
10th International Erlang/OTP
f]ser Conference

Stockholm, October 21, 2004

EË
rgî

ü

r
*.
Ìt

il
EE

ilE
il U.!

*[r

a
ã
õ
q)

Ð(J

Effi*rsS#N t
M#/
n

l-ILçI

http : / /v¡vrw. erlanq. se/euc / 04 /

Proceedings

Sjöland&Thyselius..''. i t. .:...

t

SynËPSg ¡"¡ ii.'"1'.iil ;:l s'¡*:tv','*ri{s $- -

H RTANG

Erlang/OTP [Jser Conference 2004

Conference Pro
08.30 Registration.

09.00 Building ground support equipments with Erlang.
Jouni Rynö, Finnish Meteorological Institute.

09.30 SERVAL: a VLAN software switch developed in Erlang.
Alejandro García Castro, Igalia, and Juan José Sánchez Penas, University of A Coruña.

10.00 An Erlang WTLS implementation.
Johan Blom and Göran Oettinger, Mobile Arts.

10.30 Coffee.

11.00 Learning Erlang and developing a SIP server/stack with 30k potential users.
Fredrik Thulin, Stockholm university.

11.30 Messaging with Erlang and Jabber.
Mickaël Rémond, http : / /www .erlang-pro j ects . org /

12.00 Synapse DMC, liberating the mobile internet!
Per Bergqvist, Synap.se.

12.30 Lunch.

14.00 Dialyzer (Dlscrepancy AnaLYZer ol ERlang programs).
Tobias Lindahl and Kostis Sagonas, Uppsala university.

14.30In the need of a design... reverse engineering Erlang software,
Thomas Arts and Cecilia Holmqvist, IT university of Göteborg.

15.00 Erlang's exception handling revisited.
Richard Carlsson, University of Uppsala, Björn Gustavsson and Patrik Nyblom, Ericsson.

15.30 Coffee.

16.00 ErlGuten.
Joe Armstrong, SICS.

16.30 Proposal for an Erlang foundation.
Mickaël Rémond, hÈEp: / lwww.erlang-projecLs .org/

17.10 Erlang/OTP R108.
Kenneth Lundin, OTP team, Ericsson.

17 .30 Close followed by bus transport to an ErLounge in downtown Stockholm!

Session I

Session II

Session III

1'

Session IV

Demonstrations (during intermissions)

Mickaél Rémond demonstrates the Jabber.
Tobias Lindahl demonstrates the Dialyzer.
Tony Rogvall demonstrates SSH implemented in Erlang.

I(tt)

Building GSEs with Erlang
Jouni Rynö, FMI / Space research

- history of Erlang at
Finnish Meteoroloelcal Institute (FMI)

- CIDA and COSIMA instruments

- Ground Support Equipment (GSE)
. real-time teleoommands (TC) and telemetry (TM)
. ofline telemetry (DB)
. online telemetry (WWW)

æ wue

ttM^r¡lrEIN !^r¡Qi
l{f lÊoRotocrs(Á rNslt¡urÉl
FlñNlsH ¡rtTf o¡oLoctcat rñ5¡¡luf¡

History of Erlang at FMI

- a small world
. acolleaguehadbeena

oolleague ofJoe in 1980's
. and the oolleague's brother

was working at Ericsson

- a broken lightning location

æ tm 2

ItMAltItttN t^ttos
Mrtlolotoc¡!(Ä tNttrlut¡1
f lNttt{ sçÎto¡oLoctcaL tNttrrùrr

system in June 1995
. fromlearning Erlang to a

reahime graphical lightning
dþlay in 3 weeks...

2

L

History of Erlang at FMI

- magnetometer data
aqcuisition systems
. mea$rres magnøic

variation ofthe Earth
. 3 coryone,lrts

(north, east,
vertioal)

. meanswith ls, lOs
and 60s time
resolution

æ-- .:

æ
ryffi

.t1?04i.ffi

,i Ê -. ¡i ri; -. n--

rtu^ìtlt[(\ [^ttos
MIttoßoroçtst^ tN5ltlùr¡r
f ,NñtaH MEf Éonoloctc^t tñ5trlur¡

Comet and Interstellar Dust
Analyzer (CIDA)

@
0ry4

'FAÊ¡m ,,eaFlr@ E <r9?6
^s>- ¡.¡¡¡

trM^r¡¡ttFN ¡À¡¡()l
Àt(ÌtoNo¡Q{,ttxÂ ¡ñsf ttlrltr
r,{!taH ùEtEOnoLoctc^r tÈst¡rutE

- time of flighr
mass specfrometer

- made a comet flyby
on 02.01 .2004 on rhe
Stardust-spacecraft

- deveþment
1996 - 1998

I

3

Cometary Secondary Ion Mass
Analyzer (COSIVIA)

- mass spectrometer

- onboard Rosetta,
ESA's spacecraft to
study the comet
67 P/Churyumov-

Gerasimenko

- measr¡rements
2014 - 20ts

dtddæ
Mf rtoRotoc¡$(Á lNsf ¡turÉt
Ff Nñ¡5U MITfORO[óCtCAt tñStttUra

Cometary Secondffiy Ion Mass
Analyzer (COSIMA)

Elect¡onics

Ion Sourcc

Ion Beam

Secondry Ion Beam

Ion Reflector

æ dt8 6

Conelå¡J-lllsJ

(Spectrumeær Pos.)

Tungsten

Ion Optics \
Camem

Targct
(Caners

Robotic Arm with

Tsget
(Chemistry Station)

DriftTube

Ion Detector

ROSETTA
SpacectalÌ

Target'
(Collect Positioo)

Target Storc

tlMArtfrffN 1^lroç
Mr¡¡o&otoc¡s(À tNttrluTrl
FtN!tsÈ stlEo¡oLoclcÁr rNslrlùrt

2

4

Cometary Secondary lon Mass
Analyzer (COSIVIA)

- 72 dust targets, each
10*10 mm size

- carnera to detect 10-
100 ¡rm size particles

- motor system to move
targets around with 4
pm accuracy

- 80 pm In ion beam

@ ßw6

rtM^trtI¡tN t^ttQs
Mtf toRotocts(^ tNs¡tî!trl
¡lNñ15d Mtl€O8010CtC^t tìsTrtult

füound Support Equipment

interface during the
deveþment

- provides
telecommand

generation and
telemetry analysis

- as in the Erlang book!

l

@ dffi

- simulates S/C electrical

M!f to¡oloclçß^ rNsl¡lut¡l
lrNNtÍH MIl¡O¡OLOCtCÂt ttsStttuI¡

I

5

User interface

æ 9

ItitÄt¡!rlr! t.^rìos
Mrf aoaotoçtsf

^
rNsfrturtl

Ft{ñl5H MÌf totol0ctcÁt t{ilIYUl¡

. user interface r¡rritten in TcVTk

- button/menu interface fine for simple and often
used interactive operations

- complicated commanding needs a scripting
language

- BLT gives nice 2D gaphs
. Erlang talks \ /ith Tcl via modified ewish

User interface 2

æ €û6 t0

¡lMAtt¡ftIN tA¡Tos
Mrl¡OSOIOC¡t(À tNttrf uTrl
Ftññ¡s{ 9Etao¡otoçtc^l tñstttuTË

2

6

- selfinade PCI-card
for S/C
interface(linux driver
with IDL c-server)

- power supply

- analog to digital PCI-
card for current,
temperature and
vacuum monitoring

H/W interface

æ 1¡

rlM^¡r!Irt! tÀrros
MtlcoRoloctg{^ tñsf¡TçT¡f
rrNNttH Mtt[o8o(octc^t tNsf tlut!

. lgg6:

- no bittary syntax

- no hex format

- not open source

- not sure about language future
. 2004:

- few know about the language

Why not Erlang

@ Effi u

tLMÀ1¡ft¡tN tAtfos
Mttto¡oroçtsß^ tNtltlvlFf
f r{\trf MrltorotocrcÁ! ¡NtTt¡utt

I

7

tJVhy with Erlang

. experience \^¡ith Occam language
(in the Transputer-processoi¡

- processes, s¡rnchronous messages, no pointers. Erlang:

- butrering comes for freel (asynch ...). new languages are fi¡n to leam

@
0ffi

taMAlt¡ltEN ìÁtlo,
ME¡to¡otoc¡st4 tN!ltlu¡rl
f tNñt5f t¡1[Ototo6tcÁ! t{srttgtr

Erlang as middleware

@

- TC timing (buffeÐ

rtÁt^rrtttEN t^rros
Mrltototocts(Ä tNrTtru¡f ¡FrNñt5x MtrËo80toc,c^t ¡NSrtt!rt

- TM buffering

- loeeing

- HK monitoring

- archiving

- distribution!

2

8

. formatting and
checking

. timing

. buffering

. acceptance and
execution

hmdlo_ovd({time_ort, TÇ Timero, TimerKey}, S.t*e) _>
Recrh = gen_eerveccall(St*edkt*e.orr .n, "' ----'

{vrne, TC}, 1s000),
{*,R.ery_timer} : time:eppty_dárrnæôI]I,

._^
rgr¡r_gervonl'c"dr,[sc_commicdiø_server,

¡no_reryose, {TimerKey} }l),
eteinsert(Times, {TimeKey,R.ery_timer}),New$ste : Sdc#{qto{queue = tl(S*r#'Jas.ouemef f
A¡€r{Norsta¡#úd,e. queuo),
{dr,Norña4;

TC with Erlang

acknowlegements

@
d¡ru þ

rtM^¡tÌ¡ FrN ¡^t ros
arÊ1f oRoloç,5ti tNSlrlvlüf
Frññt5t ÀtEt[oRotoctc4t,{slttul!

lem,ngdwf;
IâEff,<6è

lem,eúq$;
eÈ(D{bbcle)>IæÉ.>

"çwt¡^A-6r
"

"ffi c þftæy*,fuøs,Ðfi:q¡ú.rt6ta¡tiorp> +

Podadagrh > sra$ff bbcl6) _>

ffiffiw'rriæprrJetbbck vo hd vï', Iete(rì[brocrú)pæ¡64r'ú])
tre _>

$+.cf€Sndbtñts,
rãEú) ->

Iøgtú*O>
þr,ol;

Iea6ú<O>

erú¡

@
ßm ß

cÉry

TMhandling

åq--rrf,

ItMÀrtir¡tN tatlas
MEIEôtotoc¡ç[^ tNsl¡lutrr
ÌrNNttt MrltoÌotoc¡cÁ! tNstttutr

I

I

TM handling, paratrteters
extnct-tim¡(Si'e, HeaiFize, Tâin9iaì, Ì}"e, Bfu) >

cæI!¡nof
iruraigmd'inbgeri ->

<dllleadSi¡¡e,VaheSizy'r¡n{gæd-inegen TTaiFi¡ze&s/bi¡ ¡¿> = Bin;
reigrnd-irdegert >

<{IIleail,9izr¡VahÊSiue/dg¡red-ùúÊFr;nTaíl3ize,Re{bina¡Þ> = Bin;
if,oaút ->

<{II{ead,9lze,VahSir#orû,TTail9ize,Re{him¡Þ> = Bin;
ttimei ->

<{IlleadSùze,Vaúue5idrnuigr:dìnlgef,TTaiFizeÃedbimjiÞ> = Bin
en4
<<Ul{:llead.9nze,tlVarlue$idrnæignÊdåb6ef;UTlhiFi¡re,ttRdbiÍ JÞ> = Bi&

{Val¡e,Iwahe}.

@ It

ItM^ltttttN t.^llot
Mf tf o¡o(ootstÁ tNsftluret
FlNNlSn ÄtIffoRot06tcÄt rN5¡rtulÉ

l'.,i'ri| '¡
; r.l

I :.1

À rl

i, , ',,

is:,i
ü _'

parameter, value)).
o olt ground, every 2 seconds

- -30 16-bit AD values

- -64 single bit status flags
. plus images, spectra

lpbo-ut 200 Mbytes / working day
æl i'.ïhîî",'iilihr x¡;,,,, ",,

Offline TM -> DB

. -record(timejarameter,

{time,

dt0

2

lct

. 200 lvlbyte / day -> disk_only_copies

. for faster searching, use fragmented tables
\Mith a special hash module

- key is lvlJD2000, decimal day since 01.01.2000

- key_to-fraanumber(State, KeÐ when
record(State, hash_state) ->

IntKey:
trunc(Key).

@ *1fi i"* ili'i:1i'^ï¡J-,,,
",.

Mnesia

ú

Online access -> yaws

. DB frontend for the scientists

- housekeeping data

- events, images, specfta

- target history

- instrument status

. docr¡ment repository

. wiki

@ ßxu0t t0

¡IMÀIITIE¡N IAITQS
Maf to¡orocNß^ tñ3ltlulFl
atNN¡sg Mt¡!of, otoctcÁ! lN9lt1|t

I

IT

RSDB sret (fdr mu¡ttple *lectþrl E st¡tfr [or å rogp, contñl for lndMduå¡ parâmtq.¡J)

srart date {YY-YT-MM-DDTHH:MM¡ss): lããðlEãñõãffiiðã

siop date iYrr.MM-DDîlH:MM:ss! FiFã--_
For í8rt date, tlE hDu defar¡lts to oo, mirute to 0o ånd sæmds to oo

For stop dåDË, ths how detuultE to ?3, m¡nut€ to 5g aíd æonds to 69

*q*4 sy;l.;*rËL]

¡nit¡d! codêlt reqoèn 41653
COS¡U ñèedE $ al62
CosUÂ ùod ü61
w W seiirhêd off 41612
mF W *ít.hrd ôn 4l5u
tr 10 be *ilched ¡r 4lf,o

416æ
rèqúef al63

Yaws

æ ßm 2t

llM^l¡rlrEN t.^trot
Mf taoRotoctsÈ4 rNsttlùrft
f tNñtsH H¡ltoxÕ106tcat tñsTtÍu¡r

lçs41565 COS¡Sçffi ffi 4t5A5
YCglsA3 COstsCffi W Cf]m 415E3
YCS4¡5æ CO56Cft $r<H r 4l!&

cos¡sceÊ $ncH N 4159t
C0S¡SCoFE tû bê ritchèd on 4H

Selætisr = t{ { tiæ_paræer,'$1','$2','$3'},
[{'<',{ corÇ1608.00},'$1'},
{'=<','$L',{ cætL609.00} },
{'=a =','$2r,{ coffi," NICSA1100" } },
{'orclæ',{'n =',{ coffi,4.1,5650e|.4} l$e'¡,

I
t=;

=r,{ coret4. 16üX}el4},'$g'},
¡

t=;=r,{ c@,4.16010e+4},'$g'} } l,
t'$_l)I

. define queries to the DB

æ dû8

Yaws

lttÁ11!ttfN tÁlTos
MrltoSolocf s(À lNtttf uT(1
¡¡NñtsH Mrt[oRoLoctca! lNsrtyult

2

Iz(tt

2005: COSIVIA net nodes

æ dm

rluAl¡¡tFr! t^tlQs
MrrEoRoroo!!x^ lNsrtluTCÍ
llN{ltE {[1to¡otocta^r rñsf rr!r!

. EGSE for the BepiColombo/SERENA
(ESA Mercury mission)

. the u¡hole meteorological section could
benefit from Erlang

- lots of different weather reports in different
formats coming in daily

- different, tailored services to public
. needs some selling

@ *r:*t'*ilihî:'^ïir,,,,",,

Fufure

A

I

t(rt)

SERVAL: an Internet software VLAN switch developed in Erlang *

Alejandro García Castro, Fbancisco Javier Morán Rúa
Tgalia Software Engineering

Gutenberg, 34F3 2", Polígono de A Grela - 15008 A Corunha

e.mail: {acastrojmora,rr}@þalia..com

Juan Jo,sé Sánchez Penas
University of Corunhao Computer Science Department

""-'î åT'H;.å:i:å :"'""*

Abstract computers, no matter their location or the con-
nection they use to access the network. For this
pu{pose, we have desþned a system that emulates
the operation of a hardware switch. The Operat-
ing System in t-Le client does not have a regular
network interface, but a special program tbat, act-
ing .s a virtual interfacq communicates with the
SERVAL server. The clients can connect to VLANy
defined iuside the server, which works as a software
switch forwarding the messages between the clients
in the same Vi,rtuøl Local Area Network (VLAN).

Nowadays the solutions available to link two -to-
æ,1 Arcn Networks (LANs) do not providesome fea-
tu¡es th¿t would be desi¡able in some cases. The
main technologies for connecting remote ^L.ANs cur-
rently are: VirtuøI Pri,uøte Nehuorks (TPJVs) and
VLANI. The applications we have in mind as inter-
esting examples to be implemented on top of this
technologies range from mobility solutions to file
sha.ring.

The main issues of this project that we have to
face are:

r Client/server architecture: we have to support
this kind of architecture because the connec-
tion from local range lP addresses is a require-
ment, and therefore P2P solutions would not
satisfu our needs.

o Performance: the emulation would have no
sense if we do not have suitable latency and
throughput. The system should be able to
overcome stress situations. Scalability is also
an important feature.

1 Introduction

There are situations in which it is very interest-
ing to connect a machine to a different Local Areø
Network from the one its network card is actually
connected to. Some network applications require
our local host to be virtually connected to a remote
Locøl Arca Nettaorlc. This article describes a pro-
posal to develop a software system that emulates
the operation of a switch, allowing to create VáúuøI
Local Aræ, Networks over the Internet, that com-
pletes the current similar solutions. \['e have cre-
ated a prototype developed with Erlang/OTP using
a client/server architecture and we u¡s v¡e¡þing on
the integration with the Operating Systems using
virtual network interfaces. Erlang is very suitable
to face the main issues of this system: performance,
communications and fault tolerance. We have ac-
complished performance and functional tests to as-
sess the suitability of the designed system using the
prototype. The paper will explain the,current re-
sults of the research and describe future work.

SERVAL is a research and development project
whose aim is to assess the feasibilþ of a system
for creating VàrtuøI Lou,I Area Networlçs (VLANs)
using a software server. The main goal of this sofl;
ware is to provide a way to set up VLANI between

iPartially aupported by Xr¡nüa de Galicia - PGID-
TTSINOs13E

1

L

o Operating System integration: the interfaces
to our switch in the client side must be vir-
tual network interfaces. User space applica-
tions would use these interfaces as the regu-
lar ones. Our target Operating Systems are
GNU/Linux and Microsoft Windows.

o Communications security: this kind of systems
should assure their communications, because
the traffic goes through an unsafe medium.

We have designed a system following these re-
quirements: a client/server architecture aimed to
solve the main risks we have detected. We have
decided to use Erlang/OTP [1] as the development
environment because its features fit very well with
the project goals.

In this research we want to face and measure the
main risks we can see to develop a system like the
one we describe. The paper will explain the current
results of the research and describe future work.

In Section 2, the current alternative solutions for
connecting remote LAN.s are described, and their
advantages and disadvantages discussed; the moti-
vations for the project are also presented. In Sec-
tion 3, the main goals and system requirements
for the research and development project are ex-
plained. After that, Section 4 introduces the sys-
tem architecture, leaving for Section 5 the details
related with the use of Erlang inside the system.
Current status of the project, including some per-
formance tests, is presented in Section 6, before
concluding in Section 7.

2 State of the art and motiva-
tion

Nowadays technology brings us some options to
connect remote LANs, but these applications do
not provide us features that are very interesting in
some environments.

\Me could use V,irtual Priuate Networlcs (IzPlfs)
to create a virtual connection between remote
.t.ANs communicating over possible untrusted net-
works. \Mith this technology we can communicate
remote networks emulating neighbor networks with
a router in the middle. But using this kind of tech-
nology we can not transmit non-routed traffic be-
tween the network (therefore, local area protocols

cannot be used). Besides, we need to configure a
router to send out the packages. An example of
this kind of software is FreeS/Wan [2], which imple-
ments lPSec [3], an standard protocol for encrypt-
ing lP traffic between two networks connected by
two lPSec gateways.

Another option would be the use of Vi,rtuat Lo-
cal Areø Networlcs (VLANs) connecting Local Area
Networlcs that are physically separated, enabling
non-routed traffic between networks (and therefore
local area protocols). Virtual Local Area Networlcs
are normally implemented using the 802.1Q [4] pro-
tocol, which sends layer two traffic with Vi,riual Lo-
cal Area Networlc information to define Local Area
Networlcs using ports of different switches. The fact
of being able to communicate any kind of traffic
between the networks, would simplify some reg-
ular tasks when we share resources and will also
enable the use of applications that communicate
with each other using protocols like Rendezvous or
SMB. The main limitation of this kind of solutions
is that, nowadays, $,e can only deploy a system like
that if we have control over all the physical switches
placed between the host and the network we want
to connect it to; besides, all the intermediate ma-
chines should have that feature implemented. We
cannot forget that a telecommunications company,
even controlling all the hardware of the network,
can not touch the configuration of their machines
dynamically in a safe way, because any mistake
would spoil all the traffic of the network. We also
have to remark that changing the configuration of
the machine is not simple, and a trained technical
assistance would be needed.

The system \'¿e propose in this paper can emulate
this VLANs behavior using a scalable, distributed,
TCP/IP server that acts as a software switch. The
clients would run programs that simulate logical
network cards connected to the software switch.

We have taken some features of both VPN and
VLAN systems to define the main goals of the
project. The security of VPNs is a very im-
portant feature, because communications are per-
formed through an unsafe medium. Authentication
and authorization are a important issues that needs
to be solved properly. Hardware switches are de-
signed to handle a great flow of packages, therefore
the system has to be ready to manage heavy stress
conditions. The performance is another main issue
we have to face and specifically the system scala-

2

3

bility. \Me should consider a group ofthousands of
clients that define a group of VLANs trying to send
their discovery messages through the switch, the la-
tency has to be correctly handled. In any case, the
use of this kind of systems must be well designed
because the amount of traffic that the local proto-
cols produce can be very large.

Some of the standards and well-known technolo-
gies we are using or considering for the project are:

o Locøl Area Networfr technologies: Ethernet,
Token Ring, etc. \Me also should review sys-
tems to manage this kind of traffic, congestion
management.

o V'irtuo,I Local Area Network, technologies:
802.1Q [4], 802.1D [5] and current hardware
that supports it.

o TCPIIP transport protocols: UDP and TCP.
'We want to do research about which one
should be more appropriate.

o Application level protocols and their encryp-
tion systems: SSL and TSL [6].

o Network interface emulation, both for
GNU/Linux and Microsoft Windows.

We have discussed and proposed some applica-
tions of the SERVAL technology together with r?,

Cable e Telecornunicacións de Galic'ia, 5.4., to
learn more about possible use cases and increase
the knowledge about the system requirements. The
idea was to frnd out some applications in which the
advantages ofthe technology would make them spe-
cially interesting for our project:

¡ Virtual corporative LANs among several phys-
ical networks in a company, with a simple and
flexible configuration, Enterprises could de-
fine communications between their headquar-
ters easily, they could even work from home,
using their personal Internet connection, but
accessing the network and resources of the
company. This is very interesting for mobil-
ity: if a worker is in a different place than the
rest of the company he can still connect to
the network and develop his tasks or access to
a document that he has in his account.

o File sharing: users could easily create a pri-
vate network between them to transmit infor-
mation. They just have to use standard local
area network protocols and they could share
resources and services.

o Games through Internet that could only be
used before in a LAN environment. This is an
interesting product for a telecommunications
provider company like, because the easiest way
to play in a network is using machine and sofb-

ware discovery protocols that only work in a
LAN. The tool to manage the connections to
the VLANs can be an easy interface that al-
lows a regular user to connect to this networks
and play network games the same way he/she
is used to do in local environments. The enter-
tainment industry is nowadays an important
part of the telecommunication business.

3 Project goals

The main goal of this research is to assess the fea-
sibility of the use of the current technologies for
building a software system able to create and con-
ftol VLANs. We have agreed some functional re-
quirements that the developed system should fulfill:

r Client/server architecture: the basic architec-
ture of the system should have these two lay-
ers. We need this kind of architectural design
because of the current Internet connectivity,
there are a lot of conditions where the clients
are in a network with local lP address range.
In these cases ï¡e need this kind of architecture
to assure the connection bet\4¡een the hosts, be-
cause P2P technologies would not adapt cor-
rectly to our needs. The flexibility and control
that the server application provide us seems

to be an interesting feature for the system.
Anyway, we have also considered the peer-to-
peer (P2P) architecture, there are some condi-
tions where the P2P could be a good solution.
Therefore, our main goal is the client/server
architecture but we will consider the way to
adapt the system to a P2P deployment.

o GNU/Linux and Microsoft Windows link layer
integration: it is an important point for the
system usability. Due to these requirements

!r

3

\¡/e need a multiplatform development environ-
ment, able to produce software to be run in
both GNU/tinux and Microsoft Windows. The
perfect integration of the client with the Op-
erating System lets us use the regular facili-
ties and programs with SERVAL transparently.
The Operating System will detect a new net-
work interface that will use to transmit traffic
like any other interface of the system. The in-
tegration with current local area technologies
like Ethernet will also be a very interesting tar-
get because of the facilities that include. This
is one of the main risks of the project, espe-
cially in the Microsoft Windows environments.
In GNU/Linux we already have a virtual Ether-
net driver (TAP) that lets us redirect the traffic
to a user space application. Microsoft Windows
environments are closed and the assess of the
solution is not so easy, rür'e will have to develop
a system virtual driver.

r Performance: it is also a very important risk
of the research, because we have to accomplish
some minimum results in order to be able to
properly emulate a LAN. The latency of the
server is an important issue to solve: we have
to reach a minimum latency even under stress
conditions. The throughput should also be
optimized, because we could loose too much
bandwidth using the system. Regarding this
subject we have to consider the scalability of
the system, which should be the best solution
for being able to handle a lot of concurrent
users at the same time. We also have to think
about the transport layer protocol used for the
transmission: UDP or TCP; it seems that de-
pending on the concrete conditions, one alter-
native could be better than the other, so this
feature should be configurable.

o Fault tolerance: the system should be designed
to continue working in the presence of software
or hardware failures. The server could be de-
ployed in a cluster of computers, and the de-
sign of processes and protocols should take into
account any possible problem derived from any
kind of error.

r Security: one of the most important features
that the system should accomplish is to secure
the connections; even the performance could

be penalized in some conditions. Authenti-
cation, authorization and encryption should
be added to the system, and the connections
should be assured to avoid security problems.
There are applications of the system where
security is not an important issue but when
we want to transmit sensitive information we
must assure the communication.

o Heterogeneous -tAN protocol encapsulation:
regarding the type of protocols we should sup-
port at least Rendezvous and SMB. Anyway,
it is very interesting to support other network
technologies, being the optimal solution that
the virtual interface had no difference with the
rest of the network interfaces of the system. If
we completely implement the virtual Ethernet
driver we can accomplish this goal.

4 Software and hardware ar-
chitecture

When we thought about building a system that em-
ulates VLANs in a WAN environment, we had to
decide the global system architecture we were go-
ing to use. It should be noticed, before going on
with the detailed description, that, by global archi-
tecture, we mean both the hardware and sofbware
skeletons of the system.

The first option we evaluated was whether a peer-
to-peer approach would be interesting. \Mith the
use of a peer-to-peer a approach, the scenario would
be the following one:

Each user of the system would have in his com-
puter a client of the SERVAL system installed. This
client would negotiate a connection with another
user having also installed the SERVAL program.
Once the connection between the clients was estab-
lished, they would be connected at link layer level,
being this medium Ethernet compatible. Therefore,
the Operating System of each computer would see

the other one as if it was in its .[.4/ú with all the
advantages this fact has.

This scenario looks fairly attractive but has sev-
eral serious drawbacks that made us reject it as a
general target architecture. The main disadvantage
is that if both clients are in private networks, with
private network lP addresses, then the peer-to-peer
connection would not be feasible.

4

5

Another drawback is that this skeleton is not
good if we want to emulate a lot of machines in
the same .0.4N. This is so because the program in
each client would have to open a peer-to-peer con-
nection with each computer belonging to the same
VLAN. This would cause a serious network over-
head. For example, if we wanted to have a hundred
users in a VLAN , the number of connections which
would be necessary in order to open in each com-
puter is one hundred and, altogether, they would
be up to ten thousand. Besides, this skeleton would
not be persistent and each client needs to know the
addresses of all the other clients we want to include
in the same emulated LAN.

A second architectural possibility to solve the
system scalability problem with the number of con-
nections would be a bus structure. This can be
viewed as an improvement of the peer-to-peer ap-
proach. In the bus architecture approach, the pro-
grams would be joined forming a line. Hence, in
this one-dimensional structure, clients would prop-
agate messages in order they reach their final des-
tination.

The bus architecture, as v¡e can see, reduces the
number of opened connections because each SER-
VAL program only has to be linked with two more
users and the configuration complexity is lower
than the peer-to-peer. However, it still has two im-
portant drawbacks: the connection among private
lP clients, which is not possible, and how a client
can belong to several VLANs. Another problem
is the different latency of the messages depending
on the position of the clients involved in the com-
munication. Therefore, the bus architecture is not
suitable to fulfill our requirements either.

After having discarded the previous system ar-
chitectures, rve came to the conclusion that the one
\4/e \ryere looking for, more adapted to the project
needs, was the client/server model.

In the client/server model the entities taking part
are the following ones:

Server The server will be a program running as a
daemon in an Internet accessible host. This
program, the SERVAL server, will listen for
connections coming from the users of the sys-
tem. Its function is similar to the function a
hardware switch has in a LAN .It will be able
to group users in different independent sets
and will be the mediator among the clients.

When a user wants to send a message to an-
other client, he has to send it first to the server
and, then, the server forwards it to its final des-
tination. The fact that the server can group
users in sets can be compared to the VLANs
existing in some hardware switches.

Client The clients in this architecture will be the
users who want to connect to our system.
They will have to install in their computers
the client program to access the virtual switch
and through it, the rest of clients.

The user Operating System, accessing the
SERVAL client, will be able to see the other
clients in his groups as if they were in the same
Local Area Networlc.

With the client/server model, the drawbacks and
limitations existing for a P2P or bus architecture
are overcome. In order to communicate the client
and the server, operations and messages similar to
the ones used in the link layer protocols were de-
fined.

The messages interchanged between the client
and the server are shown in Figure 1. The client
can connect and disconnect to the server, ask for
the list of available VLANs, and join or leave one

of them. Other messages allow the client to send a
message to a given VLAN (and therefore to all the
users connected to it).

Other important messages are the
address0fClientRequest and its answer from
the server side: the address0fClientResponse.
They were created to emulate the ARP Ethernet
link layer protocol and are used when at network
level a client wants to talk to another.

At network level clients communicate with each
other knowing their network level address. For
instance, if we are using TCP/IP knowing their
lP. However, at link level it is not enough with
the lP address to contact with the destination
but it is necessary to know the link layer ad-
dress of the next hop towards the destination
as well. Therefore, in SERVAL we use the two
former messages, addresss0f ClientRequest and
address0fCÌlentResponse, to find out the SER-

VAL link layer address of a client knowing its net-
work address.

Finally, the global architecture chosen has to be
both fault tolerant and scalable. By fault tolerance

5

6

rre mean the system should be resistant to a partial
system crash, being able to overcome the situation
and continue the normal operation. By scalability
we mean that if the system requirements grow, and
the number of clients connected is higher than the
initially expected, new resources can still be added
to the server in order to increase its performance
and fulfil the new requirements.

\Mith this goals in mind, we have extended the
client/server model to be a distributed system. So,
in the final architecture, instead of having only a
node of the SERVAL program running in a host,
we have several nodes which collaborate with each
other: they will detect a node failure and restart
it if possible, the clients of a crashed node will be
moved to another node of the cluster, and so on.

5 Implementation of the sys-
tem using Erlang

As explained in the previorrs section, we have to
build three sofbware artefacts:

¡ SERVAL server. It is the program which plays
the role of a hardware switch in a real VLAN
environment. It has to be run in an lP accessi-
ble from all clients. Its function is to manage
all the operations related to both the VLANs
and client management. For instance, it ac-
cepts input connections from clients, creates
VLANs, routes messages among clients etc.

o SERVAL client. It is the software which clients
must use to access the server. It has two parts:

- User land adapter It is the program which
receives Ethernet frames from the virtual
Ethernet driver and maps them to mes-
sages of the communications protocol.
Next, these messages are sent to server.

It has also an interface to receive requests
directly from user. For example, requests
to join VLANs, to abandon them etc.

- Virtual Ethernet driver. It is an Ethernet
driver which implements a virtual net-
work card. It controls the communica-
tions with the Ethernet Operating System
kernel API and the user land adapter.

_ _ _ fyEH-l"Ti.l
{vianListResp"rtli : I

_ _ _ !j"jgr:T"Ti:
{j oinvtanResponr-"f

-- -l

f"jdl"iTTequest) -->
{ sendl,lessageRe gpjnje} - -

_ {ctientlnvlanRequest}
>

l;t- J
-l

{ connectionRequest}

{conne ctlonResponse)

{ connectionCloseRequest }

{ connectionCloseResponse

Figure 1: Messages interchanged between client
and server

6

Client

v
Ê

Appllc¡tlon Levol

Itansport L!YGl

NGtwoft LGVGI

Llnk L€vcl

Physlcal Levol

A diagram which summarizes the relation be-
tween the client agent developed and the virtual
Ethernet driver is shown in Figure 2. It shows how
an end user application running in a computer con-
nected to a server would use the client and the com-
munication protocol stack. The messages sent by
the application level program are encapsulated into
a transport level protocol. Then, the transport pro-
tocol is encapsulated into a network level one. Af-
ter this, the network level datagrams are converted
into Ethernet frames which, next, are sent through
the virtual Ethernet interface. This virtual interface
delivers the frames to the user land adapter which,
finally, maps them to the protocol messages used
to communicate witch the server. They are encap-
sulated through the protocol stack again and are
sent by a real network interface.

The reverse path is followed by the messages de-
livered to the user agent by the real network in-
terface after the demultiplexing which happens on
ascending the communication protocol stack.

In the rest of this section, we detail the Erlang
implementation of both the server and the client
agent.

1 Usor Spaco

KGmcl SpacG

Figure 2: Relation between the client and Ethernet driver

5.1 Server implementation in Erlang

The process structure of the multinode switch can
be observed in Figure 3. They are represented the
process classes and the relations existing among
them. The relations we emphasize are two:

o Creation link relation A process class A has
a creation link relation with a process class B
when processes of class A create processes of
class B. This relation type is shown by the con-
tinuous lines.

o State link relation A process class A has a
state link relation with a process of class B
when in the state of processes of class A is
stored the process identifier or the registered
name of processes of class B. This relation type
is represented as dotted lines.

The task each process class carries out is ex-
plained to understand the Erlang implementation
of the virtual VLAN switch accurately.

serval-app This process class is an Erlang ap-
pìication behavior. It has been created to
start/stop the server.

I:
t

Urarlrnd adrptaañlê ih¡dñc
ôppllc¡don SERVA

hñspor hted
(P)hñrporhbcol

0P)
hñipôr htocol

0P)

(P)
Xño* hbcd

0P) lrP)

Éthâm.t- Unk
byêrEû.mü- Uñk

layar
Ethem.t- Uñk

byar

tuàl Gth.m.t
drig.r &¡l.themlt

ddgêr
V¡&.1 Ehcmct

¡t

T

B

serval-sup This process class is an Erlang
supervisor behavior. It supervises the
serval-server-logger, serval-tcp-port-manager
and serr¿al-u dp -port -nanager process classes,

serval-server-logger It is an Erlang generic
server behavior. It has the mission of logging
all the information sent by the other processes
existing in a node.

serval-tcp-port-rnanager This one is another
generic server. It listens on a TCP port wait-
ing for incoming connections. Every time it
receives a connection request it spawns a new
process called serval -connectionrnanager.

serval-udp-port-rnanager It is also imple-
mented as a generic server and its function
is to listen on an UDP port waiting for
incoming messages. \Mhen it receives the
first message coming from a source socket
(source lP, source port) spav¡ns another
process, serval-connection-manager, for
that connection.

serval-connection-rnanager It is a super-
visor and is entrusted with the task of
coordinating and supervising the ser-
val-connection-communications-tcp, ser-
val-connection-communications-udp and
serval-connection-oper ation process classes.

serval-connection-operation It is a generic
server. This process carries out the operations
associated with the messages sent by the client.

serval-connection-communications-udp
This process class does the sending of
messages from the virtual switch to the
SERVAL user agents. The messages which
arrive from the clients to the server are
received in UDP communications by the
serval-udp-port -rnanager.

serval-connection-communication-tcp This
process class does both the receiving of the
messages which arrive to the server from
clients and the delivery of the messages sent
by the virtual switch to the user agents.

Figrrre 3: Link process cla,ss dia,gram

5.2 Client implementation

Regarding the user agent implemented in Erlang,
the process diagram of the design can be observed
in the Figure 4.

The process classes which take part in the user
agent are:

serval-test-client-gui This process control the
interface which is used to make requests to the
server and to send and receive messages from
VLANs.

It is the process which talks to the graphics
system and receives all the events from it when
users click in the interface widgets.

serval-test-client Processes of this process are
created by the serval-test-client-gui when the
user requests a connection with the server.

It is the process entrusted with the task of
sending messages to the SERVAL server and
receiving from the Internet all the information
sent to the client.

1,,1

0..t 0..¡

1,.1

1,.1

I

r.ry.| ¡ÞÞ

lN¡l r.d.r .ul

¡.N.1 ¡wd loqccr r.Pål kÞ m^ m.ilo.¡ !ñd udo æd mñ¡où

t.d!l coñndon ru¡s*

¡lNrl (mn&n omñ&n$ryd .onñfttuñ €omùnbüoM t.Þ

ffi.| d¡bb¡¡. ñ¡n¡qtr
r.d¡l con'dôn .ôñrunkldonr udù

9

1,.
User

Figure 4: SERVAL user agent link process class di-
agram

5.3 Storing VLANs information in
Mnesia

In Section 4, it was stated that the project goal was
to build a scalable, concurrent and fault tolerant
system.

To achieve this target, we decided to make our
virtual switch a multiple node software. We mean
that in our architecture we have several instances
of the SERVAL application which can attend client
requests. Therefore, clients can connect to any of
the nodes of the server, and independently of the
node they access they see each other and the same
Virtual Local Area Networlcs. In other words, this
means that a client connected to a node A has to be
able to send a message to another client connected
to a node B if both belong to the same VLAN.

In this multinode architecture, then, it is neces-
sary to have communication among nodes to share
VLANs information. We decided to use Mnesia, a
distributed database management system included
in Erlang/OTP. \Mith this distributed database we
can access information of the existing VLANs and
clients connected to each of them from any of the
nodes of the system.

The use of Mnesia has big advantages for this
project. Thanks to its distribution capabilities,
synchronization among nodes is done automatically
by this DBMS and it is transparent to SERVAL. In
this way, as we rely on Mnesia, synchronization of
the virtual switch nodes is done without overload-
ing the code with synchronization tasks. This idea
is represented in Figure 5, which shows the situa-
tion in which there are three nodes running belong-
ing to the SERVAL cluster. It can be observed how
each ofthe nodes has a local copy ofthe distributed
Mnesia tables and how the communication among

Figure 5: SERVAL server cluster with 3 nodes

nodes is done using the database.

5.4 ASNI Erlang compiler for com-
munication protocol implemen-
tation

We decided to use the Abstract System Notation
One - ASNL for the definition, transmission and
encapsulation of our internal, client/server, com-
munications protocol.

ASNl is formal language for abstract description
of the messages interchanged in communications
protocols, with independence of the programming
language chosen and the data memory representa-
tion. ASN1 is a standard since 1984 and, conse-
quently, its codification framework is mature and
it has been used successfully in a lot of different
scenarios.

In the project we have used the Erlang ASN 1 com-
piler. This compiler in very useful because it gen-

erates coding and decoding functions which can be
directly used by Erlang programs.

5.5 Process collaboration scenarios

In this section we describe several collaboration sce-
narios with the aim to understand more accurately
how the SERVAL system works.

5.5.1 SERVAL server starting

\Mhen the SERVAL server is started, it is launched
a process of class serval-app. Next, the ser-
val-app sparü/ns three more process of class ser-
val-server Jogger, serval-tcp-porttnanager and se¡-
vil-udp-port :nanager respectively.

I

serva l_test-cl ient_gui

serval test client

Node 3 Node 1

Node 2

rc

Our SERVAL server has support to maintain
communications with the clients using as trans-
port protocol TCP or UDP. This is the rea-
son why, when the SERVAL server is launched,
the processes serval-úcp-port:nanager and ser-
val-udp-port-rnanager are created. The first listens
for input connections in a TCP port and the second
listens for packets in an UDP port.

6.5.2 SERVAL client connection request to
SERVAL server

We are going to explain what happens when a client
requests a TCP connection with the SERVAL server.

First an open-port TCP message is re-
ceived by the process serval-tcp-port-tnanager.
Second, this process creates a process ser-
val-connectionJnanagü and, then, this last
one spawns two more processes, a ser-
vaL-connection-communications-tcp and a ser-
val -c o nne ct i o n -o p e r at i o tt.

With these three processes we have the structure
to manage all the operations related to the client
has requested the connection.

5.5.3 Message interchange between pro-
cesses belonging to the same VtrálV

When a client A wants to send a message to an-
other B, first, A has to find out B client identifier
knowing its network level address. In order to get
B client identifier, it sends the SERVAL server a
adres s0f Cli entRequest.

All clients in the same VLANs that A, receive
this address0fCLientRequest. The one whose
network level address matches the one included in
the message, that's to say B, sends back to A an
address0fClientResponse with its client identi-
fier.

Next, A sends the SERVAL server a
sendMessageRequest with the data and the
B client identifier as destination address. The
SERVAL server checks that B is in the same Vtr,ANs
and, if this condition is true, delivers B the mes-
sage. After this, sends A a sendMessageResponse.

We can observe all this behaviour in the figure 6.

ei;iãi* æ Fi- ", læ- -*g-::.1 .m;
bB 6þùs Èd

#=¡,r- lltiltil
l.-:.:rr!'

-
1-- -l

** Ë-] ø
I

Figure 7: Client screenshot

6 Current status of the re-
search

6.1- The prototype GUI

In Figure 7, the graphical user interface developed
for the prototype user agent can be seen.

In the GUI window of the example, the client
is connected to a SERVAL server which is listen-
ing for input connections in port 4567. The user
is connected to the virtual switch through a client
with address clientl. We can see that there are two
VLANs created, vJanl and vJan2, and that Clientl
joined both. Finally, v/e can observe that vlanl
contains two clients with the address clientl and
client2.

6.2 Testing the system

Two key features of the system, as already ex-
plained, are performance and fault tolerance. Ev-
ery design and new characteristic we add to the
system is developed thinking of what impact it will
have over these two variables. But we are not only
think in the impact of the modifications but try-
ing to measure and to check the system with the
new additions. In this subsection, some perfor-
mance measurements and fault tolerance tests that
we have carried out are described.

-::=]

10

u

(tcÞ.sôclôt,

úntl:dlcd.l)

{!.¡ü.tns}

lsc&!3{d*Fn!.}

9.n_t(pr6€nd()
(s.n&!!{.,ttrln9,

sln tcDrsndl)

Figure 6: Message interchange between processes belonging to the same VLANs

6.2.1, Performance tests

Due to the real time nature of the system, and the
amount of concurrent users that should potentially
be able to handle, a good performance is an essen-
tial requirement for the system.

We have concluded that the performance in SER-
VAL can be measured by the two following vari-
ables:

r Operation latency. The operation latency is
the time it takes an operation to be completed,
since it is ordered until it is frnished. The lower
the operation latency, the higher the system
performance. As final goal, we are specially
interested in reducing the message latency of a
message sent from a client to another through
the server.

¡ Throughput. The throughput of a system is
the number of operation requests it can han-
dle in a period of time. A higher through-
put means that the system is able to carry out
a lot of operations concurrently. \Me should
also consider the bandwidth reduction caused

by use of our internal protocol. We increase
the size of the packages internally, because
we need to store some extra information, we
should keep them small to enhance the use of
the medium. Currently we do not consider this
increment of the size of the packages a prob-
lem.

In order to make these measurements we have de-
veloped a special module for creating performance
graphics. It is call serualgnuploú and uses the GPL
application gnuplot.

With this module carried out performance tests
in both the client and server side. We will describe
two examples in which we have obtained perfor-
mance improvements afber analyzing the operation
latency and the system throughput.

The get-vIãns message This protocol message
has a latency which grows with the number of
VLANs. So, the high latency of this message blocks
another messages in the server queue, which cannot
be delivered by the server quickly.

After some performance tests, the Mnesia query

rw¡l coñdoñ o¡ârâ$oñ aN¡l d¡t.b.¡. mr$q.r*ru¡l cohñdon communla¡bú Ep

11

IY"

for getting all the VLANs created in the server,
was pointed out as the system bottleneck for this
operation.

In figure 8 we can see the time process the
get-dans with different number of. VLANs created
in the server.

We have represented also the VLANs number
against the get-vlans latency. The graphichs ob-
tained can be seen in figure g.

The impact in the latency of the messages that
the number of. VLANs created in the system has,
can be easily observed.

The solution we chose to solve this problem was
the use of a memory cache to speed up the request
operation. So that, with this cache we were able to
rise up the throughput of the virtual switch and,
besides, we could drop the latency of the geú_v/ans
message.

The adress0fClientRequest message After
analyzing the system operations performed during
the message interchange belweel Lhe clie¡rts of the
system, we detected that the number of addres-
sOfClientRequest sent by the client agents was too
high.

Many of these add¡essOfClientsRequests mes-
sages, however, rür'ere asking for the address of the
same client. Hence we implemented a cache in
client side to store the mapping between network
addresses and the SERVAL identifiers.

Doing this we got a double improvement. First,
we reduced the number of addressOfClientsRe-
quests messages sent to the SERVAL switch drop-
ping its average load; and second, we decreased the
latency of this message. In Figure 10, we can ob-
serve how with the client address cache the number
of get-addr messages received in the server is less
than the number of the other message types.

6.2,2 Fault tolerance

To have fault tolerance features was already stated
in Section 3 as an essential goal for the project.

There are different strategies which can be fol-
lowed to create a fault tolerant system. In our case,
the concurrency and distribution properties of Er-
lang have allowed us to build a robust recovery sys-
tem based on the multiple node server described in
Section 4.

The idea is that if a node crashes the system has
mechanisms for letting the rest of nodes continue
the work that was being carried out by the crashing
one. This can be easily explained introducing some
situations and how they are overcome:

One node crash If a node crashes, the recov-
ery mechanism consists mainly in the reconnection
engine implemented in the clients.

The description of this engine is as follows: each
client receives from the server an address and port
list with all the nodes belonging to the cluster as
answer to the connection message. Therefore, when
a client detects the node is connected to is unreach-
able, then it requests the connection with another
of the nodes. This second node is obtained from
the node list that, as mentioned, is stored in the
client state.

When the server receives a connection request,
it uses Mnesia to check if the client was connected
through another node before. We consult Mnesia
because we use a distributed table which registers
each client connected to SERVAL. The information
we record for each client is:

. The link layer SERVAL address. \Me call it
client identifrer as well.

o The process identifier of the SERVAL process
$¡e use to manage the client.

Taking this into account, we query the former
Mnesia table to find out if there is a row with the
same link layer address that the one of client is
requesting the connection:

o If we get zero rows this means that the client
is not doing a reconnection because the node
it was acceding has crashed. We record the
information for the the new client in a new
rorü¡.

o If we get one row this fact means that the client
is doing a reconnection. Hence, we have to up-
date the row obtained with the new process
identifier of the process created in the new ac-
cess node to manage the connection.

Client crash This scenario describes which re-
covery actions are performed when a unsuitable
client disconnection takes place, and the message

72

Tz

1qm

1¿l{no

1ãX¡0

1üm

8000

¡{m

ãm

cxm

axxx!

7tx¡o

dÍm

4¡m0

qxm

eüm

1{Xm

o
54320

Figure 8: Time to process the get-vlan mesr¡ege depending on the VLANI existing in the server

0
0 mo ó00 ô00 8fn 10& 12ü' 14ü¡ 1üþ 1800 2otn

Figure 9: VLANa number against get-vlans Iatency

13

T+

25

20

10

0
10 4 50 60

Figure 10: Number of each message t¡re received in the server

co¡¡ectio¡CJ-oseRequest is not sent by the client
to the server.

The client crash can be caused by a software fail-
ure, but the message could be also lost due to some
network problem. When this happens, the pre
cesses responsible for the client management are
kept alive in the node the client was connected to.
Therefore, in this situation, if another client sends
a message to this crashed one, in the switch cluster
the client i¡ detected as connected. Becaræe of this,
the switch sendt the measage, though it will never
arrive to its final destination, because it is down
(we will explain why we do not matter this lost of
messages).

Next, we are going to describe the strategy we de
cided to implement when the former situation hap
pens. Each client incorporates a keep al,àue meeh-
anhm which sends the server a message at regular
periods of time. Each seryer node has a proc€ss
which monitors the receiving of the keep alive mes-
sages coming from clients. If this monitoring pro-
cess detects that a client ie not sending the keep
alive messages and it has not requested the con-
nection close, then it killË the management pro-
cesses for this client. Besides, the monitoring pro-
cess deletes from Mnesia the information related to
the VLANy the crashed client was conne*ted to.

As we can observe, there is a period of time be-
tween a client crashes until this fact is detected
in the server. If a memage is sent to the crashed
client during this period of time, the messages do
not reach the destination. We seuld implement ac-
knowledgement messages to guarantee they always
arrive to its final destination. However, we do not
wish a too heavy protocol because we are emulaÞ
ing a link layer scenario. Therefore, these failures
rarely happen and will be detected by upper layers
in the communication protocol suite used.

8.2.3 tr\rtr¡re work

Nowadays, we have in mind to work on several
things, some of which are:

Congestion control protocol We want the vir-
tual server switch nodes to monitor its internal
work load. So, to succeed in this task we are
implementing the processes nec€ssary to mea-
sure this magnitude. Besides, it is necessary
to extend the link layer protocol in order it in-
corporates the messages needed for congestion
control.

SERVAL clients are bei'g also improved with
the ability to process the congestion control

VV

Numbq --"--
Numbd
Numb6¡ ---__.
Numbq ----..-
Numbsr
Numbü

L4

ß

information sent by the server. So, if they de-
tect that the work load of the node they are
accessing to is too high, they can decide to ask
another node with lower load lodge them.

Access Control List For many real environ-
ments it is very important to be able to give
and revoke permissions to clients to do certain
operations or to access certain resources in the
virtual switch.

For instance, we can wish to let users with a
certain profile create VLANs in our server and
forbid this operation to other users groups.
Another example, is the possibility to join a
VLAN. A server administrator may wish to
have a predefined set of. VLANs created in the
virtual switch. He may wish to have the con-
trol to authorize or deny the access to each
VLAN following a per user or per group pol-
icy. All this can be done implementing the
ACL engine and we are hands on.

Ethernet driver In the section () we saw that one
the components of the architecture is the inter-
face with the link layer of the communication
protocol kernel stack.

We are working in the strategy to implement
this virtual Ethernet driver. He are also as-

sessing the possibility to use the TAP device
driver. The TAP is a Virtual Ethernet net-
work device. It was designed as low level ker-
nel support for Ethernet tunnelling. It provides
to user-land application two interfaces:

However, although the SERVAL server virtual
environment is a VLAN, the real environment
is a WAN . As a consequence, all our link layer
traffic is going to cross through the Internet
and will be exposed to be sniffed by everybody.
So we are implementing SSL support in client
and server side to cipher communications.

7 Conclusions
work

and future

In this paper we have explained the main moti-
vations and goals of the SERVAL project, the de-
signed solution proposed to achieve them and the
current results and work that we are developing.
Through the paper we have established that Erlang
is a suitable technology for this project, where net-
work communications, performance and fault tol-
erance are the main requirements.

We think that our project can be interesting and
applicable in a lot of real and diverse scenarios -
pointed out in the paper - in which emulating l/ir-
tual Local Area Networks over Internet is a good so-
lution. SERVAL Vi,rtual Local Areø Networlcs man-
agement will allow a more flexible way of designing
network topologies.

'We can transmit that nowadays v/e are satisfied
with the results r,Ã/e are obtaining and with the fu-
ture ofthe project. In fact, we are encouraged with
having a real and almost complete SERVAL proto-
type in the near future that will be the first step to
build an actual system.

Secure communications 'We are emulating a
virtual switch, so our virtual operation envi-
ronment is a VLAN. In a LAN the Ethernet
frames don't leave the network limits so the
security policy can be relaxed if we rely on our
I/tr.Ay'{ users.

o /dev/tapX character device

o tapX virtual Ethernet interface.

The user-land SERVAL Erlang client could use

this device /dev/tapLto write Ethernet frames
which will be received by the kernel. On the
other hand, each Ethernet frame wrote by the
kernel to the tapX interface will be received by
the SERVAL client by reading the /dev/tapX
device file.

8 Acknowledgements

The authors want to thank Alberto García
Gonz6.lez, José Juán Gonzá.Iez Alonso, Iago Toral
Quiroga, Adrian Otero Vila and /,ngel Vidal, and
in general the whole lgalia company, for their
collaboration in the development of the SERVAL
project.

References

[1] J.L. Armstrong, S.R. Virding, M.C. Williams,
and C. Wikström. Concurrent Programming

15

u(t()

in Erlang, 2nd, ed,i,ti,on. Prentice Hall Interna-
tional, 1996.

[2] The F]eeS/\MAN Project. Ipsec gnu/linux im-
plementation, 200 4. http: //www.freeswan.org/.

[3] The Internet Engineering Task Force
(IETF). Ip security protocol (ipsec), 2004.
http: //www. ietf.org/html. charters/ipsec-
charter.html.

[4] IEEE Project 802.2 \Morking Group. IEEE stan-
dard for local and metropolitan area networks:
Virtual bridged local area networks. Techni-
cal report, Institute of Electrical and Electron-
ics Engineers, 3 Park Avenue, New York, NY
10016-5997, 1998.

[5] IEEE Project 802.2 Working Group. IEEE
standard for information technology-
telecommunications and information exchange
between systems-ieee standard for local
and metropolitan area networks-common
specifications-media access control (mac)
bridges. Technical Report ISO/IEC 15802-
3:L998, Institute of Electrical and Electronics
Engineers, 3 Park Avenue, New York, Ny
10016-5997, 1998.

[6] T. Dierks and C. Allen. The tls protocol version
1.0. RFC 2246,IETF - (Internet Engineering
Task Force), January 1999.

[7] W. Stallings. Local Networ,ts. Macmillan Pub-
lishing Company, New York, 3d edition, 1gg0.

[8] IEEE Project 802.2 Working Group. IEEE stan-
dard for local and metropolitan area networks:
Overview and architecture. Technical Report
IEEE 802-2001, Institute of Electrical and Elec-
tronics Engineers, 3 Park Avenue, New York,
NY 10016-5997,2001.

[9] K. Pitt, D.; Sy. Address-based and non-address-
based routing schemes for interconnected local
area networks. Computer Sc'ience Press, 1g86.

16

t(s)

Í\Æ*hiåæF,årÐg

An Erlang WTLS Implementation

Erlang User Conference 2004

Intrcduction

Þ Master thesis
. Exhnding the So\¡t/ap WAP gateway to support Wireless

Transport Layer SecurÍty

FT
Mrri)i¡r¡ ¡\.â\..i:¡j

Þ Implementing VVTLS

Þ Extending Erlang cypto library support

ilrlr:br!e A,r.iS

I

2"

Background

> WAP - Wireless Application protocol

Þ SoWap - Erlang Open Source WAp Gateway

. Hisbry

. Fuh¡re

It4r-¡bilr:

WAP GaÞway

WAP Web
Ilevlce WAPGataray Se¡uer

ssr.

lCP

!'ç1ir:b jii:

HTTP

sËr

ïcP

.A.ts

2

3

Wireless Transport Layer Security

rvrL_-IfiÍ€3 ¡Ä'rÈs

) Se<urity goals
¡ p¡tvacy

r' Int€grûy
r' Autfteriticat¡on

> WTI.S vs TtS
r' Processorspeed
¡ Bandwidül

I

..1.1
'j, :

Wireless Transport layer Security

> Cnptographic standards/ Symrnefuic cíphers
. DES,3DES, RCs, IDEA

r' Asymrnebic key exchange algorithns. RSA, Dliffie-Hell¡nan, ECDH

r' Keyed hasñ algoriürrTu (MAq
. MD5,SHl

Mc;i,:ii.;

¡ Certificates
. X.509, X9.68, WTI.S Ceüincate

I

l+

WTLS Handshake

Þ Negotiate security algorithms

Þ Exchange random values and settings

Þ Exchange certiftcates

Þ C¡lculate secrct

I\4c)biie

WTLS Handshake

ClÊ¡rt *crrcr

ír.4<-¡biie: l\ !-ils

ClictE.Ito

Se¡artfuItro
SGr.rC.Átiñctt
Srrrrlirylbrù^-r¡r*
Coüiûc¿ Rqqr¡f¡

Cllr¡ú Crrtùficü¡
ClimtEryE*ù:r3l*
CaificelVcri$¡x
trlr¡¡¡ CiC*rSræl

pàn3r Ci¡ihrS9æl
ftíirhd

A¡dic¡tianDå

2

5

WTLS in Erlang

Þ Advantages
/ Concunency - many connections running
/ WTIS engine is a state rnaclrine - ger¡_ßm

Þ Disadvantages
/ Not ørough cn/prb support

íVc-:L'iir:

!

:.
I

i

Erlang Crypto Library

Þ Supports
r' DES,3DES
/ SHA, MDs

> WTLS also specifies
/ RC5, IDEA
¿ RSA, Diffe-Hellman, ECDH

,Ar-î.s

1

6

Erlang Crypto Library

Þ Htensions needed
r' RC5

/ RSA

¿ Diffie-Hellman

Þ Overlooked algorithms
/ IDEA
/ ECDH

Mi:bi!r:

Erlang Crypto Library

Erlang Erlang/OTP c

SoWæ ct ci Q€úSStcr5¡[ûo.€rl c5pto_dw.c

h¡]ci:ii<: l\riÉì

2

7

OpenSSL

Þ Open Source Toolkit for SSLfnS
/ Command linebol
r' SSLTN.S API
/ W l¡brary

Þ Crypto L¡brary
r' Bbwf6h, DES,IDF.A, CAST, RCz, RC4, RC5

¡ DSA. RSA, DH

t MDZ, MD4, MDs, MDC-z, RIPE-MD, SHA

M-¡b:ie¡ A

í¡

1

l

¡

IFuturc

Þ To do:
. Cstificate support
. Oürer feah¡res
. Extensive testing wih npbile dwice
. Installation atTS Þb

Þ Further academic lab use?

FI
Mc-:biie: ¡l\,rrr'ts

1

I fs)

Conclusion

Þ SoWap now supports WTLS

Þ Erlang crypto libnry oCended

2

Learning Erlang and developirg a SIP
server/stack with 30k potential users

Fredrik Thulin <sip:ft @ it. su. se>

Enheten för IT och media
Stockholms universitet

EUC2OO4

ffi141\ Ë:î'r'

l-\.
F1

Stockholm university telephony in
r9g7 :

o Ericsson MDl10
o 5000 subscribers

2000:
o Ericsson MDl10 - 4200 subscribers

o Cisco CallManager - 800 subscribers

o Early VoIP adopters, but still no open standard

Ë.rffi ¡\F'["

D-"

SIP

o Session Initiation Protocol

o IETF proposed standard (RFC326L,2,3,4 and 5)

o Does not care about audio/video/whatever

. fnstant messaging and presence

o Parsing is hard, even though (?) it's plain text
o Transactions aïe complex

o Few open source implementations as to date

T:3 [q /\ F T'

(/..)

Implementation

o Magnus Ahlto{p, KTH made acouple of
implementations in perl, pythoo, c, ...

o Erlang imptementation was the most viabte one

o First Yxa snapshot released 2003-10-07

ffiffi*AhF'$",

Person al Erlang experience

o No prior knowledge about functional
programming

o Hard time understanding some syntax (strings are
lists, [H I T] = "string")

o Assign once

o
aaa

llt l{.,.,4 Ë;"ü
-

lrl

Plans

o Build distributed SIP servers

for routing

for students (free VoIP/SIP-service)

for basic call servi ce? evaluating.

o Distributed policy control (rate limiting etc.)

o Pluggable authentication modules

o External event logging with call context

il){q-AhF"J'

o\

Project

o http://ww'w'. stacken.kth. seþroj ekt/y xal

ãN

llRAli'T'

Messag¡ng w¡th Erlang and Jabber

Erlang User Conference'04

21st. October 2004

Mickaël Rémond <mickael.rernond @erlang-fr.org>
]r|ttr{
ERTANG

www. erl a n g-p roj ects, org

1\
F

ça)

,.

What are XMPP and Jabber ?

o KHkIPP stands for eXtensible fulessaginffi & FnesesïGffi FrmtæçæË

o XMPP is a generic and extensible messaging protocol based on
XML. lt is now an IETF standard

o Jahher is an [nstant lMessaging protocol that rely on XMPP

. Very active community:

Several server implementations of XMPP and Jabber

Several ctient software and library

råItül
2 ERTANG

¡."

Fun things to do wlth XMPP and
Erlang

a XMPP and Jabber servers are nrassävely' eoneurnent: a Jabber server must handle huge
community of users.

A Jabber server in Erlang makes sense to handle massive concurrency (plus it's fun
and challenging).

It can prÕ\rs the reliability and ability of Erlang to handle concurrency
XMPP server protocol is build around a complete XML API for elient tç server and seËver
te server communications:

Developping Erlang software agent that plug on the bus is easy: Erlang
expressiveness.

It allows to use the bus as a mediatimn layen between Erlang and non-Erlang
software (Kind of web service but more simple and powerful)

Several levels of interaction for Erlang extension: Plug-in in the XMPP bus with a
service prote¡cnl or XMPP client connected to the bus (e [ient protereml)

a

lrnTtffi
3 ERLANG

(^)

XMPP bus design
a XMPP rely on a naturally distributed architecture

lncludes server to server communication

lncludes gateways to various other protocols

i: ---'HMFF .Sarr¡er
,
I

f
XMPP tlient

ü

+
I
¡
I
a

}ffiFP

H -a L.
! J7 {-*

ï
üiünt {ilisntFcneign

I
It

råî
t rFf

4

'Ëatewey -¡---+

E R IANG
_Þ

ejabberd
o

a

o

ejabberd is an Erlang-based XMPP server implementation.

It has been designed to support elustering, fault-Éoleranee and high-mv*ilabilüty.

It supports many features and extensions of the Jabber protocol:

Built-in Hlulti-User Çhat service

ffiËstnibuted database (Mnesia)

Built-in lRt transport

Built-in Fubltsh-$uheeribe service

Support for ["ÞAP authentification

Service clisceivery

It is more scalable than the most used open source implementation (Jabberd1.4 and
Jabber2).

a

röItffi
5 ERLANG

tt-?

Benchmarks: how does ejabberd
perform ?

a

a

Jabber benchmarks realized with the Tsunami benchmarking tool.

Comparison between ejabberd and classical Jabber implementation.

'slrnuitaneous

450

400

100

50

350

soo
aû
.:t
ttg 250
oÊçg 200

150

IrI
L, #T

0 1500 2000

unlt =sec

r*

ilffi#qff'+ùËltu$#qñffh#!

¡

I

Ëqffid'dr$'d$
0

500 :1000 2500 3000 s500 ERTANG
o\

Fun evolutions and ideas
o srp / xruTPF gætewffiv: Running together ejabberd and yxa to shareuser base and presence informatiõn.
a

r*rtil{7 ERI.ANG
ì^(

What does the XMPP protocol
looks like ?

ültent Seruer

o [ntænlemvæd XfuTk streffi ryrs :

Client and serverstreams form
an XML document.

First level tag. <stremnmþ

Three types of second levels
tags:

Bnessffige: asynchronous
communications

re¡: Synchronous
communications

prss#müe: presence and
status data

Qparr fûF,uoclraf

qÞ(ftil W*;i¿n=*l ¡tr?¡

fgf¡rtrêåt-üc"
v,årÊFg.fFlI .ü¡

uoss lË"F,É{¡cåal

o

o

I

ï#l{¡rÈr$dråäfi ='ltülp:/,Þtflsrx.þbbnr.ørE,{streå¿ns'
1¡g¡g¡g¡=ft git*

cstlåffirf ."*Våã
i¿J--'gonra*J;

<! xr*tl v* ¡*:ir¡ n=' I .0'?:.
üI ff'¡l ¡tt="egf v,gl.û¡åtüì

<meetage
f rsm='AÉê¡Ë$ rrt. *uru'
T$ 98,&cs rve r. c*r rfi- xnrl : b rH ="gn Þ
< b td Y;''F"ur g +t od 5,:"

<ftlsa$sgå>

¿',ürÊslidlÊlÉ

ftoft='BfitcåfdÈr:ðörì.
tc=-A&ctAn.Èðî¡' nfrrl:TF nË:bfi þ
{.büdi/ÞFffngdtr{}Ëlyx

qårråsÊ{ËÉ"

<lstfËäRt:Ê,lrgå#rÞ

d,&{tsåtÐ:*håårrrÞ Oo

J-EAI: an XMPP based integration
tool

o J-EAI is an ffintmrñrHmæ AppHHmæåfrmm

ßmtægnmtËmm tool.
o lt is intended to ffiffimtrmñ mmd ffiH'ffiæffiHææ data

streams in a given information system.
o lt allow trmrowfmrffnmttmm, ffffuxtrHmffi, e&*ffi&#rffifrmffi

of all the data exchanges between
appl¡cation in a company.

l*ILffiI ERTANG

\s)

Jabberlang: Helper l¡brary to write
XMPP client in Erlang

o Jabberlang is a elient lñbnary to write XMPP client in Erlang.

o lt is implemented as an Erlang behavioutr.

o lt allow to write XIHPP services in Erlang.

o Can be used for inter Erlang programs communication (term tm
bt narY (-) binary-to-term)

Examples:

JÉTt#
10 E R IANG

F\

Using XMPP for Erl ang d¡stri bution\

?
o Using XMPP for ffirlang dtstriba¡timn could allow to develop

distributed applications running through the lnternet.

o This approach can solve some seffiurity aspects: Rosters
configuration can decide if two process are allowed to exchanged
messages.

o ffiSt is supported.

' Performance penalty: only relevant for non heavy-loaded critical
rvrffissffige passtng applications.

' Application desiEn in such a way could switch to Erlang standard
distribution to get more performance.

r*îtffi

I

Þ-\
t'-\

11 ERI.ANG

o

o

o

a

References

http : I lwww.ja b be r. o rg

http :l lwww.jabber.org/press 12004-1 0 -A4. ph p

http :l I eja bberd .jabberstud io .orgl

http : I lww\rv. erl a n g-p rojects .orgl

{ '- t F-\
t IEI Þs

12 ERLANG

Messaging w¡th Erl ang and Jabber

ffi&#ffiw*frmffiffi

r&r
twq

f- l-
(-^,)

F
V\)13 ERIANG

,t

I

l,(n)

SynOpSg mobile nêftYorks

Liberating the mobile
internet!

Presentation at EUC
October 2Lst, 2004

OãI!. Ðû+r. iEþ lHEt3 Sá. ¡¡l dl¡t¡
tE6'td

syftopse !'r¡çb¡¡e nelw*rks s.c.

Mobile lnternet

r Promised for years
r Now targeting non-technical

consumers
r Handset features increasing rapidly
r Strong end user interest
r Still very low usage !!!

O 2004. qn.pæ Mobllc ¡,lctÞrks S.A Al rlát3 rsæd 2

1

| '..
I

.

i .:

2"

r Technical barriers
nTerminal seruice configuration data not incontrol of operator !

u May require subscriber to request
provisioning of services not being
understood

synalÐse tirr.*þi¡e nefrvs¡ks s.,s"

whv ?

O æO+. qm.psê Moölle Nsàþrtc S.A At rlftrts rs¡d
3

Research on user behaviour shows:
o Typically, when a user has failed (twice) tomanua'y configure their mobile oä"itã, he orshe gives up and never tries again!
n Demand for data services is instant. lf theycannot have the service now, they wilt not tryagain later!
o Th.e u:9r expects network configurations to besolved from their mobile deviceJ

-- ---J

Sy,nOpSO rnoblle nsfqrye¡ks s.c.

1

Soørce: frrorfâsfuarn

O 2004. qnrpo MoHh Nrt!þrt3 s.A At rlftrts æsrrd

2

3

SyllOpSå nãob¡¡€ l.!tì?¡*íks s.{3.

MMS forecast for Western EuroPe
i/ñ ---------'- @Arahsys Research limited ^-^ Gl¡oahßìrs Rêsearch L¡miledtau - - - - -'- - - - --- - ---- -- i.-
t20

r00 ------------- 20f¡ ---- -----'-'---.r.r -
..¡:.

o s0 c 150

=E too

:"'
E0 --------
.10 ------ .

50 --------l;-20 ---
0 f!

dÕúþÕFêöÈtÊÈ¡o600€oe
flflflHNfl

Norfn@FêêéèèãoÞo€eÞÑdNNNN

---¡-h,ûdls-ÊqurpFed hEndsetssld ,2G :-2.f G ! 3G+Totel hendstssold

Yearly ealce of MMS phones. Tdal no. of MMS phoncs.

Soørce: ÂnalJæÅs Ræearcù üd
o 20104' qn.Pæ MoUþ l{Gùþils S.A ¡¡l rlght3 rs/td 5

¡.

I

i
I

1

I

gynoPse lraebile sìeåTvorks s.s.

Gap of un'configured devices
tdi¡lisr¡

:¡ç;¡¡$L:r'È!É1*'

t
t

Srliîlr]Ètrr:¡t¡r/ãi¡î*{lt1¡È{{xt ft'.sl{elfitg
4ùrrã{ÉiiþÉ b413Ë¡.

T.

Âeliçe fi å:¡at¡r!!å9¡Ëf t*+Èî.iå

f¡

3tiÈÊ ä¡r:r.3 iç-.ì4 flìri5 åt. 'È grft:i?

t
iFijji:.¡{ t'..T..jT i:. .a*:f r--,-.ttOÈ,*_- .ì;"J¡..:-tr tr,'r,.iÊ*Jg fè9¡i'r{1ç,1}/.1:Þ:--Í,ì"1s3.1.,1,;t?,?íi¡iif r:å;

1

+

SyflOPSe i?¡obi¡G {Ì€tvratks $"û.

Solution: Synapse DMC !

r Patented solution featuring:
o Automatic service provisioning
o Automatic Over-The-Ai r configuration
u Enhanced customer care interface
o Business lntelligence

r To deliver:
n lncreased traffic
s End user satisfaction
n Reduced operational costs for customer care

O 2004. q,nrp¡¿ MoblÞ f{sùÐrks s.A Al rlüts tænæd 7

gynqpco nßoþile neù¡ËeFk$ s.c.

Automatic process includes:
Autornatic deteclion of new
subscriberlterminal combinations.

Automatic provisioning of
subscribers in MMS€ and other
nodes.

Automatic confi guration of
neûlrlork acoess settings br all
capable phones.

Real-time provisioning and
Device db queries via uæb GUl.

I3 2004. SlrrFe. Mobllc ¡lctÞrlG s.A Al rlËts rs¡¿

2

5

syflqpÊe mebile r'!â*Lt'orks s.t

Device Detection

r Detect new combinations of subscriber
devices

r ldentify device capabilities
r Device database with

n > 6000 device models
s> 1300 MMS capable device models

r Device alias management

3 2004. Slnlp6ê Moblþ l{.tïþrls S.A All düts iqËd I

sytìopse nftebi¡e noip¡orks s"c.

Automatic detection opt¡ons
o Vendor independent monitoring of network

traffic
u lntelligent monitoring probes (A & D interfaces)

o Concentrated methods
o Monitoring of extended MSC - EIR (F interface)
o lntegrated extended EIR (active)

n Vendor specific MSC/HLR triggers (when
available)
a Ericsson
o Nokia

u Via CDR file præesgifgñ's'A^rrrriÈlsËd 10

i,, ";.

t,. ,: :;

i

1

6

Provision i ng framework

u Via Customer Administration System (CAS)
interface

n Provision subscriber GPRS in HLR
o Provision subscriber in MMS_C

synqpso mobt¡e r¡eÞ¡¡*rks s.o

O 2004. qñrpro tuoulâ t¡chþrls s.Â Al rlghts ærud t1

Supported OTA protocols
o Ericsson./Nokia OTA settings
u OMA - Glient provisioning 5pec.

o WAP Client provisioning 1.0
o OpenWave primary prñsioning

s OMA DM (SyncML DM) in roadmap

= Yirlglty ail OTA and GpRS capabtephones are supported! -- --r
o L3d)+ MMS capable phones are currenflysupported

synqp8e ry¡Ðbi¡e nefworks s"s"

O 209¡. q'nrFÊÊ tloutâ f{rtrþÉs S.A At rtlhÈ rstd

W

12

2

{Y
f-

SylfCPSe ¡ãìobf ie neå!a.'i¡íäs s.*

Automatic MMS provisioning
example:
o Detect MMS capable terminal devices
o Check HLR subscriber status (Operator

barring and MSISDN, GPRS status)
o Check for pre-paid subscribers
a Gheck MMS user status
o Provision subscriber in MMS-C and HLR
o Send out notification (if requested)
o Send out device settings
u Send out Welcome MMS message

O20O4. Sln.ps. Mobllè fHrþrls S.A Al düG rsËd 13

sylE¡'se rvlæblle netwerks s"E.

System overv¡GW - CYTA project
},T,4P

Monitoriag probe

Device daabase

Applicøion senten
SNMP NMC

Mtv[S@/d

tilebGUI ffi,Æ
trVebGUI,

CIJ

SlvfS req

S¡tuMn çcr W.bFdd
O 2004. SlmrF. Moulo ¡¡3üþrls S.A All rlfhÈ rËãrld

EIR MSC I{LR MMS4

SS7 stack

cAs

G¡¡oæC¡c
11

1

I
Synqpse rÐebite *gidìfc,sks s.s.

DMC 2.A installation example
a Firewall
o Ethernet switch
s SS7 stack
n Corelatus GTH probe
a 2 x Sun Fire V24O

Oä4. S,n.æc ùloölþ ¡LrteprlssA Al rllht3 rqæd l5

gynqpÊe rnoþi¡e ¡¡eiçryarks ç.ç

System env¡ronment

¡ OTP R9C-0 design base
r Unimind cluster
r Solaris 8 (and Linux)
r TietoEnator Portable SS7
r Synapse 3GPP/GSM MAP
r Rapid lnstaller

O 2004. SymFcÊ MoUlô l¡rtrþrts s.Â Al rtght3 rÐrld t6

2

9

SynqPSe r¡.lebiiã neÈ?,rçÍ¡ís s,s.

MAP

r Full support for MAP vl - v8
r Automatic stub generation
r Source in CVS is ETSI .pdf files

O 2004. Symprc Mob¡le Ì*trioilcsA Al rlghb rsæd 17 ¡

!'..r i.{

i..,,:
i' -,
Ì

I'
jlì. ..

i.,
f:
j':.':

:

!

j

Synopsg ãnç"*¡5ç neiwPrãs s.ç"

Event Queues

r Multiple producer/consumer queues
r Backed by persistent storage
r Transaction protected
r Used for all IPC

O 2004. S¡rrp-e Moulc Nctþrks s.Â Al rlghts rHæd t8

1

!-o

SylEPse rnoþiïe neÈwçrgs s"c.

BETS

r Berkeley DB Erlang Term Store
¡ Mnesia binding

n> 20.000.000 records per table
n- 10.000 random lookups/sec
s - 1500 inserts/sec
nApproximate lookup support

O æO¡¡. S}l1rÞæ Moblþ I'LtìþdÉ s'A Al rtghts rsrld 19

9ynqpso rÍ¡eb0le ¡¡afwarks s.r¡.

Subscr¡ber database

r Record update time stamps
r Local content tables
r Explicit synchronization

O 2004. q,n¡pû. Moöllê l¡.tw¡ls S.A At rtft¡t¡ räËd æ

2

!.1

r Yaws
r Form management library
r Dynamic .gif
r Dynamic CSS
r Dynamic JS
r Yaws embedded applications

synapse mebiie ¡:eÈwcrks s.a_

WebGUl

02004. qmÞEê MobllÊ f¡ettþrl€s'A Al ,lfht3rËãìrcd
21

r Bootable Solaris CD
r Preconfigured stage dumps

¡ lnstalls a system in < 2o minutes from

3}nqp6o rfieþ¡te neÞvsfks s.G_

Rapid installer

power on

O 2004. qttrtÞso MoUþ ¡¡cttþrtc S.A Al rtfhts rsðd

1

SyllOPSe ffiobË¡e riel$eçTks s.G.

System characteri sti cs

¡ Cluster service fail-ouêr time -1 sec
r Support up to 20.000.000 subs on

entry level config
r -450 end-to-end TPS on entry level

config (requirement 150)

O æO4. S,npcê Mobllc ¡,¡êfiþrtas.A All rllits rsËd za

TZ

sÍlqpco snoþile nefsvorks s.c.

System metrics

r 180k lines of Erlang code
:22k lines of C code (linked in drivers)

O 200¡t Slnrpe MoUþ ÌlrtrfffB S.A Al dÉÈ rs/rd 21

2

ls(tg)

¡l

synopûe rnpbllE naË*oaks s"s"

Thank You for Your attention!

See you at Erlounge tonight !

O 2004. Slmp$ Moulc ¡¡ctFrks s.A A¡l ñdtb tËñ¡d æ

3

Synqpse rnçÞ¡lç neirsçrkç s.s.

Does the system deliver ?

r Real life example:
aL200/s increase in MMS handset sales

over 9 months
a84/o of new MMS terminals become active

users
nOnly L2% of MMS subscribers call

customer care
nNon-OTA terminals loose market share

3 2004. q,nrps MoHlc lt¡Gômrls sA All tllhts ;Ë6!d 25

I

l

t(tt)

Detecting Software Defects in Telecom AppHcatÍons
Through Lightweight Static Analysis: A War Story

Tobias Lindahl and Konstantinos Sagonas

Computing Science, Dept. of lnformation Tecbnology, Uppsala University, Sweden

{Tobias . Li.rrdahl, Konstant ino s . Sagonas }Oit . uu. se

AbstrecL ln safety-critical and higb,reliability systems, sofrware development
and maintenance are costþ endeavors. The cost can be reó¡ced ifsoftware er-
rors crin be ideutified tbrough automatic ûools such as program analyzers aad
compile-time softwarc checkers. To this efect, this paper describes the architec-
ture and impleme¡tation of a softwa¡e tool that uses lightweight static ¡netysis to
detea discrepancies (i.e., softu¡are defects such as exception-raising code or hid-
den failures) in large commercial telecomapplications written in Erlang. Ourtool,
starting from vidual machine byecode, discovers, traclcs, and propaga.tes type in-
formation which is oñen implicif in Erlang programs, and re¡nrts warnings when
a variety oft"vpe errors a¡d oiher sofrware discrepancies are identiûed- Since the
analysis cunentþ starts from þtecode, it is completely automatic and does not
rely on ary use¡ ¡nneþfie¡s. Moreover, it is effective in identi$ing softwa¡e de-
fec'ts even i¡ casac whe¡e source code is nol availablc, and more spe,cific*lly in
legacy software which is offen empþed in high-reliability systems in operation,
such as telecom switches. We have applied our tool to a ha¡dfi¡l of ¡eal-ç'orld
applicationg each consisting of several hrmdred thousand lines of code, and de-
scribe our experiences and the efectiveness ofour techniques-

Keywords: Compile-time progran cbecking, software do,,elopmen! software toolq
defect detection, software quality a¡isurance.

I Introduction

All is fair in love and war, even trying to add a static type systeoo in a dynamically typed
prograaming language. Softwa¡e developme,lrt usually stårts with love and passion for
the process and its outcome, then passes tbrough a long period of caring for (money
making) software applications by simply tying ûo m¿intain them" but in the eird it often
becomes a war, the war against sofrware bugs,that brings sorrow and pain to de.vel-
opers. In this war, the softwa¡e defects will use all means available to them to rsmain
in their favorite program. Fortunately, their primary weapon is concealmenl and once
identiûe{ they are ofrear relatively easy to kill.

In thc context of statically typed programming languages, the type system aids the
deveþer in the war against softwa¡e bugs by auømatically identi$ing type errors at
compile time. Unfortunately, the price to pay for this victory is the compiler rejecting
all progmms that cannot be Proved type-correct by the cunently empþed type syst€m.

t,

This sta¡ts another war, the war agaínst the type system, which admittedly is a milder
one. The only way for prograomers to fight back in this war is to rewrite their programs.
(Althougû occasionally the programming language developers help the programmers in
ûghting this war by desiping a bigger weaporo i.e., a more reûned type system).

Dynamically typed programming languages avoid getting into this second wa¡. In-
sæad, tbey adopt a more or less "anyfhing goes" aüitude by accçting all programs, and
relying on type tests during runtime to prevent defects from ûghting back in afatal way
sometimes these languages ennploy a less efective weapon than a static type system.
n"-ely a soft type system, which provides a limited form of type checking. To be eÊ
fective, soft type systems often need guidance by manual annotations in thè code. Soft
typing will not reject any program, but will instead j ust inform tlre user that the program
could not be proved type-correct. In the context of the dynamica[y typed programming
language ERLANG, attempts have beeir made to dcveþ such softtype syste,ns, but so
far none of the,m has gained much acceptance in the community. we believe the main
reasons for this is the deveþers' reluctance to invest time (and money) in altering their
already existing code and their habits (or personal preferences). We rena¡k that this is
not atypical: just think of other programming language communities like e.g., that of c.

ktst€ad ofdevising a full-scale type checker that would need extensive code alûer-
ations in the form of type ørmotations to be effective, we pragmatically try to adapt our
weapon's desþ to tåe progranning style cunentþ adher€d to by EnraNc pro$am-
mers. we have developed a lightweight type-based static analysis for fnding drscre¡r.
ancíes (í.e., softwa¡e defects such as excçtion-raising code, hidden failures, or redrm-
dancies such as unreachable code) in progr¡¡ms without having to alter thei¡ source in
any way. The analysis does not even need access ûo the source. since its sarting point is
virtual machine byæcode. However, the tool has been devcþed to be exûensible in an
inøemental way (i.e., with the ability to take source code into account and benefit from
various kinds of user annotations), once it has gained acceptance in its cr¡rrent form.

The acù¡al tool, called Du,rvzegl allows its user to frrd discrepancies in EnLeNc
applications, based on information both from single modules and from an application-
global level. It has so far bee¡r applied to programs consisting of several thousand liaes
of code from real-world telecom applications, and has been surprisingly effective in
locating discrepansies in heavily used, well-tested code.

Afterbrieflyintoducingthe context of o¡u workinthe next section, themain partof
the paper consists of a section which explains the rationale and main methods emfloyed
in the analysis (Sect. 3), followedby Sect" 4 which describes ths archiûect¡.re, effective-
ness, and cuEent and future status of DnLyzER. section 5 reviews related work and
finally this paper ûnishes in Sect. 6 with some concluding remarks.

2 The Context ofour\ilork

The Erlang language and Erlang/orp. EnlnNc [l] is a stict, dynamically typed
funstional programming language with support for concurrency, conmrmication. dis-

I Dnrvzen: Dlscrepancy A¡åLyzer of ERIâng programs. (From the Greeli ô¿aÀóø: to dis-
solve, to break up something into its componant parts.) system is &eely available ftom
s¡rs. it. uu. se/research/group/hipe/dialyzer,/.

3

tribution and fault-ølerance. The language relies on automatic memory management.
Eu¡Nc's primary design goal wns to ease the programming of soft real-time control
syst€rns commonly developed by the telecommunications (telecom) industry.

ERLANG's basic data t!?es are atoms, numbers (floats and arbibary precision in-
tegers), and process identifiers; compouud data t¡pes are lists and tuples. A not¿tion
for objects (records in the Enrer¡c lingo) is supporte{ but the underlying impleinen-
ktion of records is the same as tuples. To allow efficient implemenhtion of tplecom-
munication protocols, ERLANG nowada¡rs also includes a binary datatype (a vector of
byte-sized data) and a not¿tion to perform patt€m makhing on binaries. There a¡e no
destructive assiçrments of va¡iables or mutable data shuctures. Functious are defined
as ordered sets ofguarded clauses, and clause selection is done by pattem 6¿1phing. In
ERLANG, clause guards either succeed or silently fail, even if these guards are calls to
builtins which would otherwise raise an exception if used in a non-guard context. Al-
tlough there is a good reason forthis behavior. this is a language "feature" which often
makes clauses mreachable in a way that goes rmnoticed by tle programmer. Enr"¡Nc
also provides a catch,/tb¡or-style exception mechanism, which is often used to pro-
tect applications from possible runtime exceptions. Alternativel¡ conçurrsnt programs
can employ so called supervisors which are processes that monitor otler processes and
are responsible for taking some appropriate clean-up action after a softwa¡e failure.

Erlang/OTP is the standa¡d implementation of the language. It combines EnunNc
u,iththe OpenTêlecomPlaform(OTP) middleware. Theresultingproducl Erlang/OTP,
is a übrary with shndard componelrts for telecommunications applications (an ASN.I
compiler, ttre lVlnesia distributed database, seryers, state machines, process monitors,
tools for load balancing, dc.), standa¡d interfaces such as CORBA and XML, and a
variety of communicationprotocols (e.g., HTTP, FTB SMTB eæ.).2

Erlang applications and real-world uses. The number of areas where EnleNc is
actively used is increasing. Howev€tr, its primary application area is still in large-scale
embedded control syst€ms developed by the telecom industry. The Erlang/OTP system
has so far been used quite successfully boü by Ericsson and by other companies around
the world (e.g., T-Mobile. Nortel Nelrvorks, eûc.) to develop software for large (sev-
eral hundred thousand lines ofcode) commercial applications. These telccom products
range from high-availabilib, AIM servers, ADSL delivery systems, next-generation call
centers, Int€fliet servers, and other such networking equipment. Thei¡ softrva¡e b¿s of-
teir beeir deveþed by large programming teâms and is nowadays depþed in systems
which are currentþ in operation. Since these systoms are expected to be robust and
of high availability, a signifrcaût part of the development effort has been çent in their
(automated) testing. On the other hand more o en than not, t€ams which a¡e curently
responsible for a particular product do not consist of the original program deveþers.
This and the fast that the code size is large often make bug-hunting and ssftwa¡s sain-
telrance quite costly e,ndeavors. Tools that aid this process a¡e of course welcome.

Our involvement in Erlang and history of this work. We a¡e members of the HiPE
(High Performance Erlang) group and over the last years have been deveþing the

2 Additional infomation about ERLANc and Erlang/OTP can bc found at rs'¡¡. er1âng. org.

7:\

i,
l, l

4

lliPE native code compiler [10, 16]. The compiler is firlly integrat€d in the open source
Erlang/orP systeûr, a¡d translates, in eithera just-in-time (JIi) or ahead-of-time åsh-
ion' BEAM virtual machine bytecode to native machine code (currently lJltraSpARC.
x86' and AMD64). The syst€m also extends the Erlang/orp rrmtime syste- to support
mixing int€rpret€d and native code execution, atthe granularity of individual functions.

one of the means for generating fast native code for a d¡aramically typed language
is to statically eliminate as much as possible the (oftør unnecessary) ouerteaa oai type
tests impose on runtime execution. During the last year or so, we have been experi-
me,nting with type inference and an aggressive tlre propagator, mainly for compiler
optimization purpos€s. In our eirgagement on this tqsk, we noticed that every now and
the'n the compiler choked on pieces of Enr¡Nc code that were obviously bogus (but
for which the rather naïve bytecode compiler happily generated code). since in the con-
text of a JIT it does not really make much s€nse to stop compilation and complain to
the user, and since it is a requhement of HipE to pr€serve the observable behavior of
the bytecode compiler, we decided to cr€ate a separate tool. the Dreryzpn. that would
statically analyze EnteNc (byte)code and re,port defecb to its users. we report on the
methods we use and the implementation of the tool below. However, ìye shess that the
DTALYzER is not just a type checker or an aggressive t)æe propagator.

3 Detecting Discrepancies through Lightweight static Analysis

3,1 Desiderata

Before we describe the techniques used in DrALyzER, we €Nrum€rate the goals and
requirements we set for its ìmplernentation before we embarked on it:

I . The methods used in DtALyzER should be soz nd: they should aim to maximize the
number ofreported discrepancies, but should not gsrerate my false positives.

2. The tool should request minima! preferably no, effort orgui¿rance from its user. In
particular, the user should not be required ta do changes to existing code like pro-
viding type information specifying pre- or post-conditi*s in functions, or having
to writÊ other such annotations. InstÊâd the tool should be completely automated
and able to analyze legacy EnreNc code that (quite often) no current deveþer
is familiar with or willing to become so. on the other hand, if the user chooses to
provide more information, the tool should be able to . ke it into consideration and
improvc the precision ofthe results of its analysis.

3 - The tool should be able to do something reasonable even in cases where so¡.¡rce code
is not available, âs €.g., could be the casc in telecom switches under operation.

4' The analysis should be/asr so that DLA.LYZER has a chance to become an integrated
compone,lrt of ERLANG dwelopmeirt.

All these requirements were pragmatically motivaæd. The applications we had in mind
as possible initial users of ourtool are large-scale software sysûems which typically have
been dweloped over a long period and have been tested exûensively. This oûen cîeat€s
the illusion that they are (almost) bug-free. If the tool rçorted to their maintainers I,000
possible discrepancies the fi¡st trme they use il of which most are false alarms, quite

5

possibly it would not b€ tak€,n seriously and its use would be considered a waste of
time and effcrt.3 In shor! what we were after for f)lnr.vzcn version 1.0 was to sreate
a lightweight s1¿fiç analysis tool capable oflocating discrepancies that are €rrors: i.e.,
software defects that are easy to inspect and are easily fixed by an appropriate correcting
action.a We could relax tlese requirernelrts only once the tool gained the dwelopers'
approval; more on this in Sect.4.4.

Noæ that the 2nd requirement is quiæ strong. It should really be obvious, but it
¿ss implies that there are no changes to the underlying pbilosophy 6f 1þs lenguage:
ERLANc is dynanrically typed and there is nothing in our method that changes that.5

3.2 Local .Analysis

To satis! the requirement that the analysis is fast, the core of the method is an íntra-
prccedural, þr-wanl dataflow analysis to determine the set of possible values of live
variables at each program point using a disjoìnt union of prime t¡,pes. aare runderþing
type system itsef is based on an exûension of the Hindley-Milner static type discipline
that incorporates recursive t¡rpes aûd accommodates a limited fo¡sr of union types with-
out compromising its practical efûciency. In this respect, or¡r type system is simila¡ to
that proposed by Wright and Cartr,rright for Soft Scheme [8].

The internal language ofthe analysis to whichbytecodeis translated, called lcode, is
an idealized ERLANG assembly language with r¡nlimited aumþer oftemporaries and an
implicit stack. To allow for efÊcie¡rt dataflow analyses andto speed up the fixpointcom-
putation which isrequiredwhen loops are preseirl Icode isreprese,ntedas a contol-flow
graph (CFG) which has bee,n converted into static single assignment (SSA) form [3].
In Icodg most computations are expressed as function calls and all temporaries survive
these. The fimaion calls are divided into calls to primitive operations þrimops), built-
in fi¡nctions (bifs), and user-deûned fi¡nctions. Furthermore, there a¡e assignments and
control flow operations, including switches. t¡æe t€sts. and comparisons, Tbe re,mainder
of this section describes the local analysis; in Sect. 3.3 we exteird it by describing the
bandling of user-deûned fi¡nctions and by rnaking it inter-modular.

Although Enr¡Nc is a dynamically typed language, type information is present
both explicitly and implicitþ at the level of lcode. The explicit such information is in
tle form of type tests which can be translations of explicit type guards in the EnreNc
source code, or t€sts which have bee,n introduced by the compiler to guard unsafe prim-
itive operationr. 1¡s ìmplicit type information is hidden in calls to primops such as in
e.g. addition, which de,nands that both its opermds are numbers. Note that non-tivial

3 This was not just a hunch; we had observed this attitude in the past. Apparently, we are not the
only ones with such experiences and rhi(attitu¡le is not ERl^Nc-specific; see e.g. [5, Sect q.

a Despite the consen¡atism ofthe approacb, we occasionally had hard time convincing develop-
ers tlat some of the discrepancies identiûed by the tool were indeed code thal needed some
correcting action One ¡eaction q¡e got was essertially of the form:- "My pmgrøn cawtot have
l*g. ft han heqt u:ed like that for yean!". Fortunately, the vast majority of our users were
more open-minrlerl

s This sentence shor¡ld nof be interpreted as a religious statement showing our convictio¡ on
issues of programming lang¡aæ design; instead it simply re-enforces that we chose to follow
a vëry pragmatic, dnurn-to-earth approach.

i
¡

I

i

!
!

6

cæe X of
[EIT]

{s
E¡ü iB-liEt(I) ->
, rl;

x+1
apd.

if ¡r_ø(v0)

E tE '/ false

{ì
v2 F nefe_hd(vo) |
14 F|tmfs-d(ú) I
¡fis-l¡r(vo) \ It\l

tue I frte Ir/ \"J,
v4 - n@qv2' v3¡ v5 - '+.(v0, l)
1ctúE\'4) ntu{vs)

if is_sn{vo)

.. /
t\ ,"*

Lù
v2 :- unsfc-hd{vol
v3 r rxÊ_rt{vol
$4 :- nktt¡dc(v¿ v3)
Eû¡r{v4l

v5 :-'+!(r0, l)
ñr(vÐ

(a) ERr.ANc code ft) Icode w/o optimization (c) Icnde w optimization

Fig.l. ERLANa code with a redundam fpe guard-

types for arguments and ¡etr¡m values for all primops and biß can be known a prioriby
the analyzer. These types can be propagated forward in the cFG to jump-start the dis-
ctcpancy analysis. For example, ifa call to addition succecds, we know for sure that the
ret¡¡rn value must be a number. we also know thag fron that point forward in the CFG
the arguments must be numbers as rvell, or else the operation would bave åiled. simi-
larly, if an addition is reashed and one ofits arguments has a type which the analysis has
already detrrnrined is not a number, then this is a program point where a discrepancy
occurs.

More speciûcall¡ the places where the analysis changes its knowledge about the
types ofvariables are:

l. At the definition poínf of each variable.ó At such a point, the assigned type de-
peirds on the operation on the right-hand side. Ifthe return typo ofthe operation is
unknown, or if the operation statically can be determined to fail, the variable gets
assigned the type øny(the lattice's top) or undfined (its bottom), respectively.

2. At splíts in the cFG. such as in nodes containing type tests and comparisons. The
type p¡opagated in the success branch ß the infi.mum (the greatest lower bound
in the lattice) of the incoming t-vpe and the type test€d for. In the fail b,ranch, the
success t)pe is subtrast€d from the incoming s€t of types.

3' At a point where a variable is used as an øtgumenl in a call to a primop or a bif
with a known sþature. The propagated type is the inftnunof the incoming type
and the demanded argumsrt type for the call. If the call is used in a guard contex!
then this is a split in the cFG and the handting will be as in case 2 above.

'whe'n paths join in the cFG, rhe type information from all incoming edges is
unioned, making the analysis path-insensitirre. Moreover, when a path out of a basic
block cannot be tåken, the dead path is reinoved to simpliÛ the contol flow. In Fig. I
the islist./l guard in the first clause of the case sûatem€nt can be removed since
the pattern maûching compiler has already determined that x is bound to a (possibly
non-proper) list. This rcmoval identifies a possible discrepancy in the code.
t N"" ,lt*in* Icodc is on SSA form thcro can bc only ono dc,ûnition poirt for cach variablc.

Y

rêst(x) ->
caÊe size(x) of

f Eb@ is-].ist(X) ->
{li8t, [];

n sù@ iE-ttrplê(X) ->
{tnpre, n}¡

I clo is¡iaary(X) ->
{bi¡årt, r};

error
€!d.

I

{ *:-ør
ú:- uDk vl :- cltur¡iz¿dv0l

l/átrøt itis_lis(vo) r
,/ \ror-op¿lL^ ñ¡*\, /óì,'¡"

v2:-nkÞDldli*vl) \Y
tu(r2) if is-hpl(vol

eo:-ap!/ | vo:-birøy
¿ -Íne f¡lsd

v3:-nl¡¡l¿¡llvlr tL
Et¡m(Y3) ¡fir-biti¡t (v0)

Ar¡Atø--/ ,lt -+ú ñ¡sv
va:-nkopl(ffi,vtl v5:-qår
EM(v4) Êùû(v')

(a) ERLANG code (b) Type-annotated Icode (c) Icode w optimization

Fig.2. An ERl.ANc program with two discreJrancies due to a misu.se of the bif size,/l.

The analysis, througb such local type propagation aided by liveness analysis and
by applying aggressive global sparse conditional conshnt propagation and dead code
elimination [3], tries to reason about t]e intent of the progrirûmer. If the most likely
path out of a node with a type test is removed, or if a guard always fails, this is reported
to the user as a discrepancy. Other discrepancies that are identified by local sùatic anal-
ysis include fimction calls that always ñil, patærn matching operations that will raise
a n¡ntime exception! and dead clauses in swirches (perhaps due to an earlier more gen-
eral clause). For example, on the program of Fig. 2(a), given tbat the signature of the
erla¡g: sizell built-in function is

size(tup1e I biaary) -> iateger

the analysis ûrst arnotates the Icode contol-flow eraph with type information. This
can b€ s€€n in Fig. 2(b) which shows the result ofpropagating types for variable v0
only. Given such a type-annotated CFG, it is quiæ easy to discover and report to the
user tbat both the first case claus€ and the catch-all clause a¡e dead, thereby r€,moving
these clauses; see Fig. 2(c). in ourexample, finding code which is redundant especially
thc first clause, rçveals a subtlç Fograrnming çrror as the corresponding 'measuring'
function for lists in ERLANc is length/l, not sízel t.

33 Making the Analysis Intra- and Inter-Modular

Currently, tbe only way to provide the compiler with information abut the argnments to
a function is by using non-variable terms and guards in clause hcads. (ftis information
is primarily used by patt€rn matching to choose between the function clauses.) Since
Drervzpn errploys a forward analysis, when analyzing only one fr¡rction, there can
be no information at the function's entry point, but at the e,nd of the analysis there

is information about the type of the function's r€tun value. By unioning all proper
(i.e., non-exception) type values at the exit points of a fi¡nction, we get additional t)'pe

B

information that can tåen be used at the function,s cau siæs. The infoimation is oûennon-trivial since mostrrn_ctions *r a"rffiìo retum values or"
".rt"io

type and donotexplicitly fail (ie., raise-an gxception)rTiotake"d*""c";;,hüä"îo"a
aoatyri, i,extended with a persisten,r?"?o irltã' iwi,:sf"*dd;;;îoîroo.urioo

"uo*
their return values' The table is used uåtirîoi iot .-modular salls aod for calls acrossmodule boundaries, but sinc" tn" t"ur" oJv clìøins informatiooabout fi¡nctionswhichhave arreadv bcen anaryzed, *-" tioo-äi äive anarysis is necded.Fi¡st consider intra-modular *ur. o."-ipp*ach isto iærativelu anatyze all func_tions in a modure until the i",ø*,"ì""

"ú#rh;r, *;';"ïï.å#"s unchanged(i'e" until a fixpoint is reached). rh";;;iJ probrem with rhis approach is that thefixpoinr computation can bc .rrri" ".Ätr" eootn
"
uppr*"t;hil;;, currenrry trredefar¡rt' is to construct

1
r?d:

""u srpn ortr" r-"ri-s in a module, and then performone iteration o¡th6 ¡narysis ¡v.""iriã*i"s rh" stongly connected components of rhiseraph in a bottom-up fashion ii.e., u"r"¿ìii.""r ed topologrcal r*il r"u compo-nenrs consist of only one firnction, ttris w'r n¡¿ a" ,"-!-iråã"äîías an iærativeanalysis' If there are components which consist ofm'tually recursive fuuctionsn we caneither emproy ûxpoint computation or heuristica'y compuüe a safe approximation ofúe retum varue types in
:n:

p."" (r*
"*"npi",

the rype øay). Noæ thai this heuristic isacceptable in our context; tnà ¿iràrp*"yi*i"ir*ondo;;ñi* il*, complete(ie.,_it is not guarantee¿ r" n ¿
"U

Ar-õ_äåri.
Now consider function calls across -Ãï" L*o*1"s. In principle, the call graphdescribing the dçendencies ¡"*"* io¿iää be consrructed a priori.but this in_poses an vo-bound start-u.R overüead whicrr we would ¡ather avoid. Insæad, rve con-stuct this graph as the moduler

"r"
*"rlo¿roìæ n *,,i.", and use this informationonly if the user requesits a complete anarvrir *ùu ."quires a txpoint computation.

A ûnal note: so far' t¡e anarysis has been appliei.to code ofprojects which are quitemature. However, as meirtioned, o* iot*tiií* *rr a" ,oor'u"'*ã"rä ioægr"æocomponent of the program development cycl". ro ,1"n situations, the code of a modulechanges often' so the informatio; - o" í*trp'table may become obsolete. when aproject is in a phase ot1r1d nrototvoint, ir-;; be convenient to get rçorts of dis-crepancies discovcred bascd ón tur
"øJoiuìiiel" module. The solution to this is r,oenelyz'e onemoúrlet'r fixpoint, *i"g" L"tpäuletbat contains fi¡ncrioninformationfron only tåe start ofthe analysis orá"t -Jirr The tool supports such a mode.

4 Dm,r,yzrn

4,1 Architecture and Implementation

Figure 3 shows tåe Drelyz EI in adion, analyzing the application inets from the stan_dard library of rhe Erlang/CIIp RSC-O dloibå,#.
In Drervz¡n v 1.0. ãc us€r can ;h*J;;; difer€nt modes of operarion. Thegranutarítv oprion controls wåetherth;;J;; t, p;ã;;äîffi_oour" o,on all mod¡¡les of an

"oo.T:lri:.T. ¡r"^oåråp¡"n selecrs berween performing rheanalysis till flrpoint or doing a quick-and-dirty, oi"-p"ss aoatysis. The meaning of this

9

Fig.3. The DIALYZERin actioe

option partly depe,nds on the selected granularity. For example, if the granularity is per

application and the one-pass analysis is selected, each module is only analyzed once,

but fnpoint iteration is still applied inside the module. Finally, the loohrp table re-init
option speciûes when the persistent lookup table is to be re-initialized. i.e., if the in-
formation is allowed to leak between the analysis elements specifnd bythe granularity.

Combinations of options wbose semantics is tmclear are auùomatically disabled.
'While the analysis is running, a log displays its progress, and the discrepancies

which are found are report€d by descriptive warnings in a separate window area; see

Fig. 3. When the analysis is ftrishe{ the log and the wamings can be saved to files.
As described in Sect. 3.3, tlre module-dçendency graph is calcrrlated duing the first
iteration of the anal¡nis of an entire ap'plication If a ûxpoint analysis on the application
level is requested, DIALYZER uses this i¡fonnation to determine the order in wbich the

modules are analyzed in the next iteration to redr¡ce the number of iterations needed

to ¡each a fxpoint. In fact, wen in tbe one-pass mode the module-dependency graph

is conskucted,just in case the user decides to request a ûxpoint analysis on comple-
tion. Requesting this is typically not burdensome as the anralysis is quite fast; this can
also be seen in the ûgure. On a 2GLlz laptop running Linux, the Dur,vzsn analyzes

roughly 800 lines of EnraNc code per second" including VO. (For exanple, the sizes

of mod-cgi, mod-diskJog, and modJrtaccess modules arc792,405, and I 137 lines,
respectively. As another example, one nxr of the analysis for the compleæ Erlang/OTP
standard library, comprising of about 600,000 lines of code, t¿kes arormd 13 minutes.)

The Drelyzen disribution includes the code for the graphical user interface and
the analyzer, both writen in Enr¿Nc. As its analyzer dçends on having acc€ss to a
specific version of the HiPE native code compiler, on uúose irûasûr¡cû¡re (the BEAM
bytecode disassembler, the translator ûom BEAM to Icode, and the Icode supporting
code such as SSA conversion and liveness analysis) it relies, the presence ofa recent

u

¡,61 ¡ñ

h 0. C{ ..c.

æ'.ì¿ffiËFæE-W4[0

ffi
n{G

'i;i
tii

.b. .dhû 6 6l! dè Éç 2 d ñ.! úd¡
ow¡ ûÉ m ¡åù viu G¡!å 2 rù ôr.t dl
æú! ru {@ãf.!hmlr6}l'11.!x !6cqrb dù À

. e¡úú&d wrd. Furp (6ú.-rL¡4ll I ?¡êÞr r.êerþ né ù

3),
3!'

,tto $¡¡d tr@Éldt rrU r¡irt! É1
I ¡Yt Sn t!g¡..Ê6) dU ùtr

Io

Erlang/orP release is also required. upon frst start-up, Dr¡ryzen will automatically
tigger the fixpoint-based analysis of the Erlan¡/OTp-rt-¿.r¿ liU*ry, J¿UU, to con_
struct a persistent lookup table which can be used as a basis for all subsequent analyses.

4.2 The Dwyzun inAnger

In order to show that or¡r analysis is indeed effective in identifying software defects, wepres€r¡t some results obtained from using the D¡eryz¡n to anaiyze code from large-
scale telecom applications written in ERLANc. These applications au have in courmon
that theV are heavily used and well-tested commercial products, but as we will see,
?I^LyzER still exposed problms that had gone unnoticed by resring. Some brief addi-
tional information about theæ applications ãppears below:

- AxD3Ol is an asyrchronous transfer mode (ArM) swirching system from Erics_
son [2]. The project has been nmning formore than eight yã*-oo* and its teasr
currently involves 200 people (butthis numberalso incftideso." ,,rpport staff; not
only deveþersortest€rs). The ÄrM swiæh is designed fornon-rtoi'opo"tioo, *
robusbress ¿¡¡d high availability ar. very important and taten seriousþ during de-
velopmelrt. As a consequence, a signifiç¿¡l efort (and part of the projfu's budget)
has bee,n spent on testing its safety-criticar components; see atso ¡i21.- GPRS (General packet Radio service) is a relecom system m. E¡Ërroo. A large
percentage of its code base is wrifte' in EntaNc. The project has beca ¡,rnning for
more than severi yeats now and iæ testing includes extensive test suites, automated
daily builds, and code coverage anarysis- Since this was a pitorstuay ior the appli-
cability and effectiveness of Drelvzan in identifying disLepancilony part of
GPRS's ERLANG code- has so fa¡ been analyzed. Arthough åDlv part of the totar
code base, the analyzed code is rather big: it consists orsao,oo0 lines of Enreuc
code, excluding comm€nts.

- Melody is a conhor system for a ' caner Tunes', ringbacktone service developed by
T'Mobile. It is an imple,ncntation of a customer database with interfaces to media
players, short message yice c€rìters, payment platforms, and provisioning sys-
teins. The core of Melody is sigpiûcantly srnaller tban the other Llecom products
which were analyzed; however, it includes parts of T-Mobile's extensively used and
well-tested standard telecom library.

In addition to these commercial applications of Enlexc, we arso anaryzed tle com-pleæ set of súandard libra¡ies ûom Erlang/orp release R9c-0 tom Ericsson and code
fiom Jungerl,T which is an open-sou*e code repository for Ent¡Nc developers.

In order to have a more refined view ofthe kinds of discrepancics Dr¡ryzen found,
we can manually divide then into the following categories:

Erplosives These are places in the code that would raise a run-time exception. Exam-
ples of this are calls to ERLANc built-in fimctions with the ** ar* of argu_
ments, opcrators not deûned on csrtain operands, faulty (byte) co¿"I"t, nn cxplo-
sive can of co'rse be conditionar (e.g., firing on some execution paths only, rather
than in all paths).

- A J*gt" .f Enlawc codc; scc sourc€f orte . n€t/proj ects/ j rmgerl /.

M

Camouflages These are progranming errors that for example make clar¡ses or branches

in the control flow graph unreachable - although the progra¡nm€r did not intend
the¡n as such - without causing the program to süop or a supervisor process being
notited that something is wrong. The most cornmon erro¡ of this kind is a guard

that will always silently fail.
Cemeteries These a¡e places ofdead code. Such code is of course harmless, but code

that can never be executed often reveals subtle programming errors. A common
kind of cerneæries are clauses in case staûeme,nts which can never match þecause
ofprevious code) and are thus redundant.

For example, in the code of Fig. 2(a) if the analysis encounters, in this or in some other
module, a call of the fonn test ([-lJ), this is classiûed as an explosive since it will
generate a nmtime exception. ln the same figxre, botb the fi¡st and the last clause of the

case statem€nt a¡e cemeteries, as they contain dead code. On the other hand, the code
fragment below shows an example of a camouflage: the silent failure of the size (X)

call in a guard context will prevent this clause from ever rsturning, although arguably
the programmer's interntion was to handle big lists.

test(X) sheD is]ist(X), size(X) > 10 ->
{J.ist, big-size};

li/, Ot¡e¡ clovses

Table I shows the nr¡mber of discrepancies formd in the different projects.s The
numbers l¡ t|¡s çshmn titled "lines of code" shorv an indication of the size of each
project (comments and blenk lines have been excluded) and justify our reasoning why
requiring type inforrration or any other user a¡notations a posterion in the develop-
me,nt cycle is not an option in our cont€xl Although we would actually strongfy prefer
to have any sort of i¡fo¡nation that would make the analysis more effestiv€, we are

firlly convinced that it would be an enonnous tesk for deveþers to go througb all
this code and provide type information - especially since this would entail intimatc
knowledge about code that might have been writte,n by someone else years ago. Real-
istically, the probability of thìs happening simply in order to start using Drlrvzen in
some cornmercial project, is most certainly zero.

Despite these constraints, DIALYZER is quite effective in identifuing softwa¡e de-
fects in the analyzed proj€cts; s€€ Table l. Indeed. \rye w€tre positively surprised by the

amount of discrçancies Dl¿lYzsn managed to ideirtify, given the amormt of testing
€ffort al¡€ady spent on the safety-critical components of these projects and the conser-

vatis¡n of the methods which DrerYzEn version 1.0 currently employs.
In addition to finding pro€gamming errors in Enr¡Nc code, DIALYzen can also

expose software errors which were caused by a rather flawed franslation ofrecord ex-
pressions by the BEAM b¡ecode compiler. In Table l, 3l of the r€ported explosives
for Erlang/OTP R9C-0 and 7 for Melody (indicated in pareirtùeses) are caused by the
BEAM compiler generating msafe instn¡ctions that fail to be guarded by an appropri-
ate t¡æe test This in turn could result in buffer ovcm¡ns or segme,ntation far¡lts if the

I Actuaüy, DIALYZER also warns its uscr about thc usc of somc archaic EnLeNc idioms and
code rclics; these warnings are not co¡sidered discrepancies and are not rcpo¡ted in Table l.

t

Tz

lable 1. Numberofdiscrepancies ofdifferent kinds formd inthe ¡n¡tyzed projects-

instructions' argumelrts wer€ not of the (implicitly) expected type. This compiler bug
has beeir correctcd in release R9C-l of Erlang/OTp.

43 Curent Features and Limitations

$e jool confuses programming errors with errors in the BEAM bytecode. Typically
this is not a problen as Dwvzen has built-in knowledge about conmm discr€pancies
caused by flawed BEAM code. whe¡r zuch a discrepancy is encormtere4 DLâ,LYZER
recommends its user to re-generate the bgecode ûle using a new€r BEAI,Í conpiler
and re-run the analysis. As a maner of facl we see this ability to identiÛ faury aeeu
code as an advantage rather than as a linitation.

starting from bytecode unfortunately means that warning messages cannot be de-
scriptive enough: in particular they do ûot precisely identifo the clau-se./line where the
discrepancy occurs; see also Fig. 3. This can often be confusing. Also, since sormdness
curreirtly is a major concern, the DlAryzsn only reports t"aorings when it is clear that
these are discrepaacies. For example, if a switch contains a clarise with a pattern that
ç¡nnsf psssiþly match then this is reported since it is a clear discre,pancy. dn the other
tund' if the analpis ûnds that the patterns in the cases of the switch fail to cover all
possible type values of tåe incoming t€rm, this is not reported since it might be due
to over-approximation caused by the pafh-inseirsitivity of the analysis. of äurse, we
could easily relax this and let the programmer decide, but as explained in Sect. 3.1
soundness is a requirement which Durvzen religiousþ follows ai this point.

4.4 Pl¡nned tr'uture Ertensions

One of the sFengtbs of DHrYzen version I .0 is that no alt€rations to the sor¡¡ce code
are needed. In faot, as we have poinæd out, the tool does not even need access to it.
Howwer, if the sou¡ce code is indeed available, it can provide the analysis with addi-
tional information. work is in prog€ss to ge,nerate Icode directly ûom cbRE ERLANc,
which is the official core language for EnraNc and the tanguage used internally in
the BEAM compiler. since coRE Enr¿nc is on a level whicñ isãoserto the original
source, where it is easier to reason abor¡t the progfalnmer's inûentions, it can provide
DIALYZER with mems to produce better warning messages; in particular line num.-
ber information can be retained at this level. The sEucture of conB Ezu,eNc can also
help.in deriving, in a more precise way, information about the possible values used as
ârdr¡nents ûo fimctions that are local to a module.

Cemeùe'ries

AXD301
GPRS
Jugerl

000

l,100,000
580,000

80,000

132
4
72
I

74
104
32

5

0

26
10

5

8

2
2
2

1

I"g

potential errors, and tbs NUDE (the NU-Prolog Debugging Environmelrt [4]) and Ciao
Prolog [9] systems which also inco'rporate t¡pe-annotation-guided static debuggers.

In the context of EnraNc, two tlpe systems have been developed before: one based

on subtyping I l] and a recent one based on soft types [5]. To the best ofour knowl-
edge, the latter has not yet beeir used by anybody other than its author, although time
might of course change this. The former ([l]) allows for decla¡ation-free recursive

types using subtyping conshaints, and algorithms for type inference and checking are

also given in the same paper. It is fair to say that the approach has thus far not been

very successful in the EnuN6 ç6mmunity. Reasons for this include the fact that the

type syst€m conshaints the language by rejecting code that does not explicitly handle

cases for failures, that its inference algorithm fails to infertypes offunctions depend-

ing on c,ertain patt€Nn matching constructs, and that it de'mands a non-trivial amount
of user intervention (in the form of type annotations in the source code). Stat€d differ-
ently, what [1] tries to do is to impose a style of programming in EnreNc which is
closer to that followed in statically typed languages, in order to get the benefits of static

type+rror deteçtion. Clearly this goal is ambitious and perhaps worthwhile to pursue,

but then again its impact on projects which already consist of over a million lines of
code is uncertain. Our work on the other hand is less ambitious and more pragmatically

oriented. We simply aim to locate (some of the) software defects in already deveþed
ERLANc code, without ímposing a new method þr writing programs, but by tryíng to
encourage øn implicit philosophy þr software development (namely, the frequelrt use

of a static checker tool rather than just relying on testing) which arguably is better than
the practice the (vast majority of the) EnreNc community curre,lrtþ follows.

6 Concluding Remarks

DIALYZER version 1.0 represe,nts a ûrst attempt to sreate a tool that uses lightweight
static analysis to det€ct sof;hvare defects in large telecom applications and other pro-
g¡ams developed using EnreNc. While we believethat ourexperimenthasbeenlargely
successful, there are several aspects of tbc tool that could be impmved tbrougb either
better technology or by relaxing its requirements (e.g., no false wamiags), which æe

curre,ntly quite stringent. Given support, we inte,nd to work in these di¡ections.
On a more philosophical lwel, it is admittedly tle case that most ofthe softwa¡e de-

fscts idcntiûed by Dnr.vzrR are not v€ry deep. Moreover,lhis seems to be an inherei¡t

limitation of the method. For example, proble,ms such as deadlock freedom of Enr¡Nc
p¡ograms cannotbe checkedby DI^LYZER. One cannothelp being a bit skeptical about
the real power of static analysis or type systems in ge,neral, and wonder whether a tool
that used techniques from softwa¡e model checking would, at least in principle, be able

to check for a richer set ofproperties and give sfronger correctn€ss guarantees. On the

other hand, there is enough evidqrce that neither static analysis nor software model
checking are currently at the stage where one dominates the other; see also [5].

More importantly, one should ¿of underestimats the power of simplicþ and ease of
use of a (software) tool. In a relatively short time and with very little effort, Dr,llvzsn
managed to identifu a large nr¡mber of software dcfccts that had gme unnoticed after
years of t€sting. Moreover, it managed to identifo bugs that are relatively easy to correct

;.
)l

t'I

i

:

T)

We also plan to exteird DIALYZER with the possibility that its user incrementally
adds optional type annotations to tle source code. The way to do this is not yet decided,
but the primary goal ofthese annotations, besides adding valuable source code docu-
mentation, is ø aid the analysis in its hunt for discnepancies, not to make ERLANG a
statically typed language. If a type signature is provided for a funstion. and this sipa-
ûre can be verified by Drarvzen as described beloq it can be used by the analysis
in the same way as calls to biß and primops a¡e used in the cu¡¡ent version. The way
to verifr a signature is as follows: insæad of trying to infer the types at each call siæ
(as would be the case in most type syst€ms), the sigpature would be trust€d until the
û¡nction is analyzed. At this point the sipature would be compared to the result ofthe
analysis and checked for possible violations. since Drervzpn is not a compiler, no
programs would be rejected" but if violations of user-deûned signatrres are discoverd,
this would be Ëport€d to the user togeth€r with a message saying that the results of the
discrepancy analysis could not be trusted.

Taking this idea fr¡rther, we also plan to experiment with relaxing soundness by
allowing the user to speci$ ænotations th¿t in general cannot be süatically veriûed
(for example, that a certain argum€nt is a non-negative integer). This is simila¡ þ fþe
direction that research for identi&ing defects such as buffer overruns and memory leaks
in c (see e.g. [6,4]) or for detecting violations of specifications in Java prograns [g]
has recently Aken.

5 Related Work

Clearl¡ \üe are not the füst to notice tlat compiler and static analysis technology can
be employed for identifying defects in large softrra¡e projects.e Especially drning the
few last yearq researchers in the programning language community have shoum sig-
niûcant interest in this subject; see e.g. the work me,ntioned in the last paragraph of the
previous section and the refenences therein. Most of that work has focused on detecting
errors such as buffer ove,r¡uns, memory access errors such as accessing memory which
has already been freed or following invalid pointer references in c, race det€ctim in
multi-tb¡eaded Java programs. etc. Thes€ software defects are sinply not present in our
context, at least not directly ss.lo gimilarly to what we do, some of these analyses do
not need source code to be presen! since they start from the binary oode ofthe exe-
cutable. on the other hand, we ar€ not aware of any work that ties to detect flaws at the
level of vi¡h¡al machine bytecode caused by its ûawed generation.

During the late 80's and the beginning of the 90'q the subject of automåtic t)ape
inference without type decl¿rations received a lot ofatûention; see e.g. [12] for an early
work on the subject. A number of soft type systems have been developed, most of them
for tbe fimøional languages Lisp and sche,ne, and some for prolog. The one olosest
to our work is that of soft schcme [18]. Perhaps sadl¡ only a few of then made it
into actual disributions of compilers or integrated dwelopm€Nrt qrviroñments for these
languages. Sone notable exceptions are DrScheme [7], a programming avironment for
scheme which uses a form of set-based aaalysis ûo p€rform t)¡pe inference and to mark'I

w" ,*
"k" -ilr"c to bct our fortuncs that wc will not bc thc last oncs to do so cithcrl

r0 They can only occur in the VM interpreter which is written in c, not in ERL^Nc code.

1s

- in fact some of ther¡ have been already - which brings software in a state clos€r
to the desi¡ed goal of total correcùaess. One fine da¡ some projects might actually win
thei¡ wa¡!

Aclcrowledgments

This research has been supporæd in part by VINNOVA througb the ASTEC (Advanced
Softwa¡e Technology) competence center as part of a project in cooperation with Erics-
son and GMobile. The resea¡ch of the second author was partly supported by a grant by
Vetenskapsrådet (the Swedish Research Council). We tbank lllf Wiger and Hans Nils-
son ûom the AXD3OI t€am at Ericsson, Kenneth Lundin from the Erlaag/OTP team,
and Sean Hinde from T-Mobile fo¡ their help in analyzing the code ûom commercial
applications and for their kind permission to report those results in this paper.

References

l. J. Armstrong, R Virding, C. Wikstuõn, and M. Williams. Concznøt Pmgronming in
Erlang. P¡entice tlail Europe, Herfordshi¡e, Great Britain, second edition, 1996.

2. S. Blau and J. Rooth. AXD 301-A new generation AIM switching syste.m. En'cssan
Review, 75(l): lG-l 7, 1998.

3. R. Cytron, J. Ferr¿nte, B. K Rosen, M. N. Wegman" and F. K Zarleck. Efficie,ntlyco4uting
static siagle assignment form and fhe control dependence gnph- ACM Truu- Pmg. Løng.
Syst, 13(4):451-490, Oct 1991.

4. N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for statically detecting atl
bufferoverflowsiaC. fnPrcceedings of theACM SIGPL{N 200j Confercnce onProgram-
ming Language Design and Impl.ementation, pages 155-167. ACM P¡ess, June 2003.

5. D. Engler and M. Mus¡¡¡athi. Static analysis versus sofrrn¡a¡e model checking for bug fnding.
In B. Stefren a¡d G. Levi, editon,ïerifuation, Model Checking ûrd Abstracl Intqfefalion.
Pmceedings of the Sth Inernational Conference, number 2937 tn LNCS, pages 191-210.
Springer, Jan. 20(X-

6. D. Er¡ans and D. La¡ocüelle. Improving secmity usiag extensible liglrtweigbt static analysis.
I E EE S ofiw oe, 19 (l):A-S l, J an. I F eb. 2002.

7- R- B. Findler, J. Clanents, C- FlanâEpn, M. Flatl S. Krishnamurthi, P. Steckler, and
M. Felleisen. D¡Scheme: A programming ewironmert for Scheme. Journal of Fuaional
Prcgrantming, l2(2):159-L82, Mar 2002.

$. Q. f'l¡n¡gan, K. R. M. Lei¡o, M. Liüibridge, G. Nelson, J. B. Saxe, and R Staø. Extended
sfatic checking for Jar¡a. ln Pmc.edings of the ACM SIGPI./4N 2002 Confercnne on Pn¡-
granmtng Languøge Dæign øtd Implqnqtation, pages 2y-245. ACM Press, Jrme 2002.

9. M- V. Hernenegildo, G. Pueble F. Bueno, and P- López-García hogrm deveþment
using abst'act iderpre'tation (andthe Ciao s¡rstem preprocessor). ln R Cousot, editor,

^Støfic
Analysit: Pmaeedings of the lùth lnternational Symposiun, m¡mber 2694 in LNCS, ¡rages
127-152, Berlin, German¡ June 2003. Springer

10. E. Johansson, N{- Pettersson, and K- Sagonas. HiPE: A High Performance Erlang systen
lnPmceedings of rhe ACM SIGPLAN Conference on Prùæiples ønd Practice of Decløúive
Pmgranming, pages 32-4-1, New York, NY, Sept. 2fi)0. ACM Press.

11. S. Marlow and P. Wadler. A practical subtyping system for Erlang. In Prcceedíngs of
the ACM SIGPLAN Intenational Conlercnce on Futctional Progrottming, pges 136-L49.
ACMPress,Ju¡e 1997.

¡

i
¡i.

:

t.

I

tt (tt)

12. P. Mishra and U. S. Reddy. Declaration-free type checkiag. In Prccedings of tlze Twelfth
Annul ACM Synposirmt on the Prirciples of Progrøming Languøges, pages 7Jl. ACM
Press, 1984.

13. S. S. Muchnick Advanced Compiler Design & Implemenøtion- Morgan Kaufuan Pubüsh-
en, San Fransisco, CA, 1997.

14. L. Naish, P. W. Dart, and J. Zobel. The NU-Prolog dsþusgi¡g em¡hotrment. ln A. Porto, ed-
Ilor, Prcceedings oîthe Sixth Intenutional Conferelrce on Logic Prcgramming,pges 521-
536. The MIT Press, Ju¡e 1989.

I 5. S.-O. Nystrðm. A soft-typing rystem for Erlang. [n PmceeÅings of ÅCM SIGPI.AN Erlang

Workshop, pages 56-71. ÀCM P¡ess, Aug. 2003.

16. M. Pcttersson, K. Sagonas, and E. Johansson. The HiPE/x86 Erlang compiler: System de-
scription and performæce er¡aluatiou In Z. Hu and M. Rodríguez-Artalejo, editors, Proceed-
ings of the Sixth Internotional SWWsium on Futætionol and Logic Prugramming, number

2441 n LNCS, pages 228-24, Berlin, Gemany, Sept. 2(X)2. Springer.
17. U. Wþr, G. Ask and K- Boortz World-class proôrct certiñcatioausing Erlang. SIGPLAN

N otices, 37 (12),25-:34, Dec. 2ú2.
18. A. Wright and R, Cartwriglrt. A practical soft tyf¡e system for Scheme. ,4CM Tlan:. Pmg.

Lang. Syst., 19(1):87-1 52, Jan 1997.

t þo¡

In the need of a desigtt. ..
reverse engineering Erlang software

Thoma.s Artsl and Cecilia Holmqvist2

1 IT university in Göteborg
Box 8718, 40275 Gteborg, Sweden,

email thomas . arts0ituniv. ee
2 Ericsson AB

Lindholmspiren tl, 41716 Gteborg, Sweden

I Introduction

Softwa¡e development often faces the problem that over time the design docu-
ments and the actually implemented code coincide less and lees. After fine-tuning
the software, adding features, leaving out other features and correcting design
errors in the code, not in the documents, the result is a product that can be
sold. However, the design documentation is no longer up.to-date.

Time to market is important and the costs that it takes to keep design doc-
umentation updated is sometimes thrown into the shade of being out first. Only
ifone survives, the up-to-date design documents are of any use. Thus, after ob-
taining a market share, one is forced to update the design documents in order
to effectively propose additional features or major softwa¡e changes.

In this paper we discuss a techinque to help reverse engineering a part of an
Ericsson product. In the economic crisis in which the product was finalized for
the market, the resources for updating the design documents were not available.
After being successful in the market, the product has stabilized. Now, there is
a strong wish for updated design documents. First of all, for understanding the
system better (what is actually going on?). Second, for being able to plan a new
implementation from scratch for large parts of the system. Third, the difference
between actual behaviour and designed behaviou¡ indicates problems in software
parüs; the larger the difference between design and actual code, the larger the
possibility that errors can be found in that part.

The product we looked at was written in Erla,ng [1] with rather strict design
guidelines. For exarnple, the naures used for functions and modules were well re-
flecting the original design; in the software block Mobi,ltg Manøgemnnt in UMTS
(MMU)all module narnes sta¡ted with nnu. These strict guidelines helped us in
easily reconstructing a design from traces of the code.

'W'e performed a case study to show the possibility of supporting the reverse

engineering attempt with some softwaxe tools. These tools strongly depended
on the fact that hlang is the implementation languâge of the system and that
the design guidelines a¡e followed. However, projects with other, but also strict
guidelines will be able to use the same tools in order to reverse engineer the
code.

L

other reverse engineering attempts have been presented by Nvström [6J andby Mohagheghi et. at. t4. ñrh ¡|l; ;;;;;;"";;ä;;å,rY* * rhe code,wherea.s in our approach we *r". "* tãi"ì" äJää;;':';."" code, buronly use information available ut ,urrtirn".'
The paper is orqanized as follows; rn s""t. 2 we describe the rough outrine ofthe software we roo"ked

".
r"i"",. î ;;ä;*, how we obtained a finire sraremachine from looking at traces or tn" runnrng sof'ware. The state machine wasgraphically visuarized and manualþ ."à** ïyith the ;gi""î uru design.In sect. 4 we discuss what differenco- *ã .*" quickty able to find with thistechnique.

2 Mobility Management in UMTS
In our case-study we concentrate on the Mobility Management in

'MTS
(MMu),

i"T;:.i."
r"ftware componenr, a so called b.ock, arone of rhe systerns in a UMTS

The component is specified by a set of uMr, diagrarns. A subset of these di-agrams consist of state machines that specifyt¡u,t""to io *nñï; componentcan be' This suhser resembles *u"r, trr.iìiå hierarchical sr*" -"îir"", a uMLversion of sratecharrs [5J' on the firsi ;ì;p revel a stai" rnacnte with eightstates' with names rike-m's-attachi,ng, ms--connented, etc,i" rp"Jnä t"e Fig. r).on the next level, elch of th"* J;;;;presented as a srate machine withseveral sub-states within this largerut"t"
-'

strangely enough, the implerien;;i* of_the hierarchicar state machines isnot based upon rhe qeræri,cþnite state-nr*n¡* bd;;;;.-äï a sp".i*ttydeveloped hierarchicar state machinã ñ;"ùr. without digsing into the reasonfor it, we onlv srare here rhar trt"
""""ir *åLplemenred ;î;'"li;; cails (e.g.,detachrequest/. imprements a Detach frro, event) and state is impricit inthe sofbware. For that reason we cannot use the earrier deveroped trace visuari_sation softwa¡e [2]. Since the apprication

"*¿" ,o have accees to the state nowand then, the programmers have addJ
"

n *tion call set_stat e/2 tostore the
:T::lt:: :f rhe presenr srare. wherher rhis is srored in a procass dicrionaryor tn a server process, is not important for the rest of th" story.-

---,
Needless ro say rhat thjs.way of k*p;;;.ack of the present srate is rathere'or prone. The generic finite state -""tti"" u"r,"iouri *nui" lîlru * **_anteed to be updated aftSr evgrv

".,.ol, i" äo¡e_ robust against a progrâmmerthat forgets to update a state. l" p""ti..l*,] u"r."rrio*;il;";"ä to alreadystatically detect such omissions, *Lu."", in iu" pro"nt implementation, one hasto ûnd these omission" by runnins i*r*
* *

The component consists o{ruyå"1ñi"ns modules. The main modure is callednmunoc' which serves as-an interfac" rot
"uãitr"r modules in the component. A'communication from other components 0r subsystems to this component goesvia the mmu¡noc modure, *lri"h -"; th.t

"*ìu*t one interface function in thismodule is cated for every external signal. ità notio* in the munoc moduredepend on functions rn itre other *J;"I*-öi which the names all srart with

3

FIg. 1. 'lbp level süate måchire

+

yu), An incoming Detach Request
functior¡s in five .nnur modules to ."* tgr gxample cause over twenty difierent

be called, many of which are
""ll"d

,;u;;;itimes, before the state is updated.

3 Runtime software analysis

The MMU component consists of too many lines of code to sim'ry understandwhat the software is doing by rookng
"ì1".ou.." code. Even øin trr" designat hand it is far too costly, if,'ot tmpî*iti", * staticany anaryze thecode, i.e.,determining the behaviou¡ of the cåde uy1rr"nily studying the source code.Therefore, traditionally_,

"
**uJ,*rirJ analysis is performed.

Erlang has a trace function trtut .uo*r i p"oo' to select whatever fimctionhe/she is interested i1. cans t" ,r,"* n-.iiã* *." then monitoreã io
".orroiogsystem. Runtime analysis uses this tracofunction. If one wants to-anaryse theMMU component' one monitors all calrs to functior¡s in this component, i.e.,where the modr¡le name starts with nnu. A set of stimuli is provided to thesystem and the resr:rting rist, a so cared. trace, of fun¡tion cails (incruding time

*åålftî**enrs,
rerurn value, erc) is stãred'in

"
ûi";;;;"d;il;" disk_rog

Before we started our work, these trace ñles were converted to a textuarformat and manua'v analyzed. TÌaces
"*-¿ie". in length, but we rooked atfiles of about gMB, äontaining about 15 trrousand entrie-s. ío*ãJ ioto emacs,it is rather easy to ûnd eachãc"rr."o"" oiilumoc:set_st æe/2. However, weimmediately wanted to

l1ve.a t"-"t f* q;i.kry extracting these calrs from thetrace. Note thar one courd arso choose #""ty montor
"äI"-;; tlls pa*icularfunction w*h rhe rrace funcrions, H;;;;";;* a¡e not onry interested in thepossible state transitions. If we find a stateiransition that diflers from the onein the specification, we aìso want to u"ãã*"ra what has happened. The otherfunctions in the trace åxe necessary to get that understanding. since we mightmiss the particurar behaviou¡ rh"o r-.,r.ìh"

"oft*r" again, it is importantto have enough information in the trace ìo ààt".-in" what happened in case ofan unexpected state transition.
our traces can be rather ra.rge, in principle even severar gigabytes. For perfor-mance reasons' we do not want to r"ad this-binary trace in memory to convert itin a list and then remove most of the unnecessary erements (only very few func-tion calls are calls to rhe ser,-s.".i r,-yl-a._By using tniãî"t-i".g:chuncktunction, we would be so much resrricred to oi uvîo, rh;;;;;ld"d ro imple-ment our own log reader, T,*,".*-". l^*So"æ ye p.rogram a lazy ûle reading,which we male flexible ro rhe nia or fi]lt;råg by having a frlter function asargument.

read(FÍleNane,Filter) -)
{ok,FileDescr} = file:opea(FileNane, [read, raw, binaryJ),Terms = unpack(FÍleDesci,Filter, [J),file:close(FileDescr) , '--'
Terms.

5

u¡pack(FilêDescr,Filter,lerms) -)
case file:read(FileDescr,S) of

{ok, <<B1,B2,B3,Size : 16>>} ->
{ok,BÏern} = f ile :read(FileDescr,Size),
Term = binary_to_tern(BTern),
case Fi.lter(Tem) of

tru€ ->
unpack(FileDescr, Filter, [Te¡:n I Terns]) ;

fals€ ->
unpack (Fi leDescr, Fi 1ter, Terms)

end;
eof -)

lists: reverse (Terms)
end.

The ¡esult of the unpack function is a list of terms. To every term in the log
file, we have applied a filter function, returning either trøe or fdse. Only those
terms for which úrøe was returned, are left in the list.

The ûlter function is typically something hke, eith,er the terrn is ø nnunoc:
s€t-state,/2, orae,rùeueni,originøting erternoJtotlæMMU cønrynnent. Thus,it
is a logical combination of well determined te¡ms. This can be implemented very
flexible by defining small filters for the well determined terms and combinators
to combine them. For example, the filters to determine state and events from
outside, can be defrned as:

state-@u0 ->
fun({trace-ts, Pid, call, {nnunoc, set-state, [S,SS]], Caller,TS]) ->

true;
(_) ->
false

end.

outside-@uO ->
fun({trace-ts, Pid, caIl, {nnunoc, F, A}, {CM, CF, CA}, TS}) ->

striqg: subet¡ (aton_to_list (CM) ,1 ,4)== [$n, Sn r$u, $_J ;
(_) ->
false

end.

A beautifr¡l way of writing a filter would be or(state-mmuO,outeide--muO),
or a more complex case to obtain all calls that a¡e not inside the MMU com-
ponent and(call O , not (inside-mnuO)). Since the logical operators cannot be
overloaded in Erlang, we use a different na,me for them and defrne them as follows
(cf. [3]):

filter-or(F1,F2) ->

i

í

1

!
I

{

I
h

to (u)

4 Comparing Design and Reality

with the visualization of several traces at hand, it is ea.sy to compare the uML
design and the state machines obtained from a trace. It turns out that during
the development, the code has really diverted a lot from the actual design. Mosi
generated substate machine ss¡f¿ins some states a¡rd some transitions that are
not present in the design.

- In a few hours, many issues are written down, sometimes the differences
between real behaviour and design is so different, that the m¡mber of states in
common is less than the number in which they difier. The whole design started
from use-caaes and some of these use-cases have found their way in the code
without the state machines in the design being updated

e even find that some state machines are not modeled at all, i,e., there is no
design available.

All together, we can conclude that we quickly (a few hours) detect and ad-
minister a number of major differences. After that, other traáes visualize the
same machines and we only frnd some minor difierences.

If we would have had access to the encoding of the uML pictures, we would
have been able to write a smell tool to compâre state machines, therewith being
even faster in our comparison (visually highlighting the difference). However]
even with the present way of comparing design and actual code, íe are mâny
times faster than by using a manual comparison of design and a iext version of
the trace information.

References

[lf J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concunent program_

,^, :à"! in hl_ayo
"(Sgcond

Eddtion). prenrice-Hall Internarional (UK) Ltd., 19õ6.
[2f 'l'. Arts and LA. Fledlund. Tlace Analysis of Erlang progra-*. In proc. of ACM
_ _ Sigpløn Erlang Workshop, pittsburgh, USA, 2002.
[3] r. Arts, K. claessen, H. svensson. semi-Foimal Development of a Fa¡lt-Tolerant

Leader Election protocol in Erlang. br proc. of FATES-h1LL, Linz, Austri a,2tO4-
[4] E. R. Gansner, E. Koutsofios, s. c-. North, and K.-p. vo. a i*u"iq"ãìor drawing
., $t9Í"a grâphs. Softwore Engineerùng,19(B):214_280, 1998.
[5] D. Harel. statecha¡ts: A visual formarism for complex systems. science of computer

Programming, 8:231-27 4, 1g87.
[6] J' Nyström and Bengt Jonsson. A Tool for Extracting the Process Structure of

B¡lmg Applications. Erlang user conference, stockholm 2001. Also at the Erlang
Workshop, Florens, Italy, 2001.

[4 P. Mohagheghi, J.P. IFg", Selo, and W. Najib. MDA and Integration of Iægacy
systems: An Indrætrial case study. In proc. of workshop on lrodel Driaen Ar-
chàtecturc: Founilatio,s_and, Appldcøtdons, MDAFA,IL. university of rwente, En_
schede, The Netherlands. 2ç2T June 2ü)3.

L(to)

Erlang's Exception Handling Revisited

ABSTRACT
This paper describes the new exception handling in the
En¡,¡,Nc; progra.ruuring la,nguage, to be introduced in the
forthcoruing Release 10 of the Erlang/OTP syeterr. We give
a comprehensive description of the behaviour of exceptions
in urodenr-day EnrANc, present a theoretic¿l model of the
serrantics ofexceptions, a¡rd use this to derive the new try-
construct.

1. INTRODUCTION
The exception handling iu En¡,exc is au area of the la¡r-

guage that is not corrpleteþ understood by most progrâm-
ruers. There are several details that are often overlooked,
sornetiures rna,king the prograur sensitive to changes, or hid-
irrg the reåsons for errors so that debugging becomes diffi-
cult. The existing catch ruechanis¡¡r is inadequate it urauy
reapects, since it has not evolved along with the a¿tual be
haviour of exceptions in En¡.eNc implernentations. The ad-
dition of a new exceptiou handling coüstruct to replace the
existilg catc,h has long been discussal, but has not yet rnade
its way into the language.

The purpose of this paper is twofold: ûrst, to explain the
realities of exceptiorrs in EruANc;, and why the creatio¡r of
a new exception-handling construct Ì¡as been sucùr a lolg
a.nd complicated process; second, to describe in detail the
synta.:< and semautics of the ûnally accepted form of the try-
construct, whictr is to be i¡¡troduced in Erla,lg/OTP R10.

The layout of the rest of tlre paper is as follows: Sectio¡r 2
describes in detail how exceptions in En¡,¡.rvc actually work,
and the shortcouriugs of the current catch operator. Sec-
tiou 3 e:rplains how the r¡ew try-construct was derìved, ald
why try in a fuirctional language has different requireurents
tha¡r i¡r an inperative la.nguage such as C*+ or Java, In
Sectio¡r 4, we reûne the exception nrodel a¡rd give the full
syntax a.nd sernarrtics of try-expressions, along with soure
cor¡crete exa,ruples. Section 5 discusses related work, a,nd
Section 6 concludes.

Perrrission to make digital or hard copies of all or prt of this work fo¡
personal o¡ classoom use is granted without fee p'lovitled that copies afe
not made or disEibuted for ¡noût or commercial adrrantagg and üar copies
be¿¡ this notice ¡nd the full citatio¡ on the ûrst page. To copy otherwisq to
republish, to post or sef,vers or to rcdishibut€ to lists, requires p,r¡or specitc
petmission and/or a fee.
Erløng Worlchop 'O4 2!A9|2O[J4,, Snowbind, Utab USA
copyright 20M A(fvl 1 -58113-772-9t03n8 ...$5.00.

Richard Carlsson
Department of

I nformation Tech nology,
Uppsala University, Sweden

richardc@csd.uu.se

Björn Gustavsson
Ericsson, Sweden

bjorn@erix.ericsson.se

Patrik Nyblom
Ericsson, Sweden

pan@erix.er¡csson.se

2. EXCEPTION HANDLING IN ERLANG

2.1 Exceptions as we know them
The exceptiol handling in Enr,er*c, as describal in [2],

was designed to be simple and straightforwa,rd. Au excep
tion ca¡r occur when a built-in operation fails, such as a.n

arithmetic operation, list operation, pattem matching, or
case'clause selection, or when the user cnlls one of the built-
in fu¡rctioüs exit(Tera) or throw(Tern).

The ercception is then described by en or¡ìinary En¡,au<;
ternr (often called the reoson), such ås a¡r atorn badarg or
badarith, or a tuple like {badnatch, Value} where Value is
the data that could uot be rnatchal. To prevent exceptions
frolr propagating out of an expression, the expressiolr can
be placed within a catcìh operator, as in

X = (catch f(Y))
(the pa.rentheses a¡e needed i¡r this case because of the low
precedence of catch), or more ofbe¡r

case catch f(Y) of

end

to inr¡¡retiiately switch on the result. If the expression within
the catch courpletes norurall¡ the resultilg value is retürned
as if the catch ha¡l rrot been there.

When a¡r exception occurs, one of two things can happen:
either the exception is not caught by the executing process,
arrd in that case the process terrninates, possibly propagat-
ing a signal to other proceBses; otherwise, the execution had
er¡tered (but not yet exited) one or ilrore catclr-expressions
before the exception happened, and execution is resumed at
the latest entered catch, unrolling the stank as necesså¡J¡.
The result of the catch expressiou then depends o¡r how
the exception was c¿used: if it occurred beca¡rse of a call
to thror(Tern), the result is exactly Te¡rn.l Otherwise, the
result will have the forrn of a tuple {'EXIT', Tern}. For
exaurple,

catch (1 + foo)

retur¡rs {'EXIT', badarith} (since foo is an atour), while

catch throw(foo)

retu¡ns the atorr foo, the intention being that thros should
be usetl for 'honlocal returns" (e.g,, for escaping out of a
deep recursion) and other user-level exceptious. The exit
function, on the other ha,nd, is intended for terrninaüing the
process, a¡rd behaves like a ru¡¡-time failure, so that
rMuch like catch/thror in Common Lisp.

L
catch €xit (user_error)

retürns {,EIIT,, user-error}.
O¡re of the co¡¡seq-ueûces of ttris (expliciüly describal in [2]

as a design decision) was that it becaure passible to ,,fake,t a
run-tir¡re failure or exit, by calling throv({,EXIT,, Tem}),
or by simply ¡¿f¡¡¡rring the value {,EXIT,, Tern}. For ex-
n'v¡ple, ùr the following code:

R = catch (caEe X of
1->1+foo;
2 -> exir(badarirh);
3 -> throw({rBflÎ,, ¡ada¡ith});
4 -> 1rg¡ç1'¡t, badarithÌ
S -> thros(ok);
6->ok

end),
casê B of

{'EKIT', badarith} -> tr1-4tr.

ok -) tr6-6t
end

the seurantics of catch rna.kes it iurpossible to tell whother
the v¿lue of R (depending on tr) is the ræult of catching
a run-tirne failure or a call to €xit or throw, or if the ex-
pre.ssion completed execution iu a nor¡nal way. Usually, tlús
is rrot a problem; for exaruple, nrost ERrAtIc progrùruneñt
would never use a tuple {,EX.IT,, Tern} in nor¡nal code.

2.2 Where's the catch?
In sorne contexts, it becoures more irnportaut to know

what h¿s actually happenetl. For exarnple, consider:

lookup(X, F, Default) ->
case catch F(X) of

{'HIT,, Reaeon} -) hanùLe(Reason) ;
not_foì¡rd -) Default;
Value -> Value

end.

wlrere F is tround to some function, which should either r*
turn a value depen<Iing on X, or call thros(notJormd).

Note that the possible returned values cannot include the
atom notJormd. To solve this in general, the return val-
ues would need a wrapper, such as {ok, Value}, to separate
the¡r¡ frorr auy thrown tenns (assuuring that {ok, ...} is
never tlrrown, much like it is assuured thât { ,EXIT, , . . . } is
not norrnally returned by any fi.urction). This limits the usç
futness of tt¡ow sornewhat, since it requires that tl¡e ¡rorrnal-
case return values are urarkd, rather tha¡ the exceptional
values, which is coulterintuitive and bothersome.

Ar¡ idio¡n used by a few knowledgeable Enlanc progra¡n-
trers to create alurost-foolproof catches is the followiug:

lookup(X, F, Default) -)
caae catch {ok, F(X)} of

{ok, Va1ue} -) Value;
{'EXIT', Reason} -> erit(Reason);
not_formd -> D,efautt;
Ter:n -> thlon(Tetr)

end.

Si¡rce it is guaranteed that the creâ,tion of a tuple such ås

{ok, Ãrpr} will never cauÉ¡e au exception if t}re subexpres.
sion ¿Bpr courpletes norurall¡ we have a way ofseparating
exceptions in F(X) fronr norural return vâlues * as long as

we tnrst that, nobody calls throw({ok, ...}) within F(x).
Furthennore, e,ny cauglrt exceptions that are not of inter-
est at this point calr simply passe<I to tb¡os or erit again,
hoping that some other cå,tch will trondlc it.

This way of writing sa.fer catches is however rarely seen
iu practice, since uot mâ,ny prograrruners know t]re trick,
or bother enough to use it, since their câ.tche6 rrostly work
anywây - at least until soilre other part of the code chatges.

2.3 Currrcntpractice
The difrculty in properly sepaxåti¡rg exceptions frorn re-

tur¡r values Àppears to l¡e the rrråfur reâson wlry alühough
En¡,ervc has a catch/tlrow mechalism, it is still the case
that in existiug code, the pretlominant way of sigualling the
success or failure of a fu¡rction is to r¡râ^ke it return tagged tu-
ples like {ok, Value} ir¡ case of success a,nd {error, Reason}
otherwise, forciug tl¡e caller to check tÌ¡e result and either
extra¿t the va;lue or harrdle the error. This often leads to a
clurrsy programuring style, in the many cases where êrrors
are actually ra.re and it is eve¡r ra¡er that the caller wa¡rts to
handle theur. (If a significant part of all calls to a function
tend to fail, the above can still be a good v/ay of structuring
the fu¡rctio¡r interface, but typicall¡ failure happens in only
a very srnall fraction of all calls.)

In C progra,rrs [5], the code is ofben interspersed with
rnany checks to see if functio¡r calls have returned valid re
sults, even though tl¡ere is seldour rnuch that the progra.ur-
ûler catr do if tl¡is wâa not the case, except tenninâ,te the
progråm. Tlrc lack of an exception mecha,riisilr rnakes the
code less readable, more tinre.conguming to write, arrd nore
orror pro¡re silce forgetting to chcck a volue ca¡¡ Ì¡e fatal.
En¡,¡lqc prograrru¡ suffer sfurrilar problems: even if the pro-
gra.rrrmer ca¡urot do a.nything corstructive to ha¡rdle a¡r er-
ror, he must still reurernber whether a called function retu¡r¡s
a na.ked value or {ok, Value}, a.rrd in the latter case must
also decide what should happen ifinstead {error, Reaeon}
is returued. The following idiour is often used:

{ok, Value} = f(X)

so that if the call succeeds, the releva¡rt part of the result
is l¡ound to Value, a¡d if the call instead returns {error,
Reaeon), it will ca¡rse â bad¡natch exception. fhs ¡¡nin
drawback is that it points out the wrong cause oftlre prob-
lem, which was a failure within f (X), â.nd uot iu the patterrr
rnâtching. Also, the wrapping converrtion re¡nains a cause of
irritation because one is forced to write an¡kwa¡d code like

tok, YI = f(X),
{ok, Z} = g(y),
{ok, Value} = b(Z)

wherr it would have sufficed with

Value = h(g(f(x)))

if tl¡e fuuctiorrs ha¡l returrred uake<l values a.nd used er<cep
tions to signal errors.

Souretirnes, progrårunersi attenpt to ha¡rdle the error case
as follows:

case f(X) of
{error, Reason} -> exit(R€agon);
{ok, Value} -> ...

end

3

but ofte', the erro¡ term Reason retur'ed by ilre functio'is very particular to that frrnction,
"'t¿

ir
"åt suitable forpassing to exit, so that anyone who catches the resutti'gexception will only be coufused since there is no longer a.riico¡ttext avajlable for interpreting ilre terrr. So even thoughthe programurer sünply wiìhes tã pass on-lirJiroutem to behandled Lry sorneorre else, it really ."q"i.oìrj".p.eting thee¡ror a¡rd creating â, rnore cornpiehensible report. In fact,the badnatch solution al¡ove is to t

"
pr"i"*if, because itwill show precisely where the progr*tru Ç, rather thaapåss on a cryptic ter¡¡r wiilr exit.

2.4 Processes and signals
Since En¡..qxc is ¿ concurrent language, every progra.ur isexecute<l by a pnrcess (similar to, [ndari), *ä;;y ;;;ces:es car.r be nurning concurrently il a¡r Én¡,e¡l<; ru¡tirne

"y, "t"*, A signalling systerr is used for iufonniog processes
about.vhen other processes terr¡¡inate. As for exceptions,an æit sàgnal is described by a tenn, which ii the irocasstegrinateO normally (by returning frour iis ìritiaf functioncall, rfi the ato''' no¡:naI. If the process terr¡ri'ated because

:t_,fla::::(rern) ,(an<r
did nát catcÌ, theãxceprion), rtre

:lT ::*t.t..ex31ilV ttre v¿lue of Tera; thus, a process cana,rso rerrütnate "nonnally"_by calling exit(nornat), e.g. inonler to easily exit from-witliin a dõp caJl ÃJ". Sil"¡fã"fy,if Ure process terminated because .f i,-r_ti*" failure thatq¡as not caught, the exit tern is the så^üre terur ilrat woulcl
fe ¡ercrted âs {

,EXIT, , Tern} io
"

."t"U_uÇ.orion, as forinsta¡rce l"g*g or {taanat"t Value}.
A special case is whe¡r a process terrni¡rates because itcalled thros(Te¡n) a¡rd <ti<t uãt catct the;;;;ption. fn thiscase, the exir ter¡¡r u¡ill be

-c{ra,ng¡<t
ro {;";";;i, Te::m}, todistiuguish this case from other-kind. .i;;;;. -

2.5 Thelbuth...
- To siurptify the above discussiol (as ura.ny rearlers will
louUlþ have roticetl), we have left ;"; u

-f*oí¿"trit"
u¡o,rt

:.1:1pt*i. as they ?pp"* i¡r modem En¡,erc implementa.
Etons. 'l'tre presentatiorr in the precaling sectio¡ts fàlows thedescription of exceprions in ,irr" pn".i*ã i;;1" [2] (Con_curreüt Progra.urming in Enr,lnc, Second na., ie9bj.

.

. The ¡'ost appare't c.rra'ge since il¡en is thai wtre' a ruu-
lirne

fåityre occurs (and is itren eitf,e. ca"gfrt iu'a catcu orc¿uses ühe process to terrninate), the terä tlat ¿esc¡f¡esthe error qrill âJso ilclude a syrobolic .ep.esentaiior. of tnetoprnost part of tl¡e call stack at ttre point .Uå.à tH"
"oo,occurrecl. (This does not happeu for calls to .ãì'o. thror.)The gøreral format, is {Reasãn, Stack}, *t e.e nã.eon is tlreüorulåJ error term as described in the previous sections, Forexa,rnple, calli¡rg f (foo) where:

f(x) -> u1u ++ g(X).
g(x) -> ',2'r ++ a¡¡¡.
h(X) -> X ++ ¡.r-

If eva.luation of zapr completed norrnally with result 1?
then

the result of catch Eapr is ß,
else

tlre evaluation tlrrew an exception (term,thrownl;
1f. thrcu¡n is true
the¡r

tlre result of catch Eøpr is terry
else

the result of catch Eøpr is {,ENIT, , tenn}

Figure 1: Semantics of catch.Ecpr

ir-nplernentatioil, cause o_f error, a¡rcl call history.a (Also notethat because of tail call optimization, man¡i intermedlate
frurctiou calls ca¡urot be reported, since tÌrere L by definition
no trace left of theur.)

Thus, for exarnple the ca.ll f (O) where

f(X) -> carch 1/X.

will actually return

{'EXIT', {badarith, [{foo,f,1}, , . .]}}
in a nodern system, rather than {

, EXIT , , badaritb}. How_
ever, the following code:

catch exit(T€rn)

will still yield {,8[IT,, Term], without any syrrbolic stack
trace, and sirnilarly

catch thror(Te¡:n)

yields jrxt Term, as before.

2.6 ... The lVhole Tþuth. ..
Now, the observa.nt rea¡ler rnay have noticed that alilroughit would appeåx that an exception is fully.teterrriirre*t by tLe

'teason" terur onl¡ in fact at least one"other conporrrrrt i"
Iä33:y l" "îrrpletely

describe an exceptiou, na.urel¡ a flagthat signâ,ls whether or not it was caused Ì:y tnrow-(tern)ì
(This follows fror¡r trre semartics of process tln'inatio¡r a.d
signals; cf. Sectiorr 2.4.)

..
Internally, an exception is then a pair (tenn, thntwn), wherethrt¡wn is eitl¡er true or falae, and tànn is the ,,reason,

terur. The sen¡antics of catch gopr cam r¡ow l¡e described
1s shgwn in Figure 1. Note that it is the catci operâtox
that decides (depentling ott tlne thrvwn nue) *i;th", o, ,rotto wrap the reaso¡r terur in {rEXITr, . . ,}:
2.7 ...And Nothing But The Ihuth

¡l

q¡ill
tl¡e

Soruething, however, is still ¡ni. sirrg, When throw (Tem)
is not caught, a¡d causes the process to ter¡¡rinate (as d+generate a,n exception with a descrþtor ter¡n such as
scribed in Section 2.4), tLLe exit terur is no longer simplyfollowing: {nocatch, Ter:n), but rather {{nocatch, Tern], [.. J], witha symbolic stac.k trace just as for a run-time failure. This
¡uea¡rs that the stack trace ca¡rnot be a¡lded o¡rto the ,îea-
son" terrn until it is lmoum what, tuillhøppen tct the æception,

tbadarg, [{erlang, , ++, , ftoo, ,r . Ù1 1 ,
{foo, h, 1} ,
{foo , g, 1},
üoo,f ,1]l]

Details in the stack representation may vaxy depentling on

llt* ryt"$ argutrents to the last called function åre üot
arìÃ¡-åys rncluded; only the arity of the function. The next_tolast call is oflen ñissing bfu"""-ii";"i;;r-u.l.t"o" **never storetl on the stack a^nd could not be recovãretl.

+
If evaluatiorr of. Eapr cornpletetl norrnâlly with result ¡¿
then

tlre result of catch Eapr is R,
else

the evaluatio¡r tlrrew o<ception (tertn, throun, fuaæ) ;

7f throum is true
therr

tlre result of catch Eapr is ter-m.
else

if trace ts null
then

the result is {,EXIT, , term,}
else

the result is {,H[,IT, , {term, trace}}

Figure 2: Modiûed semantícs of carch Æ.rpr

If evaluatiorr of the i¡ritial call corrpleted norrrally
then

the exit ter¡¡¡ is the aton¡ nor.nal
else

tlre evaluatio¡r tlrrew exception (tertn, throun, tracn);
if tla'oum is true
then

tlre exit terrn is {{aocatch, tenn}, trace}
else

iÎ truce is null
therr

tlre exit tenn is tenn
else

the exit ter¡¡r is {tenn, hucel

Figure S: Semantics of process termination

since if it is caught in a catch, it must n¿rf i¡rclude aüy stâ,ck
trace.

As a consequence, we have to exteld the full descriptiorr
of a.rr exceptiorr to a triple \terrn, throum, trøee), w!rcre trace
is either a symbolic stack trace or a special value nzJl, so
tlrat trace is mrll lf. and only if the exception was caused by
a call to oxit,

The sernar¡tics of catch rnust a.lso be urodified âa shov¡n
in Fþure 2, so that in the ce,se where the expression has
tlrrown arr exception, awJ, thrown is faIee, we have å, choice
dependiug on the value of trwce. The exit ten¡r for a ter-
rninating process is deterrnined in a siurila¡ way, shown in
Figure 3.

Orre last, not very well docuurented, detail is that when a
process terrninates due to an exception, a¡rd the exception
wâs not caused by a, câ^ll to erit(Tern), thi:s event q/ill be
reported by the Enr,nw(; runtiure systern tot}rre error logger
service. (In other words, âs long as å proeæss terrrinates
norrnall¡ or through a call to erit, it is co¡rsidered a rrorrnal
everrt frorn the runtirne systeüt's point of view.) This shows
once â,gnir¡ that it is recessâ,ry to preserve the infor¡natiorr
about whetl¡er or not the o<ception was caused by erit,
until it is known how the exception witl be tra¡rdled.

2.8 Love's Labour's Lost in Space
For the progrårruner, currettly t]re only urea¡rs of inter-

cepting a,nd inspecting an exception is the catch opera,tor,

but as we håve seen, this will lose i¡¡forrnation which ca¡rrrot
l¡e rçcreated. For exa,urple, as described iu Section 2.2, tlrc
followilg code atternpts to separate exceptiorrs frour norrnal
execution, a.nd tra.nspa.rently pass on all exceptiorrs that tlo
not cor¡cern it:

case catch {ok, ...} of
{ok, Value} -> ...;
{'HIT', Reaeon] -> exit(Reaeon);
not-f ormd -> .. .;
Te¡m -) thros(Tern)

end

However, when thro¡r(Tern) is executed in the last clause,
it will create a neu exception (terrn, throun, truce) havilg
tlte sa¡ne values for f erzn a¡rd tluown as the caught exception,
l¡ut with s, difrerent fru¿e. This is observable if the exception
caus6 the proceßs to terrninate, âr¡d since the original stack
trace was lost, it will Ìride the reâl reâsorr for the exceptiol.

Ftrrthernrore, irr the exit(Reason) case, llrc fuv.ce courpo.
nerrt of the new exception will be set to nzll by erit. Now
ûote thÐt ifthe caught exceptiou had ¿ non-nr¿Jltrace cour-
ponerrt, the catch will alrearly have a¡lded that trace onto
Rsaaon, so irr a seilse, the tenr¡ has been "finalized": if the
new exceptiol is cauglrt ir¡ a¡rother catch, or causes the pro-
cess to tenuinate, the ter¡¡r will look exactly the sa¡ne as if
it ha¡l never been intercepted by the å,bove code. But there
is oue probleur: since we used exit to pâss on the excep-
tiorr, it will zoú be reported to the error logger if it causes
the process to ter¡ninate - even if the origirral exception was
carüied by a run-tirre failure, which ought to be reported.

One built-in function that we have ¡rot urentioned so fa,r,

becawe it is not well known, and hâs nostly been used
in sor¡re of ühe stârda¡d libraries, is erlang:fau1t(Tem),
which is similar to exit but instead caus€s a, run-tirne failure
exception, i.e., such lhal hucæ { rrull awJ thrvun : f.aLse.
We could therr try to irnprove orr the ¿bove code by splitting
the {'EXIT', Reason} case iu two:

{'E[fT', tReason, Stack]] r¡hen list(gtack) ->
erlang : f ault (Reason) ;

{'EXIT', Reason} -)
exit(Reason);

wl¡ich will preserve the erro¡ logging functionalit¡ âs lorrg â,s

we ca¡r trust that the fust clause ¡natches all run-tirne errors,
and uothilg else. But like in the thror caÉ¡e, we roqr lose the
oúginal stâck trâce when q'e call erlaag:fau1t(Beason),
Wlrat if we tried erlang:f ault({R€ason, Stack}) i¡rstead?
Well, if the exception is cauglrt again, it will then get the
fonn {{Reason, Stackl}, Stack2}, ând so on ifthe process
is repeated. This preserves all the inforrratiorr, but could
cause problerrìs for code that expects to rratch on the Reaeon
ter¡n and night not recognize the case wlren it is nested
within ruore tha¡r one {. . . , Stact} wrâ,pper.

Thus, with a fair arnount of ca¡efirl ç64lirrg, we câÀ üow
catch exceptions, exârìiüe theur, a,nd pass thern ou if they
are not of interest, but still rrot without affecting their s+
mâütics in most cåses - for throw, we lose the stack trace,
and for nr¡r-ti¡ne failures we rlodify the "reason' ter¡n. The
rrethod is also ¡rot foolproof - cslls to throw({ok, Value}),
thros({'EKIT' , Reason}), or exit({Term, t. . .l }) will alt
cause the wrong clause to l¡e selected. Not to urention that
the code is difficult to understand for anyone who is lot very
fa¡liliar with the i¡rtricacies of exceptions.

There really should be å better way.

5
try

Eapress,ions
catcb

fucepti,onl -> Boilgt;

Enceptdonn -> Bodgø
€nd

Figure 4: Basic form of tr¡expression

3. TRY AND TRY AGAIN
At Ieast a few of the problerrs with catch have been

widely knowrr by En^raNc progrùnrrers, a¡rd for several
yea,rs, ther,e has been a,rr ongoirrg discussiorr alrrong both
la,rrguage developers å¡rd users about tl¡e addition of a new,
more flexible and powerful construct for exception ha.udling
to the language. The following atteürpts to be a courplete
list of requireurents for such a construct:

1. It should be possible to strictly sepa^rate rrorrnal cour-
pletion of execution frorr the ha^rrdling of exceptions.

2. It shoukl be possible to safely distinguish exceptions
caused by throw frour otl¡er exceptions.

3. It should be possible to safely distinguish exceptions
caused by erit ftom nur-tine failures.

4. The beh¿viour ofthe existing catch ¡nust not change;
¡ror the behaviour when am exception cê,uses process
l,eurùrul,io¡r. Exisl,iug prugråuru shuuld wurk exur:lly
as before.

5. It should be possible to use ordinary pattern matching
to select which exceptions are to be handled. ExceÞ
tions which do rrot uratch any of the specified cases
should autor¡ratically l¡e re-thrown without cha,nging
their serna¡rtics.

6. It should be straightforward to rewrite all or rnost uses
of catch to the new construct, so that there is rro fui-
ceutive for usilg catch in new code.

7. It should be siurple to write code that, gua,ra"rrtees the
executio¡¡ of "clea.nup code" regardless ofhow the pro-
tected section exits.

3.1 A first try
A fo¡rn of try. . ,catch. . .end construct for En¡,Alvc was

first described iu the tentative Stauda¡d Erlang Language
Speciûcation [3] (onty availal¡le il a dra"ft version) by Ba,rk-
lu¡rd a¡r<ì Virding; however, this work wâs never cornplete<l.
Their suggested construct (uraiuly inspired by C** [10],
Java [4], a¡rd Standa¡d Mt [7]) had the general forrn shown
irr Figure 4, where if evaluation of Erpressio¿s succeeded
with result Iù, the result of the try would also be .l?; oth-
erwise, the clauses would be rratched in topdown order
against either {'THROU' , VaLue}, for an exception caused by
â throw, or {'EXIT', Reason} for other exceptions. In the
ternrinolog¡r of Sectior¡ 2.6, it woultl rnake the thrcum flag of
the exceptiou explicit (whidr the catch operetor does not).

Thie would fulfll requirerrents 1 a¡rd 2 above, a,nd par-
tially requireurents 5 a¡rd 4; in particula,r, the distinction
L¡etweerr erit a¡rd run-tiure f¿ilures was not noted in [3], In

fact, it was during a.n early atternpt by the first author of the
present paper to implement the try construct, that ma,rry of
the cornplications descrit¡ed in Section 2 were first uncov-
ered. As it turned out, the d,e lacto behaviour ofexceptions
in the Erlang/OTP ilrpleureltatio¡r was no lortger consistent
with a.ny existilg description of the lâ.nguå,ge. The only re
sult at that tine was that the inner workings of the exceptiou
handling were partially rewritterr in preparation for futu¡e
extension, but it was apparent that the try construct harl
to be redesigned before it could be added to the la,nguage.

3.2 Making a better try
Since then, several variations of the try construct have

l¡een considered, but all have been found lacking in various
respects. The rrain problenr has tur¡re<I out to be the bal-
a¡rce betweel siurplicþ and power of expressiol. For exarr-
ple, urost of the tine, the progra.urrner who wishes to catch a
thro¡¡ will not l¡e interested in viewing the stack trace, and
should preferably not be fo¡ced to write a complicated pat-
tern like {'Tm0g', Term, Stack} u¡herr the only irnporta.nt
part is Tern. (Also, it would be a waste of tirne to corr-

struct a symbolic trace which is immediately discarded by
the catcher.) However, the sta¿k trace should be availal¡le
whel needed.

Also, poirrt 6 above wâs lnore of a problerr tha.n expected.
As seeu irr some of our previous examples' the following is a
coüunon way ofusing catch in existirrg progråJrls:

case catch f(X) of
{'EIIT', Reason} -> ha¡èLe(Reason) ;

Potter¡t -> BoilVri

Patterzn -> Bodyn
end

i.e., wlúch uses a single list of patterns for rnatdring both iri
the case ofsuccess and in the case ofcatching an exception.
As v¡e have tlescribed, this rnakes it possible to rristake a
returned result for a,n exceptior and vice versâ,. Howevet,
it is a¡r extrenrely convenier¡t idiorr, because it is very ofterl
the case that regardlæs if the evaluation succeeds or throws
a,u exception, a switch will l¡e perforrned on the result ùr
order to decide exactly how to proceed.

With ttre try. . . catch. . , end as suggested in [3], the sa,rne

effect could onìy be adrieved as follows:

R = try {ok, f(x)}
catch

Erception -) Exception
end,

caee R of
{ok, Pøtternr}} -> Bodyr;

{ok, Potterz.}} -> Bodyni
{'TIfrDw', Term} -> .. ,;
{'Exrr', Reaeon} >...

end

using the trick foorr Secüion 2.2 to make sure that the result
of rror¡nal evaluatiol is always tagged with ok; the mai¡r
difference being that the try vers¡ion câünot be fooled by
e.g. calling throw({ok, Value}). So, although t}re above
code is safe, it is quite ürconvenie¡rt to have to write such a
conplicated expression for what could be so easily expressd
ræing catch.

6

Analyzirrg the try construct in terürs of continuatjous
helps us understand what is going on here. (A continu¿tion
is siurply "that code which will ta&e the result l¿ of the cur-
rerlt expression a¡rd continue", arrd can thus be described as
a fi¡nction c(l?); for exarnple, wher¡ a fi¡lction call finishes,
it conceptually passes the returrr value to its conüinuatiorr,
i.e,, the returrr address.3) First of all, we have a m¿in corr-
ti¡ruatiou c1¡ which will receive the final result of evaluating
the whole try. . . catch . . . €nd øcpression. Now coffiider the
expresr¡ioll l¡etween try.. .catch] if its evaluatio¡r succeeds
with result n, it will use the snrne co¡rtinuatior co(1ì), i.e.,
Il beco¡¡res the result of the whole try. Or the otlrer Ìraad,
if tlre expressiorr throc¡s arr exceptiorr E, it will .uLge another
continuation c¡(.8), which we call the ,fail-continuatio¡t".

The code in 17 is that which does the pattem matching on
the exception D over the clauses between catch...end. If
none of the patterns match, the exception will be re-thrown,
and we are doue. Otherwise, the fi¡st matching clause is se-
lected, a,nd its body is evaluated. (If this should tlrow a new
exception, it will not be cauglrt here since it is not withiu the
try...catcb section.) The resultiug value is finally passed
to q¡, and beco¡nes the result of the try.

Now let's look at q¡hat the continuatiorr ar(B) gets: its
input Il is either the result of evaluating the try..,carch
sectiot¡ (if ttrat succeeded), or otherwise it is a value returned
by one of the catch. . . end clauses. TÌús is useful in typical
situatious where exceptiors are hârldled by substituting a
default value, as in:

Val-ue = try lookup(Key, Table)
catch

not_found -> 0
end

However, if we wa¡rt to perforrr a ili,fferent actiorr iu case
the try. . . catcb part succeeds, tha,n if a^n exception occurs,
we have no choice Lrut to pnss to crr 1ot only the result, but
also a¡r indication of which path was artually taken. (This
is what we did in the previous ora.rnple, using {ok, ..,}
to tag the result upon success.) It is this liuritation of the
try.,.catcb,.,end that forces us to go frorr control flow
to a data representation a¡rd back to control flow again. It
should be noted here that the exception ha.ndling in Sta¡r-
da¡d ML [fl (ana possibly other fi¡nctional languagæ with
exceptions) suffers fro¡n the sa.rne lir¡ritatio¡r.

A ¡nuch nrore elega.nt solutior¡ would be if the prograûürer
could specify code to be executed only in tlre success case,
before co¡rtrol is trarrsferred to the urairr co¡rtir¡uatio¡r qr. In
additiorr to c¡, we therefore ittroduce a success-continuatio¡r
cd, so that ifevaluatio¡r ofthe try, . .catch section succeeds
with result Iì, the corrtirruatiorr used v¡oultl be ¿"(It), rather
the.n ar(11).

A practical syntax for expressing both the success case
a¡d the exception case in a single try is shown irr Figure 5,4
wl¡ere the code in ¿" (/?) does pattern uratching on Il over the
clauses between of . . . catch. If a cl'ause matches, its body
is evaluatetl, a¡rd the result is pâssed to co, just like for a¡r
exceptiot-ha.nrlìì¡¡g clause. (If no clause slrould uratch, it is
a run-tinre error, a.ud will cause â try_clause exceptiorr.)
E¿ch clause rrray also have a guard, apart frour the pattem,

try Eøpressí,,or¡s of
Pottentl -> Boily¡i

Patternn -> Boilgn
catch

Eaceptdon 1 -) IIanilLer ti

fucepti,on * ^) Hanill,,er ^€nd

Figure 5: General form of try-expreseion

just like a.ny case-clause; we have left this out for the seke
of readability.

Note that the old syntax from Figure 4, whicùr leaves out
the of . . . ptrt, cail still be allowed, by sirnply deflning it
as equivalent to

try .ADpress¿ons of
x->x

catch
tuceptionl -) Iløniller t i

Eaception * -) IIø¡tiILer *
end

(where X is a fresh variable), irr effect maltilg ¿"(Iù) : qr(J?),
as before.

At this point, the reader rnight be wondering why the
problem could rrot have been solved as follows, usirrg the
original form of try:

try
caee .Êtpressi,ons of

Pottentt -> BoityLi

Potterzn -> Boitryn
end

catch
Eæ,ceptdon 1 -) Honitrter y ;

Encept i,on 6 -) Eanil,Ler n
end

The difierence is that in this case, ¿ll the success åctioüs
Bo¡lg i, ùs well as the påtterr natching, øre nout within the
prcta:tal port, of the ¡nde. TIns, the catch...end sectiol
will l¡a¡rdle all exceptions that rray occur - not only those
within .Ecpressdor¡s. If this was what we wa.rrted, we rniglrt
as well have rnoved the whole cage. . .end to a new fiu¡ctiorr
f a"ud siurply written

try f(...)
catcb

end

however, often we d,o not want the sa¡¡¡e exceptiou ha,rrdling
for l¡oth the protected part a.nd the success åÉtions.

It is iuteræti¡rg to note that i¡r tho inrperative languages
which pioneered a¡rd urade popula,r the try.,.catch para.
digm, i.e., mainly Ada [6], C++ [10] â,nd Java [4], there
has never been a,ny rreexl for a,n expìicit success-coutinu¿tion
syntax. The reaso¡r is siruple: iu these la.nguages, the pro
gram¡ner cau change the flow ofco¡rtrol lry use of "escâ,pes"

3Ifit helps, just think ofcontinuations as goto-labels.
aFirst suggested by Ftedrik Linder, who a,lsã pointetl out the
weakuess in the original try, in a discugsion ãt the En¡,,tl.tc
Workshop in Firerrze, Italy, 2001.

7
such âs return, goto, br€a*, arrd coDtinue; for exa,urple,
forciug âil eåxly return frorn within an exception-ha.ndling
bra¡rch. I¡r a ñ¡-nctional la.uguage such as EruArtc, tl¡is is
not a,n option.

4. PUTTING IT ALL TOGETHER
Now we are rearly to specify the full syntax and sernå¡rtics

of the new try colstruct as it will å,ppeâx in Release 10
of ErIang/OTP. rWe begin by revisiug the exceptiorr nrodel
fro¡n Section 2.

In Sectiou 2.7, we ca¡ne to the conclusion that excep
tions lrad to l¡e describe<t by a tnple (terzn,thnnn,trwnl,
ârrd gåve the serra¡rtics of catch aüd process terurination in
terrrs of tlús. In retrospect, we ca¡ refâctor the represelta.
tiorr to ¡na.ke it r¡rore iltuitive a¡rd easier to work with.

4.1 Semantics of exceptions in Erlang
We define a¡r Enr.eNc exception to be a trþle

(class, terrn, trann)

such that:

o ckxs specifies the cla,ss of the exceptiorr: this rrust be
either error, exit, or throw,

o tertn is a,ny Enr,nNG terût, used to describe the excep.
tion (also referred to as the 'leason"),

o truæ, ts a partial representation of the stack trace at the
point when the exception occurred. The trace rnay also
include the actual parameters pa,ssed iu function calls;
1¡1s dsf¡ils are irnplernentation-dependent. There is ¡ro
special nullvaf,ie for the úrace component.

The different classes of exceptions can be raised as follon's:

r When a rurr-tirne failure occurs (with reason terzn),
or the progra.ru

""¡1" "¡1a¡g:fault(úeryn),
the raised

exception will have tÌre form (error, term,tracel.

¡ When the progra,rl c¿lls erit(úerm,), t}¡re exception
will lrave tlre fonn (exít,tenn,trv,ce),

o Wlren the progra,ur calls thror(úertn), tlrc exceptiol
will lrave the fonn (throv, terntrtracn),

Let T be a function that creates a symbolic represeutatiou
of â, traÆe as a¡r En¡,At'f(; terûr. The modified seurarrtics of
the catch operator is shown il Figure 6, and the sernantics
of process termination in Figure 7. Note tl¡at the behaviour
rer¡rains fiurctionally equivaleut to what we descril¡ed ea¡lier
in Figures 2 and 3.

4.2 Syntax and semantics of try-expressions
First, we note that the convention of usiug tagged tuples

such as {'EXIT, , . , . } was introduced ouly as â, means of
distinguishing errors and exits ftom norrnal return values
aud thrown terms in the catch operator. Il our new try
coüstruct, it is not necessary to stick to this co¡rvention.
Tr¡sfs¿¡l, we will ræe a syntax which is both easier to rea¡l
and requires less typing.

A try-expressiou has the general fonn frour Figure 5,
where.Erpressdor¡s and (for i € [1,n], a.ntt j € [l,rn]) all
the Boilyt, and Honill,er¡ âre co[rmâFsepa¡ated sequence€
ofone or rrrore expressions, arrd tllie Pottern¿ are arbitrary

If evaluation of Enpr cornpleted normally with result 1?

then
the result of catch ^Eæpr is Il,

else
the evaluation tlrrew exception (cløss, terrn, truce) i
1f class is thror¡
then

tlre result of catch Er;pr is term,
else if c¿¿..es is exít
the¡r

the result is {'ExrT' , te.rm}
else

the result is {'EIIT' , {tenn, fþrucn)}}

Figure 6: Final semantica of catch.Ecpr

If eva.luation of the initial call completed ronnally
then

the exit tenn is the atoul nornal
else

tlre evaluation threw exception (cløss, tenn,hace)i
lf. class is exit
then

the exit term is Íørr¿
else

the eve¡rt will be reported to the error logger;
if. closs is thro¡¡
then

the exit term is {{nocatc,b, term}, T(truce)}
else

tlre exit ter¡n is {tenn, T(haæ)}

Figure 7: Final semantics of process termination

patterns. As uoted in Section 3.2, the of... part ruay be
left out. Like ir¡ a caee.expressiou, variable bindings urade
it Eapressio¿s âxe avâilable withir¡ the of. . . catch section
(but not between catch...end), a,nd variables are exported
frorn the clauses if a,rrd orrly if they a,re bound in all cases.

Tlre exception patterls Enceptdon¡ have the following
general forrn:

CLoss'.Reoson

where dløss is either a variable or a constant. If it is a
constant, or a variable which is already bould, the value
should be one of the å,torns error, exit, or thron.

The dtøss: pa.rt of each exception pattern rnay be left
out, a,nd the pattern is theu equivalerrt to

thron:-ne¿son

The reaso¡r for this shorthârrd is that typically, ouly thror
exceptions should be intercepted. error e:rceptions sl¡ould
in general be alloq'ed to propagate upwa,rds, usually tenni-
nating the process, so tl¡at uuexpected rrl-time failures a¡e
rrot ¡nasked. Flrrthernrore, arr exit exception ureals that a
decision ¡r¡os r¡ra¡le to terrnirrate the process, antl a prograrn-
¡¡rer should only override that decision if he knows what he
is doing. Therefore, the defar¡lt class is thros.

The serna¡rtics of try is showl in Figure 8. (As before,
clause guards have been left out for the sake of rea¡labil-
ity, a,ud for the s&üre reason, we do not show the variable

I
If evaluation of .Ecpressrions cornpleted norrrally
with result Il,
the¡r

the result of try. . .end is equivalenü to that of
casa ¡¿ of

Patterzt -> Bo¿tgt:

Potternn -> Boilyn
eod

else
tlre evaluatio¡r tlrrew exception (cl<rss, term,traæJ;
for eaclr fucept.i,on¡ : Clossi.ßeøsoni

let Triple¡ - {dlass¡, ß,eason¡, _l
a¡rd for eanh Etcepti,orli : Reasorl,i

lel Trdple¡ - {tnror, Reoson¡, _}i
tlre result of try...e.d is then equivaleut to ttr¿t of

caee {cJøs.s, tenn, traeel of
l?i,ple1 -) Iíaùllerti

Triple,* -) I{øniller * ;
X. -> rethrvu(8.)

€nd
where X is a fresl¡ va¡iable.

Figure 8: Semantics of try-expressions

scoping rules.) The rethrvw operator is a built-in prirnitive
vvhich ça¡rnot b9 accessed directly try the prograuuner; its
furrctiorr is simply to raise the caught exception again, witlr-
out losing any iuforrnatior¡. Note that the úrace cornponent
of a.u exception is assurned to have a cheap, inplementation-
dependent representåtion s¡hich q¡e do uot v.¡¡¡rt to exp.onie
to users.

To ilspect the stâßk trace ofa¡r exceptiou, a r¡ew built-in
function 6¡lmg:get-etacktrace() is added, which ¡eturns
T(trace) where tratn ie the stâÆk trace courponent of the
Iast occurred exception of the current proce6Ér, ånd ? is the
fuirctio¡¡ used in the serna¡¡tiæ of catch in Figure 6. If no
exception has occu¡red so fåx in the process, a,n empty list
is returned.

Finally we could add a generic exception-raising futction
er).ang:raise(C1aee, Reason), wl¡ere Claes rr¡ust be o¡re
of the atoms error, €xit, a"nd throw, a¡rd Beason may be
any term. We will see ore possible use of such a function iu
the following sectio¡r.

4.3 Cleanup code
A very coüìrron progra^uuning pattern is to fust prepâre

for a task (".g, by allocatilg oue or ûrore resources), then
execute the task, a.ud finally do the necessary cleanup. It is
then often irnportant that the cleanup stage is executed inde.
pendently of how ühe main task is completed, i.e., whether it
cornpletes norrrally or throws al e:<ception. Figure g shows
a.n exa,mple of how this could be done usirrg try-explessions.
However, the code has seve¡al wea.k points:

r The cleanup code, in this example the calls to close,
un¡st be repeaüed i¡r each case. (We only show two
cases, but iu general there could be any rrumber.)

o Irr the success case, we urust Ì¡iud the result to a rrew
variable jræt to hold it terrporarily wtrile we perfonu
the cleanrup.

¡ead-f,iLe(Fileoane) ->
Filellandl-e - open(Filenane. lread]),
try

re ad-opened-f i1e (Filellandte)
of

Data -)
close (FilelIardle) ,
Data

catch
C].agE:Reasoa -)

close (Filellaadle) ,
erlang:raise(Class, Reaeon)

end.

Figure 0: Allocate/use/cleånup example

fupress.lons
after

CLeønupt
end

Figure 10: try,, .after. . .end oxpress¡ons

r The generic failure-case, i.e., the code tl¡at, catches a.ny
exception, performs the cleanup, a¡rd then rçthrows
tlre exceptioil, is unnecæsa,rily vexbqs€.

o The explicit re-throw using erlang:raiseO will not
prffierye tl¡e stâßk trnne of tlre orig¡rai enceptiorr,

AII of the above _problerrs can be solved by addingç one
lnore feature to ourtry-expressions. In Cor¡únon Lisp [9],
the special forrr unni-nd-protect is used to gua,ra,ntee exe
culiron of cleanupcate; in Java [4], this is doue by includilg
â fi!å-l1y sectio¡r il try-expressioru. The silne idea ca¡
be used in En¿e¡lc. We start out by defining a new forut
of try-expression, shown il Figure 10,5 with ¿ well-deûned
rneaning,

The sema¡rtics of try...after...erd is shown in Fþ-
ure 11. 'We ca¡r uow eâsily allow the use of aftet directly
together with try. . .catch. . ,end, by de.fining the fully gen-
eral syntax shown ir¡ Figue 12 as equivalent to

try
try fupressi,ons of.

Potten¿t -> Boilyt;

Pøttertn -> Bodyn
catch

fucepti,on¡ -) Ilaniller ti

Ercepti,on * -) I{onill er *
end

after
Cl,eonxÍ,

end

(where as l:efore, the of ... pâxt may be left out), which
guarâritees that in all cases, tlrc Cl,eønlap code v¡ill be exe

try

6The use of the after keyword for this prupose is not yet
decided; possibl¡ a rrew keyword such ås final-Iy q'ill be
added instead.

9
If evaluation of. Eøpressdons cornpleted normally
with result I?,
therr

the result of try...after...end is equivalent
to that of

begin
X=l?,
Cleawp,
x

end
where X is a fresh vå,riâ,ble,

else
tl¡e evaluatiorr threw exception (clo,ss, terrn, truæ) i
the result is the¡r equivalent to that of

begi-n
CLeûuLlt,
rvthrow({cluss, tertn, fuuce})

end

Figure 11: Semantics of try...aJter...end

try Eapress,¿o¡s of.
Pøttenty -> BodyL;

Potter¡n -) Boclgn
catcb

Eaceptionl -) Hanil,l,er ¡;

Enceptdon * -) Ilottill er ^after
CLeønrp

end

Figure 12: Fully general tr¡expression

cuted, after evaluation of one of the Boilg i or Haniller i has
completed. Thi6 is expected to be the desired behaviour
in nost cases, since it gives the exception ha.ndlirrg clauses
a chârrce to act before å,ry resources are deallocated by
the clea,nup code. It is also easy to ma.nually nest try-
expressions to get a,nother evaluation order, e.g.:

try
tÌy

fupressi,ons
after

CLeønup
end

of
Pøtternt -> Boilg¡;

Pøtternn -) Bodgn
catch

Eøcepti,on 1 -) Ilaniller ti

Eacepti,on^ -) Honill,er *
end

4.4 Examples
To derno¡rstrate some uses of try-expressioüs, we begùt

by showing in Figure 13 how the catch operator rray be

try Erpr
catch

thros:T€sn -) Tern;
€xit:T€rn -) {rHç¡1r, Ter¡};
e¡ror:Tern -)

TÌac€ = s¡lang:get_atacktraceO,
{'HIT', {Term, Trace}}

end

Figure 13: catch Ãøpr implemented with try

open(Filenane, Model.ist) ->
case file:open(Filename, Modelist) of

tok, Filellandle] ->
FileHand1e;

{error, Reaeon} ->
thros({f ile-error, Reaeon})

æd.

Figure 14: 'Wrapper f<rr file:open/2.

irnplernented in a tra^rspa,rert ws.y usi¡rg try. Tl¡e reader
is invited to courpare this to the semantics in Figure 6 and
verify that they are equivalent.

Figure L4 shows a wrâpper function for the star¡dard l!
brary file:open/2 frrnction. The functions i¡r the fiJ.e
ilrodule return {ok, Value} or {error, Reason}, while the
q/râpper always returns a naled value upon success, aud
otherwise th¡ovvs {file-error, Beason}. The latter ruakes
it easy to identify a flle-handling exception eve¡r if it is not
cå,ught close to wl¡ere it occurred. Note that if a.n exception
is generated within file:open/2, we do rrot catch it, but
allow it to be propagated exactly as it is.

Fþure l5 demonstrates the use of aJt€r in a typical sit-
uation where the code allocates a resource, uses it, and af-
terwa¡ds does the necesså.ry cleaüup (cf. Fþure 9). Note
the two'stage application of try: First it is used to handle
erroff¡ in open (see Figure f4). Si¡rce Filellandle is only do'
fined ifthe call to open succeeds, ouly then need we (or can
we) close the file. The ¡rext try urakes sure thâ,t the cleanup
is done regardless of how the code is exite<I. An iuporta.nt
detail is that by keeping the allocation a¡rd the rele¿se of
the resource close together in the code, ¡ro other part ofthe
program needs to know that the¡e is a^rry clea,nup to be done,

Irr an irrperative la.nguage like Java, it is cor¡rrnon to ini-
tially assign a null value to variables, ald then let the pro-
tected section atteurpt to update thern when it is allocating
resources. The clea,nup sectio¡r ca¡r then test for each re-
source whether it needs to be released or not. fr¡ a frurctiona.l
larrguage whe¡e va¡iables cânrot be updated, it is cleauer to
handle each reaource individuall¡ â,ud separâte the a,lloca.
tion frour the use.a¡d-clea.nup, âs we did above.

5. RELATED \ryORK
The concept of user-deûned exception haldling seerns to

have originated in PL/I [1], and fronr there urade its way (see
e.c. [8]) in different forms iüto both Lisp [9] a.nd Ada [6],
ås well as other la,nguages. Ada il its tum v/âs å, direct
influence on C** [10], and thus indirec|y ou Java [4].

In the Object-Oriented la,nguages C++ ând Java, a,n ex-
ception is cornpletely described by tlre tlrrowu object. In

i ...

:, . ".. .:

I -r,

!,,
l'

!
i

Io(t,
read-fil€(Filenane) ->

try open(Filenene, [read]) of
FileHandle ->

try
read_opened_f i1e (FileHandle)

â-fter
clos€ (Fil€Hsndle)

end
catch

{file-error, Reason} ->
print_f ile_€rror (Reason),
thro¡¡ (io_error)

end.

Figure 15: Allocate/use/cle.anup with try. . .aJter

C++, any object cal be throwrr; in Java, only subclasses
of Throwable rray be tlrrown. For Java, this ureans that
iurplementation-specific i¡lformatiorr like a stack trace rnay
be easily storetl in the object without exposing its interns.l
represeutation. Since this ca¡lrrot l¡e done in En¡¡xc witl¡-
out adding a new priuritive data type to the la^rrguage, we
have instead chosen to rna^ke the stack trace arrd a^rry other
debugging infor¡nation psrt ofthe process state.

fr¡ Comnron Lisp [9], catch a¡rd thtow axe used for no¡r-
local return, and only irrdirectly for handlirrg actual enors.
Also, setting up â catch requires specifoing a tag (arry ol>
ject, e.g. a symbol) for identifying the catch poilt, to be
used later in the throu. To guarantee executio¡r ofclea,nup
code regardless of Ìrow an expression is exited, the special
forur unwind-protect is used. The sa¡¡re effect is achieved
in Jav¿ by including a finally sectio¡r in try-expressions.

I¡r Sta¡rda¡d ML [4, the exceptiol ha,ndling works muclr
like in Ada, using the operators raiee and hanèLe, As in the
origilally suggested try, . .catch. , .end for Enr.Anc, tlrere
is no way of explicitly specifuing a success-continuation.

6. CONCLUDING REMARKS
Exceptions i¡r En"leuc has bee¡r a not very well under-

stood area of the la.uguage, a^nd the behaviour of the ex-
isting catch operator has for a lorrg titre been insufrcient.
We have giveu a detailed expla.nation of how exceptions in
urodern-day En¡,nhtct actuelty work, a.rrd presented a new
theoretical ¡nodel for exceptiorrs iu the En¡,¡,ttc progra¡r-
rning language. Using this nrodeì, we have derived a general
try-construct to allov¡ easy a^nd efficient ercception Ìraldling,
which will be iutroducecl in the forthcoming Release 10 of
Erlang/OTP.

7. ACKNOWLEDGMENTS
The authors would like to tha¡rk Robert Virdilg, Fledrik

Linder, and Luke Gorrie for their con¡ments aild ideâs.

E. REI'ERENCES
[Lj American National Sta¡rda¡ds Institute, New york.

Ameùean Na,lionul StaruIuruJ: ptogtamming løngaage
PL/I,1979 (Rev 1998). ANSI Sta¡rdard XB.5È1926.

[2] J. Armstrong, R. Virding, C. Wikström, and
M. Wiliaurs. Concwrvnt Progrannming in Erlung.
Pre¡rtice HaJl Europe, Herfordshire, Great Britain,
second edition, 1996.

[3] J. Barklund a¡rd R. Virtting. Speciûcation of the
Sta"rrdard Erlang Progra,urrning Language. Draft
version 0.7, June 1999.

[4] J. Gosling, B. Joy, a¡d G. Steele. ??¿e JauarM
Progr'ø;rnming Language. The Java Series.
Adtlison-Wesley, 3rd edition, 2000.

[5] B. W. Kernigha,n a¡rd D. M. Ritc]rie. ?l¿e C
Progrotnming Lunguage. PrenticeHalì., second editiorr,
1989.

[6] Milita.ry Sta¡rdard. Reterence Manual for.the AìÌa
Prog'a:rntning I'o,ng.uage. United States Governrnent
Printing Office, 1983. ANSI/MILSTD1815A-1983.

[7] R. Milrrer, M. Tofte, R. Ha,rper, a¡rd D. MacQueen.
The Definiti,on of Stand,ard, ML (Rnuisul.} The MIT
Press, Caurbridge, Massachusetts, 1997.

[8] K. Pitrra,n. Condition handling irr the Lisp lalguage
fanily. Iu A. Rorna¡ovsk¡ C. Dony, J. L. Knudsen,
arrd A. T[ipat]ri, editors, Ad,aun¡ns in Eunption
HaruIling Tethndques, nu¡nber 2022 in LNCS.
Springer-Verlag, 2001.

[9] G. t. Stæ/re. Common Lisp: The Lunguuge. Digitat
Press, second edition, 1990.

[10f B. Stroustrup. ?lre C++ Prcgr.amming Language.
Addison-Wesle¡ second edition, lggl.

ffirlgutffi,vt

Jae Ármsfrcng
joeffisies.se

Johannes Gut'enberg

Bnrn 1394-99 died 1467 -1468
f.\
r+
t/-)I

$ffirlcryi.J"t'#rT

ffinlgu'fan ís a system fnr hdgtr-c¡u*lity "l'ypø:se*t'ling

6r:nl: ßefter thnn TeX

ffirlgufsn ís work in prngre.s*;

ffirlguten wü$ written by

Joe ¿lrrnst"rong

/'ulichüel Knrls;san

$asn Hinde

2 >"

,frr*e "ff.
ü' *rnffi"[" t ç¡ r[

"ï"'qr")d
cilmong; nç:'t' I i fqe ü,hsm fl ul'm Ë¡{t}s i't'i*rninc¡

V1/y#;'l:Vy'y#' ísn'f'
/[/tffs+t' rtyslmrn* qet kernin{;¡ wr{:}n$T

h,lel syg"t*ms aJq) rud'r/crrtcclcl $q*nrninc;l {:tn(l NcryCIrrt

{iiu"fçnn[:ur'*¡ w{rs ri#rh"t

ffiigpñ'Íelf 'typ*g¡rr:p['1)/ hns rnelef*.r. fFriruc¡s wür,sç] nr;1' firm,fter

'{
{r'.¡ å ir;¡li i

"T.i¡,I'
ilr¡q,,ÍïiiT

'n'l
li;r,; nrri'-¿¡fi'ti,t'î' r;11fi,}#tf

çii1l:
r;ir.*:i i"{is"t ." dl-'l;

wrong T'ï, rçl hrmrurrr:{{rr*¡

t .t t:i ;q,,1;hü i",,{ 1'{;ï {. f; t Í1,$ Sl t f,[f'
'4

h¡r:¡t,¡i"l' r'- ie,¡Þl'i

I.

ä
nJ

(,

futstivmtibn

The thesis buq

[5 1l HåkaTr

îhmsm ffire ¿$sffenmnf {Jo$
-[-[r:nms

ffi*ssrmrr mrld ffimsks.rwå [te

lJ:{ lkr¡¡uml ilarunlo¡. 'liuhot:rlan5: {r¡nur:lrrn¡ ùc s¡crrl ol'c. /a
/¡u¡ iall' nnd Giaw¿¡ù.ï¿drr; r-lrt¿q ltt¡lrøratattuei qt l,ryr pn
,qrønruiag .f¡:rrr.nrr, y'ag*r f fi- Lli ñilww i¡oihnt¡t lll¡t¡rlirt, il¡t¡|.

lßl ,,lrnerlran N¡rt¡rn¡l Shunftr¡.d¡ lÈtillür. llËtüulr: r{ ¡:lc(hi(rl. ¡n(t
llt'cln:mk l.lngrrnes. lliliti ¡andrrl til blrrn. tloalhrg.prtrl ar;[b
tu¡tt:. ,llìSt/il:.1)Il S¡dnlnnt, Stl 7.îl.ltlrlí, Ncs; ln*, tfct.

ll{l lS(l'l}:C. (1il net*rn*n¡ arul syrlrrn ßpr'rh- ¡tbstrurt s}îl¡x n{}
l¿l¡{rr ,nu! (am.t). Íl'li.'l-lk,c. Xß-r -- ¡S(l/lf:(r Ér2t-tt, fS(.},11,.C,
l$)t.

| 16l I'l'll. llronrrnrrntlnitrn Z.lffr- rpec¡Íril¡m ¡mrl rha.i{}[ún l¡ürfluaß¡r

{rrl[. ll'(l:l Z.ltI), lN¡:¡nr]irnurf 'li,'krcr)nlil¡lft:üfiDtr th;rfi. L,¡il t.

Ittil l). lkrul,l. f)lk¿rhajr. lll(l l:tlr: lnkrnt:t rrüyr.¡al ¡rnrror:ul. ftlar
lfÀll.

I lîl lirlk lolrmsrorr, Srun.(.)hf N¡r{rnrn, fìltkaul l,chcrwn. ¡n¡l Kr¡rslurt+
n,n S¡$r¡rn. llt¡r: Ih[h lrirtiìrxraur:u,r'Ln¡¡.

[,lt{ l). lìrr:lnnl Kulln, .\rlnn** r¡f f¡¡lrrc tn lh: prbftc ru,ilchnl Àrl,1Juar:
nilwork. IIifIi f.'apr¡rtrr, 1g.l):31-ìli¡" ttI/7-

llftl .Strnrrn llftalrru' mrrl ltilqr lgrrte'l r\ ¡rnrcttcnl subþptng r¡skrn firr
l:rliur6. ln Inu.mniìamtl. tm[tna;t on !iwàis*,t! fin¡nrmnur4. ¡ú¡cs
lllti. l.ll), .,t(,.[t,.l rmr iltJï,

liÍìl Ntrk'l Ndl'tuti.,i. ¿\limrlr ¡*l .rctnkæ¡tur ¡inriucl lrrtc,l. lin¡ftimlxr
åìr¿.

I llåhrn

râl

rurrlll. ù'l¡¡l|¡ilill ¡¡d stmirr¡l lifrrod; .þrm:

rø'rÂÍ)u.L Rlï lrìlr¿
li¡nc ¡ftU lfll;.
llr,¡t r¡llìqc Itt¡lu{r¡l

rrilrm[[lanll,rr t)ln

w

ffi

åj
k

6utenburg 4æ !ine ßible
c. 345tr

üpfíesl mlignment
Non*overlosded hypen. îhis prmcfise
wns discontínued by Clnude ËnrümCInd
in c" 1545"

q
rd

f

a

(If

{är¡nls

ü:insy 'ho use * sirnple 1"extuml inpuf

/uXulti-mnde ín'rputs (:sui"fed fmr ts*hníacrl rep*rt"s, mffråü;ri¡te. lmyout *rnd

flrË:$e"ntmf it:ns)

Very high quclity lcryc¡uf mngine (hre"tï'er tþrmn
-l"eX, in*tdesign, qunrk efe.)

ó o\

I
¿.Þr

(+xa+, #.f" s"¡.uä}rjt+sffr f.pn d:iurry:rn,;4.

rJuu ffiuru¿a>1 'rxurffiJÞu
J.$ {.uäwufjr!n fmïr,$.m

,ffr,ut,¡¡.p4
t,pffi*rr:u,t)

,,tl{mJffi*;rJ ;rþ{ äu{'il ul par¡htuqä".r.¡" nrr4eln;6ncfyd.[#ir{t[,r,, .f,.r,r,är.{JË}¡,r1lu*g

s{_rJüJ, .rlünl "[.llnq_rJI är,{.¡, Á¡urei rää}$ilI

f;lt,ln¡;q l,?-,{Írd

ilffi;þlrdq -iþ',mJ*

pdf"mtrl {rTTikmel}

col,*r{:esfL (PAF' ,N, []) *>
il;

eolarhes{:1 (PDF, Ìiû, [H I T]] *>
pdf : çet, få1I*ee¡lerr (FÐË', H) ,
pdf': rectangle (ÞtlF, {0 ,?Ql¡ {20 ,2Q.}') ,
pdf ; path (PþIl , fílI**stroke) ,
pdf : seb fåIl*eolor (FÐF,black) ,

Ftclf : begån*text. (FÞF) ,
pctf : set, fonb {FÐF, "Tåmes*'Romä,n", B},
pdf :set hexta:os(FDf ,0, (N rem 2)*l"CI),
pd,f : texb (PÐf , atom tc¡*limt (H)) ,
pdf : end texln (FÐF) ,
pdf : translate (ÞDË", 30, CI),
colortes*,l (PDFTN+l, f) "

:$lrits 'Êtnl i;r¡;¡r-i'¡.rnrt filsllni¡i

ffiffi II Wffi
silvrn' ' hlack ,t'ÈËl

IIIffiWffiI
tì¡1e,î trfiiev¡dËt dtrknrrhirt

bl¡te4 r,iritnflcrwÈr'blue dnrkrtnl*

WffiffiW Wffi
cadstblu(' ll$lrthlrrc liglrtnlahgr4y

B æ

m##ffi#ffiK hight {smmn}

I Erlguten<lseetiCInlÞ
< t,í *Ie>Erl guten< / ti t,le>
dparaÞffirlang baseel applicat,ions

4codeÞ
app*.narne / sræl

/Pr*v

<Ïå.st>
{i'b,emÞ

(cCIdeÞsrcdfcsdeÞ contains

,,|:}'ltrn.g hn**çl npplíq;ltit.¡nr lulvs' n ytTur;,ht;rç ek,fir¡r,cl h¡' l,ir
lî't:rrr ;ui Iirir:s;r*::.ll str¡r¡rli*,il rurrtintt: s¡';tt:rrr llrd scl çl'{

,atcl a¡r¡rliuntir"rrrs su¡'rplird lry [iri,r:xr,trrr qinc:luding fls * r

l'r¡,'l -l\'f rrhi lrr or :.{r'rl ¡rirrtius. ttrg;rrr}1,.,,1s, tr l' tlru trr"i gì rr ri l

illl ÈJ*stßrtlrs"

¡dll r.rrrir firr riaçh indivirJui.rl {"}t'p Åp¡.rliç¡¡¡¡iln is struçtrl
t)'t"'p rlir,¡:r":tnlr *tl'u*turr::

ãpp_nårne /ere /
/priv/
/dnc /
/ebin/
/vsn . rnk

:.grc c:nnlirins illl l.ir.lang gi]nlLrr: çlrcl* lilcs {lil¡ic¡
Ernalcef iIe. src lilçr+

$ \9

O\-l 0i

$i'ä$ -,1 fl1.å i¡ åT -.J
"[. *ä

r;r$"$ T"¡ü Hääf r$m+*;;
fftf;TB4tãÕÕ ¡ rffiäffir I #

{ { tr'üT'Þoüa}*=æeËp
' { ,, ßumxE ffiurãË,n ' ,, ä# Ë ,,} æälffiËT-[] Tåffi+ Ð

#i'si'*årï "å.;3 F""t-J d. s

TJ.&ffiËÏ ffifi{r$r,åJf$ä

suræqt{Õffi 4êpûÕ/>*mffi<Ëåp*pÞ
4uræaTþ

44ffiTTþ
4,,TT * $ f * Þ $ û ä,, æffiQ.Hp ,n ä# t ,,wffiUãËIJ TffiWa>

('m'#d,-) #3IW

<Tßæal>
<asiTT />

<wä?T/>

ïï
\-J
\.-¡

#rXf.}.f " :ll.!ì r¡l /::!
'i

I tr ?l,t til i ,: ¡* o,,," ,r*r*,,0r r,, "nr,tfþþ

"{";\{.:þ.å. lþf f lT&
¡!l!$t!ryrittti4!:{:iUiñ{¡Ë¡qliî!Ðr¡r}s;tji¡íàtr1sÞf!r{fi..,il?}tirslrlt::!U*rrfl¡$u

LH*"q" f,it",tr,r¡"t:¡ ì r¡ii¡!t ¡{:tÊr ¡ t¡}! r5iÈ! I I äè I b-¡a¡j ¡rÊlr*¡qr Èn.È: r f¿}t;ì I .'Í¡r r.rÀìe.-r¡r¡,¡Êr{t¡" t

"*{ll5J
,

I,,ïf 3J, Sfit,{.$, [Ji"] ,J'æ$F"]T,{riq tdtrlH t .:ì!i¡*t!$!{ riit;' (:¡:,t n,trrt"r,.{l{F *.

ruËæq " Ttræ " Ëffixrffår¡ffi '
,, wT$#HH${rrmffirffi€TI êT T$ffi}twur{}

J g*mcq Ëqs"ðå,T:åccl

3 qæçddg'ffiprræqffisæ $Õ# sffiËTr Ërrl"qnd
J ry'fËTdd€ "Ë.&9f; q,xclcftmr:

Ë"*"ët [Ð

æd"ÆE #A "åsËæ qr{

LI.ä€ãT Õq ,,Äff'Ëæ, r s,4T s
: æffnRãêq | ¡ ëffiTTJ "Ã"Xän, , Ër sf Ttlfi

{ [e*p'æp*æ] =spmÕffiÆêry] mopfl

" {m*#} sçmË}ÕnT*

{ ,, äffiTprr€q,FËffiffi }
åuer1xæp

æffiffiëlçl4nHt

ä'TVW

ffim#ffitrine prffiduct¡mm (ffme)

ßautoexee {mod*'pdf " }
ß ånclude "ffir&.çðåffi "å.xïffi"
theading fhå
juståfi"catåo
GleftBsx
Thås ås n0
emphasieed

på"ge test,s
raubines

text tråbh nö
A

I
flx¿rIt

ßimage "bi.k s' jpg"

ßgrid {page*a4 , dx 2ü ,dy*20l
ßhçx { nårne*"headång tt

n åtæJ. , y*1 ,cclor*"yelröftf " , faee* " TåmeRomaï1 " ,pÕfnk$åae ust,åf,ieatåCIn*Ief tl

ïllis ,ilt

nrrr,hrt nq in i
.t'i irtr¡r. l{iit¡r¡¡i¡, ;

lbr ¡iríiriiug, ltr
!\11ç:nçlr-flÞ4!{s {
Itull1i ltir¡hs ¡ur
sd ijr vidç ¡n

i,t sot iriinrrrv ¡
hilillitlHlrrlllr.rìFl-
'l inr'S-lttUniln'

?*4,J
Í-t

n

ß årnage { x*2 ,V*31
Dts

Ð-
g gãqgp

È

a

ÉE
ãH
æåÞg

ãEÐâÂ

z-gl+Ë}*.{ch$gEãääðä
¡ña + -' åí-¿- d{- -þ =

d ü{,i} s yL* +:Lã= +__= i ge_ ffiG¡4
{B .+- * Ð{Ìf

t3--=-+'i-t=Ë ãq s æ-f-+ ü,r! "ü -æ ¡*

=. -+€ ç +
L* T;* F:Ë =€ =*.+.+ä r.Q äã Fs
-þ -T]!,F *
G-Ê¡.=-,õ

Lã;
-' -{Sã-i.!rr4å å ä ilÆ

{El
-'

--- -"i- d^h L¡ -¡--+H ñ\-r
a-'=.qdá

ç
Ëfå

{Þ
_l\-ñ

=
- *

frfü\¡¡ fr
-'

=*
4

iñ_+.,- *4[\5

(zr) r,-[

Proposal for an Erl ang foundation

Erlang User Conference '04

21st. October 2004

Mickaël Rémond <mickael.remond@erlang-fr.org>

Thierry Mallard <thierry.malla erlang-fr.org>
FÃT

Lr*.FTIANG
s.
R
\^)www. e rl a nE- p roj ects, org

o

Erlang: What did we achieve ?

Erlang/OTP rely on a strmmg ffind pmwsnfufl technf;*al asset.
It stays very high in network & server development

Some potential kfrlfer-apps (Yaws, WingsSD, Tsunami, Ejabberd,
J-EAI, ...)

klatunËty: 1Oth Edang User Conference, 1g*n year for Erlang

Nice progression in stmtËstles on Erlang.org

More compmnteç producing Erlang products and software

o

a

o

o

a r*ILüI
ffipen $murffiff since 1998

2 Ê RtLÂ,il*l'G
¡-e

Erlang: What's next ?

o

We still have significant weaknesses :

Mindshmrm

ËMarketnmg: despite being a top technical environment Erlang is not

largely covered in computing media.

["üserb&se: We need to accelerate the growth of the Erlang users base.

ln a competive world, if we do not ffrtrvv very fæst, we are decr'æasfing

relatively to the other alternatives. This means that:

We are losing opportunities to develop Erlang in new interes{ing

*il":::ï: ïï:ïJ;::ïï:::ì ,hec.mpe,,.n r ü,r
3 r E r.ÅHÊ

a

a

(^

O

o

A common effort is needed to promote and
develop Errang mindshare

To show the industry that Erlang is used by many companies and is hereto stæy (potentiar customers are worried)

To help imcreäse userhffiffi*, and finer*mse ffirfffinff humåffimçs

To make it easier to hir* Ertang deveropers

To make it easier to find Erlang merviees and çonsrJl*aney companies
To allow coordination of developments needed *mnnnîen smftware,
bindings, extensions or demonstrators

To help develop Erlang as a stron
and soffirvare (Ærm nding)

g marketing point for Errang products

o

a

o

o

fñTrütl Ëfìü ¡Liå

,à

Toward an Erl ang foundation (1 12)

o We propose to turn ffirlmnü-prmjæçts into an Erlang fmurndæt$on to
gather companies having interests in Erlang development.

' A place to discuss what would help companies doing hetter
busim*ss with Erlang.

o di.çcuss and cmmrdir"nate dcvelmpments that will help ¡mproving

the Erlang environment:

Comrnonly needed l¡braries

Marketing tools

EnhancingOTP f nl l:#
5

. ,.. t.

ERI.ÂHË L/-t

Toward an Erl ang foundation (212)

o To provide a hardwäre and sçftwäre imfrmstructunæ for

members to participate in the foundation activity:

Metafrog to coordinate developments,

Erlang application hcstinffi,

o Participation in events (conferences, booth on expos, etc.)

o Creation of l#ff*rl cnuntry basçd represemtmtives mf

Hrlang*prajects: Local country based representings for the

Erla ng-Project fou ndation.
rilT
LUT

6 rnfi.ÂHG d\

Examples from current

E rla ng-projects activ¡t¡ es
FJIetmfroE

o Coordination platfmrm for Erlang

development efforts

o $howffimsß for big Erlançl-based application.

Demonstrate Erlang/OTP and Yaws

high-performance and reliability

o Simple and efflmiernt collaborative platforn[*{
I

7 f R t*NG r<

SmüuËilmns iltnux 2ffiffi4 hçCIth

o Presence of Erlang projects on the expo: fficç*Fr in the non-profit area.

o fimnfer#ffiçffi on Erlang and clustering.

o Lots of interesting contacts.

' Presence with other consortium such as Objectweb on the expo.

It was important to be there for Erlang promotion and helped

dissemination of the technology.

Conference and booth for Solutions Linux 2005

Examples from current

E rla nçl-projects activit¡ es

rilI
LÜI

Ialready planned tn[åFfG c.o

Examples from current

Erlang-projects activities
ffir[ang RHFffiS

' preconfigured Erlang environment and applications (on CDROM,

dumpable on hard drive).

' Big marketing impact (hundreds of downloads already).

Magazines are interested for cover CD diffusion.

' Has proven very useful to dËstrihute sçftware
(J-EAl)

t Has a strong impact on rmutttpfrmtform ffimmplianmæ

innprovement

(Example: Patches for Yaws, ejabberd, etc.).
I

r'}I$,tl
f nLANF \g

Examples from current

E rl a nçl-projects activiti es
Other ideas:

' P[uggable distrËhutimn tayer in Erlang ?

o lmproving Erlang interoperability is needed. We need to provide

robust and easy tools to quickly develop multfr-platfornrn hindñng

tc ü lihraries.

o More interçperffihility libraries are needed (SOAP, WSDL, ...).

' Develop exannplæ web mpplieatfrsns that will prove Erlang high

performance (Example RUBIS implementatioî, comparable with

Java and PHP).

t f;'{ t-\
G

10 IR[.ANG

Erl ang-proj ects foundation

Built on the same model than the Apmmlre Foundmtto;t.

See http.//www. apache. org/fou ndation/how-it-works. htm I

Erlang-projects foundation mimslmn could be stated as:

Develop and promote valuable projecfs that could turn

Erlang into a long-term solution for middleware

development, serve r applications and highly concurrent
graphical user applications.

Please do not hesitate to promote your own mission
rfrTLilT l--r

F\.
11 ERTAHB

Erl ançl-proj ects foundation

Discuss organisation:

Fees (each euro in communication through Erlang
project will have more impact than isolated

communication).

Define the long*term m[ssimrn

Roadmffip

Hçststrmp pêrimd

Hxecutive hmard for the foundation. This is the basis

a liçhtwçight organisation of the foundation,

fortb{ È
12 ËKTANG

Erl ang-proj ects foundation

ffipffiffi di
ß

ffiffisffiftxffis I

rrrtrl
F:r
u.)
Ê.
\'¡..)

13 Ë R il.åNÊ

! (¿)
Highlights

ErlangS.A|OTP R10B
This document describes the major new features of and changes to Erlang 5.4/OTP
RIOB, compared to Erlang 5.3/OTP R9C with focus on the major completely new
things which has not already been delivered as patches to R9C. Some of the new
features and changes have already been delivered as patches to R9C and./or R9B. For
Open Source users this document can also serve as a good approximation to the
differences compared to R9C-2 (corresponding to OTP patchlevel 663).

For more detailed information, please refer to the release notes for the individual
applications.

Documentation

o A new tutorial "Getting Started \ryith Erlang".
This is a "kick start" tutorial to get you started with Erlang. Everything in it is true, but only
part of the truth. For example, It will only tell you the simplest form of the syntax, not all
esoteric forms. Together with the Erlang Reference Manual it should be a very good start for
learning Erlang.

ERTS, Erlang emulator

o Process and port identifiers have been made more unique. Now we use 28 bits for the internal
representation compared to 18 before. This also increases the maximum number of Erlang
processes (the new maximum is 268435456 previously it was 2621.44). The new
representation of a Pid (process identifier) has impact on the Erlang distribution protocol. The
use of new or old Pid representation can be controlled with aflagwhen the Erlang node is
started.

o Significantly improved performance regarding handling of links and monitors in the emulator.
This will have positive impact on performance for a system with many dynamical processes
who are using links. Measurement in a real system is necessary in order to know exactly how
much this improves performance.

o Support for the new language construct try?catch.

Standard libraries (kernel, stdlib)

o Query List Comprehensions QLC which is a very convienient way to perform queries on ets
and mnesia tables. QLC is intended to replace mnemosyne in forthcoming releases. The use
of mnemosyne is already strongly discouraged especially in time critical applications since it
is very resource consuming and cpu demanding. This is the first version and there will be
more optimizations added in forthcoming releases. There is also additional functionality in
mnesia to support QLC.Note that mnemosyne is still included and works exactly as before.

o Support for records in the Erlang Shell. There are commands for reading record definitions
from files and for manipulating record definitions. The record syntax can be used in the shell
and return values are printed as records when possible using the record definitions known to
the shell.

2
a New function insert-newl2 inets and dets. Will only succed if this is the first insert for a key.

Compiler, Erlang compiler
o The semantics for boolean operators in guards have been changed to be more consistent.
o The compiler now warns for more types of suspect code, e.g as expressions that will fail in

runtime (such as atom-4?), guards that are always false and patterns that cannot match.
o Improved compilation speed with ERLC (starts as little of the Erlang system as possible, for

example avoiding ?start_sasl?).
o The new language construct try?catch is supported.

New Applications

¡ New application xmerl which is a validating XMl-parser with many useful features for
handling and transforming XML-data in Erlang. This application was originally created by
Ulf V/iger and has been developed at Sourceforge.net for several years.. It has now been
included in the Erlang/OTP distribution and is supported by the OTP team.

o New applications edoc and syntax*tools which can be used to produce documentation of
Erlang modules by means of special comments in the Erlang source code. These applications
are originally created by Richard Carlsson at Uppsala University and are now included in the
Erlang/OTP distribution. The reason for this is to offer one "standardized" way to document
Erlang, where the necessary tools are always available.

Other Applications

o Erljnterface and J-interface: Support for new format of Pid and a compatibility mode so
that old format can be used.

o Mnesia: support for QLC (the mnesia:table function) otherwise the same as in R9C.
o Observer/Crashdump-viewer can now handle really large crashdumps without getting

problems with that the Internet browser times out.

(Ð

User Gonference 20A4
s kers and chairman

Joe

Per
Thomae

Johan
Richard
Bjarne
Tobias
Kenneth
Göran
Mickaël
Jouni
Juan José
Fredrik

Armstrong
Ats
Bergqvist
Blom
Carlsson
Däcker
Lindahl
Lundin
Oettinger
Rémond
Rynö
Sánchez Penas
ïhulin

SICS
lT university
Synapse
Mobile Arts
Uppsala univ
cs-lab.org
Uppsala univ
Ericsson ErlanglOTP unit
Mobile Arts
Erlang projects
Finnish Meteorological lnstitute
Univ of A Coruña
Stockholm univ

Kista
Göteborg
Stockholm
Stockholm
Uppsala
Segeltorp
Uppsala
Stockholm
Stockholm
Paris
Helsinki
Goruña
Stockholm

Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sr¡rrcden
Sweden
France
Finland
Spain
Sweden

joe@sics.se
thomas.arts@itun iv.se
per@synap.se
Johan. Blom@mobilearts.se
richardc@csd.uu.se
bjarne@cs-lab.org
Tobias. Lindahl@it. uu.se
kenneth. lund in @ericsson.com
goran.oettinger@mobi learts. se
mickael. remond@erlang-fr. org
Jouni.Ryno@fmi.fi
juanjo@dc.fi.udc.es

Partici nts
su.se

Kristoffer
Peter
lngela
Gösta
Simon
Knut
Sreedhar
John-Olof
Johan
Johan
Katrin
Martin
Hans
Pascal

Andersson
Andersson
Andin
Ask
Aurel
Bakke
Bandaru
Bauner
Berg
Bevemyr
Bevemyr
Björklund
Bolinder
Brisset

Synapse
Ericsson Erlang/OTP unit
Ericsson Erlang/OTP unit
SalveLinus
Erlang Training & Gonsulting
Teleca Wireless Solutions AS
Ericsson Enterprise
Ericsson
Ericsson
Nortel Networks
Nortel Nett¡uorks
Nortel Networks
Ericsson Erlang/OTP unit
Cellicium

Sweden
Sweden
Sweden
Sweden g.ask@telia.com
England

Stockholm
Stockholm
Stockholm
Stockholm
London
Grimstad
Stockholm
Kista
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Bagneux

Norway
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
SwedEn
France

Knut.Bakke@teleca.no
sreed har. bandaru @wi pro. com
john-olof. bauner@bredband. net
johan. berg@ericsson.com
jb@bluetail.com

mbj@bluetail.com

pascal. brisset@cel I iciu m.com

t

t-\
\-.

Partici nb cont.
Göran
Martin
Francesco
Mats
Niclas
Morgan
LarsAke
Magnus
Luke
Pår
Joakim
Rickard
Dan
Biörn
Per
Niklas
Siri
Per
Sean
John
Klas
Leif
Torbþrn
Bertil
Mikael
Bengt
Tord
Lars
Peter

Carlson
Cesarini
Cronqvist
Eklund
Eriksson
Fredlund
Fröberg
Gonie
Grandin
Grebenö
Green
Gudmundsson
Gusüavsson
Hallin
Hanberger
Hansen
Hedeland
Hinde
Hughes
Johansson
Johansson
Johnson
Karlsson
Karlsson
Kleberg
Larsson
Lindgren
Lund

Stockholm
London
London
Budapest
Stockholm
Stockholm
Kista
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
London
Göteborg
Linköping
Göteborg
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm

Sweden
England
England
Hungary
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
England
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden

Mobile Arts
Erlang Training & Consulting
Erlang Training & Gonsulting
Ericsson
Ericsson Erlang/OTP unit
Nortel Neturorks
srcs
Nortel Netvrorks
Synapse
Ericsson
Nortel Networks
Ericsson Erlang/OTP unit
Ericsson Erlang/OTP unit
Ericsson Erlang/OTP unit
Synapse
Nortel Netvrprks
Ericsson Erlang/OTP unit
Nortel Netuorks
T-mobile
Chalmers
Ericsson
Ericsson

Ericsson Erlang/OTP unit
Creado Systems
Ericsson
Nortel Neü¡rcrks
Synapse
Lundata AB

goran. bage@mobi learts. se

francesco@erlan g-consultin g. com
mats. cronqvi st@ericsson. com
nick@erixericsson.se

fred@sics.se
magnus@bluetail.com

par. grandin@ericsson.com
jocke@bluetail.com

bjorn @erix. ericsson. se

per@bluetail.com
sean.hinde@mac.com
rjmh@cs.chalmers.se
klas. johansson @ericsson. com
leif. d.johansson @ericsson. com
torbjorn. k.joh nson @swipnet. se

m ikael. karlsson@creado.com
bengt. kleberg@ericsson.com
tlarsson @nortel netnorks.com

Peter. Lund@lundata. se

b.

cont.
Peter
Matthias
Ann-Marie
Arild
Luca
Peter-Henry
Håkan
Peter
Vinay
Hans
Raimo
Patrik
Laurent
Robert
Tony
Per
Håkan
Erik
Per
Sebastian
Anton
Per Einar
Göran
ulf
Torbiörn
Jane
Paul
Esko
ulf

Lundell
Läng
Lof
Løvendahl
Manai
Mander
Mattsson
Nagy
Navsingoju
Nilsson
Niskanen
Nyblom
Picouleau
Raschke
Rogvall
Romin
Stenholm
Stenman
Sternås
Strollo
Strydom
Strömme
Stupalo
Svarte Bagge
Törnhyist
Walerud
van Teeffelen
Vierumäki
Wiger

Ericsson
Gorelatus AB
Sjöland & Thyselius Telecom AB
Teleca Wireless Solutions AS
Ericsson

Ericsson Erlang/OTP unit
Ericsson
Ericsson Enterprise
Ericsson
Ericsson Erlang/OTP unit
Ericsson Erlang/OTP unit
Erlang Training & Consulting

Synapse
Ericsson Enterprise
Stockholm univ
Virtutech AB
Ericsson Enterprise
Nortel Neñruorks
Synapse
K-tech
Ericsson Erlang/OTP unit
Gorelatus AB
Nortel Netvrorks

EricEson
Ericsson
Ericsson

Stockholm
Stockholm
Stockholm
Grimstad
Stockholm
Thame
Stockholm
Budapest
Stockholm
Stoakholm
Stockholm
Stockholm
London
Edinburgh
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stoc*holm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm

Sweden
Sweden
Sweden
Nonalay
Sweden
England
Sweden
Hungary
Sweden
Sweden
Sweden
Sweden
England
Scotland
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden

peter. lundel l@ericsson.com
matth ias@corelatus. se
ann-marie.lof@st.se
Ari ld. Lovendah l@teleca. no
luca. manai@ericsson.com
erlan g@manderp.freeserve. co. uk
hakan@erix ericsson.se
peter. nagy@ericsson.com
vi nay. navsin goju @wi pro. com
hans. r. n i lsson@ericsson.com

pan@erixericsson.se

rrerlang@tombob.com
tony@rogvall.com
per. romin@ericsson.com
hakan. stenholm@mbo;ßO4. swipnet. se
stenman@virtutech. com
per. sternas@ericsson. com
seb@bluetail.com

stromme@telia.com

ulf@corelatus.se
tobbe@nortel n etuorks. com
jane@ualerud.com
paul.van.teeffelen@ericsson. com
esko.vierumaki @ericsson. com
u lf .wi ger@ericsson. com

(^)

cont.
Daniel
Claes
Jerker
Ghris
Mike
Johan
Lennart
Göran

W¡¡K
Wikström
Wilander
Williams
Williams
Wärlander
öhman
Ösflund

Ericsson Linköping
Nortel Netvuorks Stockholm

Lucenay
Ericsson Stockholm
Ericsson Stockholm
St Jude MedicalAB Jårfälla
Sjöland & Thyselius Telecom AB Stockholm

Stockholm

daniel.wiik@ericsson.com
klacke@nortel neturorks.com
edberg.wi lander@stockholm. mai l. tel ia.com
chris.wil I iams@ericsson.com
michael.wil I iams@ericsson.com
juarlander@sjm.com
lennad.ohman@st.se

Svræden
Suleden
France
Sweden
Sweden
Sweden
Sweden
Sweden

204+10-14

=Þ
È.

