
What is Riak?

Riak is a scalable, highly-available, distributed 
open-source database built around a !exible 
distributed systems framework. It is written 
primarily in Erlang.

Key Facts

■ Dynamo-based – a faithful adaptation of 
Amazon’s Dynamo model

■ Cloud-ready – elastic architecture means you can 
grow clusters dynamically without downtime

■ Master-less – no single point of failure

■ Fault tolerant – survive outages with no data loss

■ Multi-Data Centre – write-available, masterless 
replication

■ Linearly scalable – adding 10% more nodes 
means 10% more capacity

■ No sharding – consistent hashing means 0% 
downtime

Buckets, Keys, Values

Riak organises data into Buckets, Keys, and Values. 
Values (or objects) are identi"able by a unique key, 
and each key/value pair is stored in a bucket.

Buckets are essentially a !at namespace, mainly 
signi"cant for their ability to allow the same key 
name to exist in multiple buckets and to provide 
some per-bucket con"gurability for things like 
replication factor and pre/post-commit hooks.

The Riak API

Basho initially implemented both a native Erlang 
interface, and a HTTP (often called “RESTful”) API 
that allowed users to manipulate data using stan-
dard HTTP methods: GET, PUT, POST and DELETE. 
With the 0.10 release, it added support for access-
ing Riak using a Protocol Buffers Client interface.

Versioning

Each update to a Riak object is tracked by a vector 
clock. Vector clocks determine causal ordering and 
detect con!icts in a distributed system.

Each time a key/value pair is created or updated in 
Riak, a vector clock is generated to keep track of 
each version and ensure that the proper value can 
be determined if there are con!icting updates.

To resolve update con!icts on Riak objects, Riak can 
either allow the last update to automatically “win”, 

Technology Note

Riak – a distributed, decentralised
data storage system

Technical Data

Developer:
Basho Technologies

Operating system: 
Linux, Mac OS X

License:
Apache License 2.0

Written in:
Erlang, C, and a small 
amount of Javascript

Used by

AOL
Best Buy
Boeing
Citigroup
Comcast
Hova Networks
Joyent
Link!uence
MIG
Mochi Media
Opscode
Vibrant
Wikia
Yammer

Sources

■ wiki.basho.com
■ Wikipedia

Erlang Solutions
29 London Fruit & Wool 
Exchange, Brush"eld Street
London, E1 6EU
United Kingdom

Phone +44 (0)20 7456 1020
info@erlang-solutions.com
www.erlang-solutions.com

© Erlang Solutions Limited

or it can return both versions of the object to the 
client, letting it resolve the con!ict on its own.

Languages

The core Basho Development Team currently 
supports libraries for Erlang, JavaScript, Java, PHP, 
Python and Ruby. In addition, there are community 
contributed projects for .NET, JavaScript, Python 
(and Twisted), Griffon, Perl, and Scala.

The Riak Cluster

Central to any Riak cluster is a 160-bit integer space 
(often referred to as “the ring”) which is divided into 
equally-sized partitions.

Physical servers, referred to in the cluster as “nodes”, 
run a certain number of virtual nodes, or “vnodes”. 
Each vnode will claim a partition on the ring. The 
number of active vnodes is determined by the 
number of partitions into which the ring has been 
split, a static number chosen at cluster initialisation.

All nodes in a Riak cluster are equal. Each node is 
fully capable of serving any client request. This is 
possible due to the way Riak uses consistent hash-
ing to distribute data around the cluster.

A Riak cluster grows and shrinks dynamically, 
meaning Riak will automatically re-balance data as 
nodes join and leave the cluster.

Data Replication

Replication is fundamental and automatic in Riak, 
providing security that data will still be there if a 
node in a Riak cluster goes down. All data stored in 
Riak will be replicated to a number of nodes in the 
cluster according to the bucket’s n_val property.

Querying and Query Languages

Riak relies on MapReduce to perform queries that 
exceed the limitations that come with the basic 
key/value storage model. Users can write their Ma-
pReduce queries in either Erlang or Javascript.

Bene!ts

■ Low total cost of operations: a lower capital 
investment and headcount requirement, but 
with higher performance and reliability.

■ Simplicity: it is simple to use and simple to scale

■ A large and ever-growing community of users: 
the open-source community of developers 
provides additional features and support.


