the edge is introduced. This guarantees the concurrent flow
graph to contain as much control and data flow alternatives
as possible.

If there is, however, no information about the alternatives
at a certain point (e.g. when reading a name of the function
to be called from the keyboard) we do not insert edges to all
possible destinations (e.g. to all functions of the right arity
occurring in the flow graph).

6.3 Implementation

The computation of concurrent flow graphs for Erlang pro-
grams is implemented based on OTP R9C-2, i.e. both the
implemented code, and the programining constructs expected
in th?g analyzed program are based on this language stan-
dard.

The flow graph structure is essentially based on the parse
result of the OTP library module epp.erl. This module is
used to read the source code modules under testing, and the
result format is preserved during the preprocessing stage
enforcing the named definition property. The flow graph
consists of a list of modules, each given by the result of
epp:parse_file/3 which is modified in the following steps
to form the flow graph.

The node generation consists of a traversal of the code per-
forming the following tasks.

e In each expression representing a node, the line num-
ber entry of the epp output is changed to a tuple addi-
tionally holding a node number, and some local data
flow information.

o For each fun generation consisting of function clauses,
a new function name is generated, which replaces the
clauses in the definition. The clauses are taken to rep-
resent the generated function in the flow graph.

¢ Some of the structures denoting special expressions are
replaced or extended.

— Calls to the BIF throw/1 are replaced by a new
kind of tuple structure.

8At the moment, the implementation lacks the handling of
list comprehensions, that are & bit tedious to cope with,
but do not provide any new problems or insight. Code for
handling them will be added, once the restricted prototype
is finished.

PFlodoiow foe P Dos cntl sire exlonded by a field
for the call edge information.

— Receive entries are extended by a field for infor-
mation on the message edges.

e For each function, the additional import, context and
return nodes are introduced, which are represented by
tuples similar to those returned by epp.

Some further information is pre-calculated and stored for
future use. Among others, a list of all call nodes (and other
important node types) is stored for each function, and an
index given by a balanced tree is generated for each module
for accessing the individual nodes by their number.

In a next step, the call nodes are divided into first order
calls and higher order calls. For the first order calls, the
destinations can be computed easily, and the resulting edge
information is stored in the prepared field of the call.

For the higher order call edges, the spawn edges, the throw
edges, and the message edges, the computation is done as
described in Subsec. 6.1, and the computation results are
coded into the prepared fields of the structures.

7. CONCLUSION AND FUTURE WORK
By adapting the notion of flow graphs to functional pro-
grams written in Erlang, especially containing the concur-
rent constructs integrated in the Erlang standard, we have
made & large step towards having the wide area of source
code directed testing (which is heavily used in industry) ac-
cessible for functional programming,

As already stated for flow graphs for sequential Erlang [23],
function calls have a strong influence on the control flow in
functional programs comparable to the looping constructs
in imperative languages. A refined definition of call edges
is given here, providing a mnotion of expressing the whole
control flow of a function call, namely the jump to a distant
piece of code and the return to the calling code piece after
processing the function call.

When considering higher order functional programs, we get
the additional problem that we need data flow analysis in
order to determine the set of functions that is possibly called
at a certain program point [23]. Throw edges and message
edges depend (like higher order call edges and spawn edges)
on the possible control flow in the program aund therefore on
the computed higher order call edges. They, however, cause
additional data flow opportunities and can therefore extend
the set of higher order call edges in a program. An iteration
looping over the generation of higher order call edges (with
spawn edges), throw edges and message edges has been de-
scribed that computes all these edges, and terminates when
a fixpoint is reached.

Future work towards a coverage system based on concurrent
flow graphs consists of two steps. First, a tracing tool stor-
ing the control flow through the tested modules during a test
case execution [22] mnust be extended to handle several pro-
cesses, and to store information on the data flow generated
by passing messages between tested modules. As a second

step, a tool analyzing given traces for their coverage level
must be implemented. While a simple node coverage test
is already finished, we expect data flow oriented coverage
[21] to be of special use in the context of concurrent Erlang
programs, because data flow coverage is the only level of
coverage analysis that is able to consider messages passed
around the program.

8. REFERENCES
{1] J. M. Ashley and R. K. Dybvig. A practical and
flexible flow analysis for higher-order languages. ACM
Transactions on Programming Languages and
Systems, 20(4):845-868, July 1998.

[2] R.H. Carver and K.-C. Tai. Replay and testing for
concurrent programs. IEEE Software, 8(2):66-74,
1991.

{3

-

O. Chitil. A semantics for tracing. In Druft
Proceedings of the 13th International Workshop on
Implementation of FPunctional Languages, IFL, 2001.

[4] K. Claessen and J. Hughes. QuickCheck: a lightweight
tool for random testing of Haskell prograims. In
Proceedings of the ACM Sigplun International
Conference on Punctionel Progremming (ICFP00),
volume 35.9 of ACM Sigplan Notices, pages 268279,
N.Y., Sept. 18-21 2000. ACM Press.

[6] Ericsson Utvecklings AB. Erlang Reference Manudl,
Version 5.3, 2003.

[6

Tools version 2.3. Documentation of Erlang/OTP
RaC.

{7] M. Factor, E. Farchi, and Y. Talmor. Timing
dependent bugs. In Software Testing Analysis and
Review (STAR98), May 1998.

[8] A. Gill. Debugging Haskell by observing intermediate
data structures. In Proceedings of the 4th Haskell
Workshop. Technicol report of the University of
Nottinghem, 2000.

[9] P. Godefroid. Model checking for programming
languages using VeriSoft. In Symposium on Principles
of Programming Languages, pages 174-186, 1997.

[10] P. Godefroid. Software model checking: The VeriSoft
approach. Formal Methods in System Design, 26(2),
Mar. 2005.

[11] G.-H. Hwang, K.-C. Tai, and T.-L. Huang.
Reachability testing: An approach to testing
concurrent software. In Proc. First Asia-Pacific
Software Engineering Conference (APSEC), Tokyo,
Japan, Dec. 1994.

[12] L. Naish. A declarative debugging scheme. Journal of
Functional and Logic Programming, 1997(3), 1997.

[13] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer, 1999.

{14] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A methodology for testing spreadsheets.
ACM Trensactions on Software Engineering and
Methodology, 10(1):110-147, 2001.

12

(18] G. Rothermel, L. Li, C. DuPuis, and M. Burnett.
What you see is what you test: A methodology for
testing form-based visual programs. In Proceedings of
the 1998 International Conference on Software
Engineering, pages 198-207. IEEE Computer Society
Press/ACM Press, 1998.

[16] K. J. Rothermel, C. R. Cook, M. M. Burnett,
J. Schonfeld, T. R. G. Green, and G. Rothermel.
WYSIWYT testing in the spreadsheet paradigm. In
Proceedings of the 22nd International Conference on
Software Engineering, pages 230-239. ACM Press,
June 2000.

[17] O. Shivers. Control-flow analysis in Scheme. In
Proceedings of the SIGPLAN ’88 Conference on
Programming Language Design and Implementation,
pages 164-174, June 1988.

[18] S. D. Stoller. Testing concurrent java programs using
randomized scheduling. In Proceedings of the Second
Workshop on Runtime Verification (RV), volume 70 of
Electronic Notes in Theoretical Computer Science,
2002.

[19] K. van den Berg. Software Measurement aend
Functional Programming. 1995.

[20] M. Wallace, O. Chitil, T. Brehm, and C. Runciman.
Multiple-view tracing for Haskell: a new hat. In
Preliminary Proceedings of the 2001 ACM SIGPLAN
Haskell Workshop, Firenze, Italy, pages 151-170, 2001.

(21] M. Widera. Data flow considerations for source code
directed testing of functional programs. In H.-W,
Loidl, editor, Draft Proceedings of the Fifth
Symposium on Trends in Functional Programming,
Nov. 2004.

[22] M. Widera. Flow graph interpretation for source code
directed testing of functional programs. In C. Grelck
and F. Huch, editors, Implementation an Application
of Functional Languages, 16th International
Workshop, IFL’04, Technischer Bericht 0408. Institut
fiir Informatik und Praktische Mathematik,
Christian-Albrechts-Universitit zu Kiel, 2004.

[23] M. Widera. Flow graphs for testing sequential Erlang
programs. In Proceedings of the rd ACM SIGPLAN
Erlang Workshop. ACM Press, 2004.

[24] H. Zhu, P. Hall, and J. May. Software unit test
coverage and adequacy. ACM Computing Surveys,
29(4):366-427, Dec. 1997.

13

e

ERICSSON 2

Trend: monoliths = networks of loosely
coupled components.

e = stateful multi-way communication,
delay issues and partial system failures

» No common insight yet into how this affects

SW complexity (suspect that most people
think it simplifies things...)

hitp:www gpp.ora/fip/Specs/archive/23_series/23.002/

Claims

1. Ability to filter messages with implicit
buffering (selective receive”™) is vital for
proper state encapsulation.

» Otherwise, complexity explosion is inevitable
(in certain situations.)

2. Inline selective receive keeps the logical
flow intact — no need to maintain your
own “call stack”.

i The ability to implement
| complex state machines well

| .
(1) iS more lmportant than (2) ‘ will most likely become a
|

key compelilive edge.

Example Scenario

 Each "session” is Traditional "Half-Call” model
represented by one or
more stateful Control/Charging, ...

processes (as in CSP)

* Each control process R T II ‘ T h .
interacts with multiple ~ ~—— ‘—' —
uncoordinated
message sources

» Message sequences
may (and invariably A = originating side
will) interleave B = terminating side

FIFO, Run-To-Completion (RTC) semantics:

 Thread of control owned by central event loop
 For each message, an associated method is called

» The method executes, then returns control to the
main loop

» Typically, the event loop dispatches messages for
multiple process” instances
=> an instance may never block.

+ Examples: UML, common C++ pattern, OHaskell

Selective Receive semantics

« Each process instance specifies a subset of
messages that may trigger method dispatch
at any given time

o If the process owns the thread of control,
this is done in a blocking “’system call” (e.g.
the ’receive ... end’ language construct in
Erlang, or the select() function in UNIX.

Selective receive is not a new concept

* The select() system call first appeared in 4.2BSD
1982
— Allowed for blocking wait on a set of file descriptors.

— (Needs to be coupled with e.g. getmsg() in order to
fetch the message.)

— Now supported by all unices.

* MPI" has API support for blocking selective
receive.

* Erlang was first presented in 1987.

~hup:/Asiv-unix.mas. anl gev/mpi/

Asynchronous Programming still dominates
- why?

* Synchronous programming is considered
slow.

* Reasoning about event-based programming
seems easier.
* Easy to build a fast, simple event-based

prototype.
* It’s not clear what you give up by not
programming synchronously!

* (and blocking RPC is not the whole secret —
selective receive is the powerful enabler.)

4

Programming Experiment

» Demo system used in

"POTS”: Plain Ordinary
Telephony System -

Ericsson’s Introductory Trivial schoolbook
Erlang Course exampie of tel_ephony
(assi aiit: write a {as simple as it gets)

control program for a
POTS subscriber loop)

We will re-write the

control loop

different semantics.

Note well: we don’t
handle errors in our

using

example (usually the most -
complex part.) Demeo... !
POTS Control Loop ~ Original Impl. (1/3)

start() -> idle().

idle() -
receive
{?1im, off
Tim:st
geTTin
{21im, {di
4120
{?hc, {req
Pid !
Tim:st
Fingt

Other ->
io:fon
idle()

end.

| inline selective receive |

ISynchmonousIIchdnuéfi
hool(} - / +
art_xone(dia1i|

start_tone(Tone)->
call({start_tone, Tone}).

call(Request) —>
Ref = make_ref(),
T1im ! {request, Request, Ref, self(Q},
receive
{?1im, Ref, {_ReplyTag, Reply}} —>
Reply
end.

&

POTS Control Loop - Original Impl. (2/3)

getting_first_digit() -~
receive
{?1im, onhook} —>
Tim:stop_tone(),
id1eQ;
{?1im, {digit, Digit}} -
Tim:stop_tone(),
getting_number(Digit,
number:analyse(Digit, number:valid_sequences()));
{?hc, {request_connection, Pid}} ->
Pid ! {?hc, {reject, self(Q}},
getting_ First digitQ;
Other ->
io:format("Unknown message ...: ~p~n", [Other]),
getting first digitQ
end.

POTS Control Loop - Original Impl. (3/3)

calling_B(PidB) —>

receive

{?1im, onhook} ->
idteQ;

{?1im, {digit, _Digit}} —»
calling_B(PidB);

{?hc, {accept, PidB}} ->
Tim:start_tone(ring),
ringing A_side(PidB);

{?hc, {reject, PidB}} —>
Tim:start_tone(busy),
wa it_on_hook (true) ;

{?hc, {request_connection, Pid}} ->
Pid ! {?hc, {reject, self()}},
calling_B(PidB);

Other ->
io:format("Got unknown message...: ~p~n",[...1)
calling_B(PidB)

end.

Experiment:
Rewrite the program using
an event-based model

Event-based vsn, blocking HW control (1/3)

%% simple main event loop with FIFO semantics
event_loop(M, S) —>
receive
{From, Event} —>
dispatch(From, Event, M, S);
{From, Ref, Event} —>
dispatch(From, Event, M, S);
Other ->
io:format(”Unknown msg: ~p~n", [Other]),
exit({funknown_msg, oOther})
end.

dispatch(From, Event, M, S) when atom(Event) ->
{ok, Newstate} = M:Event(From, S),
event_loop(M, NewState);

dispatch(From, {Event, Arg}, M, S) —>
{ok, Newstate} = M:Event(From, Arg, S),
event_loop(M, NewState).

Event-based vsn, blocking HW control (2/3)

offhook(?1im, #s{state = idle} = s) ->
Tim:start_tone(dial),
fok, s#s{state = getting_first_digit}};

offhook(?1im, #s{state = {ringing_B_side, PidA}} = S) —
lim:stop_ringingQ), ™o

PidA ! {?hc, {connect, self()}}, Synchrono_u;HW control
{ok, S#s{state = {speech, Pida}}}; '

offhook(From, 5) —->
io:format("unknown message in ~p: ~p~n",
[S#s.state, {From, offhook}]),
{ok, s}.

Event-based vsn, blocking HW control (3/3)

onhook (?1im, #s{state = getting_first_digit} = §) -
Tim:stop_tone(),
{ok, sS#s{state = idie}};
onhook (?1im, #s{state={getting_number, {_Num,_valid}}} = s) ->
{ok, S#s{state = idle}};
onhook(?1im, #s{state = {calling_B, _PidB}} = S) ->
{ok, S#s{state = idie}};
onhook(?1im, #s{state = {ringing_A_side, PidB}} = S) ->
PidB ! {?hc, {cancel, self()}},
Tim:stop_tone(),
{ok, S#s{state = idiz}};
onhook(?1im, #s{state = {speech, OtherPid}} = S) -»
Tim:disconnect_from(otherprid),
otherpid ! {?hc, {cancel, self()}},
{ok, S#s{state = 1dle}};

A bit awkward
(FSM programming, “inside-out™),
but manageable.

Add the non-blocking restriction

(first, naive, implementation)

Now, assume we are not allowed to block
{common restriction, 1/3)

\:gsynchwonnusIIVlconuOlI
offhook(?1im, #s{state = idle} y
Tim_asynch:start_tone(dial),
{ok, s#s{state = {{await_tone_start . diall,

getting first_digitr}};

offthook(?1im, #s{state = {ringing_B_side, PidA}} = S) ->

Tim_asynch:stop_ringing(Q,

PidA ! {?hc, {connect, self(Q}},

{ok, S#s{state = {fawait_ringing_stop, {speech, PidA}}}};
offhook(?1im, S) —->

jo:format("Got unknown message in ~p: ~p~n",

[s#s.state, {1im, offhook}]),
{ok, 3}.

... Not allowed to block (2/3)

digit(?Tim, Digit, #s{state = getting_first_digit} = §) ~>
%% CHALLENGE: Since stop_tone() is no longer a synchronous
%% operation, continuing with number analysis is no longer
%% straightforward. Ve can either continue and somehow log that
%% we are waiting for a message, or we enter the state await_tone_stop
%% and note that we have more processing to do. The former approach
%% would get us into frouble if an invalid digit is pressed, since
%% we then need to start a fault tone. The latter approach seems more
%% clear and consistent. NOTE: we must remember to also write
%% corresponding code in stop_tone_reply().
Tim_asynch:stop_tone(),
{ok, s#s{state = {await tone_stop,
{continue, fun(sly —
Fotiest digicdoigin, si)
end}itl};

-.not allowed to block (3/3)

start_tone_reply(?1im, {Type, yes},
#s{state = {{await_tone_start, Type}, NextState}} =) ->
{ok, sS#s{state = nexistate}}.

stop_tone_reply(?Tim,_,#s{state={await_tone_stop,Next}} =S) ->
%% CHALLENGE: Must remember to check NextState. An alternative would
%% he to always perform this check on retum, but this would increase
%% the overhead and increase the risk of entering infinite loops.
case NextState of
{continue, cont} when function(Cont) ->
Cont(S#s{state = next});
_ >
{ok, S#s{state = pNext}}
end.

Quite tricky, but the program
still isn’t timing-safe. (Demo...)

10

FIFQO semantics,

hardware API

asynchronous

Global State-Event Matrix

connect

Conit-
ect

await jid |await |await dis-

with
telnr

await

await

start

stop
| ox

await

ringing B- [wait on- |await

tone start |tone stop|ringing |ringing

X

X

o wi e Wi P ¥
) B
g |= b0 o = 2
h) 7 5]
= = & =) @ & 3
2 @ @ ‘Eh ‘Bh) i o
= B =
g s |5 [|8 |8 |s8 |z
s} = 2 o 3wl 7o O =
= o il A =
m 2 [l 1 e o= B = [
8 & a 8 e 7|8 &35 il
O 9)7 &8l ¥ |BEE]lS T

Apparent Problems

The whole matrix needs to be revisited if
messages/features are added or removed.

What to do in each cell is by no means
obvious — depends on history.

What to do when an unexpected message
arrives in a transition state is practically
never specified (we must invent some
reasonable response.)

Code reuse becomes practically impossible.

Non-blocking version, using message filter

(1/2)

digit(?1im, Digit, #s{state = getting_first_digit} = s) —>
%% CHALLENGE: ...<same as hefore>
Ref = Tim_asynch:stop_tone(),
{ok, s#s{state = {await_tone_stop,
{continue, fun(si) ->
f_first_digit(pigit, sl1)

end}}},
#recv{lim = Ref, _ = false}};
e
/

| Accept only msgs tagged with Ref, |
| coming from ’lim”;
l buffer everything else.

The continuations are still
necessary, but our sub-states are
now insensitive to timing
variations.

12

Non-blocking version, using message filter
(2/2, the main event loop)

event_loop(M, S, Recv) —>
receive

{From, Event} when element(From, Recv) == [] —>
dispatch(From, Event, M, S);

{From, Ref, Event} when element(From, Recv) = Ref ->
dispatch(From, Event, M, S);

{From, Ref, Event} when element(From, Recv) = [] ->

dispatch(From, Event, M, S)
end.

dispatch(From, Event, M, S) when atom(Event) ->
handle(M:Event(From, S), M);

dispatch(From, {Event, Arg}, M, S) —>
handle(M:Event(From, Arg, S), M).

handle({ok, NewsState}, M) —>
event_loop(M, NewState);

handle({ok, NewState, Recv}, M) —>
event_loop(M, NewState, Recv).

Properties of filtered event loop

e Can be implemented in basically any
language (e.g. extending existing C++
framework.)

 Solves the complexity explosion problem.

o Doesn’t eliminate the need for continuations
(this affects readability — not complexity)

Real-Life Example
Code extract from the AXD301-based Mediation Logic” (ML)

%% We are waiting to send a StopTone while processing a StartTone and now
%% we get a ReleasePath. Reset fone type to off and ovarmide StopTone
%% with ReleasePath since this will both clear the tone and rermove connection.
cm_msg([?CM_RELEASE_PATH,TransId, [SessionId|Data]] = NewMsg,
HcId, #mlgCmConnTable{

sessionld = SessionId,

sendMsg = ?CM_START_TONE_RES,

newMsg = {cm_msg,

[?CM_STOP_TONE |[Msg]}} = HcRec,
TracelLog) ->

NewHcRec = HcRec#mlgcmConnTable{
newMsg = {cm_msg, NewMsg},

toneType = off},

NewLog = ?NewLog({cm_rp, 10}, {pend, pend}, undefined),
mlgCmHcclib:end_session(

pending, NewHcRec, [NewLog | TraceLog], override);

Real-Life Example
Code extract from the AXD301-based "Mediation Logic” (ML)

%% I we are pending a Notify Released event for a Switch Device, override
%% with ReleasePath.

cm_msg([?CM_RELEASE_PATH, TransId, [SessionId|Data]] = NewMsg,
Hcld,

#mlgCmConnTable{
sessionld = Sessionld,
newMsg = {gcp_msg, [notify, Gcpbatal},
deviceType = switchDevice,
path2info = undefined} = HcRec,
TraceLog) ->
NewHcRec = HcRec#mlgCmConnTable{newMsg= {cm_msg, NewMsg}},

NewLog = ?NewLog({cm_rp, 20}, {pend, pend}, undefined),
mlgCmHccLib:end_session(

pending, NewHcRec, [NewLog | TraceLog], override);

[

Real-Life Example
Code extract from the AXD301-based "Mediation Logic” (ML)

%% Getling a ReleasePath when pending a Notify Released event is & bit
%% complicated. We need to check for which path the RelzasePath is for and
%% for which path the notify is for. If they are for different paths we are
%% in a dilemma since we only can be in pending for one of them. As a simpls
%% way cut we just treat this as an abnormal release for now.
cm_msg([?CM_RELEASE_PATH, TransId, [SessionId|Datal]] = NewMsg,
HcId,
#mTgCmConnTable{
sessionId = Sessionld,
newMsg = fgcp_msg, [notify, Gcpbatall,
deviceType = switchDevice} = HcRec,
TraceLog) —>
mlgCmHcc: send_cm_msg (?CM_RELEASE_PATH_RES,
?MSG_SUCCESSFUL, TransId, SessionId),
NewHcRec = HcRec#mlgCmConnTable{newMsg = abnormal_rel},
NewLog = ?NewLog({cm_rp, 30}, {pend, pend}, undefined),
mlgCmHccLib:end_session(pending, NewHcRec,
[NewLog | TraceLogl, override);

Observations

Practically impossible to understand the
code without the comments

Lots of checking for each message to
determine exact context
(basically, a user-level call stack.)

A nightmare to test and reason about

(The production code has now been re-
written and greatly simplified.)

19

NBgRsERTY

ANAN([ITIFY
E&mg ﬁo mﬁvﬁ%@ et
_ mﬁw@ gm:ouxo o>umﬁoz< e
u01 g
SUOLIEIS
807 ‘Apewouy Vv
2Je]s Jwres Ul ureax HOAESEIY
‘o jooojoxd wmiey A -
I0OLI9 9} SI0UST ‘UOTOR ON X L IPOIN
sjqeoridde 10N V/N
:s9Inpad0i1d uonoy I

*‘RI“'W P

emﬁu%
Pammﬂg?%"-- :

PW =

FARIYNIOY, ‘ :
uue) gy ‘ 34

dyag ‘ =

(¥/1) x1iep Jusan3-aiels T

16

z)

ML State-Event Matrix (2/4)

=
T S 3 ®
£l |2 | |2 |€ |2
= N ; € | E £ ‘g E |2 % 5
LR ER LB ERERERER R 2 |E (2
z |8 |= |C]l |Z |2 i{- S |& |2 |R |2 |£ |&
— —— -
A |a (20 [a [&a [a [& [Ja |a |a Jisz]a [220]a |a
3n, 158,
31, 155,
32, 166,
33, 168,
256 162,
163,
164,
l 165, i
166,
167
SubtractReply Ala [a & Jeo |a [a |a |&a [139 |ee]|a |a |A [a
51 165,
170,
7
ModifyReply Ala [a |a Ja [aos (14]a |& [& |32]a |a |a [a
106 | 115, 173,
115, 174,
117, 175,
118, 176,
119 177,
I 178,
179
MoveReply A la [a |a]a |a |a |a [a |10 150 |a |222]a [a
141 223,
224,
225,
26
Notfy - esteblish x| 14 [34, 59, |92 |a [A |Ao [a & [0 |215 |27 |8 | 260
35, |80 |93 228
6
Notify - relesse x |85 |15 [6, Joa, |35 |25 |a |a 142 |82, |216 |15 |35 |242,
52, | o5 183, 243
83, 184,
64, 183,
55, 186
&6

g/

ML State-Event Matrix (3/4)

Seate =
i 3 & E|le |o
FR e |22 |2 |2 . |& |5
Triggers = |5 |= e | = 2 |3 € |= e g g £
Z1E (3 (&2 |2 |2 |8 |8 |& |E s |E |Z
I3 < | [= = = & & B % = B =
ho_msg - setup g A A a7, |86 A A B27 | 132 | A I8F [217, | 229, | A 244,
68, 218 | 230 245,
69, 2486,
70, 247,
Tl 248,
249,
250,
261,
262
he_msg - setup res | A 16, |A [A | A A A A A A 188, | A A A A
17, 189,
18, 190,
19, 191,
20, 192,
21, 163,
22, 194,
255 195
he_mayp - madify Ala Ja |72 la & |a A |& |a s |a |a |a |a
he_msg - A A A A A T, (120 | A A A A A A A £ 1
modify_res 108
he_msg - releass 9, |23 |23 |73, |97 |20 |23 |A [a 143 |ism A |23 |23 |2m
10 74, | o8 198,
75, 98,
I 76, 200,
77 201,
202,
205
he_msg-release resf{x |A [a | A oo, [mMa [Na [Na [wNa 144 A (A & |A |a I
100
he_mag - prepare 1t |a [a [27]101 |a |& |A [a [& 24| |& |& |a
205,
206,
207,
208
he_msg - A |JAa |Aa |A |A A A A A A A A A 232, | A
prepare_res 233,
258
he_msg~ break a |a [a [|a |a |[A |a [a [aA |a |a |ao |& |a
he_msg - ook res §| A A 7| A A A A A A A A A A

o)

ML State-Event Matrix (4/4)

Connecied
MatifyConn

ECp i

ahnormal_rel

Observations re. ML

« Still, only the external protocol is handled this
way (the state machine uses synchronous calls
towards internal APIs) — otherwise, it would really
be bad.

¢ This 1s the semantics offered by UML(*) as well
(UML gives lots of abstraction support, but only
for the sequential parts — not for state machines.)

* This seems analogous to
— Dijkstra’s “Goto considered harmful”, and
— local vs. global variables.

(*) Only partly true - ses "deferrable event’, UML 1.5, part 2, pp 147

Questions?

WXEriang

Mats-Ola Persson

WXEriang

® GUI library for Erlang
® \write GUI applications
® cross platform
~ ® cross platform look and feel

Example

® A “stupid” tic-tac-toe
application

6 6 OHeloWorldt |
> SR SIS
XX

® No intelligent behavior
is implemented

o|x|O

-

® Justthe (good) looks

Creating a window

create window() >
wx:start0, % intialize wxEriang

% create a frame (window) with no parent
Frame = wxframe(?NULL, 2wxID_ANY, “Hello Worid!"),

wx:show(Frame). % make the frame visible

Creating a window

® Not very exciting: an
empty window

Event-driven
programming

® Things “react” to mouse clicks, mouse
movements, etc.

® Eventhandlers, callback functions

Events

create_ window(>
wx:start),
Frame =wxframe(?NULL, 2wxID_ANY, “Hello Worid!"),

% eventhandler that reacts to close clicks
wx:connect(Frame, 2WXEVT_CLOSE_WINDOW,
fun(_,) - wx:quit(end),

wx:show(Frame).

Layouts

® p|atform independent layouts
® Sizers
® No fixed sized widgets, etc.
® Arbitrary complex layouts
® | et's add the buttons!

Sizers

create grid(Frame) > Grid =wx:arid_sizer(3), % a grid sizerwith 3 cols
create_buttons(Grid, Frame, 9), % create 9 buttons _ Grid.
create_buttons(_, _, 0) > ok;create_buttons(Crid, Frame, N) -> Button =
wx:button(Frame, N), %a button without label

wx:add(Grid, Button), % add buttontothe sizer create_buttons(Grid, Frame,
N-1.

The resuit

&8 & reio wora

® A “shell” of a tictac-toe
application

WXEtOp

8080, . L ap: paperie@onhon)
B
® portoftheold "etop” i sl i el

TR processas 425 wtec 124

| Ve o7 el fun| e Reds | Marmory | Wage | _ Carrent fnction
@ TGN IATI. (0 Curthopdatg At

ER e etBLw guli L]
«0.33.0¥ fwiarg a5]
[ettang wapry .

® Newfeatures

® contextmenues

® \iew running code

a
a :0
0 Tt
) i1
o 8
L] 'bﬂ ¥
) 49,4
0 0
o ‘u
L o
90 o

Fromthe
programmers point of
View

® \wxErlang is verbose - like most GUI
libraries

® Trial-and-emor - like most GUI libraries
® |nterface designers
® XRCed, DialogBlocks, etc.

Design decisions

® Binding to the C ++ GUI library wxWidgets
® Get a lotforfree

® ‘free” features from wxWidgets

® reduced maintenance work

® \wxErlang interface resembles wxWidgets
C++ Interface

® free documentation(!)

Translation scheme

® Easy
® Functions

® \jultiple retum values =>tuples
o

® Constants

Translation scheme

® Not as easy
® Classes
® Overloading and overriding functions
® Type system

Safety

® Checks arguments
® Types
® primitive values
® Objects
® Sanity

Implementational
details

® |\ost of the code is generated from
wxwidgets headers

® implemented as a “port program”
® Has a lot of bugs

Wrap up

® Current status - a prototyp

® \WxEtop

® perhaps 10% implemented
® Future

Yet Another GUI for Erlang

Like a Fish needs a Bicycle.

Why did I do it?

e GUI tools for testing and troubleshooting

e Wanted to write some C

Why Yet Another?

e G3S/Tcl is

—~ slow

- ugly
- bizarre
— no GUI builder

e ErlGTK

— no longer supported

Why GTK2?

e Elegant design

* Open Source de facto standard (with Qt)

e Runs on Unices and Windows, but not MacOS
* Looks good

* Excellent GUI builder (Glade)

e Strangely familiar...

- Garbage collection
— Runtime type checking

- Introspection

2

gtkNode

C-node

Each widget appears as a registered Erlang process

Behaviour is specified by the config file from Glade

e Communicates with the Erlang node through messages

Glade

e Defines and names widgets
e Specifies properties of widgets
e Layout
e Events
~ Ignore
— Handle by GTK callback

- Send Erlang message

3

010,

* GTK is object oriented, but implemented in C

e Each method is a C function call
gtk_class_method(widget,args...);

* From Erlang, it looks like this (conceptually);
Widget ! {class _method, [Argsl},

* It 1s implemented thusly;
GtkNode ! {class_method, [Widget|Args]},

Type safety

When gtkNode receives a message it checks;
- Widget exists
~ Method exists
— Widget is of correct class for method
— Right number of args
— Right type of args
If one of these fails, gtkNode sends an error tuple.

Otherwise it calls the method and sends the result
to the Erlang node /_'\

Typical

GTK's basic types are; Mapped to Erlang;

* floats * float
* integers * integer
* strings * list

e widgets (boxed pointer) ® atom

e structs (boxed pointer) *® atom

e booleans true/false

® macros atoms

Code generator

e The code generator decides which GTK functions
can be safely called from Erlang (about half)

e For each safe function it generates C wrapper
code that does the type checking

e The code generator works by analyzing the C
header files.

e Written in Erlang and Python (stolen from
PyGtk)

N

Odds and Ends

° messages can be stacked for efficiency

* recommended usage is through gtkNode.erl

available from jungerl:

http://jungerl.sourceforge.net

Bit-level Binaries and
Generalized Comprehensions
in Erlang

Per Gustafsson and Kostis Sagonas
Dept of Information Technology
Uppsala University

Binaries as we know them

Introduced in 1992 as a container for object code

Used in applications that do I/O, networking or
protocol programming
A proposal for a binary datatype and a syntax was

made in 1999 and a revised version was
adopted in 2000

Since then, binaries have been used extensively,
often providing innovative solutions to common
telecom programming tasks

Binaries are not so flexibie

Some limitations:

— Binaries are byte streams, not bit streams

— Segment sizes cannot be arbitrary
arithmetic expressions

Both undermine the use of the binary syntax for
writing high level specifications

This work:

We show how to lift these limitations while
maintaining backward compatibility

Make binaries as flexible as lists

— In lists:
* deconstructing a list always yields valid terms
* can be constructed using list comprehensions
— In binaries:
* deconstructing a binary sometimes yields terms
which cannot be represented as Erlang binaries
* no binary comprehensions are available

— This work:
* allows binaries to represent bit streams
* introduces binary comprehensions
* introduces extended comprehensions to make conversions
between lists and binaries simpler

g

Flexible bit-level binaries

* The multiple-of-eight size restriction is
lifted

* The size field of a segment can contain an
arbitrary arithmetic expression

* No type specifier is needed in binary
construction

Pros and cons of bit-level binaries

+ Allows natural representation of bit fields

e <<BitSize:8, BitField:BitSize/binary,

+ Helps avoid padding calculations

e Pad = (8 — ((X + Y) rem 8)) rem 8,

+ Makes binary matching as easy for bit streams
as it was for byte streams

— Introduces a speed trade-off

Pattern Matching

- byte streams vs bit streams

keep_0XX(<<0:8,X:16,Rest/binary>>) ->
<<0:8,X:16,keep_0XX(Rest) /binary>>;

keep_0XX(<<_:24,Rest/binary>>) ->
keep_0XX (Rest) ;

keep_0XX (<<>>) —>
<<>>,

Pattern Matching

- byte streams vs bit streams

keep_OXX(<<0:1,X:2,Rest/binary>>) ->
<<0:1,X:2,keep_OXX(Rest) /binary>>;

keep_0XX(<<_:3,Rest/binary>>) ->
keep_0XX (Rest) ;

keep_0XX (<<>>) —>
<<>>,

Pattern Matching

- byte streams vs bit streams

keep_0XX(Bin) -> keep_O0XX(Bin, 0, 0, <<>>).

keep_0XX(Bin, N1, N2, Acc) ->
Padl = (8 - ((N1+3) rem 8)) rem 8,
Pad2 = (8 - ((N2+3) rem 8)) rem 8,
case Bin of
<<_:N1l, 0:1, X:2, _:Padl, _/binary>> ->
NewAcc =
<<Acc:N2/binary-unit:1, 0:1, X:2, 0:Pad2>>,
keep_0XX(Bin, N1+3, N2+3, NewAcc);
<<_:N1, _:3, _:Padl, _/binary>> —->
keep_0XX(Bin, N1+3, N2, Acc);
<<_:N1>> —-> Acc
end.)

Allowing arithmetic expressions in
the size field

Consider this classic example of
the bit syntax:

case IP_Packet of
<<4:4, Hlen:4, SrvcType:8, TotLen:16,

ID:16, Flgs:3, FragOff:13, TTL:8, Proto:8,

SrcIP:32, DestIP:32,

RestDgrm/binary>> ->
OptsLen = Hlen - 5,
<<Opts:OptsLen/binary-unit:32,

Data/binary>> = RestDgrm,

Allowing arithmetic expressions in
the size field

Using flexible binaries it could be written in
the following manner:

case IP_Packet of

<<4:4, Hlen:4, SrvcType:8, TotLen:16,
ID:16, Flgs:3, FragOff:13, TTL:8,
Proto:8, SrcIP:32, DestIP:32,
Opts: ((Hlen - 5)*32) /binary,
Data/binary>> ->
end,

No need for a type-specifier in
binary construction

Consider the following code:

<1, 2, 3>>,
<<X, 4, 5>>

w X
[

It causes a runtime exception. To avoid
this you must explicitly specify the type

X
B

<<1, 2, 3>>,
<<X/binary, 4, 5>>

We want to lift this restriction, the type should
default to the type of the variable.

Binary Comprehensions

Analogous to List Comprehensions

List Comprehensions represent a combination
of map and filter

Comprehensions require a notion of an element

For binary comprehensions the user must
specify what they consider as an element

Binary Comprehensions:
introductory Example, invert

Using list comprehension:

invert (ListOfBits) ->
[bnot(X) || X <— ListOfBits]

Using binary comprehension:

invert (Binary) ->
<<bnot(X):1 || X:1 <- Binary>>

If your binary is byte-sized:

invert (Binary) -—>
<<bnot (X):8 || X:8 <- Binary>>

s

Binary Comprehensions:
Ul-decode

Using a binary comprehension UU-decode
basically becomes a one-liner in Erlang

uudecode (UUBin) ->
<<(X-32):6 || X:8 <— UUBin, 32=<¥X, X=<95 >>

Note the filter expressions which make sure that
inserted characters such as line-breaks are dropped

Extended comprehensions

Can we use list generators in binary
comprehensions?

convert_to_binary(ListofWords) —->
<<X:32 || X <— ListofWords>>.

Extended comprehensions

Can we use binary generators in
list comprehensions?

convert_to_listofwords (Binary) ->
[X || X:32 <- Binary].

Generators

Note that we need to be able to separate list generators
from binary generators.

List generators:

P <- EL

Binary generators:

Implementation of extended binary
comprehensions

* We present a simple translation of extended
comprehensions into Erlang in the form of rewrite
rules in the paper

* Using these simple rules the cost of building the
resulting binary is quadratic in the number of
segments

* We present another set of rewrite rules which
gives linear complexity, but the rules are slightly
less straight-forward

Implementation of extended binary
comprehensions

When the size of the resulting binary can be
calculated as a function of a generator binary, the
translation can be very efficient

Res = << X:16 || X:8 <= Bin>>.
=>
bitsize(Res) == (bitsize(Bin) / 8) * 16

This allows us to preallocate the memory that
is needed for the resulting binary

10

Example: 1S-683 PRL

Data Structure

Sbits_ 11 bits . llbits . 1lbits _0-7bits,

N |Channel 1| | Channell | = |Channel N| Pad

First "Padding” Solution:

decode (<<NumChans:5, _Pad:3, _Rest/binary>> = Bin) ->
decode (Bin, NumChans, NumChans, []).

|decode(_, _, 0, Acc) ->
Acc;
decode(Bin, NumChans, N, Acc) —-—>

SkipBefore = (N - 1) * 11,

SkipAfter = (NumChans — N) * 11,
w»{Pad = 8 — ((NumChans * i1 + 5) rem 8),|
<<_:5, _:S8kipBefore, Chan:11,

:SkipAfter,:Pad>> = Bin,
decode (Bin, NumChans, N - 1, [Chan | Acc]).

aalla

Correct "Padding” Solution:

decode (<<NumChans:5, _Pad:3, _Rest/binary>> = Bin) ->
decode (Bin, NumChans, NumChans, []).

decode(_, _, 0, Acc) —>
Acc;
decode (Bin, NumChans, N, Acc) ->
SkipBefore = (N - 1) * 11,
SkipAfter = (NumChans - N) * 11,
Pad = (8 - ((NumChans * 11 + 5) rem 8)) rem 8,
<<_:5, _:SkipBefore, Chan:11,
:SkipAfter,:Pad>> = Bin,
decode (Bin, NumChans, N - 1, [Chan | Acc])

SEAAKEAL, B
- S ARELEH, S >

l‘l(‘lulll EXENXN AN, Do

Freh : <<3:5,X1:11,X2:11,X3:11,_:2>> >
i [X1,X2,X3];

AN KK
ﬁmnulwn AR mlmllmlx?l (EC TR TR T TTNE

«lllulrll.lu;llnl.mlmclmn.n:uxl:n XK1 XN, D>>
«Iﬁl LI LA LR DL LT 0300 1L LXK
i

Pt LB LB TR R TR R TR TE T REEE S
ALK
idAxi| Imlml,l&lllﬂlmlmﬂl ﬂ.‘l.\“tl.‘lﬂllﬁ UR TR ILTTEZIRTE (RN AR
1,
SN LD | llﬂ'llﬂl!)ﬂ.ll”}l-ﬂ‘ll Dil.llll R LI UIRTEATRTR (LN TR ATHTR (LR TR T Y N
AXLREX

110, {1E] A
c'(‘: LR ETE Ty lw tlntlnll»!lnlumlnu L e L LR R TLTTE LY TR
v

(TR TR S TR TR TUTTAE
LR LR AR LXK X X0 10010 55 >
ARG
FEALXEEILXUCHL X0 LR L0 XU X 6 X0 LX20:10.X00
FXLLXI 1
JEXTH XA NEALAREL NI ILXET IR 00 LS00 O XN LR LR 1 X200 1 X300 X201
L1, LR K3000 XA

0>

B LT TR0 | X20:10.3G000 X2: 100, 5> >

NI SN T LGN L 1 s

Xk :
AL SUIERLETR A TR SRR S TR SLATR STHTE STHTR TR TR AV AT TR ey
X

AL N T X C T AT TR ST TR AT F S TN T ey

CET XN EXE B0 NI KDL XXM
AN LI LRI {1300 0,300 LA X uJurumnmnluum\um.rl:.|u|u|.t|t.|mn.xn-nm1| LK NS 104 LI 35
1 X1 XLX,

IIM.II.XIQ.II.‘ lxu‘lI.!l!ﬁl.“lll.!l!!I!Xllﬂll"llﬂll‘l.‘l‘ll“ll-ﬂl SIRHLSTR -THIE ST SRR ST < RTE TR SN
P K3 XTL NN MR TVX 3

1 THILK|
«zn-un A lt.ltlt,x;ll.wllm X tmll X148 1K m:umuunxmumuiuumummum T RO LR AT LI X 20 000 _>>>

LR RS TR SRR TR STRTE SLATE TR S TR SN TR S TR oot

X1AX| AL
X |I'J?1!.\1IW II.II !IMIIJP‘N”‘!IMII ’IIII]#HI,!!HI.!I)"
PR prer

i

Rl BIRIR S B P RTR PR SR TR AT S AT AT T STH TR =

Smart, but inefficient solution

decode (<<N_channels:5, Alignment_bits:3, Tail/binary>>) ->
decode2 (N_channels, <<Alignment_bits:3, Tail/binary, 0:5>>).

decode2 (0, _) ->
{1;

decode2 (N, <<C:11, A:5, T/binary>>) —->
[C|decode2 (N-1, <<A:5, T/binary, 0:3>>)].

Using Flexible binaries

Since flexible binaries can represent bit streams
properly and leads to a natural solution

decode (<<N:5, Channels: (11*N)/binary,_/binary>>)
decode2 (Channels).

decode2 (<<C:11, T/binary>>) ->
[C|decode2(T)];

decode2 (<<>>) ->
(1.

->

oo Sbits _ 11bits 11 bits < lLbits _ 0-7 bits,_

N Channel 1 Channel I Channel N | Pad

13

Extended comprehensions

Using extended comprehensions and flexible
binaries we can solve the problem in two lines:

decode (<<N:5, Channels: (11*N)/binary,_/binary>>) ->
[X || X:11 <= Channels].

L. Sbits 11 bits Lbits ,, ., llbits 0-7bits,

N Channel 1 Channel I Channel N | Pad

Succintness of flexible binaries

- as measured in line counts

Program in C | Java |Erlang (R10B)| Erlang (this)
keep OXX 51 33 14 2
u-law encode | 30 25 25 13
UU-decode 19 14 10 2

Conclusion

* Introducing bit-level binaries makes it easy to
represent bit streams as binaries

* This makes it possible to write high level
specifications of operations on bit streams

* Extended comprehensions allow for powerful
manipulation of binaries

* Together these extensions make binaries as
easy to use as other datatypes in Erlang such
as tuples and lists

* The extensions we propose are backwards
compatible

* They will probably be included in the R11
release of Erlang/OTP

Future Work

* A standard library for dealing with binaries

* A better representation of binaries to avoid
quadratic complexity when appending binaries

* New compilation techniques which allow for in-
place updates of binaries

15

Adapting BIF:s to bit-level binaries

size (Bin)

* should return the minimal number of bytes
needed to represent the binary.

bitsize(Bin)

* new bif which returns the size in bits

binary_ to_list (Bin)
> the following should hold:

Bin == list_to_binary(binary_to_list(Bin))

binary to list(Bin)

Desired property:

binary_to_list (<<X:8,Rest/binary>>) ->
[X|binary_to_list(Rest)];
binary_to_list (<<>>) —>
[1;
binary_to_list(Bin) when is_kbinary(Bin) ->
[Bin].

EUC 05 presentation 2005-11-02

|

ERLANG

OTP Development update

ERICSSON Z

TAKING YOU FORWARD

[oA Highlights during 2005

ERLANG

= Released R10B-2 .. R10B-8, will be a R10B-9 before
end of year.

EUC 05 presentation 2005-11-02

[- News in R10B-8

ERLANG

Improvements of global

new application SSH (both server and client) beta
status, nice way to implement CLI for an application.

Debugger now with support for try catch
New version of Edoc (thanks to Richard Carlsson)

3 EUC 05 presenlation 20081102 ERICSSON 2

[Multiprocessor support

ERLANG
The Erlang runtime system of today (R10B)
= 1 OS process, 1 thread runs all Erlang processes.

= Can not make use of more than 1 processor for the
execution of Erlang processes.

4 EUG 05 presenlation 20081102 ERICSSON £

EUC 05 presentation

[o Multiprocessor support

ERLANG

Erlang runtime system R10B (1 scheduler)

-
c
=
fe]
=
(o]
=
@

Pick next

select/poll

|
\,

l

I
-W

|

|

l

|
|

|

File io threads

5 EUC 05 prosentation 20051102 ERCSSON

[@ Multiprocessor support

ERLANG

The Erlang runtime system of tomorrow:

= 1 OS process, configurable 1..n schedulers in separate
threads runs all Erlang processes.

» Can make use of multiple processors for the execution
of Erlang processes.

= Transparent for the Erlang programs. l.e. benefit from
multi cpu system without need to change your Erlang
code.

6 EUC 05 prosentation 2006-11-02 ERKCSSON ?

2005-11-02

EUC 05 presentation 2005-11-02

=1 Multiprocessor support

ERLANG

Erlang runtime system R11B (n schedulers)

runqueue

Pick next

/ select/poll

File io threads

EUC 05 prasantation 20061102 ENICSSON B

Multiprocessor support

ERLANG some additional characteristics

= Linux, Solaris (MacOS x) first, (posix threads)
= No changes in compiler

= Support “traditional” separate heap per E-process first
= Hybrid heap later.

EUC 05 presentation 20051102 ERICSSON 2

EUC 05 presentation

[o4 Multiprocessor support

ERLANG

Current status and benchmarks
» Can run quite a lot of the regular test suites

= A small benchmark ran:dom([1500,15000]) (2
processes sorting lists) on a 2-cpu machine

= maskin) give the following result:

Time Relation
Pre 11B without smp support 750 ms | base for
comparision
Pre 11B with smp and 1 scheduler 845 ms | 13% slower
Pre 11B with smp and 2 schedulers 520 ms | 31% faster

EUC 05 progentation

2005-11-02

ERICSSON 2

- Multiprocessor support
ERLANG way forward
First step (ongoing)

= Add locking wherever needed

= Make system stable (Linux, Solaris) with multiple
schedulers on multiple and single cpu systems.

= |nclude in R11B (as beta status)
Next step
= Benchmarking, profiling and optimizations
= QOther platforms (MacOSx, Windows)
Include in update release for R11B (end of 2006)

10 EUGC 05 pressntation

2005-11-02

ERICSSON £

2005-11-02

EUC 05 presentation 2005-11-02

[oA Multiprocessor support
ERRANG joint development
The SMP support for Erlang is a joint development

effort between the Ericsson OTP team, Uppsala
University and Synapse

Many thanks to
»« Mikael Pettersson, Uppsala University
= Tony Rogvall, Synapse

" EUC 05 prosentation 20051102 ERICSSON 2

ERICSSON 2

TAKING YOU FORWARD

Erlang/OTP User Conference 2005

Speakers

Simon Aurell Erlang Training and Consulting London England simon@eriang-consulting.com
Gabor Batori Ericsson Budapest Hungary Gabor.Batori@ericsson.com
Mats Cronqvist Ericsson Stockholm Sweden mats.cronqvist@ericsson.com
Viad Dumitrescu HiQ Goteborg Sweden viad.xx.dumitrescu@ericsson.com
Eduardo Figoli IN Switch Solutions Inc Miami USA
Victor M. Gulias University of A Corufia Coruiia Spain gulias@dc.fi.udc.es
Per Gustafsson University of Uppsala Uppsala Sweden pergu@it.uu.se
Kenneth Lundin Ericsson Stockholm Sweden kenneth.lundin@ericsson.com
Chandru Muilaparthi T-Mobile London England chandrashekhar.mulfaparthi@t-mobile.co.uk
Bernardo Paroli IN Switch Solutions Inc Miami USA
Mats-Ola Persson Chalmers univ of Technology Géteborg Sweden md1matso@mdstud.chalmers.se
Mickaél Rémond Process-one Paris France mickael.remond@eriang-fr.org
Kostis Sagonas University of Uppsala Uppsala Sweden kostis@user.it.uu.se
Corrado Santoro University of Catania Catania ttaly csanto@diit.unict.it
Carlos E. Silva IN Switch Solutions Inc Miami USA cartos@inswitch.us
Michal Slaski Erang Training and Consulting London England michal.slaski@gmail.com
Zoltan Theisz Ericsson Budapest Hungary
Manfred Widera FemUniversitat Hagen Hagen Germany Manfred. Widera@femuni-hagen.de
Ul Wiger Ericsson Stockholm Sweden ulf.wiger@ericsson.com

Participants
Ola Andersson Ericsson Stockholm Sweden ola.a.andersson@ericsson.com
Peter Andersson Ericsson Stockhalm Sweden
Gunilla Arendt Ericsson Stockholm Sweden
Joe Armstrong Ericsson Stockholm Sweden joe.armstrong@ericsson.com
Thomas Arts IT-university of Géteborg Goéteborg Sweden thomas.arts@ituniv.se
Johan Bevemyr Tail-F Stockhalm Sweden jb@tail-f.com
M. Harris Bhatti Linlithgow Scotland harrisbhatti@gmail.com
Eva Bihari Ericsson Budapest Hungary eva.bihari@ericsson.com
Martin Bjoérklund Tail-F Stockholm Sweden mbj@tail-f.com
Johan Biom Mobile Arts Stockholm Sweden johan.blom@mobilearts.com
Hans Bolinder Ericsson Stockholm Sweden
Urban Boquist Ericsson Goteborg Sweden urban.boquist@ericsson.com
Pascal Brisset Cellicium Paris France pascal.brisset@cellicium.com

Participants cont.

Mikael Bylund Telia Sonera Uppsala Sweden

Goéran Bage Mobile Arts Stockholm Sweden goran.bage@mobilearts.com

Martin Carlson Erlang Training and Consulting London England

Richard Carlisson University of Uppsala Uppsala Sweden richardc@comhem.se

Jakob Cederlund Ericsson Stockholm Sweden jakob@erix.ericsson.se

Francesco Cesarini Erang Training and Consulting LLondon England francesco@erlang-consulting.com

Bjame Dacker Segeltorp Sweden bjame@cs-lab.org

Niclas Eklund Ericsson Stockholm Sweden nick@erix.ericsson.se

Thomas Elsgaard Ericsson Copenhagen Denmark thomas.elsgaard@ericsson.com

Morgan Eriksson Nortel Stockholm Sweden

Michael Fogeborg Telenor Oslo Norway micke@online.no

Magnus Fréberg Nortel Stockholm Sweden magnus@bluetail.com

Francesca Gangemi Erang Training and Consulting London England

Joakim Greben6 Tail-F Stockholm Sweden jocke@tail-f.com

Rickard Green Ericsson Stockholm Sweden

Scott Green T-Mobile London England Scott. Green@t-mobile.co.uk

Dag Gruneau Nortel Stockholm Sweden dag@bluetail.com

Dan Gudmundsson Ericsson Stockholm Sweden

Bjém Gustavsson Ericsson Stockholm Sweden bjorn@erix.ericsson.se

Gordon Guthrie Edinburgh Scotland gordon_guthrie@hotmail.com

Niklas Hanberger Nortel Stockholm Sweden

Siri Hansen Ericsson Stockholm Sweden

Dale Harvey Herriot Watt University Edinburgh Scotland harveyd@gmail.com

Dragan Havelka Mobile Arts Stockholm Sweden dragan.havelka@mobilearts.com

Per Hedeland Nortel Stockholm Sweden per@biuetail.com

Pekka Hedqvist Optimobile AB Stockholm Sweden pekkahedqvist@yahoo.se

Sean Hinde Synap.se London England sean.hinde@gmail.com

John Hughes Chalmers univ of Technology Géteborg Sweden john.hughes@swipnet.se

Hakan Huss Ericsson Stockholm Sweden huss01@gmail.com

Rikard Johansson Mobile Arts Stockholm Sweden rikard.johansson@mobilearts.com

Thomas Johnsson Gatespacetelematics Géteborg Sweden thomas@gatespacetelematics.com
Kannan Nortel Stockholm Sweden

Bertil Karisson Ericsson Stockholm Sweden

Mikael Karisson Creado Systems Stockholm Sweden mikael.karlsson@creado.com

Participants cont.

Peter
Martin
Bengt

Lukas
Petter
Tord
Conrad
Tobias
Thomas
Daniel
Peter
Matthias
Ann-Marie
Peter-Henry
Thomas
Hakan
Héakan
Peter
Vincenzo
Patrik
Raimo
Patrik

Jan Henry
Géran
Lars
Mikael
Laurent
Anders
Tony
Staffan
Hakan
Erik
Sebastian

Karlsson
Kjellin
Kleberg
Krishna
Larsson
Larsson
Larsson
Levitt
Lindahl
Lindgren
Luna
Lund
Lang

Lof
Mander
Mattisson
Mattsson
Millroth
Nagy
Nicosia
Nilsson
Niskanen
Nyblom
Nystrém
Oettinger
Petterson-Fink
Pettersson
Picouleau
Ramseli
Rogvall
Skogvik
Stenholm
Stenman
Strollo

Ericsson

Mobile Arts

Ericsson

Nortel

Erlang Training and Consulting
Ericsson

Nortel

Herriot Watt University
University of Uppsala

Millpond Services Ltd

Erlang Training and Consulting
Synap.se

Corelatus

Sjéland & Thyselius

Mobile Arts

Ericsson

Tail-F

Ericsson

University of Catania
Nortel

Ericsson

Ericsson

Herriot Watt University
Mobile Arts

Nortel

University of Uppsala
Erlang Training and Consulting
Telia Sonera

Synap.se

Ericsson

Tail-F

University of Uppsala
Synap.se

Stockholm
Stockholm
Stockholm
Stockholm
London
Linképing
Stockholm
Dunblane
Uppsala
London
London
Stockholm
Stockholm
Stockholm
Thame
Stockholm
Stockholm
Stockholm
Budapest
Catania
Stockholm
Stockholm
Stockholm
Edinburgh
Stockholm
Stockholm

Uppsala
London

Uppsala
Stockholm
Linkdping
Stockholm

Uppsala
Stockholm

Sweden
Sweden
Sweden
Sweden
England
Sweden
Sweden
Scotland
Sweden
England
England
Sweden
Sweden
Sweden
England
Sweden
Sweden
Sweden
Hungary
Italy
Sweden
Sweden
Sweden
Scotland
Sweden
Sweden
Sweden
England
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden

martin.kjellin@mobilearts.com
bengt.kleberg@ericsson.com

tlarsson@nortel.com
benefitsdragon@gmail.com
Tobias.Lindahl@it.uu.se
thomasl_erlang@yahoo.com
luna@Update.UU.SE
peter.lund@lundata.se
matthias@corelatus.se
Ann-Marie.Lof@st.se
erlang@manderhanyu. plus.com
thomas. mattisson@mobilearts.com
hakan@erix.ericsson.se
hakan@tail-f.com
peter.nagy@ericsson.com
vnicosia@diit.unict.it

raimo@erix.ericsson.se

jann@macs.hw.ac.uk
goran.oettinger@mobilearts.com

mikpe@csd.uu.se

Anders.Ramsell@teliasonera.com
tony@rogvall.com
staffan.xq.skogvik@ericsson.com
hokan@kreditor.se
happi.stenman@gmail.com
seb@strollo.org

Participants cont.

Per Einar Strémme Stockholm Sweden stromme@telia.com

uif Svarte Bagge Corelatus Stockholm Sweden ulf@corelatus.se

Gunnar Sverredal Telia Sonera Uppsala Sweden

Taavi Talvik Elisa Tallinn Estonia taavi.talvik@elisa.ee

Marcus Taylor Erang Training and Consulting London England

Lars Thorsén Ericsson Stockholm Sweden lars@erix.ericsson.se

Magnus Thoang Ericsson Stockholm Sweden

Fredrik Thulin University of Stockholm Stockholm Sweden ft@it.su.se

Zoltan Peter Toth Ericsson Budapest Hungary zoltan. peter.toth@ericsson.com
Torbjém Témkvist Nortel Stockholm Sweden tobbe@nortel.com

Jane Walerud Tail-F Stockholm Sweden jane@walerud.com

Gillan Ward Erdang Group London England http:/mww.erlanggroup.com/
Carlos Varela Paz University of A Coruiia Coruna Spain cvarela@dc.fi.udc.es

Esko Vierumaki Ericsson Stockholm Sweden esko.vierumaki@ericsson.com
Claes Wikstrém Tail-F Stockholm Sweden klacke@tail-f.com

Chris Williams Ericsson Stockholm Sweden chris.williams@ericsson.com
Mike Williams Ericsson Stockholm Sweden michael williams@ericsson.com
Wen Xu Royal Institute of Technology Stockholm Sweden wenx@kth.se

Erik Ackander Ericsson Stockholm Sweden

Lennart Ohman Sjoéland & Thyselius Stockholm Sweden lennart.ohman@st.se

Goran Ostlund Stockholm Sweden goran.may@chello.se

|

Updated 2005-11-02 |

160

140

120

100

80

60

40

20

EUC participation

—— Univ/Inst
—-e— Others
—o— Ericsson
- Total

1999

2000

2001

2002

2003

2004 2005

Updated 2005-11-02

Requests/month to www.erlang.org

600000

500000 V

400000

S 300000

200000

100000

o L)] L) L] L] i 1 i 1 L] i]]
dec-98 jun-99 dec-99 jun-00 dec-00 jun-01 dec-01 jun-02 dec-02 jun-03 dec-03 jun-04 dec-04 jun-05

Downloads/month fro

M www.erlang.org or bundled with Wings

35000
30000 — Windows /\ K/“\
25000 ——Hinkx A U/\

—Total / \ K -

A

20000 — /\ \’ \/

— Poly. /\ A
o can IV VAR

iyl
10000 n Ar g - .Tlll.l
)
5000 /) /v/\" 'T‘rv-_‘l%r — 'w""‘v"
0 | _— = — - 42 4 s - _ —] : I l I

dec-98 jun-99 dec-99 jun-00 de

c-00 jun-01 dec-01 jun-02 dec-02 jun-03 dec-03 jun-04 dec-04 jun-05

