10th International Erlang/OTP
User Conference

Stockholm, October 21, 2004

Proceedings

http://www.erlang.se/euc/04/

ERICSSON ;,:-:;

' i i -
- [A
o
% A sjéland & Thyselius ERLANG

R S R L Wt ST P TR Ll R
SYNAPSEe iois Oelwarks s..0

Erlang/OTP User Conference 2004

Conference Programme

08.30 Registration.

Session 1

09.00 Building ground support equipments with Erlang.
Jouni Ryn6, Finnish Meteorological Institute.

09.30 SERVAL: a VLAN software switch developed in Erlang.

Alejandro Garcia Castro, Igalia, and Juan José Sanchez Penas, University of A Corufia.
10.00 An Erlang WTLS implementation.

Johan Blom and Géran Oettinger, Mobile Arts.

10.30 Coffee.

Session 11

11.00 Learning Erlang and developing a SIP server/stack with 30k potential users.
Fredrik Thulin, Stockholm university.

11.30 Messaging with Erlang and Jabber.
Mickaé&l Rémond, http: / /www.erlang-projects.org/

12.00 Synapse DMC, liberating the mobile internet!
Per Bergqvist, Synap.se.

12.30 Lunch.

Session III

14.00 Dialyzer (DIscrepancy AnaLYZer of ERlang programs).
Tobias Lindahl and Kostis Sagonas, Uppsala university.

14.30 In the need of a design... reverse engineering Erlang software.
Thomas Arts and Cecilia Holmqvist, IT university of Goteborg.

15.00 Erlang’s exception handling revisited.
Richard Carlsson, University of Uppsala, Bjorn Gustavsson and Patrik Nyblom, Ericsson.

15.30 Coffee.

Session IV

16.00 ErlGuten.
Joe Armstrong, SICS.

16.30 Proposal for an Erlang foundation.
Mickaél Rémond, http: //www.erlang-projects.org/

17.10 Erlang/OTP R10B.
Kenneth Lundin, OTP team, Ericsson.

17.30 Close followed by bus transport to an ErLounge in downtown Stockholm!

Demonstrations (during intermissions)

Mickaél Rémond demonstrates the Jabber.
Tobias Lindahl demonstrates the Dialyzer.
Tony Rogvall demonstrates SSH implemented in Erlang.

Building GSEs with Erlang

Jouni Ryno, FMI / Space research
— history of Erlang at
Finnish Meteorological Institute (FMI)
— CIDA and COSIMA instruments

— Ground Support Equipment (GSE)
* real-time telecommands (TC) and telemetry (TM)
o offline telemetry (DB)
* online telemetry (WWW)

ILMATIETEEN LALTOS
METEQROLOGISKA INSTITUTET
FINNISH METEORDLOGICAL INSTITUTE
08/ 10/04

History of Erlang at FMI

— a small world

* a colleague had been a
colleague of Joe in 1980's

* and the colleague's brother

was working at Ericsson BT Hf W

— a broken lightning location "
system in June 1995

* from learning Erlang to a i
realtime graphical lightning Vi

B
|

display in 3 weeks...

ILMATIETEEN LAITOS
METEDROLOGISKA INSTITUTET
FINNISH METEOROLOGICAL INSTITUTE
08/ 10/04

- e om e - - eomom e

Lo, T

NN

=
et

History of Erlang at FMI

— magnetometer data
aqcuisition systems

° measures magnetic - B il i T S -
variation of the Earth e MBE T i

* 3 components

(north, east,
vertical)

* means with 1s, 10s
and 60s time
resolution

TLMATIETECN LAITOS
METEOROLOGISKA INSTITUTET
FINNISH METEOROLOGECAL INSTITYTE

|1 | al

F..-:-’z 1= ¥ Al o o F
T iy e

Comet and Interstellar Dust
Analyzer (CIDA)

- time of ﬂight rPoOBITIVE "BiF/WNLD R {178 AR largm
mass spectrometer

— made a comet flyby
on 02.01.2004 on the
Stardust-spacecraft

— development
1996 - 1998

JUMALIETEEN (ALTQOS
B8 MetEoRGI OGS KA INSTITUTET
sy FINMISH METEOROLOGICAL INSTITUTE

Cometary Secondary Ion Mass
Analyzer (COSIMA)

— mass spectrometer

— onboard Rosetta,
ESA's spacecraft to
study the comet

= 67 P/Churyumov-

i Gerasimenko
5y
— measurements

2014 - 2015

IUMATIETEEN LAITOS
METEQOROLOGISKA INSTITUTET
FINNISH METEORDLOGICAL INSTITUTE
08/10/04

S

. Cometary Secondary Ion Mass
- Analyzer (COSIMA)

g'r' Tungsten Needle. Indium
Target Ton Optics \| /_/ Ton Source
Target (Cumern Pos.).

(Chemisiry Station) .. s, Camera (:/';:.\\
< "\ Primary Ion Beam

= ‘\w (\ Q
VvV .Secondary Ion Beam

Cometary Dust__—— I]
------ L ad / /
7 4 | 1 _— i e g e o
Target & -=:= =m o I ;___ # I ...}
(Collect Position) =
Target Store "\ Drift Tube 1on Reflector
Ton Detector
Robotic Arm with Target
(Spectrometer Pos.) ROSETTA
Electronics [-#———— Spacecraft
comham-fmc-enfiy
h'..“ ILMATIETEEN LAITOS
\-z"‘l METEDROLOGISKA INSTITUTET
J:". FINNISH METEORQOLOGICAL INSTITUTE po—

Cometary Secondary Ion Mass
Analyzer (COSIMA)

— 72 dust targets, each
10*10 mm size

— camera to detect 10-
100 pm size particles

—~ motor system to move |
targets around with 4
pm accuracy

— 80 pm In ion beam

TLMATIETEEN LALTOS
METEOROLOGISKA INSTITUTET
FINNISH METEOROLOGICAL INSTITUTE
06/ 10/04 7

— simulates S/C electrical
mterface during the
development

— provides
g telecommand
generation and
telemetry analysis

— as in the Erlang book!

ILMATITETFEN LAITOS
fEl METEOROLOGISKA INSTITUYEY
FINNISH METEOROLOGICAL INSTITUTE

e e o T
b o e - = ¥ Temr ws ke .3
Vv st bt L A YoM e |
Tt st st 5 ey PV AYEW . MR Y oW WA :; = 7
' . ~HTMYG AR W e Lo .
v etk B R T R
s g oy 2 e A mE s ey mw ke o
. < m WE A PanA wWe kg I |
TR iy ik T bl o (|
o S— L b PRSE '
P . s S T . - i et
o — e — ST | o wa T %
T mmanrainn M W e An s
% T | - W v —:l
a - Ll —lll
g i) e z i !
- " : I — -
et it e I pe——— e
e | el et | e vetn -
FeTr i - =
| | o | S | s | : u 1
Ot - T e e i 180 . |
L " on ¥
) e o) W1} gty R
i e S e L Lty] enn B e
P ol - T a o [~] B
e T T i R AR -..._...._.J"" L.
e g # T ik ’
3 o, w
e | o cE el T

HMATIETEEN 1AVTOS

User interface 2
e user interface written in Tcl/Tk
— button/menu interface fine for simple and often
used interactive operations
— complicated commanding needs a scripting
language
— BLT gives nice 2D graphs
 Erlang talks with Tcl via modified ewish

. H/W interface

"1 — selfmade PCI-card
< for S/C
i interface(linux driver
with IDL c-server)
— power supply
— analog to digital PCI- |

card for current,
temperature and
vacuum monitoring

ILMATIETEEN LAITOS
MEYEOROQLOGISKA INSTITUTET
FINNISH METEOROLOGICAL INSTIYUTE
00 10/04

1

Why not Erlang

* 1996:
— no binary syntax
— no hex format
— not open source
— not sure about language future

e 2004:
— few know about the language

ILMATIETEFN LAITOS
METEOROLOGISKA INSTITUTET
FINNISH METEOROLOGICAL INSTITUTE
09 10Y04

Why with Erlang

* experience with Occam language

(in the Transputer-processor)

~ processes, synchronous messages, no pointers
* Erlang:

— buffering comes for free! (asynch ..)
* new languages are fun to learn

IMATIETEEN 1AITOS
METEQROLOGISKA INSTITUTEY
FINNISH METEOROLOCICAL INSTITUTE
00'10/04 n

Erlang as middleware

— TC timing (buffer)
— TM buffering
— logging

— HK monitoring
— archiving

— distribution!

EUEEN 'LMATIETEEN LAJT 0
HHE MeTeoroLoaiska INsTiTuTET
FINNISH METEOROLOGICAL INSTITUTE

T'C with Erlang

* formatting and

A handle_event({time_out, TC, Timers, TimerKey}, State) ->
CheCklllg Result = gen_server:call(Statetistate. owner,
L {write, TC}, 15000),
© tunmg {ok,Resp_timer} =timer:apply_after(?TIMEOUT,
. 'Eﬂn_w.'mst‘.[sc"mmmmicdim_sm.
* buffering {no_response, (TimerKey} }]),

ata:inm(‘l‘imars.{'rimu'Key,Re@_ﬁmer}),
® acceptance and Newsito= Stofusto{queme = (Satettute quoney),
. quene(NewStatedstate. queue),
execution {ok, NewState};

acknowlegements

FLMATIETEEN LAITDS
MEYVEORQLOGISRA INSTITUTET
FINNISH METEOROLOC ICAL INSTITUTE
09 10/00

of
<0:3,T Mmﬂcm FID:7, lﬂmﬁmﬁ , TMLength<16 M‘Y’* =
E Packeflength="TMLength + 7, -

if
Packeength > ire(TMbloclks) ->

?mmwmmpcbtbbck ~w <> length ~wn", [pire(TMblockn), PacketLergth]),

enor, imvalid)

troe >

ey AN
enpervercastisc_commumication_perver, Illll.r«ldnd.) TMpacket, kove)),
splﬁ.piﬂumm iueﬂm-e(w

end;

ILMATIETFEN LAIYQS
FE] METEDROLOGISKA INSTITUYET
FINNISH METEOROLOGICAL INSTITUTE

Y handling, parameters

| extmct binary(Size, HeadSive, TailSize, Type, Bin) >
i case Type of
"unsigned.: ">
<<HHeadSire, Value:Sive/unsigned-integer, T: TailSize Resi/binary>> = Bin;
"signed-integer" >
<<H:HeadSire, Value Sive/signed-integer, T:TailSize Rest/binary>> = Bin;
"float" ->
il <<H:HeadSire, Value:Sise/ float; T TailSize Rest/binary>> = Bin;
5t "time" ->
] <<HHeadSire, Value:Size/unsigned-integer, T\ TailSive Resl/binary>> = Bin
Al end
k2! <<UH:HendSize, UValue:Sire/unsigned-integer,UT: TailSize URest/binaty>> = Bin,
{Value, UValne}.

e

) ILMATILTEEN LAITOS

e METEOROLOGISKA INSTITUTET

(v FINNISH METEOROLOGICAL INSTITUTE

el o1vos
S|

. Offline TM > DB
. -record(time_parameter,
2 {time,
| parameter, value}).
|« on ground, every 2 seconds
: — ~30 16-bit AD values
— ~64 single bit status flags
* plus images, spectra
%@gboutZOO Mbytes / working day

q Mnesia

. * 200 Mbyte / day -> disk_only_copies

o for faster searching, use fragmented tables
~ with a special hash module

— key is MJD2000, decimal day since 01.01.2000

— key_to_frag number(State, Key) when
- record(State, hash_state) ->
r IntKey =

 Online access -> yaws

* DB frontend for the scientists

= — housekeeping data

! — events, images, spectra

‘ — target history

r — instrument status

|« document repository

- i

I Jeten o

10

Yaws

RSDB event (for multiple selection, use shift for a range, control for Indhvidual parameters)

TSI STUT O ey
YCTALE4Y COSIMA D4 error 41858
YOSALEEL COSIMA shutdown d1odL
YCSA1850 COSIMA aboul 1o reboot 41660
WCSA1ESS Cosima shutdesn request 41655
vLZALESH Initiate Comtext requast 41653
YCS41852 COSIMA needs SW 41652
YCS41R51 COSIMA boat A1€5L

YCEA1E1D TOF HY svitched off 41612
YCS41811 TOF HY switched on 4L611
YCS41610 TOF to be swilched on 41610
TYCSAI602 PIOS Hy SAITCH OFF 41603
i 12 7 :

L i ; 2
YCSAL566 COSISCOPE COMI-STATUS 41595
Y(S41585 COSISCOPE ERROA 41565 i
YCSA1583 COSISCOPE OP COMPLETED 41583 e
YCS41582 COSISCOPE SWITCH OFF 41562 b
¥E541500 COSISCOPE SWITCH ON 41581

¥CS41560 COSISCOPE to be switched on 41580)
WOEARTA BT dandddan duiTura ATETA

Start date {YYYY-MM-DDTHH:MM:SS): !m-oﬁ-;m:m:m
Stop date tYYYY-MM-DDTHH: MM: 5SSk [B64-t8-2
For start date, the hour defaults to 00. minute to 00 and seconds to 00

For stop dabs, the hour defaults to 23, minute to 50 and seconds to 69

Sobmit Osery | Beset |

ILMATIETEEN 1AITOS
METEOROLOGISKA INSTITUTFT
FINNISH METEORDLOGICAL INSTITUTE

o0&/ 10/01

21

Yaws
¢ define queries to the DB

Selection = [{ { time_parameter,'$1','$2','$3'},
[{'<'{const, 1608.00},'$1'},
{'=<'$1"{ const1609.00} },
{'==""$2"{ const,"NCSA1100"} },
{'orelse’,{'=='{ const4.15650e+4},'$3'},
{'=:="{ const4.16000e+4},'$3'},
{'=="{ const4.16010e+4},'$3'} }1,

[$-1}]

ILMATIETEEN LAITOS
METEORDLOGISKA INSTITUTET
FINNISH METEQROLOGICAL INSTITYUTE

IV

2005: COSIMA net nodes

e, ILMATIETEEN LAITOS

A}. METEQROLOGISKA INSTITUTET

) FINNISH METEOROLOGLCAL INSTITUTE
5

. Future
.« EGSE for the BepiColombo/SERENA
~ (ESA Mercury mission)
1;_ * the whole meteorological section could
.~ benefit from Erlang
| - lots of different weather reports in different
e formats coming in daily
& — different, tailored services to public
|+ needs some selling
EY @

1)

SERVAL: an Internet software VLAN switch developed in Erlang *

Alejandro Garcia Castro, Francisco Javier Moran Rua
Igalia Software Engineering
Gutenberg, 34B 2°, Poligono de A Grela — 15008 A Corunha

e-mail: {acastro,jmoran}@igalia.com

Juan José Sanchez Penas
University of Corunha, Computer Science Department
Campus de Elvinha — 15071 A Corunha
e-mail: juanjo@dc.fi.udc.es

Abstract

There are situations in which it is very interest-
ing to connect a machine to a different Local Area
Network from the one its network card is actually
connected to. Some network applications require
our local host to be virtually connected to a remote
Local Area Network. This article describes a pro-
posal to develop a software system that emulates
the operation of a switch, allowing to create Virtual
Local Area Networks over the Internet, that com-
pletes the current similar solutions. We have cre-
ated a prototype developed with Erlang/OTP using
a client/server architecture and we are working on
the integration with the Operating Systems using
virtual network interfaces. Erlang is very suitable
to face the main issues of this system: performance,
communications and fault tolerance. We have ac-
complished performance and functional tests to as-
sess the suitability of the designed system using the
prototype. The paper will explain the current re-
sults of the research and describe future work.

1 Introduction

SERVAL is a research and development project
whose aim is to assess the feasibility of a system
for creating Virtual Local Area Networks (VLANs)
using a software server. The main goal of this soft-
ware is to provide a way to set up VLANs between

*Partially supported by Xunta de Galicia - PGID-
ITSIN0313E

computers, no matter their location or the con-
nection they use to access the network. For this
purpose, we have designed a system that emulates
the operation of a hardware switch. The Operat-
ing System in the client does not have a regular
network interface, but a special program that, act-
ing as a virtual interface, communicates with the
SERVAL server. The clients can connect to VLANs
defined inside the server, which works as a software
switch forwarding the messages between the clients
in the same Virtual Local Area Network (VLAN).

Nowadays the solutions available to link two Lo-
cal Area Networks (LANSs) do not provide some fea-
tures that would be desirable in some cases. The
main technologies for connecting remote LANs cur-
rently are: Virtual Private Networks (VPNs) and
VLANs. The applications we have in mind as inter-
esting examples to be implemented on top of this
technologies range from mobility solutions to file
sharing.

The main issues of this project that we have to
face are:

o Client/server architecture: we have to support
this kind of architecture because the connec-
tion from local range IP addresses is a require-
ment, and therefore P2P solutions would not
satisfy our needs.

¢ Performance: the emulation would have no
sense if we do not have suitable latency and
throughput. The system should be able to
overcome stress situations. Scalability is also
an important feature.

e Operating System integration: the interfaces
to our switch in the client side must be vir-
tual network interfaces. User space applica-
tions would use these interfaces as the regu-
lar ones. Our target Operating Systems are
GNU/Linux and Microsoft Windows.

e Communications security: this kind of systems
should assure their communications, because
the traffic goes through an unsafe medium.

We have designed a system following these re-
quirements: a client/server architecture aimed to
solve the main risks we have detected. We have
decided to use Erlang/OTP [1] as the development
environment because its features fit very well with
the project goals.

In this research we want to face and measure the
main risks we can see to develop a system like the
one we describe. The paper will explain the current
results of the research and describe future work.

In Section 2, the current alternative solutions for
connecting remote LLANs are described, and their
advantages and disadvantages discussed; the moti-
vations for the project are also presented. In Sec-
tion 3, the main goals and system requirements
for the research and development project are ex-
plained. After that, Section 4 introduces the sys-
tem architecture, leaving for Section 5 the details
related with the use of Erlang inside the system.
Current status of the project, including some per-
formance tests, is presented in Section 6, before
concluding in Section 7.

2 State of the art and motiva-
tion

Nowadays technology brings us some options to
connect remote LANs, but these applications do
not provide us features that are very interesting in
some environments.

We could use Virtual Private Networks (VPNs)
to create a virtual connection between remote
LANs communicating over possible untrusted net-
works. With this technology we can communicate
remote networks emulating neighbor networks with
a router in the middle. But using this kind of tech-
nology we can not transmit non-routed traffic be-
tween the network (therefore, local area protocols

2,

cannot be used). Besides, we need to configure a
router to send out the packages. An example of
this kind of software is FreeS/Wan [2], which imple-
ments |PSec [3], an standard protocol for encrypt-
ing IP traffic between two networks connected by
two IPSec gateways.

Another option would be the use of Virtual Lo-
cal Area Networks (VLANs) connecting Local Area
Networks that are physically separated, enabling
non-routed traffic between networks (and therefore
local area protocols). Virtual Local Area Networks
are normally implemented using the 802.1Q [4] pro-
tocol, which sends layer two traffic with Virtual Lo-
cal Area Network information to define Local Area
Networks using ports of different switches. The fact
of being able to communicate any kind of traffic
between the networks, would simplify some reg-
ular tasks when we share resources and will also
enable the use of applications that communicate
with each other using protocols like Rendezvous or
SMB. The main limitation of this kind of solutions
is that, nowadays, we can only deploy a system like
that if we have control over all the physical switches
placed between the host and the network we want
to connect it to; besides, all the intermediate ma-
chines should have that feature implemented. We
cannot forget that a telecommunications company,
even controlling all the hardware of the network,
can not touch the configuration of their machines
dynamically in a safe way, because any mistake
would spoil all the traffic of the network. We also
have to remark that changing the configuration of
the machine is not simple, and a trained technical
assistance would be needed.

The system we propose in this paper can emulate
this VLANs behavior using a scalable, distributed,
TCP/IP server that acts as a software switch. The
clients would run programs that simulate logical
network cards connected to the software switch.

We have taken some features of both VPN and
VLAN systems to define the main goals of the
project. The security of VPNs is a very im-
portant feature, because communications are per-
formed through an unsafe medium. Authentication
and authorization are a important issues that needs
to be solved properly. Hardware switches are de-
signed to handle a great flow of packages, therefore
the system has to be ready to manage heavy stress
conditions. The performance is another main issue
we have to face and specifically the system scala-

bility. We should consider a group of thousands of
clients that define a group of VLANs trying to send
their discovery messages through the switch, the la-
tency has to be correctly handled. In any case, the
use of this kind of systems must be well designed
because the amount of traffic that the local proto-
cols produce can be very large.

Some of the standards and well-known technolo-
gies we are using or considering for the project are:

e Local Area Network technologies: Ethernet,
Token Ring, etc. We also should review sys-
tems to manage this kind of traffic, congestion
management.

e Virtual Local Area Network technologies:
802.1Q [4], 802.1D [5] and current hardware
that supports it.

e TCP/IP transport protocols: UDP and TCP.
We want to do research about which one
should be more appropriate.

e Application level protocols and their encryp-
tion systems: SSL and TSL [6].

e Network interface emulation, both for

GNU/Linux and Microsoft Windows.

We have discussed and proposed some applica-
tions of the SERVAL technology together with R,
Cable e Telecomunicacions de Galicia, S.A., to
learn more about possible use cases and increase
the knowledge about the system requirements. The
idea was to find out some applications in which the
advantages of the technology would make them spe-
cially interesting for our project:

e Virtual corporative LANs among several phys-
ical networks in a company, with a simple and
flexible configuration. Enterprises could de-
fine communications between their headquar-
ters easily, they could even work from home,
using their personal Internet connection, but
accessing the network and resources of the
company. This is very interesting for mobil-
ity: if a worker is in a different place than the
rest of the company, he can still connect to
the network and develop his tasks or access to
a document that he has in his account.

e File sharing: users could easily create a pri-
vate network between them to transmit infor-
mation. They just have to use standard local
area network protocols and they could share
resources and services.

e Games through Internet that could only be
used before in a LAN environment. This is an
interesting product for a telecommunications
provider company like, because the easiest way
to play in a network is using machine and soft-
ware discovery protocols that only work in a
LAN. The tool to manage the connections to
the VLANs can be an easy interface that al-
lows a regular user to connect to this networks
and play network games the same way he/she
is used to do in local environments. The enter-
tainment industry is nowadays an important
part of the telecommunication business.

3 Project goals

The main goal of this research is to assess the fea-
sibility of the use of the current technologies for
building a software system able to create and con-
trol VLANs. We have agreed some functional re-
quirements that the developed system should fulfill:

e Client/server architecture: the basic architec-
ture of the system should have these two lay-
ers. We need this kind of architectural design
because of the current Internet connectivity,
there are a lot of conditions where the clients
are in a network with local IP address range.
In these cases we need this kind of architecture
to assure the connection between the hosts, be-
cause P2P technologies would not adapt cor-
rectly to our needs. The flexibility and control
that the server application provide us seems
to be an interesting feature for the system.
Anyway, we have also considered the peer-to-
peer (P2P) architecture, there are some condi-
tions where the P2P could be a good solution.
Therefore, our main goal is the client/server
architecture but we will consider the way to
adapt the system to a P2P deployment.

e GNU/Linux and Microsoft Windows link layer
integration: it is an important point for the
system usability. Due to these requirements

we need a multiplatform development environ-
ment, able to produce software to be run in
both GNU/Linux and Microsoft Windows. The
perfect integration of the client with the Op-
erating System lets us use the regular facili-
ties and programs with SERVAL transparently.
The Operating System will detect a new net-
work interface that will use to transmit traffic
like any other interface of the system. The in-
tegration with current local area technologies
like Ethernet will also be a very interesting tar-
get because of the facilities that include. This
is one of the main risks of the project, espe-
cially in the Microsoft Windows environments.
In GNU/Linux we already have a virtual Ether-
net driver (TAP) that lets us redirect the traffic
to a user space application. Microsoft Windows
environments are closed and the assess of the
solution is not so easy, we will have to develop
a system virtual driver.

Performance: it is also a very important risk
of the research, because we have to accomplish
some minimum results in order to be able to
properly emulate a LAN. The latency of the
server is an important issue to solve: we have
to reach a minimum latency even under stress
conditions. The throughput should also be
optimized, because we could loose too much
bandwidth using the system. Regarding this
subject we have to consider the scalability of
the system, which should be the best solution
for being able to handle a lot of concurrent
users at the same time. We also have to think
about the transport layer protocol used for the
transmission: UDP or TCP; it seems that de-
pending on the concrete conditions, one alter-
native could be better than the other, so this
feature should be configurable.

Fault tolerance: the system should be designed
to continue working in the presence of software
or hardware failures. The server could be de-
ployed in a cluster of computers, and the de-
sign of processes and protocols should take into
account any possible problem derived from any
kind of error.

Security: one of the most important features
that the system should accomplish is to secure
the connections; even the performance could

be penalized in some conditions. Authenti-
cation, authorization and encryption should
be added to the system, and the connections
should be assured to avoid security problems.
There are applications of the system where
security is not an important issue but when
we want to transmit sensitive information we
must assure the communication.

e Heterogeneous LAN protocol encapsulation:
regarding the type of protocols we should sup-
port at least Rendezvous and SMB. Anyway,
it is very interesting to support other network
technologies, being the optimal solution that
the virtual interface had no difference with the
rest of the network interfaces of the system. If
we completely implement the virtual Ethernet
driver we can accomplish this goal.

4 Software and hardware ar-
chitecture

When we thought about building a system that em-
ulates VLANs in a WAN environment, we had to
decide the global system architecture we were go-
ing to use. It should be noticed, before going on
with the detailed description, that, by global archi-
tecture, we mean both the hardware and software
skeletons of the system.

The first option we evaluated was whether a peer-
to-peer approach would be interesting. With the
use of a peer-to-peer a approach, the scenario would
be the following one:

Each user of the system would have in his com-
puter a client of the SERVAL system installed. This
client would negotiate a connection with another
user having also installed the SERVAL program.
Once the connection between the clients was estab-
lished, they would be connected at link layer level,
being this medium Ethernet compatible. Therefore,
the Operating System of each computer would see
the other one as if it was in its LAN with all the
advantages this fact has.

This scenario looks fairly attractive but has sev-
eral serious drawbacks that made us reject it as a
general target architecture. The main disadvantage
is that if both clients are in private networks, with
private network |IP addresses, then the peer-to-peer
connection would not be feasible.

Another drawback is that this skeleton is not
good if we want to emulate a lot of machines in
the same LAN. This is so because the program in
each client would have to open a peer-to-peer con-
nection with each computer belonging to the same
VLAN. This would cause a serious network over-
head. For example, if we wanted to have a hundred
users in a VLAN, the number of connections which
would be necessary in order to open in each com-
puter is one hundred and, altogether, they would
be up to ten thousand. Besides, this skeleton would
not be persistent and each client needs to know the
addresses of all the other clients we want to include
in the same emulated LAN.

A second architectural possibility to solve the
system scalability problem with the number of con-
nections would be a bus structure. This can be
viewed as an improvement of the peer-to-peer ap-
proach. In the bus architecture approach, the pro-
grams would be joined forming a line. Hence, in
this one-dimensional structure, clients would prop-
agate messages in order they reach their final des-
tination.

The bus architecture, as we can see, reduces the
number of opened connections because each SER-
VAL program only has to be linked with two more
users and the configuration complexity is lower
than the peer-to-peer. However, it still has two im-
portant drawbacks: the connection among private
IP clients, which is not possible, and how a client
can belong to several VLANs. Another problem
is the different latency of the messages depending
on the position of the clients involved in the com-
munication. Therefore, the bus architecture is not
suitable to fulfill our requirements either.

After having discarded the previous system ar-
chitectures, we came to the conclusion that the one
we were looking for, more adapted to the project
needs, was the client/server model.

In the client /server model the entities taking part
are the following ones:

Server The server will be a program running as a
daemon in an Internet accessible host. This
program, the SERVAL server, will listen for
connections coming from the users of the sys-
tem. Its function is similar to the function a
hardware switch has in a LAN. It will be able
to group users in different independent sets
and will be the mediator among the clients.

When a user wants to send a message to an-
other client, he has to send it first to the server
and, then, the server forwards it to its final des-
tination. The fact that the server can group
users in sets can be compared to the VLANs
existing in some hardware switches.

Client The clients in this architecture will be the
users who want to connect to our system.
They will have to install in their computers
the client program to access the virtual switch
and through it, the rest of clients.

The user Operating System, accessing the
SERVAL client, will be able to see the other
clients in his groups as if they were in the same
Local Area Network.

With the client/server model, the drawbacks and
limitations existing for a P2P or bus architecture
are overcome. In order to communicate the client
and the server, operations and messages similar to
the ones used in the link layer protocols were de-
fined.

The messages interchanged between the client
and the server are shown in Figure 1. The client
can connect and disconnect to the server, ask for
the list of available VLANs, and join or leave one
of them. Other messages allow the client to send a
message to a given VLAN (and therefore to all the
users connected to it).

Other important messages are the
address0fClientRequest and its answer from
the server side: the address0fClientResponse.
They were created to emulate the ARP Ethernet
link layer protocol and are used when at network
level a client wants to talk to another.

At network level clients communicate with each
other knowing their network level address. For
instance, if we are using TCP/IP knowing their
IP. However, at link level it is not enough with
the IP address to contact with the destination
but it is necessary to know the link layer ad-
dress of the next hop towards the destination
as well. Therefore, in SERVAL we use the two
former messages, addresss0fClientRequest and
address0fClientResponse, to find out the SER-
VAL link layer address of a client knowing its net-
work address.

Finally, the global architecture chosen has to be
both fault tolerant and scalable. By fault tolerance

we mean the system should be resistant to a partial
system crash, being able to overcome the situation
and continue the normal operation. By scalability
we mean that if the system requirements grow, and
the number of clients connected is higher than the
initially expected, new resources can still be added
to the server in order to increase its performance

and fulfil the new requirements.
i ; ; : Client Server
With this goals in mind, we have extended the ———
client/server model to be a distributed system. So,
in the final architecture, instead of having only a)
node of the SERVAL program running in a host, @~ [~ ~-= ET"fcflgn'}_eTe:t}
we have several nodes which collaborate with each {connectionRespons—e}- __:j
other: they will detect a node failure and restart Emmmmmmmm T
it if possible, the clients of a crashed node will be
moved to another node of the cluster, and so on. ~ F==o_ £ anaarhemest)
{vlanListRespanse}_ - : .
. - T
5 Implementation of the sys- [~ S —
tem using Erlang Gotnankesponse). ~)
As explained in the previous section, we have to e = =
build three software artefacts: 0 k-=ao_ {.se_ndfeisig(f?u_es:} -1
{sendMessageResponse} ..
o SERVAL server. It is the program which plays | _ __ __ac==="="
the role of a hardware switch in a real VLAN <€
environment. It has to be run in an IP accessi- | . _ _ _ {_Cl_ie_“tf"“a""eq”es"}
ble from all clients. Its function is to manage @~ | =~ T T T ===+ >
all the operations related to both the VLANs D E:ljeftin‘ffpfsfﬂﬂsi}— -
and client management. For instance, it ac-
cepts input connections from clients, creates @ = ==~ gqf'fs,s_uicli?tfeq"e“}
VLANSs, routes messages among clients etc. {addrassufcuenti!e-gpange
o SERVAL client. It is the software which clients = .
- {connectionCloseRequest}
must use to access the server. It has two parts: [T = =-ma 0 T =)
{connectionCloseResponse} |
— User land adapter It is the program which o v e S
receives Ethernet frames from the virtual
Ethernet driver and maps them to mes-

sages of the communications protocol.
Next, these messages are sent to server. Figure 1: Messages interchanged between client

It has also an interface to receive requests and server

directly from user. For example, requests
to join VLANSs, to abandon them etc.

— Virtual Ethernet driver. It is an Ethernet
driver which implements a virtual net-
work card. It controls the communica-
tions with the Ethernet Operating System
kernel API and the user land adapter.

-
“| usertand adapter |——

File sharing

Application Level application s;',‘:’::
User Space
r
Kernel Space
A4 Y ¥
Transpor Protocol
Transpor Protocol Transpor Protacol
Transport Level P [} Py
A L A
] resineuesseisinsestnerersesessasashiarfasesy ; ------------
Natwork Protocol Netwaork Protocol Natwark Protocel
Network Level {IP) (IP) (P}
4 A
N 4 v
Ethemnat- Link
E"'!::;;; Link Layer Ethemet- Link
Layer
Link Level l I l T T ¢
Real athernet
Virtua) Ethemet \‘Mg:r . Real ethernet
driver < driger
-+

N Z

Physlcal Level

Figure 2: Relation between the client and Ethernet driver

A diagram which summarizes the relation be-
tween the client agent developed and the virtual
Ethernet driver is shown in Figure 2. It shows how
an end user application running in a computer con-
nected to a server would use the client and the com-
munication protocol stack. The messages sent by
the application level program are encapsulated into
a transport level protocol. Then, the transport pro-
tocol is encapsulated into a network level one. Af-
ter this, the network level datagrams are converted
into Ethernet frames which, next, are sent through
the virtual Ethernet interface. This virtual interface
delivers the frames to the user land adapter which,
finally, maps them to the protocol messages used
to communicate witch the server. They are encap-
sulated through the protocol stack again and are
sent by a real network interface.

The reverse path is followed by the messages de-
livered to the user agent by the real network in-
terface after the demultiplexing which happens on
ascending the communication protocol stack.

In the rest of this section, we detail the Erlang
implementation of both the server and the client
agent.

5.1 Server implementation in Erlang

The process structure of the multinode switch can
be observed in Figure 3. They are represented the
process classes and the relations existing among
them. The relations we emphasize are two:

e Creation link relation. A process class A has
a creation link relation with a process class B
when processes of class A create processes of
class B. This relation type is shown by the con-
tinuous lines.

e State link relation. A process class A has a
state link relation with a process of class B
when in the state of processes of class A is
stored the process identifier or the registered
name of processes of class B. This relation type
is represented as dotted lines.

The task each process class carries out is ex-
plained to understand the Erlang implementation
of the virtual VLAN switch accurately.

serval_app This process class is an Erlang ap-
plication behavior. It has been created to
start/stop the server.

- dou

serval_sup This process
supervisor behavior. It supervises the
serval_server_logger, serval_tcp_port_manager
and serval_udp_port_manager process classes.

class is an Erlang

serval server_logger It is an Erlang generic
server behavior. It has the mission of logging
all the information sent by the other processes
existing in a node.

serval_tcp_port_manager This one is another
generic server. It listens on a TCP port wait-
ing for incoming connections. Every time it
receives a connection request it spawns a new
process called serval connection_manager.

serval_ udp_port_manager It is also imple-
mented as a generic server and its function
is to listen on an UDP port waiting for
incoming messages. When it receives the
first message coming from a source socket
(source IP, source port) spawns another

process, serval_connection_manager, for
that connection.
serval_connection_manager It is a super-

visor and is entrusted with the task of
coordinating and supervising the ser-
val_connection_communications_tcp, ser-
val_connection_communications_udp and

serval_connection_operation process classes.

serval_connection_operation It is a generic
server. This process carries out the operations
associated with the messages sent by the client.

serval_connection_communications_udp
This process class does the sending of
messages from the virtual switch to the
SERVAL user agents. The messages which
arrive from the clients to the server are
received in UDP communications by the
serval_udp_port_manager.

serval_connection_communication_tep This
process class does both the receiving of the
messages which arrive to the server from
clients and the delivery of the messages sent
by the virtual switch to the user agents.

____j'(_________ ~

Utar
3 i1
| aerval ssrver gl
A L

1.1
1.1 | serval sup e
| 2ervelsup |

1]

| serval server loghes I

b

l serval connectlan communicatians udp]

servel databass manager

Mnesla system

Figure 3: Tink process class diagram

5.2 Client implementation

Regarding the user agent implemented in Erlang,
the process diagram of the design can be observed
in the Figure 4.

The process classes which take part in the user
agent are:

serval_test_client_gui This process control the
interface which is used to make requests to the
server and to send and receive messages from
VLANs.

It is the process which talks to the graphics
system and receives all the events from it when
users click in the interface widgets.

serval_test_client Processes of this process are
created by the serval test_client.gui when the
user requests a connection with the server.

It is the process entrusted with the task of
sending messages to the SERVAL server and
receiving from the Internet all the information
sent to the client.

serval_test client_gul
11‘# 0.1

User

SRR

serval_test _client

Figure 4: SERVAL user agent link process class di-
agram

5.3 Storing VLANs information in
Mnesia

In Section 4, it was stated that the project goal was
to build a scalable, concurrent and fault tolerant
system.

To achieve this target, we decided to make our
virtual switch a multiple node software. We mean
that in our architecture we have several instances
of the SERVAL application which can attend client
requests. Therefore, clients can connect to any of
the nodes of the server, and independently of the
node they access they see each other and the same
Virtual Local Area Networks. In other words, this
means that a client connected to a node A has to be
able to send a message to another client connected
to a node B if both belong to the same VLAN.

In this multinode architecture, then, it is neces-
sary to have communication among nodes to share
VLANs information. We decided to use Mnesia, a
distributed database management system included
in Erlang/OTP. With this distributed database we
can access information of the existing VLANs and
clients connected to each of them from any of the
nodes of the system.

The use of Mnesia has big advantages for this
project. Thanks to its distribution capabilities,
synchronization among nodes is done automatically
by this DBMS and it is transparent to SERVAL. In
this way, as we rely on Mnesia, synchronization of
the virtual switch nodes is done without overload-
ing the code with synchronization tasks. This idea.
is represented in Figure 5, which shows the situa-
tion in which there are three nodes running belong-
ing to the SERVAL cluster. It can be observed how
each of the nodes has a local copy of the distributed
Mnesia tables and how the communication among

Figure 5: SERVAL server cluster with 3 nodes

nodes is done using the database.

5.4 ASN1 Erlang compiler for com-
munication protocol implemen-
tation

We decided to use the Abstract System Notation
One - ASN1 for the definition, transmission and
encapsulation of our internal, client/server, com-
munications protocol.

ASN1 is formal language for abstract description
of the messages interchanged in communications
protocols, with independence of the programming
language chosen and the data memory representa-
tion. ASNL1 is a standard since 1984 and, conse-
quently, its codification framework is mature and
it has been used successfully in a lot of different
scenarios.

In the project we have used the Erlang ASN1 com-
piler. This compiler in very useful because it gen-
erates coding and decoding functions which can be
directly used by Erlang programs.

5.5 Process collaboration scenarios

In this section we describe several collaboration sce-
narios with the aim to understand more accurately
how the SERVAL system works.

5.5.1 SERVAL server starting

When the SERVAL server is started, it is launched
a process of class servalapp. Next, the ser-
val_app spawns three more process of class ser-
val_server_logger, serval_tcp_port_manager and ser-
val_udp_port_manager respectively.

Our SERVAL server has support to maintain
communications with the clients using as trans-
port protocol TCP or UDP. This is the rea-
son why, when the SERVAL server is launched,
the processes serval tcp_port_manager and ser-
val_udp_port_manager are created. The first listens
for input connections in a TCP port and the second
listens for packets in an UDP port.

5.5.2 SERVAL client connection request to
SERVAL server

We are going to explain what happens when a client
requests a TCP connection with the SERVAL server.

First an open_port TCP message is re-
ceived by the process serval tcp_port_manager.

Second, this process creates a process ser-
val_connection_manager and, then, this last
one spawns two more processes, a ser-
val_connection_communications_tcp and a ser-

val_connection_operation.

With these three processes we have the structure
to manage all the operations related to the client
has requested the connection.

5.5.3 Message interchange between pro-
cesses belonging to the same VLAN

When a client A wants to send a message to an-
other B, first, A has to find out B client identifier
knowing its network level address. In order to get
B client identifier, it sends the SERVAL server a
adress0fClientRequest.

All clients in the same VLANs that A, receive
this addressOfClientRequest. The one whose
network level address matches the one included in
the message, that’s to say B, sends back to A an
address0fClientResponse with its client identi-
fier.

Next, A sends the SERVAL server a
sendMessageRequest with the data and the
B client identifier as destination address. The
SERVAL server checks that B is in the same VLANs
and, if this condition is true, delivers B the mes-
sage. After this, sends A a sendMessageResponse.

We can observe all this behaviour in the figure 6.

10

Chemty for vim: vanl Sy thet
1 | T
S PRy i ==t i ‘I
. | | |
i ity | | et s
4 ot narems; |
= =g R=—0
- (—" Py
| T e _J
-t |
|
e [
ot Cormecsad s W AdenEMT Y -
e L
FToap buw ot ey v | T e v e " [-
Vit Bt rarnge | Fervedibsnsag 2w L e e ot e e i T
R g (v T (S A = [t)
i b 1t L [Do tlaags tm Prea Lt Ll

Fritig S vl (o | Dervalaniings w e

Figure 7: Client screenshot

6 Current status of the re-
search

6.1 The prototype GUI

In Figure 7, the graphical user interface developed
for the prototype user agent can be seen.

In the GUI window of the example, the client
is connected to a SERVAL server which is listen-
ing for input connections in port 4567. The user
is connected to the virtual switch through a client
with address clientl. We can see that there are two
VLANs created, vlanl and vlan2, and that Clientl
joined both. Finally, we can observe that vlanl
contains two clients with the address clientl and
client2.

6.2 Testing the system

Two key features of the system, as already ex-
plained, are performance and fault tolerance. Ev-
ery design and new characteristic we add to the
system is developed thinking of what impact it will
have over these two variables. But we are not only
think in the impact of the modifications but try-
ing to measure and to check the system with the
new additions. In this subsection, some perfor-
mance measurements and fault tolerance tests that
we have carried out are described.

10

il

®ie "B @
H
H
{tcp,Socket, Bin)(O—1 (aparatisn_mansgesent Bin} >
o (oparation_manspenent, b 3 _ _ {oparation,aauesd]
{oparation, Request) |
asnrtl:decode(}
opprationiSendMessspeflequest) OriginClisntin don_ClientId)
o- ac Elh_p {sendMassage}
e {
{ oot ke Ity :
[o -0
{SendMessageResponse}
PO TN (R v gty [S
.string, [Frod
gen_tcpisend() (sendHeasage, string Lajy sﬁr {send_meizagae.Froa)
0.—
f
e e e gLy oL | -
O O
—o (vend_mezznge, from, 1o,
gan_tcp:send()

Figure 6: Message interchange between processes belonging to the same VLANs

6.2.1 Performance tests

Due to the real time nature of the system, and the
amount of concurrent users that should potentially
be able to handle, a good performance is an essen-
tial requirement for the system.

We have concluded that the performance in SER-
VAL can be measured by the two following vari-
ables:

e Operation latency. The operation latency is
the time it takes an operation to be completed,
since it is ordered until it is finished. The lower
the operation latency, the higher the system
performance. As final goal, we are specially
interested in reducing the message latency of a
message sent from a client to another through
the server.

Throughput. The throughput of a system is
the number of operation requests it can han-
dle in a period of time. A higher through-
put means that the system is able to carry out
a lot of operations concurrently. We should
also consider the bandwidth reduction caused

11

by use of our internal protocol. We increase
the size of the packages internally, because
we need to store some extra information, we
should keep them small to enhance the use of
the medium. Currently we do not consider this
increment of the size of the packages a prob-
lem.

In order to make these measurements we have de-
veloped a special module for creating performance
graphics. It is call serval_gnuplot and uses the GPL
application gnuplot.

With this module carried out performance tests
in both the client and server side. We will describe
two examples in which we have obtained perfor-
mance improvements after analyzing the operation
latency and the system throughput.

The get_vlans message This protocol message
has a latency which grows with the number of
VLANs. So, the high latency of this message blocks
another messages in the server queue, which cannot
be delivered by the server quickly.

After some performance tests, the Mnesia query

for getting all the VLANs created in the server,
was pointed out as the system bottleneck for this
operation.

In figure 8 we can see the time process the
get_vlans with different number of VLANs created
in the server.

We have represented also the VLANs number
against the get_vlans latency. The graphichs ob-
tained can be seen in figure 9.

The impact in the latency of the messages that
the number of VLANs created in the system has,
can be easily observed.

The solution we chose to solve this problem was
the use of a memory cache to speed up the request
operation. So that, with this cache we were able to
rise up the throughput of the virtual switch and,
besides, we could drop the latency of the get_vlans
message.

The adressOfClientRequest message After
analyzing the system operations performed during
the message interchange between (he clients of the
system, we detected that the number of addres-
sOfClientRequest sent by the client agents was too
high.

Many of these addressOfClientsRequests mes-
sages, however, were asking for the address of the
same client. Hence we implemented a cache in
client side to store the mapping between network
addresses and the SERVAL identifiers.

Doing this we got a double improvement. First,
we reduced the number of addressOfClientsRe-
quests messages sent to the SERVAL switch drop-
ping its average load; and second, we decreased the
latency of this message. In Figure 10, we can ob-
serve how with the client address cache the number
of get_addr messages received in the server is less
than the number of the other message types.

6.2.2 Fault tolerance

To have fault tolerance features was already stated
in Section 3 as an essential goal for the project.

There are different strategies which can be fol-
lowed to create a fault tolerant system. In our case,
the concurrency and distribution properties of Er-
lang have allowed us to build a robust recovery sys-
tem based on the multiple node server described in
Section 4.

12

12,

The idea is that if a node crashes the system has
mechanisms for letting the rest of nodes continue
the work that was being carried out by the crashing
one. This can be easily explained introducing some
situations and how they are overcome:

One node crash If a node crashes, the recov-
ery mechanism consists mainly in the reconnection
engine implemented in the clients.

The description of this engine is as follows: each
client receives from the server an address and port
list with all the nodes belonging to the cluster as
answer to the connection message. Therefore, when
a client detects the node is connected to is unreach-
able, then it requests the connection with another
of the nodes. This second node is obtained from
the node list that, as mentioned, is stored in the
client state.

When the server receives a connection request,
it uses Mnesia to check if the client was connected
through another node before. We consult Mnesia
because we use a distributed table which registers
each client connected to SERVAL. The information
we record for each client is:

e The link layer SERVAL address.
client identifier as well.

We call it

e The process identifier of the SERVAL process
we use to manage the client.

Taking this into account, we query the former
Mnesia table to find out if there is a row with the
same link layer address that the one of client is
requesting the connection:

o If we get zero rows this means that the client
is not doing a reconnection because the node
it was acceding has crashed. We record the
information for the the new client in a new
row.

e If we get one row this fact means that the client
is doing a reconnection. Hence, we have to up-
date the row obtained with the new process
identifier of the process created in the new ac-
cess node to manage the connection.

Client crash This scenario describes which re-
covery actions are performed when a unsuitable
client disconnection takes place, and the message

14000

12000

13

————

Figure 8: Time to process the get_vlan message depending on the VLANs existing in the server

90000
l I I ' ' dnln_ﬂmlga'[__m‘nﬂ; JElveied
.
/
/
70000 1Y
Yo il
,‘r 1 ;\f
[y
60000 O L I
I\
I}.’ W
50000 o]
.
[
40000 /
- -
P4
CS /
N N
30000 / ----- \/ |
20000 ;'{ y
|
10000 f .
.,,,——-”/'"'
ol X L L . N N X .
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 9: VLANs number against get_vlans latency

13

1%

addr Number ———
n_vian Number --- -
loave_vian Numl
pol_cllonts Number -

/\ A gﬂﬁ"n‘:gNumber
A/ T

N]

=
T

RS-

Q
.
o
BF

Figure 10: Number of each message type received in the server

connectionCloseRequest is not sent by the client
to the server.

The client crash can be caused by a software fail-
ure, but the message could be also lost due to some
network problem. When this happens, the pro-
cesses responsible for the client management are
kept alive in the node the client was connected to.
Therefore, in this situation, if another client sends
a message to this crashed one, in the switch cluster
the client is detected as connected. Because of this,
the switch sends the message, though it will never
arrive to its final destination, because it is down
(we will explain why we do not matter this lost of
messages).

Next, we are going to describe the strategy we de-
cided to implement when the former situation hap-
pens. Each client incorporates a keep alive mech-
anism which sends the server a message at regular
periods of time. Each server node has a process
which monitors the receiving of the keep alive mes-
sages coming from clients. If this monitoring pro-
cess detects that a client is not sending the keep
alive messages and it has not requested the con-
nection close, then it kills the management pro-
cesses for this client. Besides, the monitoring pro-
cess deletes from Mnesia the information related to
the VLANs the crashed client was connected to.

As we can observe, there is a period of time be-
tween a client crashes until this fact is detected
in the server. If a message is sent to the crashed
client during this period of time, the messages do
not reach the destination. We could implement ac-
knowledgement messages to guarantee they always
arrive to its final destination. However, we do not
wish a too heavy protocol because we are emulat-
ing a link layer scenario. Therefore, these failures
rarely happen and will be detected by upper layers
in the communication protocol suite used.

6.2.3 Future work

Nowadays, we have in mind to work on several
things, some of which are:

Congestion control protocol We want the vir-
tual server switch nodes to monitor its internal
work load. So, to succeed in this task we are
implementing the processes necessary to mea-
sure this magnitude. Besides, it is necessary
to extend the link layer protocol in order it in-
corporates the messages needed for congestion
control.

SERVAL clients are being also improved with
the ability to process the congestion control

14

information sent by the server. So, if they de-
tect that the work load of the node they are
accessing to is too high, they can decide to ask
another node with lower load lodge them.

Access Control List For many real environ-
ments it is very important to be able to give
and revoke permissions to clients to do certain
operations or to access certain resources in the
virtual switch.

For instance, we can wish to let users with a
certain profile create VLANs in our server and
forbid this operation to other users groups.
Another example, is the possibility to join a
VLAN. A server administrator may wish to
have a predefined set of VLANs created in the
virtual switch. He may wish to have the con-
trol to authorize or deny the access to each
VLAN following a per user or per group pol-
icy. All this can be done implementing the
ACL engine and we are hands on.

Ethernet driver In the section (4) we saw that one
the components of the architecture is the inter-
face with the link layer of the communication
protocol kernel stack.

We are working in the strategy to implement
this virtual Ethernet driver. He are also as-
sessing the possibility to use the TAP device
driver. The TAP is a Virtual Ethernet net-
work device. It was designed as low level ker-
nel support for Ethernet tunnelling. It provides
to user-land application two interfaces:

e /dev/tapX character device
e tapX virtual Ethernet interface.

The user-land SERVAL Erlang client could use
this device /dev/tapX to write Ethernet frames
which will be received by the kernel. On the
other hand, each Ethernet frame wrote by the
kernel to the tapX interface will be received by
the SERVAL client by reading the /dev/tapX
device file.

Secure communications We are emulating a
virtual switch, so our virtual operation envi-
ronment is a VLAN. In a LAN the Ethernet
frames don’t leave the network limits so the
security policy can be relaxed if we rely on our
VLAN users.

15

15

However, although the SERVAL server virtual
environment is a VLAN, the real environment
is a WAN. As a consequence, all our link layer
traffic is going to cross through the Internet
and will be exposed to be sniffed by everybody.
So we are implementing SSL support in client
and server side to cipher communications.

7 Conclusions and future

work

In this paper we have explained the main moti-
vations and goals of the SERVAL project, the de-
signed solution proposed to achieve them and the
current results and work that we are developing.
Through the paper we have established that Erlang
is a suitable technology for this project, where net-
work communications, performance and fault tol-
erance are the main requirements.

We think that our project can be interesting and
applicable in a lot of real and diverse scenarios -
pointed out in the paper - in which emulating Vir-
tual Local Area Networks over Internet is a good so-
lution. SERVAL Virtual Local Area Networks man-
agement will allow a more flexible way of designing
network topologies.

We can transmit that nowadays we are satisfied
with the results we are obtaining and with the fu-
ture of the project. In fact, we are encouraged with
having a real and almost complete SERVAL proto-
type in the near future that will be the first step to
build an actual system.

8 Acknowledgements

The authors want to thank Alberto Garcia
Gonzélez, José Judn Gonzdlez Alonso, Iago Toral
Quiroga, Adrian Otero Vila and Angel Vidal, and
in general the whole Igalia company, for their
collaboration in the development of the SERVAL

project.

References

(1] J.L. Armstrong, S.R. Virding, M.C. Williams,
and C. Wikstrom. Concurrent Programming

[2]

(3]

(5]

[7]

(8]

(9]

in Erlang, 2nd edition. Prentice Hall Interna-
tional, 1996.

The FreeS/WAN Project. Ipsec gnu/linux im-
plementation, 2004. http://www.freeswan.org/.

The Internet Engineering Task Force
(IETF). Ip security protocol (ipsec), 2004.
http://www.ietf.org/html.charters/ipsec-
charter.html.

IEEE Project 802.2 Working Group. IEEE stan-
dard for local and metropolitan area networks:
Virtual bridged local area networks. Techni-
cal report, Institute of Electrical and Electron-
ics Engineers, 3 Park Avenue, New York, NY
10016-5997, 1998.

IEEE Project 802.2 Working Group. IEEE
standard for information technology-
telecommunications and information exchange
between systems—ieee standard for local
and metropolitan ares networks—common
specifications-media access control (mac)
bridges. Technical Report ISO/IEC 15802-
3:1998, Institute of Electrical and Electronics
Engineers, 3 Park Avenue, New York, NY
10016-5997, 1998.

T. Dierks and C. Allen. The tls protocol version
1.0. RFC 2246, IETF - (Internet Engineering
Task Force), January 1999.

W. Stallings. Local Networks. Macmillan Pub-
lishing Company, New York, 3d edition, 1990.

IEEE Project 802.2 Working Group. IEEE stan-
dard for local and metropolitan area networks:
Overview and architecture. Technical Report
IEEE 802-2001, Institute of Electrical and Elec-
tronics Engineers, 3 Park Avenue, New York,
NY 10016-5997, 2001.

K. Pitt, D.; Sy. Address-based and non-address-
based routing schemes for interconnected local
area networks. Computer Science Press, 1986.

16

1¢(1¢)

1(8)

NMobile A,ﬁmtg

An Erlang WTLS Implementation

Erlang User Conference 2004

Introduction

» Master thesis

+ BExtending the SoWap WAP gateway to support Wireless
Transport Layer Security

» Implementing WTLS

P Extending Erlang cypto library support

EEEE
fNMobile Arts

Background

» History

o Future

» WAP - Wireless Application Protocol

» SoWap — Erlang Open Source WAP Gateway

WAP Gateway

WP LR

cwns | | whs | oss ssL

- wop WoR i TP TeP
5 Bearerw—m Beam‘ P P

Wireless Transport Layer Security

P Security goals
v Privacy
v Integrity
v Authentication

> WTLS vs TLS
v Processor speed
v Bandwidth

Wireless Transport Layer Security

> Cryptographic standards
v' Symmetric ciphers
* DES, 3DES, RC5, IDEA

v Asymmetric key exchange algorithms
* RSA, Diffie-Hellman, ECDH

v Keyed hash algorithms (MAC)
= MD5, SHA

v Certificates
* X.509, X9.68, WTLS Certificate

NMohiie rEs

WTLS Handshake

P Negotiate security algorithms
P Exchange random values and settings
» Exchange certificates

P Calculate secret

I T
NMotiie Arce

WTLS Handshake

CHlent Sexver

| ClintHello —

Serer Hello

S ervax Cantificata™
- Savar Koy Exchanga™ 4 i
Certificate Raquast®
Server Hallo Done

Cliart Certificate
Cliaxt Koy Exchange™
P Cextificate Vexifiph
EChangs Cipher Spec]
Finished

k4

hage CiplarSpec] |
Firis hed r

™ ApplicationDaa [@

IR
Mobite Arts

WTLS in Erlang

» Advantages
v Concurrency - many connections running
v WTLS engine is a state machine - gen_fsm

P Disadvantages
v Not enough crypto support

.)
=

Erlang Crypto Library

P Supports
v DES, 3DES
v SHA, MD5

» WTLS also specifies
v RC5, IDEA
v RSA, Diffe-Hellman, ECDH

R,
Nabzite Arts

Erlang Crypto Library

P Extensions needed
v RCH
v RSA
v Diffie-Hellman

» Overlooked algorithms
v IDEA
v ECDH

Erlang Crypto Library

Erlang Erlang/OTP c

@w

_ EeRoUs

OpenSSL

» Open Source Toolkit for SSL/TLS
v Command line tool
v SSL/TLS API
v Crypto library

» Crypto Library
v Blowfish, DES, IDEA, CAST, RC2, RC4, RC5
v DSA. RSA, DH
v MD2, MD4, MD5, MDC-2, RIPE-MD, SHA

s

Future

» To do:
« Certificate support
+ Other features
« Extensive testing with mobile devices
o Installation at TS Lab

p Further academic lab use?

Conclusion

» SoWap now supports WTLS

P Erlang crypto library extended

L RO
Mabile Arts

Learning Erlang and developing a SIP
server/stack with 30k potential users

Fredrik Thulin <sip:ft@it.su.se>
Enheten for I'T och media
Stockholms universitet

EUC2004

DRAFT

(1)7

Stockholm university telephony in
1997 :

e Ericsson MD110
e 5000 subscribers

2000 :
e Ericsson MD110 - 4200 subscribers
* Cisco CallManager — 800 subscribers

e Early VoIP adopters, but still no open standard
DRAFT

SIP

e Session Initiation Protocol
* IETF proposed standard (RFC3261, 2, 3, 4 and 5)

* Does not care about audio/video/whatever

* Instant messaging and presence
* Parsing 1s hard, even though (?) it's plain text
* Transactions are complex

* Few open source implementations as to date

DRAFT

Implementation

* Magnus Ahltorp, KTH made a couple of
implementations in Perl, Python, C, ...

* Erlang implementation was the most viable one

* First Yxa snapshot released 2003-10-07

DRAFT

Personal Erlang eXperience

* No prior knowledge about functional
programming

* Hard time understandin

g some syntax (strings are
lists, [H | T] = “string”)

* Assign once

DRAFT

Plans

e Build distributed SIP servers

— for routing
— for students (free VoIP/SIP-service)

- for basic call service? evaluating.

e Distributed policy control (rate limiting etc.)

* Pluggable authentication modules

e External event logging with call context

DRAET

Project

* http://www.stacken.kth.se/projekt/yxa/

DRAFT

(%)%

Messaging with Erlang and Jabber

Erlang User Conference '04

21st. October 2004

Mickaél Rémond <mickael.remond@erlang-fr.org>

(1) 7

What are XMPP and Jabber ?

XMPP stands for eXtensible Messaging & Presence Protocol

XMPP is a generic and extensible messaging protocol based on
XML. It is now an IETF standard

Jabber is an Instant Messaging protocol that rely on XMPP

Very active community:

- Several server implementations of XMPP and Jabber
- Several client software and library

o

2 ERLANG

Fun things to do with XMPP and
Erlang

XMPP and Jabber servers are massively concurrent: a Jabber server must handle huge
community of users.

- A Jabber server in Erlang makes sense to handle massive concurrency (plus it's fun
and challenging).

- It can prove the reliability and ability of Erlang to handle concurrency

XMPP server protocol is build around a complete XML API for client to server and server
to server communications:

- Developping Erlang software agent that plug on the bus is easy: Erlang
expressiveness.

- It allows to use the bus as a mediation layer between Erlang and non-Erlang
software (Kind of web service but more simple and powerful)

- Several levels of interaction for Erlang extension: Plug-in in the XMPP bus with a
service protocol or XMPP client connected to the bus (client protocol)

, v

3 ERLANG

XMPP bus design

* XMPP rely on a naturally distributed architecture

- Includes server to server communication

- Includes gateways to various other protocols

i---= XMPP 8erver - -- -, XMPP Client
v

|
k 4

'Y
i

XMPP Client

(wd =~

4 ERLANG

ejabberd

* ejabberd is an Erlang-based XMPP server implementation.
e |t hés been designed to support clustering, fault-tolerance and high-availability.
* It supports many features and extensions of the Jabber protocol:

- Built-in Multi-User Chat service

- Distributed database (Mnesia)

- Built-in IRC transport

- Built-in Publish-Subscribe service

~- Support for LDAP authentification

- Service discovery

* ltis more scalable than the most used open source implementation (Jabberd1.4 and

Jabber2).
|

5 ERLANG

Benchmarks: how does ejabberd

perform ?

* Jabber benchmarks realized with the Tsunami benchmarking tool.

* Comparison between ejabberd and classical Jabber implementation.

connected users

500

450

400

350

300

250

200

150

100

50 =

:almultanecus

-{- L

. - :
1 =t
e
s
1

0 500 1000 1500 2000 2500 3000
unit =aec

3500

. wd

ERLANG

Fun evolutions and Ideas

* SIP/ XMPP gateway: Running together ejabberd and yxa to share

user base and presence infor

mation.

What does the XMPP protocol
looks like ?

Client Server
* Interileaved XML streams: | Open TCPswcket ,
Client and serverstreams form o
< 2%l vamsion="1.0?s
an XML document. <srensteantossvencont
xmins:sirsam=hilpisthenciabber.onystreams
] varsior="1 0
* First level tag: <stream> "
e i
* Three types of second levels Hosomand oo
xmitsisirgam="hiip:fethem jabbarogStreams’
tag S w;m%un=’1 o>
- message: asynchronous prom SRR
communications hodepgot
<Imgssagas
- iq: Synchronous o
communications from=B@sanercom
to="Agchiant. com’ amiiang=pn™>
. <body>Pong<body>
- presence: presence and » <inmessage>
status data sfelream:sront)
<ftrpamistraam>
8 Close TCP zocket
e e e e e e e —

J-EAIl: an XMPP based integration
tool

* J-EAl is an Enterprise Application
integration tool.

* It is intended to control and organize data
streams in a given information system.

* It allow transformation, routing, queueing
of all the data exchanges between
application in a company.

[w]

9 ERLANG

Jabberlang: Helper library to write
XMPP client in Erlang

e Jabberlang is a client library to write XMPP client in Erlang.
* Itis implemented as an Erlang behaviour.
* [t allow to write XMPP services in Erlang.

e Can be used for inter Erlang programs communication (term to
binary <-> binary_to_term)

Examples:

C RS

10 ERLANG

Using XMPP for Erlang distribution
?
* Using XMPP for Erlang distribution could allow to develop

distributed applications running through the Internet.

* This approach can solve some security aspects: Rosters
configuration can decide if two process are allowed to exchanged
messages.

e SSL is supported.

* Performance penalty: only relevant for non heavy-loaded critical
message passing applications.

* Application design in such a way could switch to Erlang standard
distribution to get more performance.

11 ERLANG

124

References

e http://www.jabber.org

e http://www.jabber.org/press/2004-10-04.php
* http://ejabberd.jabberstudio.org/

e http://www.erlang-projects.org/

RS

12 ERLANG

Messaging with Erlang and Jabber

13 ERLANG

(e7)87

SYyNAapse mobile networks

Liberating the mobile
internet!

Presentation at EUC
October 21st, 2004

©2004. Synapse Mohile Netvorks SA. All Hghts
resesved

synapse rmcbiie nsiworks s.a.

Mobile Internet

m Promised for years

m Now targeting non-technical
consumers

m Handset features increasing rapidly
m Strong end user interest
m Still very low usage !!!

® 2004. Synapse Mobile Networis S.A. All rights reserved 2

1(13)

synapse maobile nefworks s.q.
Why ?

» Technical barriers

OTerminal service configuration data not in
control of operator !

OMay require subscriber to request
provisioning of services not being
understood

©2004. Synapse Moblle Networks S.A Al rights reserved 3

Synapse micbiie nehworks s.g.

Research on user behaviour shows:

Q Typically, when a user has failed (twice) to
Manually configure their mobile device, he or
she gives up and never tries again!

0 Demand for data services is instant. If they
cannot have the service now, they will not try
again later!

Q The user expects network configurations to be
solved from their mobile device!

Source: Northstream

© 2004. Synapse Mobile Networis S.A Al rights reserved 4

synapse mocbiie nsiworks s.o.

MMS forecast for Western Europe

25p =STEDEYZ A4 ST =~
WP ===memmmmmm—mma oo -
'_5_ < 180 ——mmemmmmmmmee s e -
= S 100 ccmcmmmmmmee om o
L Pl e g L
1}
o [] < 0 (=] [n~g ™ [< (] © g
= (=1 [=] [—) (=] [~] Q [~ [~] L= S [~
Q Q Q Qo (=] Q =] Q (=] Q Q Q
™~ ™~ ™~ ™~ ™~ ™~ ™~ ™~ ™~ ™~ ~ ~
—=&—— N S-equipped handsets sold
m2G 256G : 36
—&— Total hand sts sold
Yearly sales of MMS phones. Total no. of MMS phones.
Source: Analysis Ressarch Ltd
© 2004, Synapse Mobile Networis S.A All rights reserved 5

synapse mcbile networks s.a.

Gap of un-configured devices

Sdittioa
(i
i CIATRIRY i FHe:
Rty SO .
oo ber ey i e bl | Trdsels
RE=i jm=lailed boisal
4,400
7200
£ Ackive mrrbicyRer users
el
oy
Al
it
¥ + r y
20m32 20003 204 2GS 2805 20T

rb e Sran el Lol S a s s e P ASTrSSEn SRR LA N G

w

synapse moiiie nafworks s.a.

Solution: Synapse DMC !

m Patented solution featuring:
0O Automatic service provisioning
0O Automatic Over-The-Air configuration
0O Enhanced customer care interface
0O Business Intelligence
m To deliver:
O Increased traffic
O End user satisfaction
0O Reduced operational costs for customer care

© 2004. Synapse Moblle Networks S.A. All rights reserved

synapse maobiie netwerks s.a.

Automatic process includes:

Automatic detection of new
subscriber/terminal combinations.

Automatic provisioning of
subscribers in MMS-C and other
nodes.

Automatic configuration of
network access settings for all
capable phones.

Real-time provisioning and
Device db queries via web GUI.

© 2004. Synapse Moblle Networks S.A. All rights resarved 8

synapse mcbiie networks s..

Device Detection

m Detect new combinations of subscriber
devices

m |dentify device capabilities

m Device database with
o> 6000 device models
0> 1300 MMS capable device models

m Device alias management

© 2004. Synapse Mobile Networis S.A. All rights reserved 9

synapse mabile neiworks 5.a.

Automatic detection options

o Vendor independent monitoring of network
traffic
a Intelligent monitoring probes (A & D interfaces)

0 Concentrated methods
a Monitoring of extended MSC - EIR (F interface)
a Integrated extended EIR (active)

0 Vendor specific MSC/HLR triggers (when
available)
0 Ericsson
0 Nokia

0 Via CDR file procegsigsssres o 10

Synapse mobile networks s.q.

Provisioning framework

Q Via Customer Administration System (CAS)
interface

2 Provision subscriber GPRS in HLR
a Provision subscriber in MMS-C

©2004. Synapse Moblle Netvorks S.A Ali rights reserved 1"

synapse mobile nolworks s.a.

Supported OTA protocols

O Ericsson/Nokia OTA settings
0 OMA - Client Provisioning Spec.

Q WAP Client Provisioning 1.0
a OpenWave Primary Provisioning —

0 OMA DM (SyncML DM) in roadmap

Q Virtually all OTA and GPRS capable
phones ‘are supported!

0 1300+ MMS capable phones are currently
supported

© 2004, Synapse Mobile Networks S.A. All rights reserved 12

synapse mebiie nehyois s.0.

Automatic MMS provisioning
example:
0 Detect MMS capable terminal devices

0 Check HLR subscriber status (Operator
barring and MSISDN, GPRS status)

o Check for pre-paid subscribers

a Check MMS user status

a Provision subscriber in MMS-C and HLR
0 Send out notification (if requested)

0 Send out device settings

0 Send out Welcome MMS message

® 2004. Synapse Moblle Networks S.A. Al rights reserved 13

synapse maobile neiwoiks s.a.

System overview - CYTA project

MAP_CHECK_IMBI_WITH_IMSI

Monitoring probe

SS7 stack

Device database

Application servers |

Customer Care System Manager Web Portal
© 2004. Synapse Moblle Networks S.A. All rights reserved 14

syndpse machiie neiworks s.q.

DMC 2.0 installation example

a Firewall

0 Ethernet switch

o SS7 stack

0 Corelatus GTH probe
0 2 x Sun Fire V240

© 2004. Synapse Mobile Networis S.A. Al rights reserved 15

SYNAPSe mobiic notworks s.c.

System environment

m OTP R9C-0 design base

m Unimind cluster

m Solaris 8 (and Linux)

m TietoEnator Portable SS7
m Synapse 3GPP/GSM MAP
m Rapid Installer

© 2004. Synapse Mobile Networis S.A. All rights reserved 16

synapse mcbiie neiworks s.a.

MAP

m Full support for MAP v1 - v8
m Automatic stub generation
m Source in CVS is ETSI .pdf files

© 2004. Synapse Mobile Networks S.A. All rights reserved 17

synapse mobile neiwerks s.a.

Event Queues

m Multiple producer/consumer queues
m Backed by persistent storage

= Transaction protected

m Used for all IPC

© 2004. Synapse Mobile Networis S.A. All rights reserved 18

Synapse mohiie neiworks s.a.

BETS

m Berkeley DB Erlang Term Store
m Mnesia binding
0> 20.000.000 records per table
0O~ 10.000 random lookups/sec
O~ 1500 inserts/sec
OApproximate lookup support

© 2004. Synapse Moblle Networks S.A. All rights reserved 19

synapse mobiie nohworks s.a.

Subscriber database

= Record update time stamps
m Local content tables
m Explicit synchronization

© 2004. Synapse Mobile Networks S.A. All rights reserved 20

10

synapse mobiie notworks s.o.

WebGUI

= Yaws

= Form management library

= Dynamic .gif

= Dynamic CSS

= Dynamic JS

m Yaws embedded applications

©2004. Synapse Mobile Networks S A, All rights reserved 21

SYNApse mebile networks s.c.

Rapid installer

= Bootable Solaris CD
= Preconfigured stage dumps

u Installs a system in < 20 minutes from
power on

©2004. Synapse Mobile Networis S.A. All rights reserved 2

14

synapse mohiie naiworks s.a.
System characteristics

m Cluster service fail-over time ~1 sec

= Support up to 20.000.000 subs on
entry level config

= ~450 end-to-end TPS on entry level
config (requirement 150)

© 2004. Synapse Mobile Networls S.A All rights reserved 2

synapse mcbile nelworks s.a.

System metrics

m 180k lines of Erlang code
m 22k lines of C code (linked in drivers)

© 2004. Synapse Moblie Networks S.A. All rights reserved 24

12

13(13)

synapse mobile neiworks s.a.

Does the system deliver ?

m Real life example:

01200% increase in MMS handset sales
over 9 months

084% of new MMS terminals become active
users

oOnly 129% of MMS subscribers call
customer care

oNon-OTA terminals loose market share

© 2004, Synapse Moblle Networks S.A. All rights reserved 25

synapse mabile networks s.a.

Thank You for Your attention!

See you at ErLounge tonight !

© 2004. Synapse Mobile Networks S.A. All rights reserved 26

Detecting Software Defects in Telecom Applications
Through Lightweight Static Analysis: A War Story

Tobias Lindahl and Konstantinos Sagonas

Computing Science, Dept. of Information Technology, Uppsala University, Sweden
{Tobias.Lindahl,Konstantinos.Sagonas}@it.uu.se

Abstract. In safety-critical and high-reliability systems, software development
and maintenance are costly endeavors. The cost can be reduced if software er-
Tors can be identified through automatic tools such as program analyzers and
compile-time software checkers. To this effect, this paper describes the architec-
ture and implementation of a software tool that uses lightweight static analysis to
detect discrepancies (i.e., software defects such as exception-raising code or hid-
den failures) in large commercial telecom applications written in Erlang. Our tool,
starting from virtual machine bytecode, discovers, tracks, and propagates type in-
formation which is often implicit in Erlang programs, and reports warnings when
a variety of type errors and other software discrepancies are identified. Since the
analysis currently starts from bytecode, it is completely antomatic and does not
rely on any user annotations. Moreover, it is effective in identifying software de-
fects even in cases where source code is not available, and more specifically in
legacy software which is often employed in high-reliability systems in operation,
such as telecom switches. We have applied our tool to a handful of real-world
applications, each consisting of several hundred thousand lines of code, and de-
scribe our experiences and the effectiveness of our techniques.

Keywords: Compile-time program checking, software development, software tools,
defect detection, software quality assurance.

1 Introduction

All is fair in love and war, even trying to add a static type system in a dynamically typed
programming language. Software development usually starts with love and passion for
the process and its cutcome, then passes through a long period of caring for (money
making) software applications by simply trying to maintain them, but in the end it often
becomes a war, the war against sofiware bugs, that brings sorrow and pain to devel-
opers. In this war, the sofiware defects will use all means available to them to remain
in their favorite program. Fortunately, their primary weapon is concealment, and once
identified, they are often relatively easy to kill.

In the context of statically typed programming languages, the type system aids the
developer in the war against software bugs by automatically identifying type errors at
compile time. Unfortunately, the price to pay for this victory is the compiler rejecting
all programs that cannot be proved type-correct by the currently employed type system.

1(16)

This starts another war, the war against the type system, which admittedly is a milder
one. The only way for programmers to fight back in this war is to rewrite their programs.
(Although occasionally the programming language developers help the programmers in
fighting this war by designing a bigger weapon, i.e., a more refined type system).

Dynamically typed programming languages avoid getting into this second war. In-
stead, they adopt a more or less “anything goes” attitude by accepting all programs, and
relying on type tests during runtime to prevent defects from fighting back in a fatal way.
Sometimes these languages employ a less effective weapon than a static type system,
namely a soft type system, which provides a limited form of type checking. To be ef-
fective, soft type systems often need guidance by manual annotations in the code. Soft
typing will not reject any program, but will instead just inform the user that the program
could not be proved type-correct. In the context of the dynamically typed programming
language ERLANG, attempts have been made to develop such soft type systems, but so
far none of them has gained much acceptance in the community. We believe the main
reasons for this is the developers’ reluctance to invest time (and money) in altering their
already existing code and their habits (or personal preferences). We remark that this is
not atypical: just think of other programming language communities like e.g., that of C.

Instead of devising a full-scale type checker that would need extensive code alter-
ations in the form of type annotations to be effective, we pragmatically try to adapt our
weapon's design to the programming style currently adhered to by ERLANG program-
mers. We have developed a lightweight type-based static analysis for finding discrep-
ancies (i.e., software defects such as exception-raising code, hidden failures, or redun-
dancies such as unreachable code) in programs without having to alter their source in
any way. The analysis does not even need access to the source, since its starting point is
virtual machine bytecode. However, the tool has been developed to be extensible in an
incremental way (i.e., with the ability to take source code into account and benefit from
various kinds of user annotations), once it has gained acceptance in its current form.

The actual tool, called DIALYZER,! allows its user to find discrepancies in ERLANG
applications, based on information both from single modules and from an application-
global level. It has so far been applied to programs consisting of several thousand lines
of code from real-world telecom applications, and has been surprisingly effective in
locating discrepancies in heavily used, well-tested code.

After briefly introducing the context of our work in the next section, the main part of
the paper consists of a section which explains the rationale and main methods employed
in the analysis (Sect. 3), followed by Sect. 4 which describes the architecture, effective-
ness, and current and future status of DIALYZER. Section 5 reviews related work and
finally this paper finishes in Sect. 6 with some concluding remarks.

2 The Context of our Work

The Erlang language and Erlang/OTP. ERLANG [1] is a strict, dynamically typed
functional programming language with support for concurrency, communication, dis-

! DIALYZER: Discrepancy AnaLYZer of ERlang programs. (From the Greek Sia\dw: to dis-
solve, to break up something into its component parts.) System is freely available from
www.it.uu.se/research/group/hipe/dialyzer/.

tribution and fault-tolerance. The language relies on automatic memory management.
ERLANG’s primary design goal was to ease the programming of soft real-time control
systems commonly developed by the telecommunications (telecom) industry.

ERLANG’s basic data types are atoms, numbers (floats and arbitrary precision in-
tegers), and process identifiers; compound data types are lists and tuples. A notation
for objects (records in the ERLANG lingo) is supported, but the underlying implemen-
tation of records is the same as tuples. To allow efficient implementation of telecom-
munication protocols, ERLANG nowadays also includes a binary data type (a vector of
byte-sized data) and a notation to perform pattern matching on binaries. There are no
destructive assignments of variables or mutable data structures. Functions are defined
as ordered sets of guarded clauses, and clause selection is done by pattern matching. In
ERLANG, clause guards either succeed or silently fail, even if these guards are calls to
builtins which would otherwise raise an exception if used in a non-guard context. Al-
though there is a good reason for this behavior, this is a language “feature” which ofien
makes clauses unreachable in a2 way that goes unnoticed by the programmer. ERLANG
also provides a catch/throw-style exception mechanism, which is often used to pro-
tect applications from possible runtime exceptions. Altematively, concurrent programs
can employ so called supervisors which are processes that monitor other processes and
are responsible for taking some appropriate clean-up action after a software failure.

Erlang/OTP is the standard implementation of the language. It combines ERLANG
with the Open Telecom Platform (OTP) middleware. The resulting product, Erlang/OTP,
is a library with standard components for telecommunications applications (an ASN.1
compiler, the Mnesia distributed database, servers, state machines, process monitors,
tools for load balancing, etc.), standard interfaces such as CORBA and XML, and a
variety of communication protocols (e.g., HTTP, FTP, SMTP, etc.).?

Erlang applications and real-world uses. The number of areas where ERLANG is
actively used is increasing. However, its primary application area is still in large-scale
embedded control systems developed by the telecom industry. The Erlang/OTP system
has so far been used quite successfully both by Ericsson and by other companies around
the world (e.g., T-Mobile, Nortel Networks, etc.) to develop software for large (sev-
eral hundred thousand lines of code) commercial applications. These telecom products
range from high-availability ATM servers, ADSL delivery systems, next-generation call
centers, Internet servers, and other such networking equipment. Their software has of-
ten been developed by large programming teams and is nowadays deployed in systems
which are currently in operation. Since these systems are expected to be robust and
of high availability, a significant part of the development effort has been spent in their
(automated) testing. On the other hand, more often than not, teams which are currently
responsible for a particular product do not consist of the original program developers.
This and the fact that the code size is large often make bug-hunting and software main-
tenance quite costly endeavors. Tools that aid this process are of course welcome.

Our involvement in Erlang and history of this work. We are members of the HiPE
(High Performance Erlang) group and over the last years have been developing the

2 Additional information about ERLANG and Erlang/OTP can b found at www. erlang.org.

HiPE native code compiler [10, 16). The compiler is fully integrated in the open source
Etlang/OTP system, and translates, in either a just-in-time (JIT) or ahead-of-time fash-
ion, BEAM virtual machine bytecode to native machine code (currently UltraSPARC,
x86, and AMD64). The system also extends the Erlang/OTP runtime system to support
mixing interpreted and native code execution, at the granularity of individual functions.

One of the means for generating fast native code for a dynamically typed language
is to statically eliminate as much as possible the (often unnecessary) overhead that type
tests impose on runtime execution. During the last year or so, we have been experi-
menting with type inference and an aggressive type propagator, mainly for compiler
optimization purposes. In our engagement on this task, we noticed that every now and
then the compiler choked on pieces of ERLANG code that were obviously bogus (but
for which the rather naive bytecode compiler happily generated code). Since in the con-
text of a JIT it does not really make much sense to stop compilation and complain to
the user, and since it is a requirement of HiPE to preserve the observable behavior of
the bytecode compiler, we decided to create a separate tool, the DIALYZER, that would
statically analyze ERLANG (byte)code and report defects to its users. We report on the
methods we use and the implementation of the tool below. However, we stress that the
DIALYZER is not just a type checker or an aggressive type propagator.

3 Detecting Discrepancies through Lightweight Static Analysis

3.1 Desiderata

Before we describe the technigues used in DIALYZER, we enumerate the goals and
requirements we set for its implementation before we embarked on it:

1. The methods used in DIALYZER should be sound: they should aim to maximize the
number of reported discrepancies, but should not generate any false positives.

2. The tool should request minimal, preferably no, effort or guidance from its user, In
particular, the user should not be reguired to do changes to existing code like pro-
viding type information, specifying pre- or post-conditions in functions, or having
to write other such annotations. Instead the tool should be completely automated
and able to analyze legacy ERLANG code that (quite often) no current developer
is familiar with or willing to become so. On the other hand, if the user chooses to
provide more information, the tool should be able to take it into consideration and
improve the precision of the results of its analysis.

3. Thetool should be able to do something reasonable even in cases where source code
is not available, as e.g., could be the case in telecom switches under operation.

4. The analysis should be fast so that DIALYZER has a chance to become an integrated
component of ERLANG development.

All these requirements were pragmatically motivated. The applications we had in mind
as possible initial users of our tool are large-scale software systems which typically have
been developed over a long period and have been tested extensively. This often creates
the illusion that they are (almost) bug-free. If the tool reported to their maintainers 1,000
possible discrepancies the first time they use it, of which most are false alarms, quite

possibly it would not be taken seriously and its use would be considered a waste of
time and effort.? In short, what we were after for DIALY7ZER version 1.0 was to create
a lightweight static analysis tool capable of locating discrepancies that are errors: i.e.,
software defects that are easy to inspect and are easily fixed by an appropriate correcting
action.* We could relax these requirements only once the tool gained the developers’
approval; more on this in Sect. 4.4.

Note that the 2nd requirement is quite strong. It should really be obvious, but it
also implies that there are no changes to the underlying philosophy of the language:
ERLANG is dynamically typed and there is nothing in our method that changes that.’

3.2 Local Analysis

To satisfy the requirement that the analysis is fast, the core of the method is an intra-
procedural, forward dataflow analysis to determine the set of possible values of live
variables at each program point using a disjoint union of prime types. The underlying
type system itself is based on an extension of the Hindley-Milner static type discipline
that incorporates recursive types and accommodates a limited form of union types with-
out compromising its practical efficiency. In this respect, our type system is similar to
that proposed by Wright and Cartwright for Soft Scheme [18].

The internal language of the analysis to which bytecode is translated, called Icode, is
an idealized ERLANG assembly language with unlimited number of temporaries and an
implicit stack. To allow for efficient dataflow analyses and to speed up the fixpoint com-
putation which is required when loops are present, Icode is represented as a control-flow
graph (CFG) which has been converted into static single assignment (SSA) form [3].
In Icode, most computations are expressed as function calls and all temporaries survive
these. The function calls are divided into calls to primitive operations (primops), built-
in functions (bifs), and user-defined functions. Furthermore, there are assignments and
control flow operations, including switches, type tests, and comparisons. The remainder
of this section describes the local analysis; in Sect. 3.3 we extend it by describing the
handling of user-defined functions and by making it inter-modular.

Although ERLANG is a dynamically typed language, type information is present
both explicitly and implicitly at the level of Icode. The explicit such information is in
the form of type tests which can be translations of explicit type guards in the ERLANG
source code, or tests which have been introduced by the compiler to guard unsafe prim-
itive operations. The implicit type information is hidden in calls to primops such as in
e.g. addition, which demands that both its operands are numbers. Note that non-trivial

3 This was not just a hunch; we had observed this attitude in the past. Apparently, we are not the
only ones with such experiences and this attitude is not ERLANG-specific; see e.g. [5, Sect. 6].

4 Despite the conservatism of the approach, we occasionally had hard time convincing develop-
ers that some of the discrepancies identified by the tool were indeed code that needed some
correcting action. One reaction we got was essentially of the form: “My program cannot have
bugs. It has heen used like that for years!”. Fortunately, the vast majority of our users were
more open-minded.

5 This sentence should not be interpreted as a religious statement showing our conviction on
issues of programming language design; instead it simply re-enforces that we chose to follow
a very pragmatic, down-to-earth approach.

ifis_cona(vi))

true false
A Al ifis_cons(v0)
test(X) > V3 = unsafe_i(vn) ue \ false
case X of ifis_lisi(v0) \\
[H]T] whem islist(X) ->
{8, T}; true / 2 ~ unsafe_hd(v0) ¥5 =+ (v, 1)
o> B V3 - unsafe_t(v0) —)
x ™ it = mkmplevz, v3) VE=THVO L) w4 - mikuple(v2, v3)
- rotamivd) rotum(vs) retum(v4)
(a) ERILANG eode (b) Teode w/o optimization (c) Icode w optimization

Fig.1. ERLANG code with a redundant type gnard.

types for arguments and return values for all primops and bifs can be known a priori by
the analyzer. These types can be propagated forward in the CFG to jump-start the dis-
crepancy analysis. For example, if a call to addition succeeds, we know for sure that the
return value must be a number. We also know that, from that point forward in the CFG
the arguments must be numbers as well, or else the operation would have failed. Simi-
larly, if an addition is reached and one of its arguments has a type which the analysis has
already determined is not a number, then this is a program point where a discrepancy
occurs,

More specifically, the places where the analysis changes its knowledge about the
types of variables are:

L. At the definition point of each variable.® At such a point, the assigned type de-
pends on the operation on the right-hand side. If the return type of the operation is
unknown, or if the operation statically can be determined to fail, the variable gets
assigned the type any (the lattice’s top) or undefined (its bottom), respectively.

2. Atsplits in the CFG, such as in nodes containing type tests and comparisons. The
type propagated in the success branch is the infimum (the greatest lower bound
in the lattice) of the incoming type and the type tested for. In the fail branch, the
success type is subtracted from the incoming set of types.

3. At a point where a variable is used as an argument in a call to a primop or a bif
with a known signature. The propagated type is the infimum of the incoming type
and the demanded argument type for the call. If the call is used in a guard context,
then this is a split in the CFG and the handling will be as in case 2 above.

When paths join in the CFG, the type information from all incoming edges is
unioned, making the analysis path-insensitive. Moreover, when a path out of a basic
block cannot be taken, the dead path is removed to simplify the control flow. In Fig. 1
the is1ist/1 guard in the first clause of the case statement can be removed since
the pattern matching compiler has already determined that X is bound to a (possibly
non-proper) list. This removal identifies a possible discrepancy in the code.

¢ Notc that sincc Icodc is on SSA form therc can be only onc definition point for cach variablc.

l/ wi 7= any
v r=muple vl - ellang:sire{v0)

fllsary ipis Yisvi)
[[vl o= taple
test(X) -> il m:: false \ [binary
case size(X) of V2 i mimplefist, v1) -
¥ when is list(X) -> Tetaniv2) s tepletvt)
{1ist, H}; vl 1= ol 2= hinary
N when is_tuple(X) -> AR f
N L plet aple, v1) PP
N i;glgéfi}::ary(x) > | v et Vi satpan)
3 i tuplei)
i - Wil ie=
Dptaay,) g s
- vi i~ mituple{binary, v1) ¥5 = emor — 7] [+ = =
and S e return(v5) l:)-m-m ”rmruul} 1
(a) ERLANG code (b) Type-annotated Icode (c) Icode w optimization

Fig.2. An ERILANG program with two discrepancies due to a misuse of the hif size/1.

The analysis, through such local type propagation aided by liveness analysis and
by applying aggressive global sparse conditional constant propagation and dead code
elimination [13], tries to reason about the intent of the programmer. If the most likely
path out of a node with a type test is removed, or if a guard always fails, this is reported
to the user as a discrepancy. Other discrepancies that are identified by local static anal-
ysis include function calls that always fail, pattern matching operations that will raise
a runtime exception, and dead clauses in switches (perhaps due to an earlier more gen-
eral clause). For example, on the program of Fig. 2(2), given that the signature of the
erlang:size/1 built-in function is

size(tuple | binary) -> integer

the analysis first annotates the Icode control-flow graph with type information. This
can be seen in Fig. 2(b) which shows the result of propagating types for variable v0
only. Given such a type-annotated CFQG, it is quite easy to discover and report to the
user that both the first case clause and the catch-all clause are dead, thereby removing
these clauses; see Fig. 2(c). In our example, finding code which is redundant, especially
the first clause, reveals a subtle programming error as the corresponding ‘measuring’
function for lists in ERLANG is 1length/1,not size/1.

3.3 Making the Analysis Intra- and Inter-Modular

Currently, the only way to provide the compiler with information about the arguments to
a function is by using non-variable terms and guards in clause heads. (This information
is primarily used by pattern matching to choose between the function clauses.) Since
DIALYZER employs a forward analysis, when analyzing only one function, there can
be no information at the function’s entry point, but at the end of the analysis there
is information about the type of the function’s return value. By unioning all proper
(i.e., non-exception) type values at the exit points of a function, we get additional type

information that can then be used at the function’s call sites. The information is often
non-trivial since most functions are designed to return values of a certain type and do
not explicitly fail (i.e., raise an exception). To take advantage of this, the local analysis is
extended with a persistent lookup table, mapping function names to information about
their return values. The table is used both for intra-modular calls and for calls across

default, is to construct a static call graph of the functions in a module, and then perform
one iteration of the analysis by considering the strongly connected components of this
graph in a bottom-up fashion (i.e., based on a reversed topological sort). If all compo-
nents consist of only one function, this will find the same information as an iterative
analysis. If there are components which consist of mutually recursive functions, we can
either employ fixpoint computation or heuristically compute a safe approximation of
the return value types in one pass (for example, the type any). Note that this heuristic is
acceptable in our context; the discrepancy analysis remains sound but is not complete
(i.e., it is not guaranteed to find all discrepancies).

Now consider function calls across module boundaries, In principle, the call graph
describing the dependencies between modules can be constructed a priori, but this im-
poses an I/0-bound start-up overhead which we would rather avoid. Instead, we con-
struct this graph as the modules are analyzed for the first time, and use this information
only if the user requests a complete analysis which requires a fixpoint computation.

analyze one module till fixpoint, using a lookup table that contains function information
from only the start of the analysis of that module. The tool supports such a mode.

4 DIALYZER

4.1 Architecture and Implementation

Figure 3 shows the DIALYZER in action, analyzing the application inets from the stan-
dard library of the Erlang/OTP R9C-0 distribution.
In DIALYZER v 1.0, the user can choose between different modes of operation. The

on all modules of an application. The iteration option selects between performing the
analysis till fixpoint or doing a quick-and-dirty, one-pass analysis. The meaning of this

'3 - v == ¥ ¥ L“ : - > -, =
i : : =t
i TewIer. . . . 3
: PERC B et o o i Tl L A A
E E vhoalyeing med dir done dn 0.5) seco
, l Greeslarhy: < Moats oniTn .gmh,. o 32 0.6 seon
i { o s nalgean; s il g ;.:2 ;: <A J.l
: 1 - unm-da:a' done an O 07 se o
4 7] dvm—"- - iy v mod_htascese. ., done an 1 % wous -
il + TFopotat wod_sncluds . doms in 131 sece
| = mad dooa in 0 30 sece
J g N Mg gnn;- dom In 0.33 ““ou
E » . An L] Ll
d 7 AT & Por appacaton o i dne 15 D81 aco 3
] = s Foep assmoy A vecurity, v wivas. .. don in 0.6 sece o+
| Detstr | Oustwmi - e . Oesiog .
L0 TP E/RSL- Lo/ L e ;:_‘,
e "X enening, h.qu_)nnn £.BOE_pITLatent nev,_ nul.q_umnr £): Type quard (aton, erroz) will alwaps fadl’
1 I mnee mnb‘h as of type nuabec() |
';"w _RRREGTE, ausiomtf" mﬁm_nmt 4). Type quard (atam. etror) will alveys fudl
| bandle ul.l.s) tlmase maxching o woply with sy 2 -1.u sawrr aatchi
1 (Bttpe_merager, hasdls_onll 3): olwisy on toply with -=u;- All meves mntol| -
B (bttp, cronke | hesdors. ¥) Mudsd unasfe priuep {unasfe olesent 16}1 llelsc cocompils with o 5
lmu!; {http, crests_hesdecs, 2] Unguarded unsafe primop {umsefe_rlement, 1) Pleass recompile mth n
4

‘ * (htepd_eup, atart_lirdS,3) 0 The olscss matching on tupls watk srity 2 will never matoh i
fan) B Y Fn.nlm (tzpd ::%anmd.lor zead_timiles endd) Egul hTwum (liata. rovecen, 1} will lﬂl* i
L‘ whdd . |] Coar Viern] ‘ Fan g

Fig.3. The DIALYZER in action.

option partly depends on the selected granularity. For example, if the granularity is per
application and the one-pass analysis is selected, each module is only analyzed once,
but fixpoint iteration is still applied inside the module. Finally, the lookup table re-init
option specifies when the persistent lookup table is to be re-initialized, i.e., if the in-
formation is allowed to leak between the analysis elements specified by the granularity.
Combinations of options whose semantics is unclear are automatically disabled.

While the analysis is running, a log displays its progress, and the discrepancies
which are found are reported by descriptive warnings in a separate window area; sec
Fig. 3. When the analysis is finished, the log and the warnings can be saved to files.
As described in Sect. 3.3, the module-dependency graph is calculated during the first
iteration of the analysis of an entire application. If a fixpoint analysis on the application
level is requested, DIALYZER uses this information to determine the order in which the
modules are analyzed in the next iteration to reduce the number of iterations needed
to reach a fixpoint. In fact, even in the one-pass mode the module-dependency graph
is constructed, just in case the user decides to request a fixpoint analysis on comple-
tion. Requesting this is typically not burdensome as the analysis is quite fast; this can
also be seen in the figure. On a 2GHz laptop running Linux, the DIALYZER analyzes
roughly 800 lines of ERLANG code per second, including I/O. (For example, the sizes
of mod_cgi, mod_disk_log, and mod_htaccess modules are 792, 405, and 1137 lines,
respectively. As another example, one run of the analysis for the complete Erlang/OTP
standard library, comprising of about 600,000 lines of code, takes around 13 minutes.)

The DIALYZER distribution includes the code for the graphical user interface and
the analyzer, both written in ERLANG. As its analyzer depends on having access to a
specific version of the HiPE native code compiler, on whose infrastructure (the BEAM
bytecode disassembler, the translator from BEAM to Icode, and the Icode supporting
code such as SSA conversion and liveness analysis) it relies, the presence of a recent

Erlang/OTP release is also required. Upon first start-up, DIALYZER will automatically
trigger the fixpoint-based analysis of the Erlang/OTP standard library, stdlib, to con-
struct a persistent lookup table which can be used as a basis for all subsequent analyses.

4.2 The DIALYZER in Anger

In order to show that our analysis is indeed effective in identifying software defects, we
present some results obtained from using the DIALYZER to analyze code from large-
scale telecom applications written in ERLANG. These applications all have in common
that they are heavily used and well-tested commercial products, but as we will see,
DIALYZER still exposed problems that had gone unnoticed by testing. Some brief addi-
tional information about these applications appears below:

— AXD301 is an asynchronous transfer mode (ATM) switching system from Erics-
son [2]. The project has been running for more than eight years now and its team
currently involves 200 people (but this number also includes some support staff; not
only developers or testers). The ATM switch is designed for non-stop operation, so
robustness and high availability are very important and taken seriously during de-
velopment. As a consequence, a significant effort (and part of the project’s budget)
has been spent on testing its safety-critical components; see also [17].

— GPRS (General Packet Radio Service) is a telecom system from Ericsson. A large
percentage of its code base is written in ERLANG. The project has been running for
more than seven years now and its testing includes extensive test suites, automated
daily builds, and code coverage analysis. Since this was a pilot-study for the appli-
cability and effectiveness of DIALYZER in identifying discrepancies, only part of
GPRS’s ERLANG code has so far been analyzed. Although only part of the total
code base, the analyzed code is rather big: it consists of 580,000 lines of ERLANG
code, excluding comments.

— Melody is a control system for a “Caller Tunes” ringbacktone service developed by
T-Mobile. It is an implementation of a customer database with interfaces to media
players, short message service centers, payment platforms, and provisioning sys-
tems. The core of Melody is significantly smaller than the other telecom products
which were analyzed; however, it includes parts of T-Mobile’s extensively used and
well-tested standard telecom library.

In addition to these commercial applications of ERLANG, we also analyzed the com-
plete set of standard libraries from Erlang/OTP release ROC-0 from Ericsson and code
from Jungerl,” which is an open-source code repository for ERLANG developers,

In order to have a more refined view of the kinds of discrepancies DIALYZER found,
we can manually divide them into the following categories:

Explosives These are places in the code that would raise a run-time exception, Exam-
ples of this are calls to ERLANG built-in functions with the wrong type of argu-
ments, operators not defined on certain operands, faulty (byte) code, etc. An explo-
sive can of course be conditional (e.g., firing on some execution paths only, rather
than in all paths),

TA Jungle of ERLANG codc; sec sourceforge.net/projects/jungerl/.

10

Camouflages These are programming errors that for example make clauses or branches
in the control flow graph unreachable — although the programmer did not intend
them as such — without causing the program to stop or a supervisor process being
notified that something is wrong. The most common error of this kind is a guard
that will always silently fail.

Cemeteries These are places of dead code. Such code is of course harmless, but code
that can never be executed often reveals subtle programming errors. A common
kind of cemeteries are clauses in case statements which can never match (because
of previous code) and are thus redundant.

For example, in the code of Fig. 2(a) if the analysis encounters, in this or in some other
module, a call of the form test ([_]_]), this is classified as an explosive since it will
generate a runtime exception. In the same figure, both the first and the last clause of the
case statement are cemeteries, as they contain dead code. On the other hand, the code
fragment below shows an example of a camouflage: the silent failure of the size (X)
call in a guard context will prevent this clause from ever returning, although arguably
the programmer’s intention was to handle big lists.

test(X) when is_list(X), size(X) > 10 ->
{1ist, big_size};
%% Other clauses

Table 1 shows the number of discrepancies found in the different projects.® The
numbers in the column titled “lines of code” show an indication of the size of each
project (comments and blank lines have been excluded) and justify our reasoning why
requiring type information or any other user annotations a posteriori in the develop-
ment cycle is not an option in our context. Although we would actually strongly prefer
to have any sort of information that would make the analysis more effective, we are
fully convinced that it would be an enormous task for developers to go through all
this code and provide type information — especially since this would entail intimate
knowledge about code that might have been written by someone else years ago. Real-
istically, the probability of this happening simply in order to start using DIALYZER in
some commercial project, is most certainly zero.

Despite these constraints, DIALYZER is quite effective in identifying software de-
fects in the analyzed projects; see Table 1. Indeed, we were positively surprised by the
amount of discrepancies DIALYZER managed to identify, given the amount of testing
effort already spent on the safety-critical components of these projects and the conser-
vatism of the methods which DIALYZER version 1.0 currently employs.

In addition to finding programming errors in ERLANG code, DIALYZER can also
expose software errors which were caused by a rather flawed translation of record ex-
pressions by the BEAM bytecode compiler. In Table 1, 31 of the reported explosives
for Erlang/OTP R9C-0 and 7 for Melody (indicated in parentheses) are caused by the
BEAM compiler generating unsafe instructions that fail to be guarded by an appropri-
ate type test. This in turn could result in buffer overruns or segmentation faults if the

8 Actually, DIALYZER also warns its uscr about thc usc of somc archaic ERLANG idioms and
code relics; these wamings are not considered discrepancies and are not reported in Table 1.

11

Table 1. Number of discrepancies of different kinds found in the analyzed projects.

Lines of code | Discrepancies Classification
Project (total) (total) |Explosives Camouflages Cemeteries
OTPRICO| 600,000 57 38 (31) 5 14
AXD301 1,100, 000 132 26 2 104
GPRS 580, 000 4 10 2 32
Junger] 80, 000 12 5 2 5
Melody 25, 000 9 8(7) 1 0

instructions’ arguments were not of the (implicitly) expected type. This compiler bug
has been corrected in release ROC-1 of Erlang/OTP.

4.3 Current Features and Limitations

The tool confuses programming errors with errors in the BEAM bytecode. Typically
this is not a problem as DYALYZER has built-in knowledge about common discrepancies
caused by flawed BEAM code. When such a discrepancy is encountered, DIALYZER
recommends its user to re-generate the bytecode file using a newer BEAM compiler
and re-run the analysis. As a matter of fact, we see this ability to identify faulty BEAM
code as an advantage rather than as a limitation.

Starting from bytecode unfortunately means that warning messages cannot be de-
scriptive enough: in particular they do not precisely identify the clause/line where the
discrepancy occurs; see also Fig. 3. This can often be confusing. Also, since soundness
currently is a major concern, the DIALYZER only reports warnings when it is clear that
these are discrepancies. For example, if a switch contains a clause with a pattern that
cannot possibly match then this is reported since it is a clear discrepancy. On the other
hand, if the analysis finds that the patterns in the cases of the switch fail to cover all
possible type values of the incoming term, this is not reported since it might be due
to over-approximation caused by the path-insensitivity of the analysis. Of course, we
could easily relax this and let the programmer decide, but as explained in Sect. 3.1
soundness is a requirement which DIALYZER religiously follows at this point,

4.4 Planned Future Extensions

One of the strengths of DIALYZER version 1.0 is that no alterations to the source code
are needed. In fact, as we have pointed out, the tool does not even need access to it
However, if the source code is indeed available, it can provide the analysis with addi-
tional information. Work is in progress to generate Icode directly from CORE ERLANG,
which is the official core language for ERLANG and the language used internally in
the BEAM compiler. Since CORE ERLANG is on a level which is closer to the original
source, where it is easier to reason about the programmer’s intentions, it can provide
DIALYZER with means to produce better warning messages; in particular line num-
ber information can be retained at this level. The structure of CORE ERLANG can also
helpin deriving, in a more precise way, information about the possible values used as
arguments to functions that are local to 2 module.

12,

potential errors, and the NUDE (the NU-Prolog Debugging Environment [14]) and Ciao
Prolog [9] systems which also incorporate type-annotation-guided static debuggers.

In the context of ERLANG, two type systems have been developed before: one based
on subtyping [11] and a recent one based on soft types [15]. To the best of our knowl-
edge, the latter has not yet been used by anybody other than its author, although time
might of course change this. The former ([11]) allows for declaration-free recursive
types using subtyping constraints, and algorithms for type inference and checking are
also given in the same paper. It is fair to say that the approach has thus far not been
very successful in the ERLANG community. Reasons for this include the fact that the
type system constraints the language by rejecting code that does not explicitly handle
cases for failures, that its inference algorithm fails to infer types of functions depend-
ing on certain pattern matching constructs, and that it demands a non-trivial amount
of user intervention (in the form of type annotations in the source code). Stated differ-
ently, what [11] tries to do is to impose a style of programming in ERLANG which is
closer to that followed in statically typed languages, in order to get the benefits of static
type-error detection. Clearly this goal is ambitious and perhaps worthwhile to pursue,
but then again its impact on projects which already consist of over a million lines of
code is uncertain. Qur work on the other hand is less ambitious and more pragmatically
oriented. We simply aim to locate (some of the) software defects in already developed
ERLANG code, without imposing a new method for writing programs, but by trying to
encourage an implicit philosophy for sofiware development (namely, the frequent use
of a static checker tool rather than just relying on testing) which arguably is better than
the practice the (vast majority of the) ERLANG community currently follows.

6 Concluding Remarks

DIALYZER version 1.0 represents a first attempt to create a tool that uses lightweight
static analysis to detect software defects in large telecom applications and other pro-
grams developed using ERLANG. While we believe that our experiment has been largely
successful, there are several aspects of the tool that could be improved through either
better technology or by relaxing its requirements (e.g., no false warnings), which are
currently quite stringent. Given support, we intend to work in these directions.

On a more philosophical level, it is admittedly the case that most of the sofiware de-
fects identified by DIALYZER are not very deep. Moreover, this seems to be an inherent
limitation of the method. For example, problems such as deadlock freedom of ERLANG
programs cannot be checked by DIALYZER. One cannot help being a bit skeptical about
the real power of static analysis or type systems in general, and wonder whether a tool
that used techniques from software model checking would, at least in principle, be able
to check for a richer set of properties and give stronger correctness guarantees. On the
other hand, there is enough evidence that neither static analysis nor software model
checking are currently at the stage where one dominates the other; see also [5].

More importantly, one should ot underestimate the power of simplicity and ease of
use of a (sofiware) tool. In a relatively short time and with very little effort, DIALYZER
managed to identify a large number of software defects that had gone unnoticed after
years of testing. Moreover, it managed to identify bugs that are relatively easy to correct

13

We also plan to extend DIALYZER with the possibility that its user incrementally
adds optional type annotations to the source code. The way to do this is not yet decided,
but the primary goal of these annotations, besides adding valuable source code docu-
mentation, is to aid the analysis in its hunt for discrepancies, not to make ERLANG a
statically typed language. If a type signature is provided for a function, and this signa-
ture can be verified by DIALYZER as described below, it can be used by the analysis
in the same way as calls to bifs and primops are used in the current version. The way
to verify a signature is as follows: instead of trying to infer the types at each call site
(as would be the case in most type systems), the signature would be trusted until the
function is analyzed. At this point the signature would be compared to the result of the
analysis and checked for possible violations. Since DIALYZER is not a compiler, no
programs would be rejected, but if violations of user-defined signatures are discovered,
this would be reported to the user together with a message saying that the results of the
discrepancy analysis could not be trusted.

Taking this idea further, we also plan to experiment with relaxing soundness by
allowing the user to specify annotations that in general cannot be statically verified
(for example, that a certain argument is a non-negative integer), This is similar to the
direction that research for identifying defects such as buffer overruns and memory leaks
in C (see e.g. [6,4]) or for detecting violations of specifications in Java programs [8]
has recently taken.

5 Related Work

Clearly, we are not the first to notice that compiler and static analysis technology can
be employed for identifying defects in large software projects.” Especially during the
few last years, researchers in the programming language community have shown sig-
nificant interest in this subject; see e.g. the work mentioned in the last paragraph of the
previous section and the references therein. Most of that work has focused on detecting
errors such as buffer overruns, memory access errors such as accessing memory which
has already been freed or following invalid pointer references in C, race detection in
multi-threaded Java programs, etc. These software defects are simply not present in our
context, at least not directly so.'® Similarly to what we do, some of these analyses do
not need source code to be present, since they start from the binary code of the exe-
cutable. On the other hand, we are not aware of any work that tries to detect flaws at the
level of virtual machine bytecode caused by its flawed generation.

During the late 80’s and the beginning of the 90’s, the subject of automatic type
inference without type declarations received a lot of attention; see e.g. [12] for an early
work on the subject. A number of soft type systems have been developed, most of them
for the functional languages Lisp and Scheme, and some for Prolog. The one closest
to our work is that of Soft Scheme [18]. Perhaps sadly, only a few of them made it
into actual distributions of compilers or integrated development environments for these

* languages. Some notable exceptions are DrScheme [7], a programming environment for
Scheme which uses a form of set-based analysis to perform type inference and to mark

® We arc also willing to bet our fortuncs that we will not be the last oncs to do so cither!
' They can only occur in the VM interpreter which is written in C, not in ERLANG code.

14

— in fact some of them have been already — which brings sofiware in a state closer
to the desired goal of total correctness. One fine day, some projects might actually win
their war!

Acknowledgments

This research has been supported in part by VINNOVA through the ASTEC (Advanced
Software Technology) competence center as part of a project in cooperation with Erics-
son and T-Mobile. The research of the second author was partly supported by a grant by
Vetenskapsradet (the Swedish Research Council). We thank Ulf Wiger and Hans Nils-
son from the AXD301 team at Ericsson, Kenneth Lundin from the Erlang/OTP team,
and Sean Hinde from T-Mobile for their help in analyzing the code from commercial
applications and for their kind permission to report those results in this paper.

References

1. J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent Programming in
Erlang. Prentice Hall Europe, Herfordshire, Great Britain, second edition, 1996.

2. S. Blau and J. Rooth. AXD 301—A new generation ATM switching system. Ericsson
Review, 75(1):10—17, 1998.

3. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently computing
static single assignment form and the control dependence graph. ACM Trans. Prog. Lang.
Syst., 13(4):451-490, Oct. 1991.

4. N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for statically detecting all
buffer overflows in C. In Proceedings of the ACM SIGPLAN 2003 Cenference on Program-
ming Language Design and Implementation, pages 155-167. ACM Press, June 2003.

5. D. Engler and M. Musuvathi. Static analysis versus software model checking for bug finding.
In B. Steffen and G. Levi, editors, Verification, Model Checking, and Abstract Interpretation.
Proceedings of the Sth International Conference, number 2937 in LNCS, pages 191-210.
Springer, Jan. 2004.

6. D. Evans and D. Larochelle. Improving security using extensible lightweight static analysis.
IEEE Software, 19(1):42-51, Jan./Feb. 2002.

7. R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler, and
M. Felleisen. DrScheme: A programming environment for Scheme. Journal of Functional
Programming, 12(2):159-182, Mar. 2002.

8. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for Java. In Proceedings of the ACM SIGPLAN 2002 Conference on Pro-
gramming Language Design and Implementation, pages 234-245. ACM Press, June 2002.

9. M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Program development
using abstract interpretation (and the Ciao system preprocessor). In R. Cousot, editor, Static
Analysis: Pmceedings of the 10th International Symposium, number 2694 in LNCS, pages
127-152, Berlin, Germany, June 2003. Springer.

10. E. Johansson, M. Pettersson, and K. Sagonas. HiPE: A High Performance Erlang system.
In Proceedings of the ACM SIGPLAN Conference on Principles and Practice of Declarative
Pmgramming, pages 32—43, New York, NY, Sept. 2000. ACM Press.

11. S. Marlow and P. Wadler. A practical subtyping system for Erlang. In Proceedings of
the ACM SIGPLAN International Conference on Functional Programming, pages 136-149.
ACM Press, June 1997.

15

12.

13.

14.

15.

16.

17.

P. Mishra and U. S. Reddy. Declaration-free type checking. In Proceedings of the Twelfth
Annual ACM Symposium on the Principles of Programming Languages, pages 7-21. ACM
Press, 1984.

S. S. Muchnick. Advanced Compiler Design & Implementation. Morgan Kaufman Publish-
ers, San Fransisco, CA, 1997.

L. Naish, P. W. Dart, and J. Zobel. The NU-Prolog debugging environment. In A. Porto, ed-
itor, Proceedings of the Sixth International Conference on Logic Programming, pages 521—
536. The MIT Press, June 1989.

S.-O. Nystrém. A soft-typing system for Erlang. In Pmceedings of ACM SIGPLAN Erlang
Workshop, pages 56-71. ACM Press, Aug. 2003.

M. Pettersson, K. Sagonas, and E. Johansson. The HiPE/x86 Erlang compiler: System de-
scription and performance evaluation. In Z. Hu and M. Rodriguez-Artalejo, editors, Proceed-
ings of the Sixth International Symposium on Functional and Logic Programming, number
2441 in LNCS, pages 228-244, Berlin, Genmany, Sept. 2002. Springer.

U. Wiger, G. Ask, and K. Boortz. World~class prodnct certification using Erlang. SIGPLAN
Notices, 37(12):25-34, Dec. 2002.

. A. Wright and R. Cartwright. A practical soft type system for Scheme. ACM Trans. Prog.

Lang. Syst., 19(1):87-152, Jan_ 1997.

1¢(10)

In the need of a design...
reverse engineering Erlang software

Thomas Arts! and Cecilia Holmqvist?

1 IT university in Gdteborg
Box 8718, 40275 Gteborg, Sweden,
email thomas.arts@ituniv.se
2 Ericsson AB
Lindholmspiren 11, 41756 Gteborg, Sweden

1 Introduction

Software development often faces the problem that over time the design docu-
ments and the actually implemented code coincide less and less. After fine-tuning
the software, adding features, leaving out other features and correcting design
errors in the code, not in the documents, the result is a product that can be
sold. However, the design documentation is no longer up-to-date.

Time to market is important and the costs that it takes to keep design doc-
umentation updated is sometimes thrown into the shade of being out first. Only
if one survives, the up-to-date design documents are of any use. Thus, after ob-
taining a market share, one is forced to update the design documents in order
to effectively propose additional features or major software changes.

In this paper we discuss a techinque to help reverse engineering a part of an
Ericsson product. In the economic crisis in which the product was finalized for
the market, the resources for updating the design documents were not available.
After being successful in the market, the product has stabilized. Now, there is
a strong wish for updated design documents. First of all, for understanding the
system better (what is actually going on?). Second, for being able to plan a new
implementation from scratch for large parts of the system. Third, the difference
between actual behaviour and designed behaviour indicates problems in software
parts: the larger the difference between design and actual code, the larger the
possibility that errors can be found in that part.

The product we looked at was written in Erlang [1] with rather strict design
guidelines. For example, the names used for functions and modules were well re-
flecting the original design; in the software block Mobilty Management in UMTS
(MMU) all module names started with mmu. These strict guidelines helped us in
eagily reconstructing a design from traces of the code.

We performed a case study to show the possibility of supporting the reverse
engineering attempt with some software tools. These tools strongly depended
on the fact that Erlang is the implementation language of the system and that
the design guidelines are followed. However, projects with other, but also strict
guidelines will be able to use the same tools in order to reverse engineer the
code.

1(10)

Other reverse engineering attempts have been presented by Nystrém [6] and
by Mohagheghi et. al, [7). Both tools are based on a static analysis of the code,
whereas in our approach we assume not to have access to the source code, but,
only use information available at runtime.

The paper is organized as follows: In Sect. 2 we describe the rough outline of
the software we looked at. In Sect. 3 we discuss how we obtained a finite state
machine from looking at traces of the running software. The state machine was
graphically visualized and manually compared with the original UML design.
In Sect. 4 we discuss what differences we were quickly able to find with this
technique.

2 Mobility Management in UMTS

In our case-study we concentrate on the Mobility Management in UMTS (MMU),
which is a software component, a so called block, in one of the systems in a UMTS
network.

The component is specified by a set of UML diagrams. A subset of these di-
agrams consist of state machines that specify the states in which the component
can be. This subset resembles much that of a hierarchical state machine, a UML
version of statecharts [5]. On the first or top level a state machine with eight,
states, with names like ms-attaching, ms._connected, etc, is specified (see Fig. 1).
On the next level, each of these states is represented as a state machine with
several sub-states within this larger state.

Strangely enough, the implementation of the hierarchical state machines is
not based upon the generic finite state machine behaviour, nor on a specially
developed hierarchical state machine behaviour. Without digging into the reason
for it, we only state here that the events are implemented as function calls (e.g.,

sation software [2]. Since the application needs to have access to the state now
and then, the programmers have added a funetion call set.state/2 to store the
information of the present state. Whether this is stored in a process dictionary
or in a server process, is not important for the rest of the story.

Needless to say that this way of keeping track of the present state is rather
error prone. The generic finite state machine behaviour, where state is guar-
anteed fo be updated after every event, is more robust against a programmer
that forgets to update a state. In particular, a behaviour can be used to already
statically detect such omissions, whereas in the present implementation, one has
to find these omissions by running tests.

The component, consists of several Erlang modules. The main module is called
mmumoc, which serves as an interface for all other modules in the component. All

via the mmumoc module, which means that at least one interface function in this
module is called for every external signal. The functions in the mmumoc module
depend on functions in the other modules (of which the names all start with

N s T g

b e W

O Py At s i |

e L L L ——

O s o L
—

Fig. 1. Top level state machine

mmu). An incoming Detach Request can for example cause over twenty different
functions in five ‘mmu’ modules to be called, many of which are called several
times, before the state is updated.

3 Runtime software analysis

The MMU component consists of too many lines of code to simply understand
what the software is doing by looking at the source code. Even with the design
at hand it is far too costly, if not impossible, to statically analyze the code, i.e.,
determining the behaviour of the code by carefully studying the source code.
Therefore, traditionally, a manual runtime analysis is performed.

Erlang has a trace function that allows a person to select whatever function
he/she is interested in. Calls to these functions are then monitored in a running

system and the resulting list, a so called trace, of function calls (including time
stamp, arguments, return value, etc) is stored in a file created by the disk. log
modaule.

Before we started our work, these trace files were converted to a textual
format and manually analyzed. Traces can differ in length, but we looked at
files of about OMB, containing about 15 thousand entries. Loaded into emacs,
it is rather easy to find each occurence of mmumoc:set_state/2. However, we
immediately wanted to have a tool for quickly extracting these calls from the
trace. Note that one could also choose to only monitor calls to this particular
function with the trace functions. However, we are not only interested in the
possible state transitions. If we find a state transition that differs from the one
in the specification, we also want to understand what has happened. The other
functions in the trace are nhecessary to get that understanding. Since we might
miss the particular behaviour when we run the software again, it is important
to have enough information in the trace to determine what happened in case of
an unexpected state transition.

Our traces can be rather large, in principle even several gigabytes. For perfor-
mance reasons, we do not want to read this binary trace in memory to convert it
in a list and then remove most of the unnecessary elements (only very few func-
tion calls are calls to the set_state function). By using the disk_log: chunck
function, we would be so much restricted to 64 bytes, that we decided to imple-
ment our own log reader. In an eager language we program a lazy file reading,
which we make flexible to the kind of filtering by having a filter function as
argument.

read(FileName,Filter) ->
{ok,FileDescr} = file:open(FileName, [read, raw, binary]),
Terms = unpack (FileDescr,Filter, [,
file:close(FileDescr) :
Terms.

unpack(FileDescr ,Filter,Terms) —>
cagse file:read(FileDescr,5) of
{ok,<<B1,B2,B3,8ize:16>>} >
{ok,BTerm} = file:read(FileDescr,Size),
Term = binary_to_term(BTerm),
case Filter(Term) of

true ->
unpack(FileDescr,Filter, [Term|Terms]);
false —>
unpack (FileDescr,Filter,Terms)
end;
eof —>

lists:reverse(Terms)
end.

The result of the unpack function is a list of terms. To every term in the log
file, we have applied a filter function, returning either frue or false. Only those
terms for which #rue was returned, are left in the list.

The filter function is typically something like, either the term s a mmumoc:
set_state/2, or a an event originaling external to the MMU component. Thus, it
is a logical combination of well determined terms. This can be implemented very
flexible by defining small filters for the well determined terms and combinators
to combine them. For example, the filters to determine state and events from
outside, can be defined as:

state_mmu() ->
fun({trace_ts,Pid, call,{mmumoc,set_state, [S,SS]1},Caller,TS}) ->
true;
) -
false
end.

outside_mmu() ->
fun({trace_ts,Pid, call, {mmumoc,F,A},{CM,CF,CA},TS}) —>
string:substr(atom_to_list(CM),1,4)==[$m,$m,$u,$_]1;
) -
false
end.

A beautiful way of writing a filter would be or(state.mmu() ,outside mmu()),
or a more complex case to obtain all calls that are not inside the MMU com-
ponent and(call() ,not(inside_ mmu())). Since the logical operators cannot be
overloaded in Erlang, we use a different name for them and define them as follows

(cf. [3]):

filter_or(F1,F2) ->

4 Comparing Design and Reality

With the visualization of several traces at hand, it is easy to compare the UML
design and the state machines obtained from a trace. It turns out that during
the development, the code has really diverted a lot from the actual design. Most
generated substate machine contains some states and some transitions that are
not present in the design.

In a few hours, many issues are written down. Sometimes the differences
between real behaviour and design is so different, that the number of states in
common is less than the number in which they differ. The whole design started
from use-cases and some of these use-cases have found their way in the code
without the state machines in the design being updated.

e even find that some state machines are not modeled at all, i.e., there is no
design available.

All together, we can conclude that we quickly (a few hours) detect and ad-
minister a number of major differences. After that, other traces visualize the
same machines and we only find some minor differences.

If we would have had access to the encoding of the UML pictures, we would
have been able to write a small tool to compare state machines, therewith being
even faster in our comparison (visually highlighting the difference). However,
even with the present way of comparing design and actual code, we are many
times faster than by nsing a manual comparison of design and a text version of
the trace information.

References

(1] J. Armstrong, R. Virding, C. Wikstrém, and M. Williams. Concurrent Program-
ming in Erlang (Second Edition). Prentice-Hall International (UK) Ltd., 1996.

[2] T. Arts and L-A. Fredlund. Trace Analysis of Erlang Programs. In Proc. of ACM
Sigplan Erlang Workshop, Pittsburgh, USA, 2002.

[3] T. Arts, K. Claessen, H. Svensson. Semi-Formal Development of a Fault-Tolerant
Leader Election Protocol in Erlang, In Proc. of FATES 2004, Linz, Austria, 2004.

[4] E.R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for drawing
directed graphs. Software Engineering, 19(3):214-230, 1993.

[5] D.Harel. Statecharts: A visual formalism for complex systems. Science of Computer
Programming, 8:231-274, 1987.

[6] J. Nystrém and Bengt Jonsson. A Tool for Extracting the Process Structure of
Erlang Applications. Erlang User Conference, Stockholm 2001. Also at the Erlang
Workshop, Florens, Italy, 2001.

[7] P. Mohagheghi, J.P. Nytun, Selo, and W. Najib. MDA and Integration of Legacy
Systems: An Industrial Case Study. In Proc. of Workshop on Model Driven Ar-
chitecture: Foundations and Applications, MDAFA 03. University of Twente, En-
schede, The Netherlands. 26-27 June 2003.

1o (10)

1 (10)

Erlang’s Exception Handling Revisited

Richard Carlsson Bjorn Gustavsson Patrik Nyblom
f Departr_trleng of Ericsson, Sweden Ericsson, Sweden
Information Technology, ; i i i i
Uppsala University, Sweden bjorn@erix.ericsson.se pan@erix.ericsson.se
richardc@csd.uu.se
ABSTRACT 2. EXCEPTION HANDLING IN ERLANG

This paper describes the new exception handling in the
ERLANG programming language, to be introduced in the
forthcoming Release 10 of the Erlang/OTP system. We give
a comprehensive description of the behaviour of exceptions
in modern-day ERLANG, present a theoretical model of the
semantics of exceptions, and use this to derive the new try-
construct.

1. INTRODUCTION

The exception handling in ERLANG is an area of the lan-
guage that is not completely understood by most program-
mers. There are several details that are often overlooked,
sometimes making the program sensitive to changes, or hid-
ing the reasons for errors so that debugging becomes diffi-
cult. The existing catch mechanism is inadequate in many
respects, since it has not evolved along with the actual be-
haviour of exceptions in ERLANG implementations. The ad-
dition of & new exception handling construct to replace the
existing catch has long been discussed, but has not yet made
its way into the language.

The purpose of this paper is twofold: first, to explain the
reslities of exceptions in ERLANG, and why the creation of
a new exception-handling construct has been such a long
and complicated process; second, to describe in detail the
syntax and semantics of the finally accepted form of the try-
construct, which is to be introduced in Erlang/OTP R10.

The layout of the rest of the paper is as follows: Section 2
describes in detail how exceptions in ERLANG actually work,
and the shortcomings of the current catch operator. Sec-
tion 3 explains how the new try-construct was derived, and
why try in a functional language has different requirements
than in an imperative language such as C++ or Java. In
Section 4, we refine the exception model and give the full
syntax and semantics of try-expressions, along with some
concrete examples. Section 5 discusses related work, and
Section 6 concludes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Erlang Workshop '04 22/09/2004, Snowbird, Utah, USA

Copyright 2004 ACM 1-58113-772-9/03/08 ...$5.00.

2.1 Exceptions as we know them

The exception handling in ERLANG, as described in [2],
was designed to be simnple and straightforward. An excep-
tion can occur when a built-in operation fails, such as an
arithmetic operation, list operation, pattern matching, or
case-clause selection, or when the user calls one of the built-
in functions exit(Term) or throw(Term).

The exception is then deseribed by an ordinary ERLANG
term (often called the reason), such as an atom badarg or
badarith, or a tuple like {badmatch, Value} where Value is
the data that could not be matched. To prevent exceptions
from propagating out of an expression, the expression can
be placed within a catch operator, as in

X = (catch £(Y))

(the parentheses are needed in this case because of the low
precedence of catch), or more often

case catch £(Y) of

end
to immediately switch on the result. If the expression within
the catch completes normally, the resulting value is returned
as if the catch had not been there.

When an exception occurs, one of two things can happen:
either the exception is not caught by the executing process,
and in that case the process terminates, possibly propagat-
ing a signal to other processes; otherwise, the execution had
entered (but not yet exited) one or more catch-expressions
before the exception happened, and execution is resumed at
the latest entered catch, unrolling the stack as necessary.
The result of the catch expression then depends on how
the exception was caused: if it occurred because of a call
to throw(Term), the result is exactly Term.! Otherwise, the
result will have the form of & tuple {’EXIT’, Term}. For
example,

catch (1 + foo)
returns {’EXIT’, badarith} (since foo is an atom), while
catch throw(foo)

returns the atorm foo, the intention being that throw should
be used for “nonlocal returns” (e.g., for escaping out of a
deep recursion) and other user-level exceptions. The exit
function, on the other hand, is intended for terminating the
process, and behaves like & run-time failure, so that

'"Much like catch/throw in Common Lisp.

catch exit(user_error)

returns {’EXIT’, user_error}.

One of the consequences of this (explicitly described in [2]
as a design decision) was that it became possible to “fake” a
run-time failure or exit, by calling throw({’EXIT’, Term}),
or by simply returning the value {’EXIT’, Term}. For ex-
ample, in the following code:

R = catch (case X of
1 -> 1 + foo;

2 -> exit(badarith);
3 -> throw({’EXIT’, badarith}):
4 -> {’EXIT’, badarith}
5 => throw(ok);
6 -> ok
end),
case R of
{’EXIT’, badarith} =-> "1-4";
Ok _> llB_G"
end

the semantics of catch makes it impossible to tell whether
the value of R (depending on X) is the result of catching
a run-time failure or a call to exit or throw, or if the ex-
pression completed execution in a normal way. Usually, this
is not a problem; for exmmple, most ERLANG programmers
would never use a tuple {’EXIT’, Term} in normal code.

2.2 Where’s the catch?

In some contexts, it becomes more important to know
what has actually happened. For example, consider:

lookup(X, F, Default) ->
case catch F(X) of
{’EXIT’, Reason} -> handle(Reason);
not_found -> Default;
Value -> Value
end.

where F is bound to some function, which should either re-
turn a value depending on X, or call throw(not_found).

Note that the possible returned values cannot include the
atom not_found. To solve this in general, the return val-
ues would need a wrapper, such as {ok, Value}, to separate
them from any thrown terms (assuming that {ok, ...} is
never thrown, much like it is assumed that {’EXIT’, .. .}is
not normally returned by any function). This limits the use-
fulness of throw somewhat, since it requires that the normal-
case return values are marked, rather than the exceptional
values, which is counterintuitive and bothersome.

An idiom used by a few knowledgeable ERLANG program-
mers to create almost-foolproof catches is the following:

lookup(X, F, Default) ->
case catch {ok, F(X)} of
{ok, Value} ~-> Value;
{’EXIT’, Reason} -> exit(Reason);
not_found -> Default;
Term -> throw(Term)
end.

Since it is guaranteed that the creation of s tuple such as
{ok, Ezpr} will never cause an exception if the subexpres-
sion Ezpr completes normally, we have a way of separating
exceptions in F(X) from normal return values ~ as long as

we trust that nobody calls throw({ok, ...}) within F(X).
Furthermore, any caught exceptions that are not of inter-
est at this point can simply passed to throw or exit again,
hoping thet some other cateh will handle it.

This way of writing safer catches is however rarely seen
in practice, since not many programmers know the trick,
or bother enough to use it, since their catches mostly work
anyway — at least until some other part of the code changes.

2.3 Current practice

The difficulty in properly separating exceptions from re-
turn values appears to be the main reason why although
ERLANG has a catch/throw mechanism, it is still the case
that in existing code, the predominant way of signalling the
success or failure of a function is to make it return tagged tu-
ples like {ok, Value} in case of success and {error, Reason}
otherwise, forcing the caller to check the result and either
extract the value or handle the error. This often leads to a
clumsy programmning style, in the many cases where errors
are actually rare and it is even rarer that the caller wants to
handle them. (If a significant part of all calls to a function
tend to fail, the above can still be a good way of structuring
the function interface, but typically, failure happens in only
a very small fraction of all calls.)

In C programs [5], the code is often interspersed with
many checks to see if function calls have returned valid re-
sults, even though there is seldom much that the program-
mer cen do if this was not the case, except terminate the
program. The lack of an exception mechanism makes the
code less readable, more time-consuming to write, and more
error prone since forgetting to check a value can be fatal.
ERLANG programs suffer similar problems: even if the pro-
grammer cannot do anything constructive to handle an er-
ror, he must still rememnber whether a called function returns
& naked value or {ok, Value}, and in the latter case must
also decide what should happen if instead {error, Reason}
is returned. The following idiom is often used:

{ok, Value} = £(X)

so that if the call succeeds, the relevant part of the result
is bound to Value, and if the call instead returns {error,
Reason}, it will cause a badmatch exception. The main
drawback is that it points out the wrong cause of the prob-
lem, which was a failure within £ (X), and not in the pattern
matching. Also, the wrapping convention remains a cause of
irritation because one is forced to write awkward code like

{ok, Y} = £(X),
{ok, Z} = g(V),
{ok, Value} = h(Z)

when it would have sufficed with
Value = h(g(£(X)))

if the functions had returned naked values and used excep-
tions to signal errors.

Sometimes, programmmers attempt to handle the error case
as follows:

case £(X) of
{error, Reason} -> exit(Reason);
{ok, Value} -> ...

end

2.

but often, the error term Reason returned by the function
is very particular to that function, and is not suitable for
passing to exit, so that anyone who catches the resulting
exception will only be confused since there is no longer any
context available for interpreting the term. So even though
the programmer simply wishes to pass on the problem to be
handled by someone else, it really requires interpreting the
error and creating a more comprehensible report. In fact,
the badmatch solution above is to be preferred, because it
will show precisely where the program gave up, rather than
pass on a cryptic termn with exit,

24 Processes and signals

Since ERLANG is a concurrent language, every program is
executed by a process (similar to a thread), and many pro-
cesses can be running concurrently in an BRLANG runtime
system. A signalling system is used for informing processes
about when other processes terminate. As for exceptions,
an exit signal is described by a term, which if the process
terminated normally (by returning from its initial function
call) is the atom normal. If the process terminated because
it called exit(Term) (and did not catch the exception), the
exit term is exactly the value of Term; thus, a process can
also terminate “normally” by calling exit(normal), e.g. in
order to easily exit from within a deep call chain. Similarly,
if the process terminated because of a run-time failure that
was not caught, the exit term is the same term that would
be reported as {’EXIT?, Term} in a catch-expression, as for
instance badarg or {badmatch, Value}.

A special case is when a process ferminates because it
called throw(Term) and did not catch the exception. In this
case, the exit term will be changed to {nocatch, Term}, to
distinguish this case from other kinds of exits.

2.5 The Truth...

To simplify the above discussion (as many readers will
doubtless have noticed), we have left out a few details about
exceptious as they appear in modern ERLANG implementa-
tions, The presentation in the preceding sections follows the
description of exceptions in “The ERLANG Book" [2] (Con-
current Programming in ERLANG, Second Ed., 1996).

The most apparent change since then is that when & run-
time failure occurs (and is then either caught in a catch or
causes the process to terminate), the term that describes
the error will also include a symbolic representation of the
topmost part of the call stack at the point where the error
occurred. (This does not happen for ealls to exit or throw.)
The general format is {Reason, Stack}, where Reason is the
normal error term as described in the previous sections. For
example, calling f(foo) where:

(X)) => "1v 44 gX.
g(X) => "2" 44 n(X).
h(X) => X ++ n n,

will generate an exception with a descriptor term such as
the following:

{badarg, [{erlang, ’++’, [foo,". "1},
{foo,h,1},
{foo,g,1},
{foo,f,1}1}

Details in the stack representation may vary depending on

3

If evaluation of Ezpr completed normally with result R
then
the result of catch Ezpr is R,
else
the evaluation threw an exception (term, thrown);
if thrown is true
then
the result of catch Expr is term,
else
the result of catch Ezpr is {’EXIT’, term}

Figure 1: Semantics of catch Ezpr

implementation, cause of error, and call history.? (Also note
that because of tail call optimization, many intermediate
function calls cannot be reported, since there is by definition
no trace left of them.)

Thus, for example the call £(0) where

£(X) ~> catch 1/X.
will actually return
{’EXIT’, {badarith, [{foo0,f,1}, ...1}}

in aodern system, rather than {’EXIT’, badarith}. How-
ever, the following code:

catch exit(Term)

will still yield {’EXIT’, Term}, without any symbolic stack
trace, and similarly

catch throw(Term)

yields just Term, as before.

2.6 ...The Whole Truth. ..

Now, the observant reader may have noticed that although
it would appear that an exception is fully determined by the
“reason” term ouly, in fact at least one other component is
necessary to completely describe an exception, namely, a flag
that signals whether or not it was caused by throw(Term).
(This follows from the semantics of process termination and
signals; cf. Section 2.4.)

Internally, an exception is then a, pair (term, thrown), where
thrown is either true or false, and term is the “reason”
term. The semantics of catch Ezpr can now be described
s shown in Figure 1. Note that it is the catch operator
that decides (depending on the thrown flag) whether or not
to wrap the reason term in {’EXIT’, ...}.

2.7 ...And Nothing But The Truth

Sotnething, however, is still missing. When throw(Term)
is not caught, and causes the process to terminate (as de-
scribed in Section 2.4), the exit term is no longer simply
{nocatch, Term}, but rather {{nocatch, Term}, [...]}, with
a symbolic stack trace just as for a run-time failure. This
Tueans that the stack trace cannot be added onto the “rea~
son” term until it is known what will happen to the exception,

*The actual arguments to the last called function are not
always included; only the arity of the function. The next-
to-last call is often missing because its return address was
never stored on the stack and could not be recovered.

-

If evaluation of Ezpr completed normally with result R
then
the result of catch Ezpr is R,
else
the evaluation threw exception (term, thrown, trace);
if thrown is true
then
the result of catch Ezpr is term,
else
if trace is null
then
the result is {’EXIT’, term}
else
the result is {’EXIT’, {term, trace}}

Figure 2: Modified semantics of catch Ezpr

If evaluation of the initial call completed normally
then
the exit term is the atom normal
else
the evaluation threw exception (term, thrown, truce);
if thrown is true
then
the exit term is {{nocatch, term}, truce}
else
if trace is null
then
the exit term is term
else
the exit term is {term, trace}

Figure 3: Semantics of process termination

since if it is caught in a catch, it must not include any stack
trace.

As a consequence, we have to extend the full description
of an exception to a triple (term, thrown, trace), where trace
is either a symbolic stack trace or a special value null, so
that trace is null if and only if the exception was caused by
a call to exit.

The semantics of catch must also be modified as shown
in Figure 2, so that in the case where the expression has
thrown an exception, and thrown is false, we have a choice
depending on the value of trace. The exit term for a ter-
minating process is determined in a similar way, shown in
Figure 3.

One last, not very well documented, detail is that when a
process terminates due to an exception, and the exception
was not caused by a call to exit(Term), this event will be

reported by the ERLANG runtime system to the error logger

service. (In other words, as long ss s process terminates
normelly, or through a call to exit, it is considered a normal
event from the runtime system’s point of view.) This shows
once again that it is necessary to preserve the information
about whether or not the exception was caused by exit,
until it is known how the exception will be handled.

2.8 Love’s Labour’s Lost in Space

For the programmer, currently the only means of inter-
cepting and inspecting an exception is the catch operator,

but as we have seen, this will lose information which cannot
be re-created. For example, as described in Section 2.2, the
following code attempts to separate exceptions from normal
execution, and transparently pass on all exceptions that do
not concern it:

case catch {ok, ...} of
{ok, Value} -> ...;
{’EXIT’, Reason} -> exit(Reason);

not_found -> ...;
Term -> throw(Term)
end

However, when throw(Term) is executed in the last clause,
it will create a new exception (term, thrown, trace) having
the same values for term and thrown as the canght exception,
but with a different trece. This is observable if the exception
causes the process to terminate, and since the original stack
trace was lost, it will hide the real reason for the exception.

Furthermore, in the exit (Reason) case, the trace compo-
nent of the new exception will be set to null by exit. Now
note that if the caught exception had a non-null trace com-
ponent, the catch will already have added that trace onto
Reason, so in a sense, the term has been “finalized”: if the
new exception is canght in another catch, or causes the pro-
cess to terminate, the term will look exactly the same as if
it had never been intercepted by the above code. But there
is one problem: since we used exit to pass on the excep-
tion, it will not be reported to the error logger if it causes
the process to terminate — even if the original exception was
caused by a run-time failure, which ought to be reported.

One built-in function that we have not mentioned so far,
because it is not well known, and has mostly been used
in some of the standard libraries, is erlang:fault(Term),
which is similar to exit but instead causes a run-time failure
exception, i.e., such that truce # null and thrown = false.
We could then try to improve on the above code by splitting
the {?’EXIT’, Reason} case in two:

{’EXIT’, {Reason, Stack}} when list(Stack) —->
erlang:fault(Reason) ;

{’EXIT’, Reason} ->
exit(Reason);

which will preserve the error logging functionality, as long as
we can trust that the first clause matches all run-time errors,
and nothing else. But like in the throw case, we now lose the
original stack trace when we call erlang:fault(Reason).
What if we tried erlang:fault({Reason, Stack}) instead?
Well, if the exception is caught again, it will then get the
form {{Reason, Stackl}, Stack2}, and so on if the process
is repeated. This preserves all the information, but could
cause problems for code that expects to match on the Reason
terin and might not recognize the case when it is mnested
within more than one {..., Stack} wrapper.

Thus, with a fair amount of careful coding, we can now
catch exceptions, examine them, and pass them on if they
are not of interest, but still not without affecting their se-
mantics in most cases — for throw, we lose the stack trace,
and for run-time failures we modify the “reason” term. The
method is also not foolproof — calls to throw({ok, Value}),
throw({’EXIT’, Reason}), or exit({Term, [...]}) willall
cause the wrong clause to be selected. Not to mention that
the code is difficult to understand for anyone who is not very
familiar with the intricacies of exceptions.

There really should be a better way.

try
Ezpressions
catch
Ezception; —> Body.;

Ezceptionn, => Bodyn,
end

Figure 4: Basic form of try-expression

3. TRY AND TRY AGAIN

At least a few of the problems with catch have been
widely known by ERLANG programmers, and for several
years, there has been an ongoing discussion among both
language developers and users about the addition of a new,
more flexible and powerful construct for exception handling
to the language. The following attempts to be a complete
list of requirements for such e construct:

1. It should be possible to strictly separate normal com-
pletion of execution from the handling of exceptions.

2. It should be possible to safely distinguish exceptions
caused by throw from other exceptions.

3. It should be possible to safely distinguish exceptions
caused by exit from run-time failures.

4. The behaviour of the existing catch must not change;
nor the behaviour when an exception causes process
lerminglion. Exisling prograaus shiould work exaclly
as before.

5. It should be possible to use ordinary pattern matching
to select which exceptions are to be handled. Excep-
tions which do not match any of the specified cases
should automatically be re-thrown without changing
their sernantics.

6. It should be straightforward to rewrite all or most uses
of catch to the new construct, so that there is no in-
centive for using catch in new code.

7. It should be simple to write code that guarantees the
execution of “cleanup code” regardless of how the pro-
tected section exits.

3.1 A first try

A form of try...catch...end construct for ERLANG was
first described in the tentative Standard Erlang Language
Specification [3] (only available in a draft version) by Bark-
lund and Virding; however, this work was never completed.
Their suggested construct (mainly inspired by C+4++ [10],
Java [4], and Standard ML (7]) had the general form shown
in Figure 4, where if evaluation of Expressions succeeded
with result IR, the result of the try would also be R; oth-
erwise, the clauses would be matched in top-down order
against either {’THROW’, Value}, for an exception caused by
a throw, or {’EXIT’, Reason} for other exceptions. In the
terminology of Section 2.6, it would make the thrown flag of
the exception explicit (which the catch operator does not).

This would fulfill requirements 1 and 2 above, and par-
tially requirements 5 and 4; in particular, the distinction
between exit and run-time failures was not noted in [3]. In

fact, it was during an early attempt by the first author of the
present paper to implement the try construct, that many of
the complications described in Section 2 were first uncov-
ered. As it turned out, the de facto behaviour of exceptions
in the Erlang/OTP implementation was no longer consistent
with any existing description of the language. The only re-
sult at that time was that the inner workings of the exception
handling were partially rewritten in preparation for future
extension, but it was apparent that the try construct had
to be redesigned before it could be added to the language.

3.2 Making a better try

Since then, several variations of the try construct have
been considered, but all have been found lacking in various
respects. The main problem has turned out to be the bal-
ance between simplicity and power of expression. For exam-
ple, most of the time, the programmer who wishes to catch a
throw will not be interested in viewing the stack trace, and
should preferably not be forced to write a complicated pat-
tern like {’THROW’ , Term, Stack} when the only important
part is Term. (Also, it would be a waste of time to con-
struct a symbolic trace which is immediately discarded by
the catcher.) However, the stack trace should be available
when needed.

Also, point 6 above was more of a problem than expected.
As seen in some of our previous examples, the following is a
common way of using catch in existing prograis:

case catch f£(X) of
{’EXIT’, Reason} -> handle(Reason);
Pattern, -> Body:;

Potternn, -> Bodyn
end

i.e., which uses & single list of patterns for matching both in
the case of success and in the case of catching an exception.
As we have described, this makes it possible to mistake a
returned result for an exception and vice versa. However,
it is an extremely convenient idiom, because it is very often
the case that regardless if the evaluation succeeds or throws
an exception, a switch will be performmed on the result in
order to decide exactly how to proceed.

With the try. . .catch. ..end as suggested in [3], the same
effect could only be achieved as follows:

R = try {ok, £(X)}
catch
Exception -> Exception
end,
case R of
{ok, Pattern.}} -> Bodyi;

{ok, Pattern,}} -> Bodyn;

{’THROW’, Term} -> ...;

{’EXIT’, Reasom} -> ...
end

using the trick from Section 2.2 to make sure that the result
of normal evaluation is always tagged with ok; the main
difference being that the try version cannot be fooled by
e.g. calling throw({ok, Value}). So, although the above
code is safe, it is quite inconvenient to have to write such a
complicated expression for what could be so easily expressed
using catch.

Analyzing the try comstruct in terms of continuations
helps us understand what is going on here. (A continuation
is simply “that code which will take the result R of the cur-
rent expression and continue”, and can thus be described as
a function ¢(R); for example, when a function call finishes,
it conceptually passes the return value to its continuation,
i.e., the return address.®) First of all, we have a main con-
tinuation ¢y which will receive the final result of evaluating
the whole try. . .catch...end expression. Now consider the
expression between try...catch: if its evaluation succeeds
with result R, it will use the same continuation ¢y(R), i.e.,
R becomes the result of the whole try. On the other hand,
if the expression throws an exception F, it will use another
continuation c¢¢(F), which we call the “fail-continuation”.

The code in ¢y is that which does the pattern matching on
the exception E over the clauses between catch...end. If
none of the patterns match, the exception will be re-thrown,
and we are done. Otherwise, the first matching clause is se-
lected, and its body is evaluated. (If this should throw a new
exception, it will not be caught here since it is not within the
try...catch section.) The resulting value is finally passed
to ¢, and becomes the result of the try.

Now let'’s look at what the continuation co(R) gets: its
input R is either the result of evaluating the try...catch
section (if that succeeded), or otherwise it is a value returned
by one of the catch...end clauses. This is useful in typical
situations where exceptions are handled by substituting a
default value, as in:

Value = try lookup(Key, Table)
catch
not_found -> 0
end

However, if we want to perform a different action in case
the try...catch part succeeds, than if an exception occurs,
we have no choice but to pass to ¢y not only the result, but
also an indication of which path was actuelly taken. (This
is what we did in the previous example, using {ok, ...}
to tag the result upon success.) It is this limitation of the
try...catch...end that forces us to go from control flow
to a data representation and back to control flow again. It
should be noted here that the exception handling in Stan-
dard ML [7] (and possibly other functional languages with
exceptions) suffers from the same limitation.

A much more elegant solution would be if the programmer
could specify code to be executed only in the success case,
before control is transferred to the main continuation ¢y. Tn
addition to ¢y, we therefore introduce a success-continuation
¢s, 50 that if evaluation of the try. . .catch section succeeds
with result I2, the continuation used would be ¢;(R), rather
than eo(RR).

A practical syntex for expressing both the success case
and the exception case in a single try is shown in Figure 5,
where the code in ¢, (I?) does pattern matching on R over the
clauses between of . ..catch. If a clause matches, its body
is evaluated, and the result is passed to ¢y, just like for an
exception-handling clause. (If no clause should match, it is
a run-time error, and will cause a try_clause exception.)
Each clause may also have a guard, apart from the pattern,

1 it helps, just think of continuations as goto-labels,
*First suggested by Fredrik Linder, who also pointed out the
weakness in the original try, in a discussion at the ERLANG
Workshop in Firenze, Italy, 2001.

try Ezpressions of
Pattern; -> Body;;
Patternn, -> Bodyn
catch
Ezcepiion, -> Handler;;

Ezception, -> Handler,,
end

Figure 5: General form of try-expression

just like any case-clause; we have left this out for the sake
of readability.

Note that the old syntax from Figure 4, which leaves out
the of ... part, can still be allowed, by simply defining it
as equivalent to

try Ezpressions of
X > X
catch
Ezception: -> Handler:;

Ezception, —> Handlerg
end

(where X is a fresh variable), in effect making ¢, () = eo(R),
as before.

At this point, the reader might be wondering why the
problem could not have been solved as follows, using the
original form of try:

try
case Erpressions of
Pattern1 -> Body:;

Patternn, -> Bodyn,
end
catch
Exception; -> Handler;;

Ezception, —> Haendlerg,
end

The difference is that in this case, all the success actions
Body;, as well as the pattern matching, are now within the
protected part of the code. Thus, the catch...end section
will handle all exceptions that may occur — not only those
within Ezpressions. If this was what we wanted, we might
as well have moved the whole case. . .end to a new function
f and simply written

try £(...)
catch

end

however, often we do not want the same exception handling
for both the protected part and the success actions.

It is interesting to note that in the imperative languages
which pioneered and made popular the try...catch para-
digm, ie., mainly Ada [6], C++ [10] and Java [4], there
has never been any need for an explicit success-continuation
syntax. The reason is simple: in these languages, the pro-
grammer can change the flow of control by use of “escapes”

such as return, goto, break, and continue; for example,
forcing an early return from within an exception-handling
branch. In a functional language such as ERLANG, this is
not an option.

4. PUTTING IT ALL TOGETHER

Now we are ready to specify the full syntax and semantics
of the new try coustruct as it will appear in Release 10
of Erlang/OTP. We begin by revising the exception model
from Section 2.

In Section 2.7, we came to the conclusion that excep-
tions had to be described by a triple (term, thrown, trace),
and gave the semamtics of catch and process termination in
terrns of this. In retrospect, we can refactor the representa-
tion to make it more intuitive and easier to work with.

4.1 Semantics of exceptions in Erlang
We define an ERLANG exception to be a triple

(class, term, trace)
such that:

e cluss specifies the class of the exception: this must be
either error, exit, or throw,

e lerm is any ERLANG term:, used to describe the excep-
tion (also referred to as the “reason”),

e traceis a partial representation of the stack trace at the
point when the exception occurred. The trace may also
include the actual parameters passed in function calls;
the details are implementation-dependent. There is no
special null value for the trace component.

The different classes of exceptions can be raised as follows:

e When a run-time failure occurs (with reason term),
or the prograimn calls erlang:fault(ferm), the raised
exception will have the form (error, term, trace).

e When the programn calls exit(ierm), the exception
will have the forin {exit, term, trace).

e When the programu cells throw(term), the exception
will have the formn (throw, ferm, trace).

Let T be a function that creates a symbolic representation
of a trace as an ERLANG term. The modified semantics of
the catch operator is shown in Figure 6, and the semantics
of process termination in Figure 7. Note that the behaviour
remains functionally equivalent to what we described earlier
in Figures 2 and 3.

4.2 Syntax and semantics of try-expressions

First, we note that the convention of using tagged tuples
such as {’EXIT’, ...} was introduced ounly as a means of
distinguishing errors and exits from normal return values
and thrown terms in the catch operator. In our new try
construct, it is not necessary to stick to this convention.
Instead, we will use a syntax which is both easier to read
and requires less typing.

A try-expression has the general form from Figure 5,
where Ezpressions and (for ¢ € [1,n], and j € [1,m]) all
the Body:, and Handler; are comma-~separated sequences
of one or more expressions, and the Pattern; are arbitrary

If evaluation of Ezpr completed normally with result R
then
the result of catch Ezpr is R,
else
the evaluation threw exception (class, term, trace);
if class is throw
then
the result of catch Ezpr is term,
else if clasgs is exit
then
the result is {’EXIT’, term}
else
the result is {’EXIT?, {term, T(irace)}}

Figure 6: Final semantics of catch Ezpr

If evaluation of the initial cell completed normally
then
the exit term is the atomn normal
else
the evaluation threw exception (class, term, trace);
if class is exit
then
the exit term is term
else
the event will be reported to the error logger;
if class is throw
then
the exit term is {{nocatch, term}, T'(irece)}
else
the exit term is {term, T'(trace)}

Figure 7: Final semantics of process termination

patterns. As noted in Section 3.2, the of ... part may be
left out. Like in & case-expression, variable bindings made
in Ezpressions are available within the of . . . catch section
(but not between catch. . .end), and variables are exported
from the clauses if and only if they are bound in all cases.

The exception patterns Ezception; have the following
general form:

Class:Reason

where Class is either a variable or a constant. If it is a
constant, or a variable which is already bound, the value
should be omne of the atoms error, exit, or throw.

The Class: part of each exception pattern may be left
out, and the pattern is then equivalent to

throw:Reason

The reason for this shorthand is that typically, only throw
exceptions should be intercepted. error exceptions should
in general be allowed to propagate upwards, usually termi-
nating the process, so that unexpected run-time failures are
not masked. Furthermore, an exit exception means that &
decision was made to terminate the process, and a prograimn-
mer should only override that decision if he knows what he
is doing. Therefore, the default class is throw.

The semantics of try is shown in Figure 8. (As before,
clause guards have been left out for the sake of readabil-
ity, and for the same reason, we do not show the variable

If evaluation of Espressions completed normally
with result R,

then
the result of try...end is equivalent to that of
case IR of
Patterni -> Body:;
Pattern,. ~> Bodyn
end
else

the evaluation threw exception (cluss, term, trace);
for each Exception; = Class;:Reason;
let Triple; = {Class;, Reason,;, _}
and for each Exception; = Reason
let Triple; = {throw, Reason;, _};
the result of try...end is then equivalent to that of
case {class, term, trace} of
Tripley -> Handler;;

Triple,, => Handler,,;
X -> rethrow(X)
end
where X is a fresh variable.

Figure 8: Semantics of try-expressions

scoping rules.) The rethrow operator is a built-in primitive
which cannot be accessed directly by the programnmer; its
function is simply to raise the caught exception again, with-
out losing any information. Note that the frace component
of an exception is assumed to have a cheap, implementation-
dependent representation which we do not want to expose
to users.

To inspect the stack trace of an exception, a new built-in
function erlang:get_stacktrace() is added, which returns
T(trace) where truce is the stack trace component of the
last occurred exception of the current process, and 7T is the
function used in the semantics of catch in Figure 6. If no
exception has occurred so far in the process, an empty list
is returned.

Finally, we could add a generic exception-raising function
erlang:raise(Class, Reason), where Class must be one
of the atoms error, exit, and throw, and Reason may be
any term. We will see one possible use of such a function in
the following section.

4.3 Cleanup code

A very common programming pattern is to first prepare
for a task (e.g. by allocating omne or more resources), then
execute the task, and finslly do the necessary cleanup. It is
then often important that the cleanup stage is executed inde-
pendently of how the main task is completed, i.e., whether it
completes normally or throws an exception. Figure 9 shows
an example of how this could be done using try-expressions.
However, the code has several weak points:

e The cleanup code, in this example the calls to close,
must be repeated in each case. (We only show two
cases, but in general there could be any number.)

o In the success case, we must bind the result to a new
veriable just to hold it temporarily while we perform
the cleanup.

read_file(Filename) ->
FileHandle = open(Filename, [read]),
try
read_opened_file(FileHandle)
of
Data ->
close(FileHandle),
Data
catch
Class:Reason ->
close(FileHandle),
erlang:raise(Class, Reason)
end.

Figure 9: Allocate/use/cleanup example

try
Ezpressions
after
Cleanup
end

Figure 10: try...after...end expressions

o The generic failure-case, i.e., the code that catches any
exception, performs the cleanup, and then re-throws
the exception, is unnecessarily verbose.

o The explicit re-throw using erlang:raise() will not
preserve the stack trace of the original exception,

All of the above problems can be solved by adding one
more feature to our try-expressions. In Common Lisp [9],
the special form unwind-protect is used to guarantee exe-
cution of cleanup-code; in Java [4], this is done by including
a finally section in try-expressions. The same idea can
be used in ERLANG. We start out by defining a new form
of try-expression, shown in Figure 10,> with a well-defined
meaning.

The semantics of try...after...end is shown in Fig-
ure 11. We can now easily allow the use of after directly
together with try...catch.. .end, by defining the fully gen-
eral syntax shown in Figure 12 as equivalent to

try
try Ezpressions of
Patterny -> Bodyi;
Pattern, —-> Bodyn
catch
Ezception; -> Handlerg;
Egception,, -> Handler,
end
after
Cleanup
end

(where as before, the of... part may be left out), which
guarantees that in all cases, the Cleanup code will be exe-

“The use of the after keyword for this purpose is not yet
decided; possibly, & new keyword such as finally will be
added instead.

If eveluation of Ezpressions completed normally
with result R,
then
the result of try...after...end is equivalent
to that of
begin
X=1R,
Cleanup,
X
end
where X is a fresh variable,
else
the evaluation threw exception (class, term, trace);
the result is then equivalent to that of
begin
Cleanup,
rethrow({cless, term, trace})
end

Figure 11: Semantics of try...after...end

try Ezpressions of
Pattern, -> Body:;

Pattern, -> Bodyn,
catch
Egception; -> Handler,;

Ezception, -> Handlerm,
after

Cleanup
end

Figure 12: Fully general try-expression

cuted, after evaluation of one of the Body; or Handler; has
completed. This is expected to be the desired behaviour
in most cases, since it gives the exception handling clauses
a chance to act before any resources are deallocated by
the cleanup code. It is also easy to manually nest try-
expressions to get another evaluation order, e.g.:

try
try
Ezpressions
after
Cleanup
end
of
Pgttern, -> Body;;

Pattern, -> Body,
catch

Ezception: -> Handler,;

Ezception,, -> Handler ,
end

4.4 Examples

To dernonstrate some uses of try-expressions, we begin
by showing in Figure 13 how the catch operator may be

try Expr
catch
throw:Term -> Term;
exit:Term -> {’EXIT’, Term};
error:Term ->
Trace = erlang:get_stacktrace(),
{’EXIT’, {Term, Trace}}
end

Figure 13: catch Ezpr implemented with try

open(Filename, ModeList) ->
case file:open(Filename, ModeList) of
{ok, FileHandle} ->
FileHandle;
{error, Reason} ->
throw({file_error, Reason})
end.

Figure 14: Wrapper for file:open/2.

implemented in a transparent way using try. The reader
is invited to compare this to the semantics in Figure 6 and
verify that they are equivalent.

Figure 14 shows a wrapper function for the standard li-
brary file:open/2 function. The functions in the file
module return {ok, Value} or {error, Reason}, while the
wrapper always returns a naked value upon success, and
otherwise throws {file_error, Reason}. The latter makes
it easy to identify a file-handling exception even if it is not
caught close to where it occurred. Note that if an exception
is generated within file:open/2, we do not catch it, but
allow it to be propagated exactly as it is.

Figure 15 demonstrates the use of after in a typical sit-
uation where the code allocates a resource, uses it, and af-
terwards does the necessary cleanup (cf. Figure 9). Note
the two-stage application of try: First it is used to handle
errors in open (see Figure 14). Since FileHandle is only de-
fined if the call to open succeeds, only then need we (or can
we) close the file. The next try makes sure that the cleanup
is done regardless of how the code is exited. An important
detail is that by keeping the allocation and the release of
the resource close together in the code, no other part of the
program needs to know that there is any cleanup to be domne.

In an imperative language like Java, it is common to ini-
tially assign a null value to variables, and then let the pro-
tected section attempt to update themn when it is allocating
resources. The cleanup section cen then test for each re-
source whether it needs to be released or not. In a functional
language where variables cannot be updated, it is cleaner to
handle each resource individually, and separate the alloca~
tion from the use-and-cleanup, as we did above.

5. RELATED WORK

The concept of user-defined exception handling seems to
have originated in PL/I [1], and from there made its way (see
e.g. [8]) in different forms into both Lisp [9] and Ada [6],
as well as other languages. Ada in its turn was a direct
influence on C++ [10], and thus indirectly on Java [4].

In the Object-Oriented languages C++ and Java, an ex-
ception is completely described by the thrown object. In

read_file(Filename) ->
try open(Filename, [read]) of
FileHandle ->
try
read_opened_file(FileHandle)
after
close(FileHandle)
end
catch
{file_error, Reason} ->
print_file_error(Reason),
throw(io_error)
end.

Figure 15: Allocate/use/cleanup with try...after

C++, any object can be thrown; in Java, only subclasses
of Throwable may be thrown. For Java, this means that
implementation-specific information like a stack trace may
be easily stored in the object without exposing its internal
representation. Since this cannot be done in ERLANG with-
out adding a new primitive data type to the language, we
have instead chosen to make the stack trace and any other
debugging information part of the process state.

In Common Lisp [9], catch and throw are used for non-
local return, and only indirectly for handling actual errors.
Also, setting up a catch requires specifying a tag (any ob-
ject, e.g. a symbol) for identifying the catch point, to be
used later in the throw. To guarantee execution of cleanup-
code regardless of how an expression is exited, the special
form unwind-protect is used. The same effect is achieved
in Java by including & finally section in try-expressions.

In Standard ML [7], the exception handling works much
like in Ada, using the operators raise and handle. Asin the
originally suggested try...catch...end for ERLANG, there
is no way of explicitly specifying a success-continuation.

6. CONCLUDING REMARKS

Exceptions in ERLANG has been a not very well under-
stood area of the language, and the behaviour of the ex-
isting catch operator has for a long time been insufficient.
We have given a detailed explanation of how exceptions in
modern-day ERLANG actually work, and presented a new
theoretical model for exceptions in the ERLANG program-
ming language. Using this model, we have derived a general
try-construct to allow easy and efficient exception handling,
which will be introduced in the forthcoming Release 10 of
Erlang/OTP.

7. ACKNOWLEDGMENTS

The authors would like to thank Robert Virding, Fredrik
Linder, and Luke Gorrie for their comments and ideas.

8. REFERENCES

[1] American National Standards Institute, New York.
American National Standard: programming language
PL/IL 1979 (Rev 1998). ANSI Standard X3.53-1976.

[2] J. Armstrong, R. Virding, C. Wikstrém, and
M. Williams. Concurrent Programming in Erlang.
Prentice Hall Europe, Herfordshire, Great Britain,
second edition, 1996.

101

[3] J. Barklund and R. Virding. Specification of the
Standard Erlang Programming Language. Draft
version 0.7, June 1999.

J. Gosling, B. Joy, and G. Steele. The Java™
Programming Languege. The Java Series.
Addison-Wesley, 3rd edition, 2000.

[6] B. W. Kernighan and D. M. Ritchie. The C
Progremming Lunguage. Prentice-Hall, second edition,
1989.

[6] Military Standard. Reference Manual for the Ada
Programming Language. United States Governiment
Printing Office, 1983. ANSI/MIL-STD-1815A-1983.

[7] R. Milner, M. Tofte, R. Harper, and D. MacQueen.
The Definition of Standard ML (Revised). The MIT
Press, Cambridge, Massachusetts, 1997.

[8] K. Pitman. Condition handling in the Lisp language
farnily. In A. Romanovsky, C. Dony, J. L. Knudsen,
and A. Tripathi, editors, Advances in Ezception
Handling Techniques, nuinber 2022 in LNCS.
Springer-Verlag, 2001.

[9] G. L. Steele. Common Lisp: The Language. Digital
Press, second edition, 1990.

[10] B. Stroustrup. The C++ Programming Language.
Addison-Wesley, second edition, 1991,

4

Johannes Gutenberg
Born 1394-99 died 1467-1468

Erlguten

Joe Armstrong
joe@sics.se

(e7))

|||||

Erlguten is a system for high-quality typesetting
Goal: Better than TeX

Erlguten is work in progress

Erlguten was written by

Joe Armstrong

Michael Karlsson
Sean Hinde

o

affice did - (1's
wrong T bounding

!{,.“9. N
1008

‘,!A-aé;.;s: s what open

e e dig % Gy

Motivation

TeX does not like absolute positioning
WYSIWYG isn't

Most systems get kerning wrong
Mo systems do advanced kerning and layout
Gutenburg was right

Digital typography has made things worse not better

-

About right

as

Motivation

The thesis bug

o1 :

L
These are different a's
Times Roman and Baskerville

281

[12] Bogumil Hawsman, Turho elang: Approaching the speed of ¢ fa
Even ik amd Giancarts Syeci, edior, logpdementations of Logie Pro
srantiniag Systems, pages 115- 135 Klwwer Aeadende Puldishos, 1900

193] American Nitional Stwwdards Instiute, Instinte of Elecirical, and
Hectnmic Fngineers IEEE stunchare tir binary loating-paint arith
mitle. ANSIZIELY. Ntandard, Sed 754. 19835, Now York, 1585,

[1] ISOTEC, s netserkig and systom uspects - absinct syntax ao
tation one (astd) TUDYT Rec, Xe# — ISOAEC 88241, ISOULC,
15597,

[46] [T Reoommenddation Z.100-- specilication and deseription language
(sclly. CYTRT 7000, Inmtenmationsd ‘Telecommunication Dnion, 1591

[. Reed | Otkarinen. REC 1489 Internet welay chat prolocol, May
[LETCR '

107 Evik Johmson, Swn-Clof Nydrtun, Mikael Pelierssn, and Klnlslm1lg-
ve Sagons, Mper Mgh performance edang,

[#8) I Richawd Kubn. Sonnes of Bdure i the public swiched tolephoms
vetwork. HEEE Confuter, 900 4:00-30, 1997,

14 Simon Marlo aud Philpy Wadler. A practical sublyping system for
Feling. In ueraational Confence on Functional Programming, piges
136149, ACAL, June 1997,

|} W Mt and 11 Juno (Feds). Wap binawy xml coment Frwma), june
1R, hulpdwwwndongighbxml, 190
EROEMI e

1531 1idkan Ml vt oomnmmeathn. W3,

1 Ay ‘ . P, Rose. Past olee protocel - version 3. RFC 1939,
Tnternet Engineering Task Force, May 1906,

3] Notel Nebvorks. Alteon sl accoleratior product bricl. September
212,

Gutenburg 42 line Bible
c. 1450

Non-overloaded hypen. This practise

was discontinued by Claude Garamond ;
in ¢. 1545,

Optical alignment
U1

Goals
Easy o use ~ simple textual input

Multi-mode inputs (suited for technical reports, magazine layout and
presentations)

Very high quality layout engine (better than TeX, in-design, quark etfc.)

(4x24 0} syuauwisnipn bu Y20

pu buiuuay ‘suibuow Jo AURUMbND (D110 *Buiuay utbaow)
SAMDID0Ud 71 2Yy U sanbiuyoa)) J1ydoabodALoanu, juzwaiduy
504 | Qd HIng-ur a1y Ajuo sas

bupjJ3 aJny

IDIIUYDD |

coloxrtestl (PDF,N, [])~>
L1
colortestl (PDF,N, [H|T]) ~>
pdf:set £fill colox (PDF,H),

pdf.erl (mikael)

pdf:
pdf:
pdf:
pdf:
pdf:
pdf:
pdf:
pdf:
pdf:

rectangle (PDF, {0,20},{20,20}),
path (PDF, fill stroke),

set. £fill color (PDF,black),
begin text (PDF),

set font (PDF,"Times-Roman', 8),
set text pos(PDF,0, (N rem 2)*10),
text (PDF,atom_to list(H)),

end text(PDF),

translate (PDF,30,0),

colortestl (PDF,N+1,T) .

silver black red
‘while pray maioon fuchsia
~ blue3 blusviolet darkorehid
blue2 blugd cornflowerblue darkslate

lightslategray

lightblue

cadetblue

DOCBOOK Light (Sean)

<gectionl> 1 ErIQUten

<title>Erlguten</title>
<para>Erlang based applications

Frlang based applications have a structure defined by Ur

<code> froman Eriesson supplied runtime system and set of €
app name/src/ ard applications supplied by Efi‘riu;:s;m;m (including as a1
== . by T-Mobile or 3rd parties. Regardless of the orgin ol
/ priv I & =
all systems.
<list> All code for each individual OTP Application s structu
o e AP
<item> OTP directory structure:
<codersrc</code> contains
app_name/src/
/priv/
/doc/
/Ebinf_
/ven . mk

*sre contains all Erlang source code files (also
Emakefile.arc liles

SBNLINILE

pinQ xa|dwoy)
e SUTB3UOD |, , OIS, , x

L -
..,rl-""l 5
;1{"“"
lllll
FTLCE

y {{1T'0T'v00Z}="3ep e
s*";“‘? ! { Y EUQJ:} suwize ") ! w80 _E “]' =oueu } '[.6@'_]. @ ‘J"‘dﬁ"'ﬁé’
|f"j#I ; *-“"!@o |
.iii; %L%%:“'“M.m . Wﬂ..r—#"""#dﬂﬁ < Iﬁeq / >
E . <ISTT/>
..»_:;-{{ﬁ LWBYT /’ >
%n o SUTRIUOD <KBDPOD/>VISLIPOD>
%, 2 i
N, / S <UD} T>
/ h, <3STI>

B | < TT-0T~- w=8%ep 8ol =sweu Tbel>
SAMNLINILS EE-0T-k00Z.=S3%p Toel

piop 2jdung

(@00) 67IW

{1

SV L s Y
} jti %bi i‘\ Bttt Rl LIl A LR R R EE T S D COTS PRI NS ANEES ECEIT RS Y
it

wesq-" Txe" SEXTIINS -
4P TTINEW, =8WRU BTTISIEUrp
! 0=00q 8jeatTad

N } 3e1ddy spusjexe oog sseTo orTgnd

!x Deordde eael jxodut
vawlp

adAl o3 Ases

uresT o3 , Ases,, §,37T &

i ‘ﬁaa'*:j‘.'."! 3%, / RSSO H TS G NS LRI
ui:p L5t g% !é‘ig i‘ﬁ‘

Ixag buppy

el gsnedeq , ,90TU AI9A,, ST STYL
{[oop/epod] =spaomndeay} oopp

" (o03) sTnpouw-

al14 SIYL U0 J2|PUDY Uy

TEM VIS LIS TATVERIFTERY 250 24 1 10

VORI Y2t 1o 25 mn»sc{ﬂ?b*

BueTxsp

— {.xeTPURYy, =pow]} OaxsOINR)

6"1W

Magazine production (Joe)

Gautoexec { mod="pdf" }
CGinclude "magazine"

Gheading Thi pPage tests
Justificatior routines
leftBox

@grid {Page=a4, dx=20,dy=20}
Ghox {namem”heading",xml,y=l,

color="yellow", facez"TimeRoman",
pointSize=24,justificationzleft}

@image {x=2 y=3)

amn
eXdan

]

. This is normal text, with no cm-

—_ phasised code, the next example will -

-

. be more complicated . This cxam pleias.
Justsimple text. In the next example |

— will show sOme text with emphasis, -

|

. Thik “is
mw hox st in 'l
limes:Rioman’ *
for prinling e
nins neavspapa ¢
lally Jooks pr
satin wide 1
is set nurrow &
vaally eyfesiropr-
Timnes-Roman

Status

Lt works but ...

Unstable (I keep re-writing it)

Taking a lot longer than I expected
(Knuth "paragraph justification is really
difficult") (most programs get it wrong!)
Fun

Needs integrating with ex11

T

(&7)¢7

Proposal for an Erlang foundation

Erlang User Conference '04

21st. October 2004

Mickaél Rémond <mickael.remond@erlang-fr.org>
Thierry Mallard <th|erry mallar%@erlang -fr.org>

E d oY) ACC

ERLANG L

www.erlang-projects.org

(¢3)7

Erlang: What did we achieve ?

Erlang/OTP rely on a strong and powerful technical asset.
It stays very high in network & server development

Some potential killer-apps (Yaws, Wings3D, Tsunami, Ejabberd,
J-EAI ...)

Maturity: 10" Erlang User Conference, 18" year for Erlang
Nice progression in statistics on Erlang.org
More companies producing Erlang products and software

Open Source since 1998 [a

2 ERLANG

Erlang: What's next ?

We still have significant weaknesses :

Mindshare

* Marketing: despite being a top technical environment Erlang is not
largely covered in computing media.

* Userbase: We need to accelerate the growth of the Erlang users base.

In a competive world, if we do not grow very fast, we are d@@masmg
relatively to the other alternatives. This means that:

— We are losing opportunities to develop Erlang in new interesting
environments and to replace legacy systems

Pz
— We might lose the lead we current have over the competition. [i
3 ERLANG

A common effort is needed to promote and
develop Erlang mindshare

To show the industry that Erlang is used by many companies and is here
to stay (potential customers are worried)

To help increase userbase, and increase Erlang business
To make it easier to hire Erlang developers
To make it easier to find Erlang services and consultancy companies

To allow coordination of developments needed common software,
bindings, extensions or demonstrators

To help develop Erlang as a strong marketing point for Erlang products
and software (Branding) [-

Ty A e am

Toward an Erlang foundation (1/2)

* We propose to turn Erlang-projects into an Erlang foundation to
gather companies having interests in Erlang development.

* Aplace to discuss what would help companies doing better
business with Erlang.

* discuss and coordinate developments that will help improving
the Erlang environment:

— Commonly needed libraries

— Marketing tools

- Enhancing OTP { H

5 ERLANG U

Toward an Erlang foundation (2/2)

* To provide a hardware and software infrastructure for
members to participate in the foundation activity:

- Metafrog to coordinate developments,
— Erlang application hosting,
* Participation in events (conferences, booth on expos, etc.)

* Creation of local country based representatives of
Erlang-projects: Local country based representings for the
Erlang-Project foundation.

v

6 ERLANG

Examples from current

Erlang-projects activities
Metafrog

* Coordination platform for Erlang
development efforts

* Showcase for big Erlang-based application.
Demonstrate Erlang/OTP and Yaws
high-performance and reliability

* Simple and efficient collaborative platforn. g

7 ERLANG I

Examples from current

Erlang-projects activities
Solutions Linux 2004 booth

* Presence of Erlang projects on the expo: Booth in the non-profit area.
* Ceonference on Erlang and clustering.
* Lots of interesting contacts.

* Presence with other consortium such as Objectweb on the expo.

It was important to be there for Erlang promotion and helped
dissemination of the technology.

Conference and booth for Solutions Linux 2005 [H

already planned o ERLANG

Co

Examples from current

Erlang-projects activities
Erlang REPOS

preconfigured Erlang environment and applications (on CDROM,
dumpable on hard drive).

Big marketing impact (hundreds of downloads already).
Magazines are interested for cover CD diffusion.

Has proven very useful to distribute software
(J-EAI)

Has a strong impact on multipiatform compliance

improvement -
(Example: Patches for Yaws, ejabberd, etc.). [d
o ERLANG

Examples from current

Erlang-projects activities
Other ideas:

* Pluggable distribution layer in Erlang ?

* Improving Erlang interoperability is needed. We need to provide
robust and easy tools to quickly develop muiti-platform binding
to C libraries.

® More interoperability libraries are needed (SOAP, WSDL, ...).

* Develop example web applications that will prove Erlang high
performance (Example RUBIS implementation, comparable with

Java and PHP). K H

10 ERLANG

07

Erlang-projects foundation

Built on the same model than the Apache Foundation.

See http://www.apache.org/foundation/how-it-works.html

Erlang-projects foundation mission could be stated as:

Develop and promote valuable projects that could turn
Erlang into a long-term solution for middleware
development, server applications and highly concurrent
graphical user applications.

Please do not hesitate to promote your own mission

.

11 ERLANG

2]

Erlang-projects foundation

Discuss organisation:

Fees (each euro in communication through Erlang
project will have more impact than isolated
communication).

Define the long-term mission
Roadmap
Bootstrap period

Executive board for the foundation. This is the basis foL

a lightweight organisation of the foundation.
12 ERLANG

.
N~

Erlang-projects foundation

Open discussion

13

|

ERLANG

(ener

1(2)

Highlights
Erlang 5.4/0TP R10B

This document describes the major new features of and changes to Erlang 5.4/OTP
R10B, compared to Erlang 5.3/OTP R9C with focus on the major completely new
things which has not already been delivered as patches to R9C. Some of the new
features and changes have already been delivered as patches to R9C and/or R9B. For
Open Source users this document can also serve as a good approximation to the
differences compared to R9C-2 (corresponding to OTP patchlevel 663).

For more detailed information, please refer to the release notes for the individual
applications.

Documentation

® A new tutorial ""Getting Started With Erlang''.
This is a "kick start" tutorial to get you started with Erlang. Everything in it is true, but only
part of the truth. For example, It will only tell you the simplest form of the syntax, not all
esoteric forms. Together with the Erlang Reference Manual it should be a very good start for
learning Erlang.

ERTS, Erlang emulator

® Process and port identifiers have been made more unique. Now we use 28 bits for the internal
representation compared to 18 before. This also increases the maximum number of Erlang
processes (the new maximum is 268435456 previously it was 262144). The new
representation of a Pid (process identifier) has impact on the Erlang distribution protocol. The
use of new or old Pid representation can be controlled with a flag when the Erlang node is
started.

® Significantly improved performance regarding handling of links and monitors in the emulator.
This will have positive impact on performance for a system with many dynamical processes
who are using links. Measurement in a real system is necessary in order to know exactly how
much this improves performance.

@® Support for the new language construct try?catch.

Standard libraries (kernel, stdlib)

® Query List Comprehensions QLC which is a very convienient way to perform queries on ets
and mnesia tables. QLC is intended to replace mnemosyne in forthcoming releases. The use
of mnemosyne is already strongly discouraged especially in time critical applications since it
is very resource consuming and cpu demanding. This is the first version and there will be
more optimizations added in forthcoming releases. There is also additional functionality in
mnesia to support QLC. Note that mnemosyne is still included and works exactly as before.

® Support for records in the Erlang Shell. There are commands for reading record definitions
from files and for manipulating record definitions. The record syntax can be used in the shell
and return values are printed as records when possible using the record definitions known to
the shell.

2(2)

® New function insert_new/2 in ets and dets. Will only succed if this is the first insert for a key.

Compiler, Erlang compiler

® The semantics for boolean operators in guards have been changed to be more consistent.

® The compiler now warns for more types of suspect code, e.g as expressions that will fail in
runtime (such as atom-42), guards that are always false and patterns that cannot match.

® Improved compilation speed with ERLC (starts as little of the Erlang system as possible, for
example avoiding ?start_sasl?).

® The new language construct try?catch is supported.

New Applications

® New application xmerl which is a validating XML-parser with many useful features for
handling and transforming XML-data in Erlang. This application was originally created by
Ulf Wiger and has been developed at Sourceforge.net for several years.. It has now been
included in the Erlang/OTP distribution and is supported by the OTP team.

® New applications edoc and syntax_tools which can be used to produce documentation of
Erlang modules by means of special comments in the Erlang source code. These applications
are originally created by Richard Carlsson at Uppsala University and are now included in the
Erlang/OTP distribution. The reason for this is to offer one "standardized" way to document
Erlang, where the necessary tools are always available.

Other Applications

® Erl_interface and J_interface: Support for new format of Pid and a compatibility mode so
that old format can be used.

® Mnesia: support for QLC (the mnesia:table function) otherwise the same as in R9C.

® Observer/Crashdump_viewer can now handle really large crashdumps without getting
problems with that the Internet browser times out.

Erlang/OTP User Conference 2004

Speakers and chairman

Joe Armstrong SICS Kista Sweden joe@sics.se
Thomas Arts IT university Goteborg Sweden thomas.arts@ituniv.se
Per Bergqvist Synapse Stockholm Sweden per@synap.se
Johan Blom Mobile Arts Stockholm Sweden Johan.Blom@mobilearts.se
Richard Carlsson Uppsala univ Uppsala Sweden richardc@csd.uu.se
Bjarne Dacker cs-lab.org Segeltorp Sweden bjarne@cs-lab.org
Tobias Lindahl Uppsala univ Uppsala Sweden Tobias.Lindahl@it.uu.se
Kenneth Lundin Ericsson Erlang/OTP unit Stockholm Sweden kenneth.lundin@ericsson.com
Gdran Oettinger Mobile Arts Stockholm Sweden goran.oettinger@mobilearts.se
Mickaél Rémond Erlang projects Paris France mickael.remond@erlang-fr.org
Jouni Ryné Finnish Meteorological Institute Helsinki Finland Jouni.Ryno@fmi.fi
Juan José Sanchez Penas Univ of A Corufia Coruna Spain juanjo@dc.fi.udc.es
Fredrik Thulin Stockholm univ Stockholm Sweden ft@it.su.se

Participants
Kristoffer =~ Andersson Synapse Stockholm Sweden
Peter Andersson Ericsson Erlang/OTP unit Stockholm Sweden
Ingela Andin Ericsson Erlang/OTP unit Stockholm Sweden
Gosta Ask Salvelinus Stockholm Sweden g.ask@telia.com
Simon Aurel Erlang Training & Consulting London England
Knut Bakke Teleca Wireless Solutions AS Grimstad Norway Knut.Bakke@teleca.no
Sreedhar Bandaru Ericsson Enterprise Stockholm Sweden sreedhar.bandaru@wipro.com
John-Olof Bauner Ericsson Kista Sweden john-olof.bauner@bredband.net
Johan Berg Ericsson Stockholm Sweden johan.berg@ericsson.com
Johan Bevemyr Nortel Networks Stockholm Sweden jb@bluetail.com
Katrin Bevemyr Nortel Networks Stockholm Sweden
Martin Bjorklund Nortel Networks Stockholm Sweden mbj@bluetail.com
Hans Bolinder Ericsson Erlang/OTP unit Stockholm Sweden
Pascal Brisset Cellicium Bagneux France pascal.brisset@cellicium.com

hs

|
f\
=

Participants cont.

Goéran
Martin
Francesco
Mats
Niclas
Morgan
Lars-Ake
Magnus
Luke
Par
Joakim
Rickard
Dan
Bjérn
Per
Niklas
Siri

Per
Sean
John
Klas
Leif
Torbjérn
Bertil
Mikael
Bengt
Tord
Lars
Peter

Bage
Carison
Cesarini
Crongqvist
Eklund
Eriksson
Frediund
Fréberg
Gorrie
Grandin
Grebend
Green
Gudmundsson
Gustavsson
Hallin
Hanberger
Hansen
Hedeland
Hinde
Hughes
Johansson
Johansson
Johnson
Karisson
Karlsson
Kleberg
Larsson
Lindgren
Lund

Mobile Arts

Erlang Training & Consulting
Erlang Training & Consulting

Ericsson

Ericsson Erlang/OTP unit
Nortel Networks

SICS

Nortel Networks
Synapse

Ericsson

Nortel Networks

Ericsson Erlang/OTP unit
Ericsson Erlang/OTP unit
Ericsson Erlang/OTP unit
Synapse

Nortel Networks

Ericsson Erlang/OTP unit
Nortel Networks
T-mobile

Chalmers

Ericsson

Ericsson

Ericsson Erlang/OTP unit
Creado Systems
Ericsson

Nortel Networks
Synapse

Lundata AB

Stockholm
London
London
Budapest
Stockholm
Stockholm
Kista
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
London
Géteborg
Linképing
Géteborg
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm
Stockholm

Sweden
England
England
Hungary
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
England
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden
Sweden

goran.bage@mobilearts.se

francesco@erlang-consulting.com

mats.cronqvist@ericsson.com
nick@erix.ericsson.se

fred@sics.se
magnus@bluetail.com

par.grandin@ericsson.com
jocke@pbluetail.com

bjorn@erix.ericsson.se

per@bluetail.com
sean.hinde@mac.com
rimh@cs.chalmers.se
klas.johansson@ericsson.com
leif.d.johansson@ericsson.com
torbjorn.k.johnson@swipnet.se

mikael.karlsson@creado.com
bengt.kleberg@ericsson.com
tlarsson@nortelnetworks.com

Peter.Lund@lundata.se

Participants cont.

Peter Lundell Ericsson Stockholm Sweden peter.lundell@ericsson.com
Matthias Lang Corelatus AB Stockholm Sweden matthias@corelatus.se
Ann-Marie L&f Sjéland & Thyselius Telecom AB Stockholm Sweden ann-marie.lof@st.se

Arild Lavendahl Teleca Wireless Solutions AS Grimstad Norway Arild.Lovendahi@teleca.no

Luca Manai Ericsson Stockholm Sweden luca.manai@ericsson.com
Peter-Henry Mander Thame England erlang@manderp.freeserve.co.uk
Hakan Mattsson Ericsson Erlang/OTP unit Stockholm Sweden hakan@erix.ericsson.se

Peter Nagy Ericsson Budapest Hungary peter.nagy@ericsson.com

Vinay Navsingoju Ericsson Enterprise Stockholm Sweden vinay.navsingoju@wipro.com
Hans Nilsson Ericsson Stockholm Sweden hans.r.nilsson@ericsson.com
Raimo Niskanen Ericsson Erlang/OTP unit Stockholm Sweden

Patrik Nyblom Ericsson Erlang/OTP unit Stockholm Sweden pan@erix.ericsson.se

Laurent Picouleau Erlang Training & Consuiting London England

Robert Raschke Edinburgh Scotland rrerlang@tombob.com

Tony Rogvall Synapse Stockholm Sweden tony@rogvall.com

Per Romin Ericsson Enterprise Stockholm Sweden per.romin@ericsson.com

Hakan Stenholm Stockholm univ Stockholm Sweden hakan.stenholIm@mbox304.swipnet.se
Erik Stenman Virtutech AB Stockholm Sweden stenman@uvirtutech.com

Per Sternas Ericsson Enterprise Stockholm Sweden per.sternas@ericsson.com
Sebastian Strollo Nortel Networks Stockholm Sweden seb@bluetail.com

Anton Strydom Synapse Stockholm Sweden

Per Einar Strémme K-tech Stockholm Sweden stromme@telia.com

Géran Stupalo Ericsson Erlang/OTP unit Stockholm Sweden

Uif Svarte Bagge Corelatus AB Stockholm Sweden ulf@corelatus.se

Torbjérn Térnkvist Nortel Networks Stockholm Sweden tobbe@nortelnetworks.com

Jane Walerud Stockholm Sweden jane@walerud.com

Paul van Teeffelen Ericsson Stockholm Sweden paul.van.teeffelen@ericsson.com
Esko Vieruméki Ericsson Stockholm Sweden esko.vierumaki@ericsson.com
UK Wiger Ericsson Stockholm Sweden ulf.wiger@ericsson.com

Participants cont.

Daniel Wiik Ericsson Linképing Sweden daniel.wiikk@ericsson.com

Claes Wikstrom Nortel Networks Stockholm Sweden klacke@nortelnetworks.com

Jerker Wilander Lucenay France edberg.wilander@stockholm.mail.telia.com
Chris Williams Ericsson Stockholm Sweden chris.williams@ericsson.com

Mike Williams Ericsson Stockholm Sweden michael.williams@ericsson.com

Johan Warlander St Jude Medical AB Jarfalla Sweden jwarlander@sjm.com

Lennart Ohman Sjéland & Thyselius Telecom AB Stockholm Sweden lennart.ohman@st.se

Géran Ostlund Stockholm _Sweden goran.may@chello.se

Updated 2004-10-14 |

)4

